14 research outputs found

    Online multiparameter estimation of nonsalient-pole PM synchronous machines with temperature variation tracking

    Get PDF
    The ill-convergence of multiparameter estimation due to the rank-deficient state equations of permanent-magnet synchronous machines (PMSMs) is investigated. It is verified that the PMSM model for multiparameter estimation under id = 0 control is rank deficient for simultaneously estimating winding resistance, rotor flux linkage, and winding inductance and cannot ensure them to converge to the correct parameter values. A new method is proposed based on injecting a short pulse of negative id current and simultaneously solving two sets of simplified PMSM state equations corresponding to id = 0 and id ā‰  0 by using an Adaline neural network. The convergence of solutions is ensured, while the minimum |i d| is determined from the error analysis for nonsalient-pole PMSMs. The proposed method does not need the nominal value of any parameter and only needs to sample the winding terminal currents and voltages, and the rotor speed for simultaneously estimating the dq-axis inductances, the winding resistance, and the rotor flux linkage in nonsalient-pole PMSMs. Compared with existing methods, the proposed method can eliminate the estimation error caused by the variation of rotor flux linkage and inductance as a result of state change due to the injected d-axis current in the surface-mounted PMSM. The method is verified by experiments, and the results show that the proposed method has negligible influence on output torque and rotor speed and has good performance in tracking the variation of PMSM parameters due to temperature variation. Ā© 2010 IEEE

    Parameter estimation for VSI-Fed PMSM based on a dynamic PSO with learning strategies

    Get PDF
    Ā© 1986-2012 IEEE.A dynamic particle swarm optimization with learning strategy (DPSO-LS) is proposed for key parameter estimation for permanent magnet synchronous machines (PMSMs), where the voltage-source inverter (VSI) nonlinearities are taken into account in the parameter estimation model and can be estimated simultaneously with other machine parameters. In the DPSO-LS algorithm, a novel movement modification equation with variable exploration vector is designed to effectively update particles, enabling swarms to cover large areas of search space with large probability and thus the global search ability is enhanced. Moreover, a Gaussian-distribution-based dynamic opposition-based learning strategy is developed to help the pBest jump out local optima. The proposed DPSO-LS can significantly enhance the estimator model accuracy and dynamic performance. Finally, the proposed algorithm is applied to multiple parameter estimation including the VSI nonlinearities of a PMSM. The performance of DPSO-LS is compared with several existing PSO algorithms, and the comparison results show that the proposed parameters estimation method has better performance in tracking the variation of machine parameters effectively and estimating the VSI nonlinearities under different operation conditions

    Dual-rate modified stochastic gradient identification for permanent magnet synchronous motor

    Get PDF
    The high-performance application of high-power permanent magnet synchronous motor (PMSM) is increasing. This paper focuses on the parameter estimation of PMSM. A novel estimation algorithm for PMSMā€™s dual-rate sampled-data system has been developed. A polynomial transformation technique is employed to derive a mathematical model for PMSMā€™s dual-rate sampled-data system. The proposed modiļ¬ed stochastic gradient algorithm gets more excellent convergence performance for smaller index Īµ. Simulation and experimental results demonstrate the effectiveness and performance improvement of the proposed algorithm

    A Test Procedure to Evaluate Magnets Thermal Time Constant of Permanent Magnet Machines

    Get PDF
    Thanks to their high torque density, permanent magnet synchronous motors (PMSMs) currently represent the most competitive solution in the electrification processes involving transports and energy production. However, it is known how the torque production of PMSMs is strictly related to the temperature of the permanent magnets (PMs) since the latter affects control performance and efficiency. This issue thus makes necessary the thermal analysis of the machine under consideration. In this scenario, the determination of the PMs thermal time constant covers a pivotal role in implementing an accurate thermal model of PMSMs. Therefore, this paper aims at proposing an experimental test procedure to evaluate the PMs thermal time constant of PMSMs. The proposed procedure can be applied to any PMSM type without being affected by factors such as rotor lamination, shaft, and PM distribution. In this way, accurate and reliable results are obtained. The experimental validation has been carried out on four PMSMs, with different rotor structures, sizes, power, and voltage/current levels. Experimental results demonstrate the validity of the proposed method

    Parameter Estimation for PMSM based on a Back Propagation Neural Network Optimized by Chaotic Artificial Fish Swarm Algorithm

    Get PDF
    Permanent Magnet Synchronous Motor(PMSM) control system with strong nonlinearity makes it difficult to accurately identify motor parameters such as stator winding, dq axis inductance, and rotor flux linkage. Aiming at the premature convergence of traditional Back Propagation Neural Network(BPNN) in PMSM motor parameter identification, a new method of PMSM motor parameter identification is proposed. It uses Chaotic Artificial Fish Swarm Algorithm(CAFSA) to optimize the initial weights and thresholds of BPNN, and then strengthens training by BPNN algorithm. Thus, the global optimal network parameters are obtained by using the global optimization of CAFSA and the local search ability of BPNN. The simulation results and experimental data show that the initial value sensitivity of the network model optimized by CAFS-BPNN Algorithm is weak, the parameter setting is robust, and the system stability is good under complex conditions. Compared with other intelligent algorithms, such as RSL and PSO, CAFS-BPNNA has high identification accuracy and fast convergence speed for PMSM motor parameters

    Coevolutionary particle swarm optimization using AIS and its application in multiparameter estimation of PMSM

    Get PDF
    In this paper, a coevolutionary particle-swarm-optimization (PSO) algorithm associating with the artificial immune principle is proposed. In the proposed algorithm, the whole population is divided into two kinds of subpopulations consisting of one elite subpopulation and several normal subpopulations. The best individual of each normal subpopulation will be memorized into the elite subpopulation during the evolution process. A hybrid method, which creates new individuals by using three different operators, is presented to ensure the diversity of all the subpopulations. Furthermore, a simple adaptive wavelet learning operator is utilized for accelerating the convergence speed of the pbest particles. The improved immune-clonal-selection operator is employed for optimizing the elite subpopulation, while the migration scheme is employed for the information exchange between elite subpopulation and normal subpopulations. The performance of the proposed algorithm is verified by testing on a suite of standard benchmark functions, which shows faster convergence and global search ability. Its performance is further evaluated by its application to multiparameter estimation of permanent-magnet synchronous machines, which shows that its performance significantly outperforms existing PSOs. The proposed algorithm can estimate the machine dq-axis inductances, stator winding resistance, and rotor flux linkage simultaneously. Ā© 2013 IEEE

    Coevolutionary Particle Swarm Optimization Using AIS and its Application in Multiparameter Estimation of PMSM

    Get PDF
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, a coevolutionary particle-swarm-optimization (PSO) algorithm associating with the artificial immune principle is proposed. In the proposed algorithm, the whole population is divided into two kinds of subpopulations consisting of one elite subpopulation and several normal subpopulations. The best individual of each normal subpopulation will be memorized into the elite subpopulation during the evolution process. A hybrid method, which creates new individuals by using three different operators, is presented to ensure the diversity of all the subpopulations. Furthermore, a simple adaptive wavelet learning operator is utilized for accelerating the convergence speed of the pbest particles. The improved immune-clonal-selection operator is employed for optimizing the elite subpopulation, while the migration scheme is employed for the information exchange between elite subpopulation and normal subpopulations. The performance of the proposed algorithm is verified by testing on a suite of standard benchmark functions, which shows faster convergence and global search ability. Its performance is further evaluated by its application to multiparameter estimation of permanent-magnet synchronous machines, which shows that its performance significantly outperforms existing PSOs. The proposed algorithm can estimate the machine dq-axis inductances, stator winding resistance, and rotor flux linkage simultaneously. Ā© 2013 IEEE

    Online parameter estimation for permanent magnet synchronous machines : an overview

    Get PDF
    Online parameter estimation of permanent magnet synchronous machines is critical for improving their control performance and operational reliability. This paper provides an overview of the recent achievements of online parameter estimation of PMSMs with examples. The critical issues in parameter estimation are firstly analysed, especially the rank-deficient issue and inverter nonlinearities. Then, the state-of-the-art online parameter estimation modelling techniques are reviewed and assessed. Finally, some typical applications and examples are outlined, e.g. estimation of mechanical parameters, improvement of sensored and sensorless control performance, thermal condition monitoring, and fault diagnosis, together with future research trends

    On-line Temperature Monitoring of Permanent Magnet Synchronous Machines

    Get PDF
    corecore