60,792 research outputs found

    Online condition monitoring of wind turbines through three-phase electrical signature analysis

    No full text
    International audienceIn the context of the KAStrion European project, a complete solution was proposed in order to monitor wind turbines. The developed solution comprises both hardware and software parts of the condition monitoring system. In terms of software, modules for vibration analysis and electrical signal analysis have been developed. The current paper presents the electrical analysis solution proposed in the context of this project. The electrical module is able to detect both mechanical and electrical faults in a wind turbine system. The goal of the mechanical fault detection using electrical signals is to confirm the faults also detected by vibration analysis, while the main focus of the module remains the detection of electrical faults. Results showing the performance of mechanical fault detection are presented using electrical signals acquired on the test-bench developed for testing the KAStrion system. Moreover, results regarding the electrical unbalance are presented using signals acquired on a three-phase transformer. The final solution has been implemented on two onshore wind turbines since the end of 2014, and online condition monitoring results are presented at the end of the paper

    Online condition monitoring and fault detection in induction motor bearings

    Get PDF
    Induction motors (IMs) are commonly used in industry. Online IM health condition monitoring aims to recognize motor defect at its early stage to prevent motor performance degradation and reduce maintenance costs. The most common fault in IMs is related to bearing defects. Although many signal processing techniques have been proposed in literature for bearing fault detection using vibration and stator current signals, reliable bearing fault diagnosis still remains a challenging task. One of the reasons is that a rolling element bearing is not a simple component, but a system; its related features could be time-varying and nonlinear in nature. The objective of this study is to investigate an online condition monitoring system for IM bearing fault detection. The monitoring system consists of two main modules: smart data acquisition (DAQ) and bearing fault detection. In this work, a smart current sensor system is developed for data acquisition wirelessly. The DAQ system is tested for wireless data transmission, consistent data sampling, and low power consumption. The data acquisition operation is controlled by using an adaptive interface. In bearing fault detection, a generalized Teager-Kaiser energy (GTKE) technique is proposed for nonlinear bearing feature extraction and fault detection using both vibration and current signals. The proposed GTKE technique will demodulate the signal by tracking the instantaneous signal energy. An optimization method is proposed to enhance the fault-related features and improve signal-to-noise ratio. The effectiveness of the proposed technique is verified experimentally using a series of IM tests. The robustness is examined under different operating conditions

    Fault Signature Identification for BLDC motor Drive System -A Statistical Signal Fusion Approach

    Full text link
    A hybrid approach based on multirate signal processing and sensory data fusion is proposed for the condition monitoring and identification of fault signal signatures used in the Flight ECS (Engine Control System) unit. Though motor current signature analysis (MCSA) is widely used for fault detection now-a-days, the proposed hybrid method qualifies as one of the most powerful online/offline techniques for diagnosing the process faults. Existing approaches have some drawbacks that can degrade the performance and accuracy of a process-diagnosis system. In particular, it is very difficult to detect random stochastic noise due to the nonlinear behavior of valve controller. Using only Short Time Fourier Transform (STFT), frequency leakage and the small amplitude of the current components related to the fault can be observed, but the fault due to the controller behavior cannot be observed. Therefore, a framework of advanced multirate signal and data-processing aided with sensor fusion algorithms is proposed in this article and satisfactory results are obtained. For implementing the system, a DSP-based BLDC motor controller with three-phase inverter module (TMS 320F2812) is used and the performance of the proposed method is validated on real time data.Comment: 7 Pages, 7 figure

    An enhanced Teager Huang transform technique for bearing fault detection

    Get PDF
    Rolling element bearings are widely used in rotating machinery. Bearing health condition monitoring plays a vital role in predictive maintenance to recognize bearing faults at an early stage to prevent machinery performance degradation, improve operation quality, and reduce maintenance costs. Although many signal processing techniques have been proposed in literature for bearing fault diagnosis, reliable bearing fault detection remains challenging. This study aims to develop an online condition monitoring system and a signal processing technique for bearing fault detection. Firstly, a Zigbee-based smart sensor data acquisition system is developed for wireless vibration signal collection. An enhanced Teager-Huang transform (eTHT) technique is proposed for bearing fault detection. The eTHT takes the several processing steps: Firstly, a generalized Teager-Kaiser spectrum analysis method is suggested to recognize the most representative intrinsic mode functions as a reference. Secondly, a characteristic relation function is constructed by using cross-correlation. Thirdly, a denoising filter is adopted to improve the signal-to-noise-ratio. Finally, the average generalized Teager-Kaiser spectrum analysis is undertaken to identify the bearing characteristic signatures for bearing fault detection. The effectiveness of the proposed eTHT technique is examined by experimental tests corresponding to different bearing conditions. Its robustness in bearing fault detection is examined by the use of the data sets from a different experimental setup

    On-line Condition Monitoring, Fault Detection and Diagnosis in Electrical Machines and Power Electronic Converters

    Get PDF
    The objective of this PhD research is to develop robust, and non-intrusive condition monitoring methods for induction motors fed by closed-loop inverters. The flexible energy forms synthesized by these connected power electronic converters greatly enhance the performance and expand the operating region of induction motors. They also significantly alter the fault behavior of these electric machines and complicate the fault detection and protection. The current state of the art in condition monitoring of power-converter-fed electric machines is underdeveloped as compared to the maturing condition monitoring techniques for grid-connected electric machines. This dissertation first investigates the stator turn-to-turn fault modelling for induction motors (IM) fed by a grid directly. A novel and more meaningful model of the motor itself was developed and a comprehensive study of the closed-loop inverter drives was conducted. A direct torque control (DTC) method was selected for controlling IM’s electromagnetic torque and stator flux-linkage amplitude in industrial applications. Additionally, a new driver based on DTC rules, predictive control theory and fuzzy logic inference system for the IM was developed. This novel controller improves the performance of the torque control on the IM as it reduces most of the disadvantages of the classical and predictive DTC drivers. An analytical investigation of the impacts of the stator inter-turn short-circuit of the machine in the controller and its reaction was performed. This research sets a based knowledge and clear foundations of the events happening inside the IM and internally in the DTC when the machine is damaged by a turn fault in the stator. This dissertation also develops a technique for the health monitoring of the induction machine under stator turn failure. The developed technique was based on the monitoring of the off-diagonal term of the sequence component impedance matrix. Its advantages are that it is independent of the IM parameters, it is immune to the sensors’ errors, it requires a small learning stage, compared with NN, and it is not intrusive, robust and online. The research developed in this dissertation represents a significant advance that can be utilized in fault detection and condition monitoring in industrial applications, transportation electrification as well as the utilization of renewable energy microgrids. To conclude, this PhD research focuses on the development of condition monitoring techniques, modelling, and insightful analyses of a specific type of electric machine system. The fundamental ideas behind the proposed condition monitoring technique, model and analysis are quite universal and appeals to a much wider variety of electric machines connected to power electronic converters or drivers. To sum up, this PhD research has a broad beneficial impact on a wide spectrum of power-converter-fed electric machines and is thus of practical importance

    Intelligent application of fault detection and isolation on HVAC system

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Efficient heating, ventilation, and air-conditioning (HVAC) systems are one of the big challenges today around the world. The fault detection and isolation (FDI) play a significant role in the monitoring, repairing and maintaining of technical systems for the final destination of safety and cost reduction. FDI makes an infrastructure to effectively reduce total cost of maintenance and thus increases the capacity utilization rates of equipment. Reduction of energy wasting in the system by real-time fault detection is another goal. Among all HVAC system’s studies, the focus of this thesis is on developing of fast and reliable FDI structure that can cover all subsections of HVAC system including cooling tower, chiller and air handling units (AHU) which greatly affect building energy consumption and indoor environment quality. The first stage of this study is to develop and validates a mathematical HVAC model then follows by simulation and sensitivity analysis. The simulation makes a good capability of producing artificial fault free and faulty data for review of any upcoming failure over the HVAC system. These data with wide range of fault severities can be used to assess the performance of HVAC automated fault detection and isolation (AFDI) system. Two categories of process history diagnosis methods have been reviewed and assessed for the development of AFDI algorithms at second stage of this study. Principal component analysis (PCA) and support vector machine (SVM) classification are two chosen algorithm which have been analysed in depth and initially tested by simulated data from stage one. This review has been continued by developing online SVM algorithm with incremental learning technique and then tested both on simulated and operational data. An experimental rig is designed and applied in the last stage of this research. This setup is configured inside the HVAC laboratory of UTS to collect operational data for the operating test. Operational data as outcome of this stage was then used for test of developed AFDI from last stage. Artificial neural network (ANN) algorithm compressed in frame of black box model for fault free reference. Finally, a combination of black box model and developed AFDI was tested and evaluated for cooling tower and air handling unit (AHU) faults based on operational data. The result shows increasing of robustness, performance and accuracy for the proposed AFDI over the operational data

    Methodology for utilising prior knowledge in constructing data-based process monitoring systems with an application to a dearomatisation process

    Get PDF
    Global competition is forcing the process industry to optimise the production processes. One key factor in optimisation is effective process state monitoring and fault detection. Another motivator to improve process monitoring systems are the substantial losses of revenue resulting from abnormal process conditions. It has been estimated that the petrochemical industry in the US alone loses 20 billion dollars per year because of unoptimal handling of abnormal process situations. Traditionally, the monitoring systems have been based on first principle models, constructed by specialists with process specific expertise. In contrast, the use of data-based modelling methods require less expertise and offers the possibilities to build and update the monitoring models in a short period of time, thus allowing more efficient development of monitoring systems. The aims of this thesis are to augment data-driven modelling with existing process knowledge, to combine different data-based modelling methods, and to utilise calculated variables in modelling in order to improve the accuracy of fault detection and identification (FDI) and to provide all necessary diagnostic information for fault tolerant control. The suggested improvements are included in a methodology for setting up FDI systems. The methodology has been tested by building FDI systems for detecting faults in two online quality analysers in a simulated and in a real industrial dearomatisation process at the Naantali oil refinery (Neste Oil Oyj). In developing an FDI system, background information about the user requirements for the monitoring system is first acquired. The information is then analysed and suitable modelling methods are selected according to the guidelines given in the methodology. Second, the process data are prepared for the modelling methods and augmented with appropriate calculated variables. Next, the input variable sets are determined with the introduced method and the models are constructed. After the estimation accuracy of the models is validated, the values of the fault detection parameters are determined. Finally, the fault detection performance of the system is tested. The system was evaluated during a period of one month at the Naantali refinery in 2007. The monitoring system was able to detect all the introduced analyser faults and to provide the information needed for a fault tolerant control system, thus validating the methodology. The effects of a number of suggested improvements in data-based modelling are analysed by means of a comparison study

    FAULT DETECTION AND PREDICTION IN ELECTROMECHANICAL SYSTEMS VIA THE DISCRETIZED STATE VECTOR-BASED PATTERN ANALYSIS OF MULTI-SENSOR SIGNALS

    Get PDF
    Department of System Design and Control EngineeringIn recent decades, operation and maintenance strategies for industrial applications have evolved from corrective maintenance and preventive maintenance, to condition-based monitoring and eventually predictive maintenance. High performance sensors and data logging technologies have enabled us to monitor the operational states of systems and predict fault occurrences. Several time series analysis methods have been proposed in the literature to classify system states via multi-sensor signals. Since the time series of sensor signals is often characterized as very-short, intermittent, transient, highly nonlinear, and non-stationary random signals, they make time series analyses more complex. Therefore, time series discretization has been popularly applied to extract meaningful features from original complex signals. There are several important issues to be addressed in discretization for fault detection and prediction: (i) What is the fault pattern that represents a system???s faulty states, (ii) How can we effectively search for fault patterns, (iii) What is a symptom pattern to predict fault occurrences, and (iv) What is a systematic procedure for online fault detection and prediction. In this regard, this study proposes a fault detection and prediction framework that consists of (i) definition of system???s operational states, (ii) definitions of fault and symptom patterns, (iii) multivariate discretization, (iv) severity and criticality analyses, and (v) online detection and prediction procedures. Given the time markers of fault occurrences, we can divide a system???s operational states into fault and no-fault states. We postulate that a symptom state precedes the occurrence of a fault within a certain time period and hence a no-fault state consists of normal and symptom states. Fault patterns are therefore found only in fault states, whereas symptom patterns are either only found in the system???s symptom states (being absent in the normal states) or not found in the given time series, but similar to fault patterns. To determine the length of a symptom state, we present a symptom pattern-based iterative search method. In order to identify the distinctive behaviors of multi-sensor signals, we propose a multivariate discretization approach that consists mainly of label definition, label specification, and event codification. Discretization parameters are delicately controlled by considering the key characteristics of multi-sensor signals. We discuss how to measure the severity degrees of fault and symptom patterns, and how to assess the criticalities of fault states. We apply the fault and symptom pattern extraction and severity assessment methods to online fault detection and prediction. Finally, we demonstrate the performance of the proposed framework through the following six case studies: abnormal cylinder temperature in a marine diesel engine, automotive gasoline engine knockings, laser weld defects, buzz, squeak, and rattle (BSR) noises from a car door trim (using a typical acoustic sensor array and using acoustic emission sensors respectively), and visual stimuli cognition tests by the P300 experiment.ope
    corecore