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1 Abstract—In this paper, a coevolutionary particle swarm 
optimization algorithm associating with the artificial immune 
principle is proposed. In the proposed algorithm, the whole 
population is divided into two kinds of subpopulations consisting of 
one elite subpopulation and several normal subpopulations. The 
best individual of each normal subpopulation will be memorized 
into the elite subpopulation, during the evolution process. A hybrid 
method, which creates new individuals by using three different 
operators, is presented to ensure the diversity of all the 
subpopulations. Furthermore, a simple adaptive wavelet learning 
operator is utilized for accelerating the convergence speed of the 
pbest particles. The improved immune clonal selection operator is 
employed for optimizing the elite subpopulation while the 
migration scheme is employed for the information exchange 
between elite subpopulation and normal subpopulations. The 
performance of the proposed algorithm is verified by testing on a 
suite of standard benchmark functions, which shows a faster 
convergence and global search ability. Its performance is further 
evaluated by its application to multi-parameter estimation of 
permanent magnet synchronous machines, which shows that its 
performance significantly outperforms existing PSOs. The 
proposed algorithm can estimate the machine dq-axis inductances, 
stator winding resistance and rotor flux linkage simultaneously. 

 
Index Terms—artificial immune system(AIS), particle swarm 

optimization, Coevolutionaion, permanent magnet synchronous 
machines(PMSM), parameter estimation, migration scheme, elite 
population, global search 

 

I. INTRODUCTION 
article swarm optimization (PSO) was firstly presented by 

Kennedy and Eberhart in 1995[1]-[2], which imitates the 
behavior of swarms such as birds flocking and fish schooling. It 
has been greatly developed in recent years and is widely 
employed for solving problems in different areas such as neural 
networks [3], intelligent control [4][5], real optimization 
problems [6] and system identification [7]-[9]. However, since 
the basic PSO is based on iterative computation, which is 
similar to other evolutionary algorithms, it is report in literature 
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that the basic PSO is easy to lose diversity at the later stage of 
evolution [10]-[11] and suffer from trapping in local optima. 
Further, as detailed in [11], although each particle of basic PSO 
moves in a random direction, it has a potential trend of 
clustering together and may lose its diversity in the later stage of 
evolution computation and suffer from a premature convergence 
problem. Therefore, the recent literatures about PSO mainly 
focus on how to simultaneously accelerate the convergence 
speed and avoid the loss of diversity of the population, which 
can be reviewed as follows: 

In some literatures, it was proposed to improve the algorithm 
performance by using a hybrid of PSO and other evolutionary 
algorithms (EA). It shows that these hybrid PSOs have the 
ability to jump out of the local optima thanks to the added 
operators, for example, the mutation operator. For instance, 
Angeline [12] firstly proposed a hybrid PSO method in which 
the standard selection mechanism of evolutionary computation 
is employed for improving the performance of PSO. Ahmed et 
al. [10] proposed to introduce the genetic mutation mechanism 
into the particle swarm optimization, which is with a constant 
mutating space. Juang et al. [11] proposed a hybrid PSO 
algorithm associating with the genetic algorithm (GA), in which 
the classical GA operators such as crossover, mutation, and 
reproduction improved the diversity of PSO significantly. 
However, since the factors of utilized operators such as the 
mutation rate, crossover rate and reproduction rate are usually 
set to be constants in these methods, their performances are still 
sensitive to the variation of operator setups. In order to 
overcome this flaw, Ling et al. [13] proposed a hybrid PSO 
which included a wavelet function based mutation operation. 
Compared with basic PSO, the hybrid PSO in [13] can 
dynamically vary with the value of wavelet function in each 
generation of optimization and its ability in exploring the 
solution space is enhanced thanks to the dynamic mutating 
space. However, since the mutation amplitude of used wavelet 
function is usually very small, the convergence speed of the 
hybrid PSO in [13] is too low and its accuracy cannot be 
ensured. 

In some literatures, it was proposed to change the particle 
behaviors to improve the performance of PSO. For instance, in 
[14] and [15], Shi et al. proposed to adjust the convergence 
speed of particles to improve their dynamic performance for the 
first time, where a linear function [14] and a fuzzy method [15] 
were utilized to change the convergence factors of PSO, 
respectively. Zhan et al. [16] proposed an adaptive PSO which 
can accelerate the convergence speed and jump out of the local 
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optima by using a proposed parameter adaptive regulation 
scheme and an elitist learning strategy. The utilized adaptive 
regulation scheme in [16] still needs expert experiences to judge 
the evolutionary state and there exists a potential risk that these 
experiences may not be appropriate in solving other problems 
and will influence on the population diversity. In addition, 
different from changing the convergence speed of particles, 
Liang et al. [17] proposed a comprehensive learning PSO, in 
which all the flying particles are randomly updated by each 
other in each step of evolution. Although the method in [17] is 
superior in keeping diversity, it does not take into account how 
to jump out of the local optima and will cause the algorithm 
with low convergence speed. Similar problem also exists in 
other PSO using varying pbests [18]. In addition, some 
researchers proposed to design different types of topologies to 
improve the effectiveness of the PSO. For instance, in [19] and 
[20], Kennedy and Mendes proposed two new PSOs for solving 
multimodal problems, which are with ring topology and von 
Neumann topology (VPSO), respectively.  

In some other literatures, it was proposed to generate 
multi-swarm to ensure the diversity of PSO. For instance, since 
the algorithm based on multi-population or co-evolutionary 
scheme is usually of better performance in maintaining the 
diversity compared with the algorithm based on a single 
population because there existing multiple global optimums  in 
all the subpopulations, in other words, each subpopulation has 
its own global optimum. It has been reported in some literatures 
that it is applicable to use multi-population or co-evolutionary 
scheme to improve the diversity of the basic PSO [21]-[24]. For 
instance, Bergh et al. [21] proposed to use multiple swarms to 
optimize different components of the solution vector, which 
showed better performance than basic PSO. However, there is 
no information interaction between these isolated swarms, 
which may influence on the convergence speed of the algorithm. 
In [22], a hybrid method is proposed, in which a truncated 
Gaussian distribution function is utilized to accelerate the 
convergence speed and a co-evolutionary scheme for PSO is 
utilized to ensure the diversity of population. In [23], a PSO 
with dynamic multi-swarm was proposed, in which the number 
of swarms was adaptively adjusted throughout the search 
process. Further, Niu et al. [24] proposed to use the concept of 
master-slave mode to improve the PSO performance, where the 
population consists of one master swarm and several slave 
swarms. The slave swarms will explore the search space 
independently to maintain the diversity of particles while the 
master swarm evolves based on its own knowledge. However, it 
does not take into account how to escape from the local 
optimum and the convergence speed of each swarm may 
become slow at the later stage of evolution. 

All in all, existing literatures mainly focus on using the 
foregoing three methods to improve the performance of classical 
PSO. However, from the analysis, there exist merit and flaw 
simultaneously in these methods. Thus, if the merits of these 
methods can be utilized to improve each other, it is possible to 
design an algorithm with better performance. In this paper, a 
novel co-evolutionary PSO called Immune Co-evolution 
Particle Swarm Optimization algorithm (ICPSO) is proposed. 

Compared with classical PSO, the proposed ICPSO is associated 
with the co-evolution theory and artificial immune system (AIS) 
theory [25]-[26]. The whole population of ICPSO is divided into 
two kinds of subpopulations including one elite subpopulation 
and several normal subpopulations. In each generation of the 
algorithm, the best individual of each normal subpopulation will 
be memorized into the elite subpopulation. A hybrid method, 
creates new individuals by using operators such as elitist 
reservation, immune network and Cauchy mutation, is proposed 
to ensure the diversity of all the subpopulations. For 
accelerating the convergence speed of pbests in normal 
subpopulations, a simple wavelet learning operator is employed 
to adjust the convergence factor. In addition, since the artificial 
immune system (AIS) theory has a powerful intelligent 
information processing capability, it is verified in literatures that 
some operators based on AIS can be used for improving other 
algorithms [27]-[29]. Therefore, the immune clonal selection 
operator is employed for optimizing the elite subpopulation and 
the migration scheme is employed for the information exchange 
between elite and normal subpopulations. Compared with other 
hybrid PSOs, the performance of proposed ICPSO is verified by 
solving some standard benchmark functions, high dimension 
functions, and shift functions, which show better performance in 
convergence, global search and solution stability. Its 
performance is further verified by its application to 
multi-parameter estimation of permanent magnet synchronous 
machines. 

 

II. IMMUNE CO-EVOLUTION PARTICLE SWARM OPTIMIZATION 
ALGORITHM FRAMEWORK 

In basic PSO, a swarm of particles are represented as 
potential solutions, and each particle i consists of two vectors, 
which are the velocity vector 1 2{ }, ,...,i i i idV V V V= and the position 

vector 1 2{ , , ..., }i i i idX X X X= . Assuming that Pbestid represents 
the best position found by the i-th particle so far and Gbestd is 
the best position in the entire group, the velocity and position of 
particle i in dimension d are updated during the search process 
by the following functions. 

1 1

2 2

( 1) * ()( ( ) ( ))

* ()( ( ) ( ))
id id id id

d id

V t wV c rand Pbest t X t

c rand Gbest t X t

+ = + −

                 + −
   (1) 

( 1) ( ) ( 1)id id idX t X t V t+ = + +             (2) 
Where w is the inertia weight decreasing linearly from 0.9 to 0.4; 
c1 and c2 are the acceleration coefficients; rand1 and rand2 are 
two uniformly distributed random numbers generated in the 
interval [0,1] and min max[ , ]idv v v∈ , respectively, where vmin 

and vmax are the designated minimum velocity and maximum 
velocity, respectively. As can be seen from (1) and (2), if the 
Pbestid and Gbestd are close to Xid, and also w is less than one, 
the diversity will be low during the process of evolution, which 
may halt the cycle of evolutionary computing. Thus, an 
improved PSO, which is called immune co-evolution particle 
swarm optimization, is proposed in this section to improve the 



performance of basic PSO and shown as follows. 
In natural system, the evolution levels of different biomes are 

usually different from each other and there usually exist 
information and energy interactions among these biomes. In 
addition, there also exists stratification phenomenon in biomes. 
These activities and phenomenon, namely co-evolution [30], can 
be employed for improving the performance of PSO. As can be 
seen from Fig.1, the proposed ICPSO consists of one 
memorized elite subpopulation and several normal 
subpopulations and has taken into account the co-evolution 
which can inspire the diversity of the whole population. The 
pseudo code of ICPSO algorithm is shown in Fig.3. 

 
Fig. 1.  Elite and normal subpopulations of ICPSO 

 

 
Fig. 2.  Immune co-evolution particle swarm optimization algorithm flow 

 
In Fig.1, PI (I>0) represents the I-th normal sub-population of 
the whole population and P0 represents the memorized elite 
subpopulation. Furthermore, PIJ represents the J-th dominant 
particle of the I-th subpopulation and the memorized P0 is 
equivalent to the dominant antibody population in immune 
system. The individuals in P0 are dominant particles selected 
from all the normal subpopulations. The population size of the 
elite subpopulation is fixed to three multiply normal 
subpopulations, named best individuals and two secondary 
individuals are selected from normal subpopulations. The best 
individuals and only one of each normal subpopulation Pi with 
highest fitness are memorized into P0 and will replace the 

existing elite individuals with low fitness in each generation. 
Part of the secondary individuals (two numbers) of each normal 
subpopulation Pi with high fitness are randomly selected and 
memorized in P0 in each generation. 

Fig.2 shows the schematic diagram of proposed ICPSO and 
its each step of evolution is detailed as follows. 
1) Setup of algorithm constants. 

Constants such as c1, c2(each subpopulation have the same c1 
and c2), Pi, mutation and clonal selection rates are initialized in 
this step. 
2) Population initialization. 

As can be seen from Fig.1, the whole population is divided 
into two groups, which are named elite and normal 
subpopulations. The initialization of population is through 
randomly initialized. 
3) Immune clonal selection. 

The memorized elite subpopulation will be optimized by the 
algorithm of immune clonal selection [25] and the obtained 
global best individuals will migrate to these normal 
subpopulations to replace their worst individuals. During this 
step, all the individuals in elite subpopulation will be optimized 
by using hyper mutation and the whole elite subpopulation will 
be updated by the optimized results.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Pseudo code for ICPSO 
 

The whole process is detailed as follows. 
a. Clone.  
In each generation, the particles are regarded as antibodies in 

the elite subpopulation, whose clonal scale is proportional to its 
affinity. The clonal scale (Nc) of the whole elite subpopulation is 

ICPSO Algorithm 
begin  
Initialize the normal subpopulations Pi and elite 
memory population P0 
Initialized constants such as c1, c2, set up 
parameters for ICPSO as shown in section  AⅢ  
t→0 //iteration number 
while(not termination in condition )do 
begin  
t→t+1; 

for i=1 to I //1≤i≤I , I is the number of normal 
sub-population; 

Perform the process of AIN-PSO( Hybrid 
AIN-PSO )for sub-population Pi (Shown in 
Fig.4 ) 

Evaluate the fitness value of each particle;
 end for 
Perform pbest adaptive wavelet learning 

based on (10)-(12) and Fig. 5. 
The best individuals of each normal 

subpopulation are selected into elite memory 
population P0 

Perform the process of immune clonal selection 
for P0 based on (3)-(6). 

Perform the process of migration operation 
based on (13)-(14); 
Until a terminate-condition is met 
end 



shown in (3). 

1( )
N

c
i

NN round b
i

β= +∑            (3) 

Where N is the population size and clonal scale coefficient 
β ∈(0,1), β  is set to be 0.8. In addition, b1 is setup to be 
larger than 1, which can keep the diversity of the whole 
population.  

b. Hyper mutation. 
Since the particles are regarded as antibodies in the elite 

subpopulation, the mutation operator can be expressed as 
follows. 

( ) * * * (0,1)

( ) * * * (0,1)

new
mid id id

m id

P P rd P P U

rd P P U

η

η

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

= + >

− ≤
      (4) 

{1.... ..[ ] 0......
if rd Pmrd Pm else

>> =            (5) 

Where rd is a randomly generated number and Pm is set to be 
0.5. η  is calculated by (6). 

[1 ( / )]( ) 1
bt Tt rη −= −              (6) 

Where T is the maximum evolution generation and t is the 
current generation number. Nonlinear variation coefficient b is a 
formal parameter and is set to be 2. r and U are randomly 
generated during the initialization and in each generation, 
respectively, which are both uniformly distributed in (0,1). As 
can be seen from (6), ( )tη will decrease to 0 when t=T. 

c. Clonal selection. 
After the hyper mutation, the best individuals will be selected 

according to the affinity, and used for updating the elite 
subpopulation, which is named clonal selection [25]. 

d. Hybrid AIN-PSO. 
The technologies of artificial immune network (AIN)[26] and 
PSO will be simultaneously employed to optimize the normal 
subpopulations, which are schematically shown in Fig.4. Prior 
to the optimization, the normal subpopulation will be ranked 
into three levels according to their fitness; the population is 
divided into three parts: the elite individuals (half of the 
population), the better individuals (forty percent of the 
population) and the worst individuals (one-tenth of the 
population).The new groups are generated through the following 
hybrid strategies. 

In addition, an artificial immune network (AIN) based PSO 
will be employed for generating new middle-level individuals. 
From Fig.4, during the evolution, the middle-level individuals 
will be updated by comparing with the selected elite individuals. 
The AIN can explain the immune system dynamics 
phenomenon, which maintains interactions between not only an 
antibody and an antigen, but also antibodies themselves. 
Inspired by the idiotypic network theory, the principium of the 
AIN is as follows: 

Assuming that C, C*, α and CAg are the vector of AIN cells, 
the updated vector of AIN cells, AIN mutation rate and the 
vector of antigens, respectively, the AIN cells can be updated by 
(7). 

* ( )AgC C C Cα •= − −              (7) 

(7) is the equation of mutation for a normal AIN. Thus, 
similar to (7), the equation of mutation for AIN based PSO can 
be derived as follows. 

1 2( 1) ( ) .( ( ) ( )) . . ( )id id id kd idX t X t r X t X t r X tcauchy+ = − − +  (8) 
Where, i≠k, r1, r2 are random numbers in (0, 1). (8) is used for 
the mutation operation of middle-level individuals, in which Xid 
is the i-th particle of Pi and Xkd is the k-th particle of the selected 
elite-level individuals. The term r1·(Xid(t)- Xkd(t)) can gather the 
particles of middle-level individuals around the particles of the 
selected elite individuals. The term r2·cauchyXid(t) can activate 
the mutation of the middle-level individuals, so offspring can 
inherit  excellent variation information from parents. cauchy is 
the density function, which can be expressed as follows. 

2 2
1

( ) , , 0t
t

x x t
t x

cauchy
π

= −∞ < < ∞ >
+

       (9) 

Comparing with the traditional random mutation, Cauchy 
mutation performs better because of its higher probability of 
making longer jumps [32]. 

The lowest-level individuals which belong to the worst 
individuals will be reinitialized, and then the dynamic 
performance of particle is enhanced, and also can avoid 
premature convergence for swarms. Finally, the updated 
three-level individuals will be memorized in sequence and used 
for the evolution of next generation. From the description above, 
it is obvious that the proposed AIN-PSO operation can keep the 
diversity of the whole population and accelerate the 
convergence speed simultaneously. 

 
Fig. 4.  Hybrid AIN-PSO in sub-population 

 

 
Fig. 5.  Pi selection flow chart 

 
e. pbest learning with adaptive wavelet 
As detailed in Fig.4, the elite individuals with high fitness 

will be optimized by a PSO algorithm with improved pbest 
learning method, which is shown as follows. 

As detailed in the first section, the wavelet function can 
nonlinearly adjust the mutation speed of PSO by following the 
increasing of generation number. Thus, similarly, the wavelet 
function is employed for adjusting the learning speed of pbest. 
The Choose Morlet wavelet function is employed and shown as 



follows [13], [31]. 

 
2

( ) / 21
cos(5( ))ae

aa

ϕ ϕ
σ −=         (10) 

Where [ 2.5 , 2.5 ]a aϕ ∈ −  and will be randomly generated 
during the evolution. a will linearly increase with the generation 
number and can be expressed as follows. 

min max min
t

a = a +(a - a )
T

         (11) 

Where amax and amin are the upper and lower boundaries of a, 
fixed (amax =1000, amin =10). By using (10), all the pbests will be 
updated by (12) in each generation, which is shown as follows. 

( ) ( ) ( ) ( ).( )iid j id j P d id jPbest Pbest gbest Pbestσ= + −    (12) 

Where Pbestid(j) represents the best position found by the i-th 
particle so far in subpopulations Pj ,where Pi(d) defines which 
subpopulation’s gbest particle corresponding dimension ,where 
gbestPi(d) represents the dimension of the gbest of Pj and the 
number of i is randomly selected in each generation, which is 
schematically shown in Fig.4. By using (12), perturbations 
related to different gbestPi(d) will be employed for adjusting all 
the pbests of Pi. Each pbest may learn the global best particles 
that come from different subpopulations randomly through the 
adaptive wavelet learning mechanism. So, the pbest learning 
scheme will maintain population diversity and help the particles 
jumping out of the potential local optima, simultaneously, can 
improve the convergence speed of PSO. 

f. Migration. 
The operation of migration is not conducted in every generation 
and it will be activated by the migration signal sig. In the 
proposed ICPSO, the migration operation will be executed if sig 
=1. Part of the antibodies (ten percent) with high affinity in the 
elite subpopulation will be copied and migrate to Pi to replace 
the worst antibodies if sig=1, which can improve the average 
fitness of the normal subpopulations. The pseudo code of 
migration procedures is shown in Fig.6. 

The used migration operation can further accelerate the 
convergence rate and the interactions between the elite and 
normal subpopulations can make a balance between searching 
roughly and accurately.  

 
 
 
 
 

 
 
 
 
 
 

 
Fig. 6.  Pseudo code for migration procedures 

g. Termination or jump to 3).  
The evolution process will be terminated if the generation (t) 

has reached the maximum generation (T). 
 

III.  BENCHMARK TESTS AND COMPARISONS 

A. Benchmark Function 
A set of standard benchmark test functions [27] are 

employed to validate the performance of ICPSO and for the 
comparison between ICPSO and existing hybrid PSOs. The 
employed benchmark functions are corresponding to 
different optimization problems and can be divided into two 
categories, which are unimodal functions (f1-f4) and 
multimodal functions being with several local minima f5-f6. 
The expressions of these benchmark functions are depicted in 
Table Ⅰ.  

TABLE Ⅰ 
 BENCHMARK TEST FUNCTIONS 

Test Function Domain Range Acceptance 
Global 

Optimal
230

1 1
( ) ii

f x x
=

∑=  100 100ix− ≤ ≤ 0.001 0 
230

1 12 ( ) ( )i
i j jf x x= =∑ ∑=  100 100jx− ≤ ≤ 0.001 0 

2 2 230
13 1( ) (100( ) ( 1) )i i i if x x x x= +

∑= − + −  10 10ix− ≤ ≤  50 0 
430

14 ( ) (0,1)i if x ix random=∑= +  1.28 1.28ix− ≤ ≤ 0.01 0 

30 30
1 15

1 1
( ) 20 exp( 0.2 ) exp( cos(2 )) 20

30 30
i ii if x x x eπ= =∑ ∑= − − − + +  32 32ix≤ ≤  0.001 0 

2 2 230 1
16 1 1 30

30
1

( ) {10 sin( ) ( 1) [1 10 sin ( )] ( 1) }
30

( ,10,100, 4)

( ) ...,
1 0....................,, 1 ( 1), ( , , , ) ( ) ,4

i i i

i i

mi i
i

mi i i i i

f x y y y y

u x

k x a x a
a x awhere y x u x a k m k x a x a

π
π π−

= +

=

∑= + − + + −

∑+

− >
− ≤ ≤

= + + = − − <−

⎧⎪
⎨
⎪⎩

50 50ix− ≤ ≤  0.0001 0 

Migration procedures 
For each normal sub-population pi 
if sig==1 

A new best individual in the p0 
(elite population) with high fitness 
is selected randomly and migrated 
to pi and replace the worst 
individual 

End if 
End For 



All these functions are tested 30 times and with 30 
dimensions. Existing PSOs such as hybrid PSO with 
mutation (HPSOM) [10], hybrid PSO with genetic 
algorithm (HGAPSO) [11], hybrid PSO with Wavelet 
Mutation (HPSOWM) [13], Adaptive Comprehensive 
Learning Particle Swarm Optimization (A-CLPSO) [18], 
Adaptive Particle Swarm Optimization (APSO) [16], and 
Comprehensive Learning PSO (CLPSO), which aim at 
achieving better performance in multimodal functions 
optimization [17], are compared with the proposed ICPSO.  

The value of “acceptance” in Table Ⅰis defined to judge 
whether a solution predefined found by the PSO would be 
acceptable or not in [16]. Set up parameters for ICPSO as 
follows: The inertia weight w in equation (1) is set to be w  ∈

[0.90, 0.4] and decreases linearly [16], the acceleration 
coefficients c1=c2 are both set to be 1.49445[16]. In equation 
(3), β  is set to be 0.8. b1 is setup to be 5. in equation (4) Pm 
is set to be 0.5,in equation (6)b is is set to be 2. Fixed (amax 
=1000, amin =10) in equation (11).the mutation rates in clonal 
selection is set to be 0.8. 

All algorithms use the same number of 3000 FEs for 
each test function, All the PSO algorithms using the same 
population size of 50 in subpopulation. All experiments 
are implemented on the same PC computer with AMD 
Athlon (tm)  X2 250 Ⅱ four processors. For reducing 
statistical errors, each function is independently simulated 
30 times and the mean results and standard deviation are 
used for comparison. 

 

          
(a)                                      (b)                                    (c)     

            
                (d)                              (e)                                             (f) 

    Fig. 7.  Convergence performance of the seven different PSOs on the 6 test functions. (a) f1. (b) f2. (c) f3. (d) f4. (e) f5. (f) f6. 
 

TABLE Ⅱ 
SEARCH RESULT COMPARISONS AMONG SEVENEIGHT PSOS ON 10 TEST FUNCTIONS 

Function HPSOM HGAPSO HPSOWM CLPSO A-CLPSO APSO ICPSO 
Mean 9.05×10-12 2.43×10-13 8.50×10-12 1.63×10-16 2.58×10-139 1.15×10-64 1.02×10-284 

Std.Dev 2.70×10-11 1.10×10-12 3.63×10-11 8.33×10-17 1.12×10-138 4.48×10-64 0 f1 
t-test 2.3701 1.5621 1.6558 13.8365 1.6289 1.8151 N/A 
Mean 10149.8 1866.66 0.27 10447.6 1.13×10-2 4.15×10-3 8.61×10-147 

Std.Dev 6761.24 2874.01 0.31 1643.58 8.10×10-3 3.23×10-3 4.61×10-146 f2 
t-test 10.6149 4.5926 6.1587 44.9480 9.8646 9.0851 0 
Mean 2072.59 40.14 27.67 26.70 26.88 24.81 7.53×10-7 

Std.Dev 3978.51 34.94 17.28 4.89 15.81 21.88 8.19×10-7 f3 
t-test 3.6836 8.1234 11.3227 38.6089 12.0222 8.0180 0 
Mean 0.188 8.65×10-3 1.74×10-3 1.48×10-2 1.51×10-3 6.63×10-3 1.34×10-4 

Std.Dev 0.67 2.93×10-3 7.80×10-4 2.46×10-3 5.55×10-4 2.46×10-3 7.45×10-5 f4 
t-test 1.9827 20.5453 14.4932 42.1369 17.3753 18.6637 0 
Mean 2.63 3.61×10-8 0.48 18.45 4.14×10-15 1.07×10-14 8.25×10-16 

Std.Dev 4.89 4.06×10-8 0.65 2.73 0 1.85×10-15 8.86×10-16 f5 
t-test 3.8030 6.2873 5.2217 47.7880 26.4566 34.0416 0 
Mean 0.447 7.10×10-6 0.187 3.56×10-15 1.57×10-32 1.04×10-2 1.57×10-32 

Std.Dev 0.693 2.92×10-5 0.314 2.41×10-15 2.74×10-48 3.11×10-2 2.74×10-48 f6 
t-test 4.5610 1.7193 4.2111 10.4452 0 2.3646 0 



B. Accuracy Comparison of Different PSOs 
This section presents results gathered by allowing all of the 

methods tested to run for a fixed number of 3000 FEs. Table 
 shows the benchmark functions for comparison among the Ⅱ

proposed ICPSO and six other PSOs such as HPSOM, 
HGAPSO, HPSOWM, CLPSO, A-CLPSO, and APSO. The 
comparison results are shown in Table Ⅱ, which are in terms 
of mean fitness and standard deviation (Std. Dev) of the 
solutions obtained from the 30 independent runs of each 
algorithm. The Fig.7. graphically presents the comparison 
between these PSOs, which expressed in terms of 
convergence characteristics in solving 6 test functions.  

In Table Ⅱ and Fig.7, we can see that ICPSO has the best 
performance in solving most of these test functions, 
especially for unimodal problems (f1, f2, f3, and f4). 
Furthermore, ICPSO also shows the highest accuracy in 
solving unimodal problems. In addition, Fig.7 and Table Ⅱ 
also shows that ICPSO can be effective in optimizing 
complex multimodal functions such as f5.Overall, comparing 
with other hybrid PSOs, ICPSO has the best performance in 
solving the 6 test functions, especially for unimodal functions 
and multimodal functions. 

The t-test [13] is a statistical method to evaluate the 
significant difference between two algorithms. The t-value 
will be positive if the first algorithm is better than the second, 
and it is negative if it is poorer. When the t-value is higher 
than 1.645 (the value of the degrees of freedom ξ = 49), 
there is a significant difference between the two algorithms 
with a 95%confidence level. The t-values between the ICPSO 
and other hybrid PSOs are shown in Table Ⅱ. We see that 
most t-values in this Table are higher than 1.645. Therefore, 
the performance of the ICPSO is significantly better than that 
of other PSOs with a 95% confidence level. 

The reasons that the proposed ICPSO consists of one 
memorized elite subpopulation and several normal 
subpopulations and have consider the co-evolution which can 
inspire the diversity of the whole population. A hybrid 
method, which creates new individuals by using three 

different operators, can ensure the diversity of all the 
subpopulations. Furthermore, a simple adaptive wavelet 
Learning operator is utilized for accelerating the convergence 
speed of the pbest particles. The improved immune clonal 
selection operator is employed for optimizing the elite 
subpopulation while the migration scheme is employed for 
the information exchange between elite subpopulation and 
normal subpopulations. So the ICPSO shows better 
performance in convergence, global search as well as solution 
stability. 

C. Comparison in Convergence Speed 
The convergence speed of an optimization algorithm is 

also an important feature to prove its superiority over other 
algorithms. Table Ⅲ  shows that ICPSO generally has a 
much higher speed in terms of either the mean number of FEs 
or the mean cost of CPU time for searching an acceptable 
solution (list in TableⅠ). The spending of CPU time is an 
important feature to describe the computation cost of an 
algorithm, as many existing hybrid PSOs have added extra 
operations that cost computational time. In solving real-world 
problems, the “FEs” time overwhelms the algorithm overhead. 
Hence, the mean number of FEs needed to reach acceptable 
accuracy would be as important as the CPU time [15]. Thus, 
the mean FEs are also explicitly presented and compared in 
Table Ⅲ. For example, tests on f1 show that the average 
numbers of FEs of1096.5, 2050.3, 1149.0, 3766.4, 205.8, and 
283.2 are required for every particle in the HPSOM, 
HGAPSO, HPSOWM, CLPSO, and A-CLPSO algorithms, 
respectively, for reaching an acceptable solution. However, 
every particle within the ICPSO only uses 89.87 FEs on 
average whereas its CPU time of 0.056s is also the shortest 
among the seven hybrid PSOs algorithms. In summary, the 
ICPSO uses the least CPU time and the smallest number of 
FEs to reach acceptable solutions on 6 different test functions, 
the convergence is faster. 

TABLE Ⅲ 
CONVERGENCE SPEED AND ALGORITHM RELIABILITY COMPARISONS 

Function HPSOM HGAPSO HPSOWM CLPSO A_CLPSO APSO ICPSO 
Mean FEs 1096.5 2050.3 1149.0 3766.4 205.8 283.2 89.87 
Time(sec) 0.228 0.406 0.244 0.520 0.077 0.139 0.056 f1 
Ratio(%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
Mean FEs 2738.0 6304.3 2623.3 - 5351.6 3248.5 240.13 
Time(sec) 1.281 2.986 1.228 - 2.960 2.315 0.218 f2 
Ratio(%) 33.3 60.0 100.0 0 100.0 100.0 100.0 
Mean FEs 1411.8 2049.6 1253.7 4382.6 563.8 661.6 90.67 
Time(sec) 0.324 0.458 0.285 0.635 0.231 0.334 0.131 f3 
Ratio(%) 73.3 93.3 100.0 100.0 100.0 100.0 100.0 
Mean FEs 2387.5 3559.2 1809.4 5535.4 386.80 1737.1 178.93 
Time(sec) 0.521 0.657 0.399 0.822 0.134 0.852 0.116 f4 
Ratio(%) 96.7 100.0 100.0 100.0 100.0 100.0 100.0 
Mean FEs 1265.3 2572.1 1285.0 - 246 438.9 113.97 
Time(sec) 0.470 0.726 0.472 - 0.110 0.250 0.085 f5 
Ratio(%) 96.7 100.0 96.7 0 100.0 100.0 100.0 
Mean FEs 1721.4 2135.4 1507.0 4570.6 207.6 1129.7 227.70 
Time(sec) 1.338 1.222 1.128 1.998 0.132 0.858 0.546 f6 
Ratio(%) 56.7 100.0 66.7 100.0 100.0 100.0 100.0 



D. Comparison in Reliability 
Table Ⅲ also reveals that ICPSO offers a generally 

highest percentage of trials (reaching acceptable solutions) 
and the highest reliability averaged over all the test 
functions. The ICPSO reaches the acceptable solutions 
with a successful ratio of 100% on all the six test functions. 
An interesting result is that all the PSO algorithms have 
most reliably found the minimum of f1, this problem may 
relatively be easy to solve with a 100% success rate. 
ICPSO offers the highest reliability of 100%.followed by 
APSO, A-CLPSO, CLPSO, HPSOWM, HGAPSO, and 
HPSOM. 

E. Sensitivity of parameters and operators for ICPSO 
What impacts do the three operations of population size, 

adaptive wavelet learning and immune clonal selection 
operator, have on the performance of the ICPSO? This 
section aims to answer these questions by further testing the 
APSO by some representative functions (out of 6) from each 

group were tested. Functions f2and f3 are typical unimodal 
functions and functions f4, f5and f6 are multimodal functions 
with many local minima. 

Sub-population size means the number of sub-population 
in Table Ⅳ, the numbers 3, 4, 5, and 6 mean that there are 3, 
4, 5, and 6 sub-populations in each testing, respectively. It 
can see from the Table Ⅳ above, the performance of ICPSO 
method improved with increasing sub-population size, 
however, the cost of time increases slightly with increasing 
sub-population size. The performances of ICPSO with 
sub-population size equal to 4 nearly similar to the 
performance of ICPSO with sub-population size equal to 5. 
But the computational cost with sub-population size equal to 
5 is lower than the cost of time with sub-population number 
equal to 5. From the above analysis, we can see when the size 
of the sub-population equal to 4 is better for the performance 
of ICPSO. So, based on the results, we recommend using 
subpopulation size equal to four in this paper. 

TABLE Ⅳ 
 EFFECTS OF THE POPULATION SIZE ON GLOBAL SEARCH QUALITY 

Sub-Population Size  f1 f2 f3 f4 f5 f6 
mean 4.26e-280 1.26×0-132 9.19×0-2 2.11×0-4 1.42×0-15 1.57×10-32 

Std.dev 0 6.78×0-132 0.274 1.45×10-4 1.50×10-15 2.74×10-48 3 
Time(sec) 9.15 14.2547 9.203 10.352 10.890 17.087 

mean 1.02×10-284 8.61×10-147 7.53×10-7 1.34×10-4 8.25×10-16 1.57×10-32 
Std.dev 0 4.61×10-146 8.19×10-7 7.45×10-5 8.86×10-16 2.74×10-48 4 

Time(sec) 13.31 17.716 12.620 13.780 13.745 22.833 
mean 6.34e-286 5.53×10-149 1.04×10-7 1.17×10-4 9.44×10-16 1.57×10-32 

Std.dev 0 2.98×10-148 1.08×10-7 7.38×10-5 1.07×10-15 2.74×10-48 5 
Time(sec) 15.31 23.630 15.404 17.524 17.018 28.555 

mean 1.01×10-287 7.36×10-153 1.48e-8 7.44×10-5 1.18×10-15 1.57×10-32 
Std.dev 0 3.95×10-152 1.71e-8 6.29×10-5 1.32×10-15 2.73×10-48 6 

Time(sec) 18.32 25.89 18.8 20.66 21.31 35.06 
 

TABLE Ⅴ 
EFFECTS OF THE CLONAL SCALE COEFFICIENTβON GLOBAL SEARCH QUALITY 

 
 
 
 

 
 
 
 
 
 
 

It can see from the Table Ⅴ above, the performance of 
ICPSO improved with the clonal scale coefficient β in 
equation (3) equal to 0.8. However, the ICPSO nearly have 
the same performance when the β from 0.5 to 0.9. So, the 

parameter β is robust. We recommend using β equal to 0.8 
in this paper.

 
TABLE Ⅵ 

EFFECTS OF THE NONLINEAR VARIATION COEFFICIENT b ON GLOBAL SEARCH QUALITY 
 
 
 
 
 
 

β  f1 f2 f3 f4 f5 f6 
mean 1.8×10-97 2.81×10-12 8.43 3.2×10-4 4.14×10-15 4.36×10-4 0.5 Std.dev 4.21×10-97 6.28×10-12 23.13 1.9×10-4 0 2.35×10-3 
mean 3.22×10-97 3.13×10-12 6.81 3.2×10-4 4.14×10-15 6.5×10-4 0.6 Std.dev 8.76×10-97 7.08×10-12 20.31 1.99×10-4 0 3.5×10-3 
mean 1.66×10-98 4.52×10-12 3.10 3.59×10-4 4.26×10-15 1.31×10-3 0.7 Std.dev 4.05×10-98 9.71×10-12 2.65 2.63×10-4 6.38×10-16 7.05×10-3 
mean 1.07×10-97 5.87×10-12 2.68 3.89×10-4 4.49×10-15 2.18×10-4 0.8 Std.dev 2.16×10-97 2.62×10-11 2.04 2.57×10-4 1.07×10-15 1.17×10-4 
mean 1.38×10-96 3.28×10-12 3.19 4.09×10-4 4.26×10-15 1.75×10-3 0.9 Std.dev 7.29×10-96 1.52×10-11 3.05 3.25×10-4 6.38×10-16 9.39×10-3 

b  f1 f2 f3 f4 f5 f6 
mean 1.74×10-97 5.47×10-12 26.12 3.86×10-4 4.26×10-15 8.73×10-4 1 Std.dev 6.41×10-97 1.72×10-11 76.38 2.98×10-4 6.38×10-16 4.69×10-3 
mean 1. 07×10-97 5.87×10-12 2.68 3.89×10-4 4.49×10-15 2.18×10-4 2 Std.dev 2.16×10-97 2.62×10-11 2.04 2.57×10-4 1.07×10-15 1.17×10-4 
mean 6.89×10-97 1.06×10-12 44.61 3.96×10-4 4.14×10-15 3.15×10-4 3 Std.dev 2.57×10-96 3.29×10-12 179.59 2.44×10-4 1.18×10-15 1.16×10-3 



From the Table Ⅵ above, we can see, the performance of 
ICPSO is better when the nonlinear variation coefficient b in 
equation (6) equal to 2. At the same time, the performance of 

ICPSO is stable when the b from one to three.

 
TABLE Ⅶ 

EFFECTS OF THE amax AND amin ON GLOBAL SEARCH QUALITY 
 
 
 
 
 
 
 
 
Empirical study shows that( amax=1000, amin=10 in equation 

(11)) result in good performance on most of the test functions 
in the Table Ⅶ.In a statistical sense, the performance of 
ICPSO is robust when the amax from 10000 to 500 ,and the 
amin from 100 to 5. 

From the Table Ⅶ above, we can see, the increasing a 
provides a higher learning rate in the early stage for Pbest to 
jump out of a possible local optimum, whereas a smaller 
learning rate in the latter stage guides the Pbest to refine the 
solution. 

 
TABLE Ⅷ 

EFFECTS OF SOME OPERATORS ON GLOBAL SEARCH QUALITY 
  f1 f2 f3 f4 f5 f6 

mean 6.82×10-99 3.03×10-6 16.32 2.20×10-3 14.56 5.75×10-18 ICPSO with only wavelet Std.dev 1.10×10-98 7.99×10-6 2.58 7.31×10-4 8.78 5.38×10-18 
mean 1.07×10-97 5.87×10-12 2.68 3.89×10-4 4.49×10-15 2.18×10-4 ICPSO with only AIS Std.dev 2.16×10-97 2.62×10-11 2.04 2.57×10-4 1.07×10-15 1.17×10-4 
mean 1.69×10-97 2.04×10-6 18.06 3.48×10-3 4.14×10-15 2.98×10-15 ICPSO with only migration Std.dev 5.25×10-97 4.41×10-6 8.51 1.47×10-3 0 3.66×10-15 
mean 2.45×10-92 4.74×10-4 21.32 4.15×10-3 4.14×10-15 7.39×10-13 ICPSO with only AIN-PSO Std.dev 8.33×10-92 7.95×10-4 18.54 1.42×10-3 0 7.68×10-13 
mean 1.02×10-284 8.61×10-147 7.53×10-7 1.34×10-4 8.25×10-16 1.57×10-32 ICPSO with each Std.dev 0 4.61×10-146 8.19×10-7 7.45×10-5 8.86×10-16 2.74×10-48 
mean 9.35×10-17 8523.19 23.89 1.13×10-2 15.51 7.84×10-5 ICPSO without Either Std.dev 2.92×10-17 1481.34 0.876 2.67×10-3 3.02 4.18×10-5 

It is clear from Table Ⅷ the results that with adaptive 
wavelet learning, ICPSO has good solutions on unimodal and 
multimodal functions. The adaptive wavelet learning offer 
good performance for ICPSO. The wavelet learning can 
speed up the convergence of the algorithm. On the other hand, 
the ICPSO without adaptive wavelet learning can hardly 
jump out of the local optima. The reasons are the adaptive 
wavelet learning can help pbest jump out of the local optimal 
region.It is very clear from Table Ⅷ. The ICPSO suffers 
from lower accuracy in solutions without AIS, since 
algorithms can easily get trapped in the global optimal region. 
AI contributes more to helping the elite particles in the 
memory move away from its existing position so as to jump 
out of the local optima. ICPSO with AIS performs better than 
ICPSO without AIS. At the same time, we also find ICPSO 
with wavelet, AIS, migration and AIN-PSO collaborative 
operation having the best optimization performance than 
ICPSO without either operation. From the Table Ⅹ, we can 
see the wavelet, AIS, migration and AIN-PSO each operator 
contributes more to the ICPSO. 

F. Compared with other PSO using AIS 
PSO-AIS (the combination between AIS and PSO) was 

proposed in [33]. For a fair comparison between the PSO-AIS 
and the ICPSO method, the algorithms are tested using the 

same setting parameter such as 500 iterations, test functions 
10 dimensions, and the population size is 20,these values are 
adopted in [33]. Comparative tests have been performed 
using functions f1, f2,f8, and f9 are listed in [33]. The results 
are shown in Table Ⅸ  in terms of the mean fitness and 
standard deviation (Std. Dev) of the solutions obtained in the 
10 independent runs on each problem. The results of the 
PSO-AIS comes from [33].We can see, the ICPSO gives the 
best performance for all five optimization problems on the 
mean fitness and standard deviation (Std. Dev) of the 
solutions, outperforms the PSO-AIS.  

TABLE Ⅸ 
COMPARISONS BETWEEN PSO-AIS AND ICPSO   

G. Shifted Functions Test 
In addition, four shifted functions [34]-[35] are used to 

evaluate the global search ability of the ICPSO algorithm. 
The problems existing in some benchmark that have the same 
values among all independent variables at the global optima 
can be avoided through the shifted functions. Since the global 

amax,amin  f1 f2 f3 f4 f5 f6 
mean 1.56×10-97 1.45×10-6 15.58 2.61×10-3 18.28 3.23×10-16 amax=10000, 

amin=100 Std.dev 3.86×10-97 2.12×10-6 5.74 9.92×10-4 5.04 3.04×10-16 
mean 2.52×10-97 5.98×10-6 19.82 2.17×10-3 15.26 1.06×10-16 amax=5000, 

amin=50 Std.dev 7.37×10-97 1.96×10-6 11.19 1.06×10-3 8.36 9.77×10-17 
mean 6.82×10-99 3.03×10-6 16.32 2.20×10-3 14.56 5.75×10-18 amax=1000, 

amin=10 Std.dev 1.10×10-98 7.99×10-6 2.58 7.31×10-4 8.78 5.38×10-18 
mean 1.45×10-99 8.75×10-6 22.22 2.38×10-3 15.29 1.26×10-18 amax=500, 

amin=5 Std.dev 2.34×10-99 1.95×10-5 17.58 7.68×10-4 8.43 1.56×10-18 

  f1 f2 f8 f9 
mean 4.89 8.2×10-7 2.6×10-7 1.47 PSO-AIS

 Std.dev 1.094 6.3×10-7 2.1×10-7 0.856 
mean 2.04×10-3 7.37×10-33 1.67×10-11 1.219×10-8

ICPSO Std.dev 4.5×10-4 3.05×10-33 3.22×10-11 1.47×10-8



optimums of the shifted functions have different parameter 
values for different dimensions and there is no linking among 
these variables. The details are described in [34]-[35]. The 
expressions of the shifted functions are depicted in TableⅩ. 

All these functions are tested 30 times and with 30 
dimensions. The basic experimental setup is the same as that 
mentioned in subsection c of section Ⅲ. 

 
TABLE Ⅹ 

SHIFTED FUNCTIONS 
Test Function Domain Range Z Global Optimal

1 ( ) max{| |,1 } 450shifted iF x z i D− = ≤ ≤ −  100 100Xi− ≤ ≤ z X o= −  -450 

2

2
1 1

( ) cos( ) 180
4000

DD i i
shifted

i i

z zF x
i−

= =
= − −∑ ∏  600 600jX− ≤ ≤ z X o= −  -180 

3

30 2
( ) 450

1
F x zshifted ii

∑= −−
=

 100 100iX− ≤ ≤ z X o= −  -450 

4

1 1
( ) 20 exp( 0.2 ) exp( cos(2 )) 20 1401 1

D DF x z z ei ishifted i i
D D

π∑ ∑= − − − + + −= =− 32 32Xi− ≤ ≤  z X o= −  -140 

 
TABLE  Ⅺ 

COMPARISON BETWEEN DIFFERENT PSO METHODS FOR SHIFTED FUNCTIONS 
Shifted Function HPSOM HGAPSO HPSOWM CLPSO A-CLPSO APSO ICPSO 

Mean -400.94 -446.89 -449.34 -446.59 -449.935 -449.925 -450 
F1-shift 

Std.Dev 9.25 2.967 0.385 0.480 0.115 5.20×10-2 2.02×10-5 

Mean -88.737 -179.70 -179.956 -179.839 -179.999 -179.989 -179.993 
F2-shift 

Std.Dev 49.6824 0.247 8.61×10-2 0.532 2.49×10-3 1.02×10-2 9.89×10-3 

Mean 6915.91 -449.94 -450 -450 -450 -450 -450 
F3-shift 

Std.Dev 5669.53 0.165 6.89×10-10 5.59×10-10 0 1.80×10-14 0 
Mean -126.02 -132.58 -139.329 -140 -140 -139.778 -140 

F4-shift 
Std.Dev 2.827 5.557 1.110 7.71×10-8 0 0.449 0 

 
From the Table Ⅺ, we can see that the ICPSO show best 

performance in terms of the mean fitness and the standard 
deviation than other PSOs on F1-shift, we can also see that the 
ICPSO show best performance in terms of the mean fitness 
and the standard deviation than other PSOs but A-CLPSO on 
F2-shift,F3-shift and F4-shift.However,the ICPSO is comparable to 
the A-CLPSO in terms of the mean fitness and the standard 

deviation on F2-shift,F3-shift and F4-shift.Based on this observation, 
it is very clear that the ICPSO can solve the optimization 
problems with the global optimum points shifted and rotated 
almost perfectly. 

H. High dimension function test 

 
TABLE Ⅻ 

COMPARISON BETWEEN DIFFERENT PSO METHODS FOR HIGH DIMENSION FUNCTION WITH 200DIMENSIONS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A suite of high dimensional function 200 dimensions are 

carried out in this subsection to validate the proposed ICPSO 
has the ability of solve the high dimensional problem. Using 

functions f1, f2, f3, f4, f5, and f6 listed in Table Ⅰwith 200 
dimensions. All these functions are tested 30 times in terms 
of the mean fitness and the standard deviation. Further, use 

Test Function with 
200  Dimensions HPSOM HGAPSO HPSOWM CLPSO A-CLPSO APSO ICPSO 

Mean 130535 8.57×10-4 4.508 446.664 2.08×10-25 4.17×10-73 5.99×10-85 f1 Std.Dev 30998.7 3.90e×10-4 1.95 62.7369 1.02×10-25 1.46×10-72 1.26×10-84 
Mean 607269 295888 328963 1.08e10+6 262875 0.6519 8.82×10-46  

f2 Std.Dev 106598 67083.8 50966.9 81500.1 32501 0.5705 2.62×10-45 
Mean 1.36×10+6 541.164 363.609 39443.4 257.433 178.194 179.137 f3 

Std.Dev 1.21e10+6 94.1255 72.0284 6837.13 51.8879 4.39218 0.825 
Mean 604.181 0.483 0.0809 5.21435 0.0699 5.50×10-3 1.46×10-4 f4 Std.Dev 325.347 0.067 0.0115 0.742 0.01325 2.10×10-3 1.22×10-4 
Mean 19.3779 9.675×10-2 5.6596 20.191 4.88×10-14 1.52×10-14 1.373×10-14  

f5 Std.Dev 0.2676 0.373 0.5956 0.0346 8.93×10-15 4.14×10-15 2.774×10-14 
Mean 8.12e10+7 11.845 8.878 2.82e10+6 5.19×10-3 0.996 2.546×10-7 f6 

Std.Dev 1.37e10+8 2.467 2.026 874605 1.77×10-2 3.33×10-16 3.077×10-7 



the same number of 4000FEs for each problem on the all 
algorithms. Other parameter setting is the same as the 
subsection c of section Ⅲ. 

From Table Ⅻ , it shows that ICPSO has the best 
performance in solving most of these high dimensional 
functions than other PSOs but A-CLPSO on f3. However, 
the ICPSO is comparable to the A-CLPSO in terms of the 
mean fitness on f3, but the standard deviation of the ICPSO 
is better than APSO. Furthermore, ICPSO also shows the 
highest accuracy in solving these high dimensional 
problems with 200 dimensions. 

IV. EXPERIMENTAL VERIFICATION 
In this section, the proposed ICPSO is applied for the 

multi-parameter estimation of permanent magnet 
synchronous machines (PMSMs). PMSM has been widely 
used in servo control and wind power generation [36]-[44] 
thanks to its fast torque response, high power density and 
high efficiency etc. However, in real application, it is 
necessary to accurately obtain the PMSM parameter values 
prior to the design of related control systems. Thus, 
technologies for multi-parameter estimation of PMSMs have 
been widely reported in existing papers [40]-[42] and become 
one of the most popular research topics in machine control. 

Existing literature references mainly focus on online 
estimation and algorithms such as extended Kalman filter 
(EKF), model reference adaptive system (MRAS), 
recursive least-square (RLS) methods , neural network 
(NN) [39]-[41] and evolutionary algorithms[42][43]are 
widely employed. In order to improve the quality of 
multi-parameter estimation in PMSM, thus, in this paper, 
the proposed ICPSO will be employed for estimating the 
dq-axis inductances, stator winding resistance and rotor 
flux linkage of a prototype PMSM and its performance 
will be compared with other newly published PSOs. 

A. PMSM Model 
Assuming that the PMSM has ideal physical performances 

and mechanical structures, the dq-axis equations of the 
PMSM are given by:  

d d
d q

q q
q d

di uR
i i

dt L L
di uR

i i
dt L L L

ω

ψ
ω ω

= − + +

= − − + −

⎧
⎪⎪
⎨
⎪
⎪⎩  

      (13) 

Where id, iq, ud and uq are dq axis stator current and voltage, 
ω is the electrical angle speed respectively, R, Ld, Lq 
and mψ are the motor winding resistance, dq-axis inductances 
and magnet flux (Ld≈Lq≈L). After low-pass filtering, the 
parameter estimation can be based on the steady-state 
machine model [44], which can be expressed in discrete form. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
d d q q

q q d d m

u k Ri k L k i k

u k Ri k L k i k k

ω

ω ψ ω

= −⎧⎪
⎨ = + +⎪⎩

     (14) 

Generally, id is set to be 0 for decoupling the flux and 

torque control. Thus, (14) can be simplified to be (15). 
( ) ( ) ( )

( ) ( ) ( )

d q q

q q m

u k L k i k

u k Ri k k

ω

ψ ω

= −

= +

⎧⎪
⎨
⎪⎩

          (15) 

In real application, R, Ld, Lq, ψm are unknown parameters 
to be identified. From (14) and (15), it is evident that their 
rank numbers are both two while there are four parameters to 
be identified [42]. Thus, it is detailed in [43] that it is 
impossible to identify these parameters simultaneously and a 
short time of id<0 should be injected for obtaining a full rank 
reference model [42], [43], which is shown as follows. 
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In the following investigation, (16) is the full rank model 
used for the multi-parameter estimation of PMSM and will be 
used for the design of penalty function. 

B. Parameter Identification by using ICPSO 
Based on (16), the penalty function for estimating the 

dq-axis inductances, winding resistance and rotor flux linkage 
is shown as follows. 
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1

3 4
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ˆ ˆ( ) ( ) ( ) ( )

n

d d q q
k

d d q q
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− + −
  (17) 

Where w1, w2, w3, w4 are the weight coefficients and the 
variables with ‘^’ mean that they are computed voltages by 
the estimated parameters and measured currents. The actual 
machine parameter values can be obtained if (17) is 
minimized by the proposed ICPSO. Thus, the optimization of 
(17) can be regarded as a multi-dimensional function 
optimization problem. 

 

Fig. 8.  Parameter identification model based on ICPSO. 
 

 

Fig. 9.  Schematic diagram of Identification system. 

C. Hardware Platform for Experiments 
The proposed estimator is verified by experiments in this 
section. The offline estimation model shown in Fig.8.  



TABLE ⅩⅢ 
DESIGN PARAMETERS AND SPECIFICATION OF PMSM 

Rated current 4A 
Rated speed 400rpm 

DC link voltage 36v 
Nominal phase resistance (T=25 oC) 0.330 Ω  

Nominal terminal wire resistance 0.043 
Nominal self inductance 2.91mh 

Nominal mutual inductance -0.330mh 
Nominal d-axis inductance 3.24mh 
Nominal q-axis inductance 3.24mh 

Nominal amplitude of flux induced 
by magnets 77.6 mWb 

Inertia 0.8e−5kgm2

Number of pole pairs 5 
The DSP based vector control hardware platform and the 

schematic diagram of testing process are shown in Fig.9.The 
design parameters of prototype machine are shown in Table 
ⅩⅢ.For comparison, the PMSM parameter values are also 
identified by other PSOs such as HPSOM, HGAPSO, 

HPSOWM, CLPSO, A-CLPSO, and APSO. The basic 
settings of these PSOs are the same as those in Section III 
while the maximum generation is set to be 300 and the 
average results of evolution computation of 30 times are 
memorized. 

i. Experiments under Normal Temperature 
The convergence rates of different PSOs are shown in 

Fig.10 and the experimental results are shown in Table ⅩⅣ. 
From Table ⅩⅣ and Fig.10, it is obvious that the ICPSO 
shows the best performances in terms of mean, standard 
deviations and t-values. All t-values are higher than 2.06, 
implying that 0 the ICPSO is significantly better, with a 98% 
confidence level, than other hybrid PSOs. From Fig.10, the 
convergence speed of ICPSO is faster than other hybrid 
PSOs. 

 

TABLE ⅩⅣ 
RESULT COMPARISONS AMONG SEVEN PSOS ON PMSM PARAMETER IDENTIFICATION WITH NORMAL TEMPERATURE 

 HPSOM HGAPSO HPSOWM CLPSO A-CLPSO APSO ICPSO 
T=300 Identification value 

R（ Ω ） 0.338 0.332 0.363 0.367 0.405 0.372 0.3734 
ψm（wb） 0.0790 0.0792 0.0783 0.0783 0.0770 0.0783 0.0778 

Ld(h) 0.00344 0.00275 0.00376 0.00382 0.00380 0.00336 0.00330 
Lq(h) 0.00395 0.00398 0.00387 0.00388 0.00371 0.00398 0.00396 

mean 0.247 1.888 0.844 2.375 2.726 4.163 0.149 
Std.dev 0.182 0.943 0.457 0.890 0.912 2.276 0.028 fitness 
t-value 3.7632 13.0341 10.7335 17.6769 19.9710 12.4697 N/A 
 

 
Fig. 10.  The fitness convergence curve of seven psos on PMSM parameter 

identification with normal temperature. 

 
                (a)                       (b)   

    
                 (c)                         (d)                 

Fig. 11.  Identified parameters with Normal temperature (a) Estimated 
winding resistance.(b) Estimated d-axis inductance. (c) Estimated q-axis 

inductance.(d) Estimated rotor flux linkage. 
The statistical results in terms of mean value of time cost, 

standard deviation and t-test value, are shown in Table ⅩⅣ. 
It is evident that the stability of the optimization is improved, 
thanks to the multi-population, and the smallest standard 
deviation is achieved by ICPSO. As can be seen from the 
Table ⅩⅣ, the estimated winding resistance (0.3734Ω) is 
almost the same as the measured resistance (0.373Ω),under 
normal temperature, it is shown in Fig.11 that the results of 
identified PMSM parameters by using ICPSO are of high 
accuracy and the estimated parameters such as motor 
resistance, dq-axis inductances and the rotor flux converge to 
their right points rapidly. The four parameters estimated 
results with seven different PSOs are shown in Fig.11.  

ii. Experiments under Temperature Variation 
A heater is used to heat the prototype PMSM for 20 

minutes. The identified training results are listd in TableⅩⅤ, 
and the comparison with different PSOs is shown in Fig.12 
and 13, respectively. 

 
Fig. 12.  The fitness Convergence curve of seven psos on PMSM 

parameter identification with temperature variation. 
The convergence rates of different PSOs are shown in 

Fig.12. From Table ⅩⅤ, it is evident that ICPSO shows best 
performances in terms of mean, standard deviations and 



t-values. All t-values are higher than 2.06, implying that the 
ICPSO is significantly better, with a 98% confidence level, 
than other hybrid PSOs. It also shows that the convergence 

speed of ICPSO is faster than other hybrid PSOs. The four 
parameters estimated results with seven different PSOs are 
shown in Fig.13. 

TABLE ⅩⅤ 
RESULT COMPARISONS AMONG SEVEN PSOS ON PMSM PARAMETER IDENTIFICATION WITH TEMPERATURE VARIATION 

 HPSOM HGAPSO HPSOWM CLPSO A-CLPSO APSO ICPSO 
T=300 Identification value 

R（ Ω ）   0.453 0.459 0.458 0.473 0.479 0.455 0.453 
ψm（wb） 0.0769 0.0770 0.0768 0.0764 0.0762 0.0772 0.0770 

Ld(h) 0.00347 0.00341 0.00411 0.00414 0.00388 0.00370 0.00364 
Lq(h) 0.00376 0.00378 0.00376 0.00370 0.00369 0.00386 0.00376 

mean 0.283 2.246 0.410 1.968 1.135 3.300 0.261 
Std.dev 0.121 1.121 0.215 0.841 0.483 3.866 0.147 fitness 
t-value 0.8171 12.4147 4.0453 14.1380 12.2409 5.5544 0 

  
(a)                        (b) 

  
(c)                         (d) 

Fig. 13.  Identified parameters with temperature variation. 
(a) Estimated winding resistance. (b) Estimated d-axis inductance. 
(c) Estimated q-axis inductance. (d) Estimated rotor flux linkage. 

V. CONCLUSION 
This paper proposes a new PSO named ICPSO, which 

incorporates artificial immune system with PSO. The 
algorithm based on multi-population and memory scheme. 
Each Sub-Population’s individuals in a new generation are 
created by three hybrid methods: elitist reservations scheme, 
immune network and Cauchy mutation, Reinitialize, etal. 
Particle’s pbest positions within subpopulations were learned 
by Wavelet learning strategy for accelerating convergence 
speed. Further, a Wavelet perturbation-based learning 
strategy is developed to lead the pbest particles to jump out of 
any possible local optima and also to refine converging 
solutions. The best solutions are stored in the memory and 
optimized by using improved immune clonal selection 
algorithm. We also investigated the interactions between the 
memory and several normal sub-populations; the investigated 
memory scheme is efficient for improving the ICPSO.Then, 
ICPSO is applied to solve the parameter identification of 
PMSM problem; the experiment results demonstrate that the 
ICPSO is superior to other hybrid PSOs. The experimental on 
the PMSM platform results show that the proposed strategy 
has good convergence in simultaneously estimating winding 
resistance, dq axis inductances and rotor flux linkage. 
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