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Global competition is forcing the process industry to optimise the production processes. One key factor in optimisation
is effective process state monitoring and fault detection. Another motivator to improve process monitoring systems are
the substantial losses of revenue resulting from abnormal process conditions. It has been estimated that the
petrochemical industry in the US alone loses 20 billion dollars per year because of unoptimal handling of abnormal
process situations. Traditionally, the monitoring systems have been based on first principle models, constructed by
specialists with process specific expertise. In contrast, the use of data-based modelling methods require less expertise
and offers the possibilities to build and update the monitoring models in a short period of time, thus allowing more
efficient development of monitoring systems.

The aims of this thesis are to augment data-driven modelling with existing process knowledge, to combine different
data-based modelling methods, and to utilise calculated variables in modelling in order to improve the accuracy of fault
detection and identification (FDI) and to provide all necessary diagnostic information for fault tolerant control. The
suggested improvements are included in a methodology for setting up FDI systems. The methodology has been tested
by building FDI systems for detecting faults in two online quality analysers in a simulated and in a real industrial
dearomatisation process at the Naantali oil refinery (Neste Oil Oyj). In developing an FDI system, background
information about the user requirements for the monitoring system is first acquired. The information is then analysed
and suitable modelling methods are selected according to the guidelines given in the methodology. Second, the process
data are prepared for the modelling methods and augmented with appropriate calculated variables. Next, the input
variable sets are determined with the introduced method and the models are constructed. After the estimation accuracy
of the models is validated, the values of the fault detection parameters are determined. Finally, the fault detection
performance of the system is tested. The system was evaluated during a period of one month at the Naantali refinery in
2007. The monitoring system was able to detect all the introduced analyser faults and to provide the information
needed for a fault tolerant control system, thus validating the methodology. The effects of a number of suggested
improvements in data-based modelling are analysed by means of a comparison study.
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Yleismaailmallinen kilpailu pakottaa prosessiteollisuutta optimoimaan tuotantoprosessejaan pysyäkseen
kilpailukykyisenä. Eräs optimoinnin tärkeä osa-alue on prosessien ja prosessilaitteiden vikatilojen tunnistaminen.
Prosessien monitoroinnin lisäämistä motivoi myös epänormaalien operointitilanteiden aiheuttamat kustannukset.
Yhdysvaltojen petrokemianteollisuuden on arvioitu menettävän 20 miljardia dollaria vuosittain epänormaalien
prosessitilanteiden epäoptimaalisesta käsittelystä johtuen. Perinteisesti monitoroinnissa on käytetty fysikokemiallisia
malleja, joiden tekeminen on työlästä ja vaatii erittäin hyvää prosessien tuntemusta. Datapohjaisilla
mallinnusmenetelmillä mallien laatiminen ja päivittäminen on nopeaa, mikä mahdollistaa monitorointijärjestelmien
aikaisempaa tehokkaamman kehittämisen.

Tämän väitöskirjan tarkoitus on parantaa datapohjaisen mallinnuksen tarkkuutta käyttämällä prosessitietämystä,
yhdistelemällä erityyppisiä malleja sekä hyödyntämällä laskennallisia muuttujia. Monitoroinnista saatavaa tietoa
käytetään edelleen vikasietoisessa säädössä. Ehdotetut parannukset datapohjaiseen monitorointiin on esitetty
monitorointijärjestelmien kehittämiseen käytettävän metodologian muodossa. Metodologian toimivuutta on tarkasteltu
kehittämällä sen avulla monitorointijärjestelmä Neste Oil Oyj:n Naantalin jalostamon liuotinaromaattien
poistoprosessille. Monitorointijärjestelmän tarkoitus oli havaita tuotteen laatua mittaavien online-analysaattoreiden
vikaantuminen. Järjestelmän laadinnan ensimmäisessä vaiheessa kartoitettiin käyttäjien vaatimukset järjestelmälle.
Tietojen perusteella ja metodologiaa hyödyntäen valittiin kohteeseen sopivat datapohjaiset mallinnusmenetelmät.
Mallien selittävät muuttujat valittiin mitattujen ja kehitettyjen laskennallisten muuttujien joukosta metodologiassa
esitetyllä tavalla. Mallien suorituskyky määritettiin käyttämällä erillistä validointidataa. Tämän jälkeen
vianhavaitsemisjärjestelmän viritysparametreille etsittiin optimaaliset arvot. Metodologiassa ehdotettujen
datapohjaiseen mallinnukseen liittyvien parannusten vaikutuksia arvioitiin vertailututkimuksessa. Järjestelmän
toiminta varmistettiin ensin simuloidussa prosessiympäristössä, jonka jälkeen se testattiin online Naantalin
jalostamolla toukokuussa 2007. Tulosten tarkastelu vahvisti järjestelmän kykenevän havaitsemaan analysaattorivikoja
ja antamaan vikasietoiselle säädölle sen tarvitsemat tiedot täten todistaen metodologian toimivuuden.
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1 Introduction

1.1 Background

In the highly competitive process industry continuous optimisation of the production

processes is a crucial factor in keeping the operation economically viable. Another

motivation for optimisation is the growing public awareness of environmental is-

sues, leading to stricter legislation concerning emissions and waste handling. These

demands for profitability and cleaner production can be met in part through ef-

fective process state monitoring and fault detection. Early detection of faults and

process disturbances provides operators with possibilities to handle the abnormal

situations more efficiently. According to a study by Lennox and Sandoz (2002), the

petrochemical industry in the US alone loses 20 billion dollars per year because of

un-optimal handling of abnormal process situations. The substantial size of the esti-

mated losses has also motivated the academic community to develop fault detection

methods and fault tolerant control systems to deal with process disturbances and

equipment malfunctions.

The field of fault detection and diagnosis (FDD) is considered with the problem of

making fault decisions, on the basis of measured process data. A fault decision is an

indication of a fault, including information about its type, size, location and time

of detection. FDD systems have hierarchical structures for extracting relevant pro-

cess condition information from measurement data. According to Isermann (1997),

the FDD systems consist of feature generation, symptom generation and fault di-

agnosis blocks. The feature generation includes methods, e.g. limit value checking,

signal analysis or model-based process analysis, for creating characteristic values of

the process. These values are compared with the corresponding values representing

non-faulty operation in order to create analytical symptoms. The symptoms are
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analysed by means of fault diagnosis methods. If no a-priori knowledge is available,

then the fault diagnosis is performed with a classification method. If fault-symptom

causalities are known, diagnostic reasoning strategies can be utilised. Venkatasubra-

manian et al. (2003a) define the four parts of the FDD structure as a measurement

space, a feature space, a decision space and a class space. The common factor

between this and the previously described structure is the step-wise extraction of

process condition related information from measurement data. The extraction of

the information, i.e. the different mappings from the measurement space to the

class space can be performed with a wide variety of methods. The three main cat-

egories of the methods are: quantitative model-based, qualitative model-based and

process history based methods. The groups are distinguished by the type of prior

knowledge that is needed to use the methods. Quantitative model-based meth-

ods require a deep causal understanding of the quantitative relationships between

the variables. Qualitative model-based methods rely on shallow knowledge about

the qualitative interactions between different units of the process. Process history

based, i.e. data-based methods, can be used without process-specific prior knowl-

edge, although large quantities of process data, from which the essential knowledge

about the process behaviour is extracted, are required. (Venkatasubramanian et al.,

2003a)

The quantitative model-based methods include observers, parity relations, Kalman

filters and parameter estimation. These methods are used to achieve analytical

redundancy: the inconsistencies between the measured and the estimated process

behaviour are presented as symptoms called residuals. Depending on the method,

the residuals can be deviations between measured and estimated outputs, param-

eter estimates or state estimates (Isermann, 1997). However, the applicability of

the quantitative model-based methods is limited to linear processes (Venkatasub-

ramanian et al., 2003a). The second group of methods consists of the qualitative

model-based methods. Qualitative methods are used when there is no deep under-

standing of the process and precise numerical models are not available (Lo et al.,
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2004). Because the relationships between variables are less accurately described

by the models, the qualitative models are less prone to modelling errors than the

quantitative models. The drawback of the qualitative modelling is the occasional

generation of spurious results. Qualitative models are most suitable for finding the

root causes of faults in very complex or large processes. The most common model-

based qualitative methods are signed digraphs, fault trees and qualitative physics

(Venkatasubramanian et al., 2003b).

The third major group of FDD methods are the qualitative and quantitative process

history based methods. The most important qualitative data-based methods are ex-

pert systems and qualitative trend analysis (QTA). The expert systems are easy to

develop and the transparency of the reasoning is a significant benefit. The down-

sides of the method are their limited representation power and poor updatability.

QTA represents the measurement data as trends describing the process behaviour.

The extraction of trends makes QTA robust against noise, but also computationally

heavy when the number of variables is high. The quantitative data-based methods

include artificial neural networks (ANN) and statistical methods. While the statisti-

cal methods are used only with linear processes, the ANNs can be applied to highly

nonlinear processes. The fact that the quantitative data-based methods can be used

with little prior knowledge, are fast to create and have a wide range of applicability,

makes them an attractive option for fault detection applications. A large number

of industrial applications of these data-based monitoring methods with successful

results have been reported (e.g. Komulainen et al. 2004, Jämsä-Jounela et al. 2003

and Kämpjärvi et al., 2007) and reviewed, e.g. by Isermann and Ballé (1997) and

Meireles et al. (2003).

The information about fault detection and diagnosis has traditionally been used

by operators, who have used their process knowledge to determine control actions

that mitigate the effects of the faults on the process. Systems that automatically

take into account the effects of the faults in process control have only recently been
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introduced. These fault tolerant control (FTC) systems aim to maintain the per-

formance of the process at a nominal level in the presence of faults. Passive and

active approaches for FTC have been suggested in the literature, e.g. by Polycar-

pou and Helmicki (1995) , Rausch (1995), Ballé et al. (1998) and Noura et al.

(2000). The passive approach utilises robust control techniques for ensuring that

a closed loop system remains insensitive to certain faults. In the active approach,

a new set of control parameters is determined for enabling the faulty system to

reach the nominal system performance. An active FTC strategy formulated as a

supervised control system has been presented in Aubrun et al. (2003) to improve

the robustness of a sludge dewatering process. Several studies have been published

about active FTC strategies utilising model predictive control (MPC) (Maciejowski

(1999), Pranatyasto and Qin (2001) and Prakash et al. (2002)). More recently,

Järvinen et al. (2006) showed that the inherent accommodation properties of MPC

can readily be exploited to implement different types of FTC strategy, providing that

the necessary FDI information is available. These concepts have been elaborated

further in Sourander et al. (2006).

The efficiency of an FTC system depends e.g. on the type of fault, the robustness of

the process and the availability of alternative control strategies, and the underlying

assumption of FTC is that accurate fault detection and diagnosis information is

readily available. FTC is thus a research topic that is closely related to the FDI

problem.

1.2 Research problem and asserted hypothesis

The fundamental problem motivating this thesis work is to develop a methodology

for creating a fault detection system for an industrial production plant by utilising

data-based fault detection methods. With the help of efficient monitoring, processes

can be controlled more accurately to run under the desired conditions. The main
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benefit for running the process near an optimal state is that the product quality

is constantly high which, in turn, may increase the market value of the product

or at least reduce the quantity of off-spec production. The diagnostic information

provided by the FDI also enables the use of fault tolerant control systems.

The recent tendency for using data-based techniques in FDI is well justified by the

developments in modelling theory and in information technology because process

history data are now easily accessible and the computational capacity of normal

computers is high enough for solving the mathematical problems related to the

modelling. However, using only process data for creating process models is not an

optimal solution as prior knowledge could often be utilised to achieve better results.

Integrating prior knowledge with the data-based FDI systems also makes them more

attractive to the end-user because sometimes the difficult-to-interpret black-box

models are not easily accepted by the operating personnel. The focus of this thesis

work is to improve the accuracy and applicability of fault detection systems based

on existing data-based modelling methods, and to expedite and systematize the

development projects of the fault detection systems for industrial processes. The

hypotheses of this thesis are:

(1) Modern data-based modelling methods can provide all the necessary diagnostic

information needed to implement fault tolerant control in industrial environments.

(2) Estimation accuracy of linear data-based regression models (PLS and SMI) can,

in certain situations, be improved by combining them with nonlinear models.

(3) Considering variables describing unmeasured process phenomena when selecting

input variable sets for data-based models, in addition to the measured variables,

may result in more accurate models. The values of the unmeasured variables are

determined using the values of the measured variables.

To prove the claims of the hypothesis, the following four tasks are carried out during
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the research:

Task 1. A methodology for creating a fault detection system based on data-based

modelling and prior knowledge is created. The methodology is tested by applying

it to a dearomatisation process.

Task 2. Different types of data-based process model are created and their suit-

ability for detecting faults in online quality analysers and for providing diagnostic

information for fault tolerant control of a dearomatisation process is analysed.

Task 3. The effects of using prior knowledge in data pre-treatment in connection with

input variable selection and the creation of calculated variables on the fault detection

results are studied with simulated data of a dearomatisation process. The task covers

the utilization of both linear and non-linear data-based modelling methods.

Task 4. The usefulness of calculated variables describing unmeasured process phe-

nomena in fault detection is proved on the basis of a comparative study using both

linear and non-linear modelling methods and data of a simulated dearomatisation

process.

1.3 Scope and outline of the thesis

This thesis covers the topic of using process history based quantitative modelling

methods and prior process knowledge to achieve accurate methods for fault detection

and process equipment state identification. The phases involved in developing a

monitoring system are presented as a methodology that can be used to set up a

monitoring method for an industrial process. The opportunities of utilising existing

information about process operation in the individual phases of data-based process

modelling are studied. The outputs of the developed monitoring system can be used
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to achieve FTC, as shown e.g. in Sourander et al. (2006).

In the first chapter an introduction to the process monitoring is given, the research

problem is described, and the hypotheses are asserted. In addition, the scope and

significance of the thesis are also presented. A state-of-the-art review of data based

fault detection methods is presented in chapter 2. The methodology for setting up a

fault detection system is described in chapter 3. Chapter 4 is devoted to present the

dearomatisation process and the industrial process environment of the Neste Oil Oyj

Naantali refinery. Chapters 5 through 9 describe the setting up of fault detection

systems for three testing experiments in accordance with the proposed methodol-

ogy. The suitability of the FDI-related information for FTC of the dearomatisation

process is evaluated in chapter 10. Analysis of the results in chapter 11 illustrates

the positive effects of the most important improvements for data-based modelling

suggested in the methodology. The thesis ends with a conclusion in chapter 12.

1.4 Contribution of the thesis and the author

The novelty of this work comes from improving the accuracy of the monitoring

methods by combining linear data-based modelling methods, partial least squares

(PLS) and subspace identified state-space model (SMI) with a nonlinear multi-layer

perceptron network (MLP) and by integrating prior knowledge into the data-based

modelling. The whole process of setting up an FDI system has been covered in the

form of a systematic, step-by-step methodology. Several improvements for data-

based modelling have been suggested: Guidelines for selecting the most suitable

modelling methods are given and a novel input variable selection method is pre-

sented. A new measure for estimating the integrity of data sets is introduced. The

measure can be used to define theoretical limits for modelling errors and to select

an optimal input variable set for modelling. Furthermore, the process history data-

based FDI systems are designed to provide information, most importantly the fault
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indication, the reliability of the fault, and the estimated magnitude of the fault, in

order to enable the use of fully automated fault-tolerant control strategies.

Author’s contribution. This work has been carried out as a part of the Networked

Control Systems Tolerant to Faults (NeCST, IST-004303) Project funded by the

European Union. As a member of the project, the author has co-operated with

other researchers from the Helsinki University of Technology (TKK), University

Henri Poincare (France), University of Duisburg-Essen (Germany) and Neste Jacobs

Oy. The methodology has been created by the author. The preliminary analysis of

the research problem at the Naantali oil refinery was performed by a small team of

researchers from TKK, including the author. In addition, the researchers of Neste

Jacobs also contributed in defining the requirements for the monitoring system. The

final testing of the implemented monitoring system was performed by the author

and the researchers of Neste Jacobs. Other phases in the implementation of the

methodology have been conducted by the author. The FTC strategies have been

developed by the personnel of Neste Jacobs.
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2 State of the art of data based process monitoring

A state-of-the-art review of fault detection methods is presented and discussed in

this chapter. First, a classification of the FDI methods is presented and a general

review is given for model-based and qualitative FDI methods. The quantitative

data-based modelling methods are reviewed in more detail in section 2.2, and the

use of prior knowledge in data-based modelling in section 2.3.

2.1 Classification and overview of fault detection methods

A number of different classifications of the FDI methods have been proposed: Chowd-

hury and Aravena (1998) classify them as model-based or model-free methods. Chi-

ang et al. (2001) use categories of data-based, analytical and knowledge based

methods. Venkatasubramanian et al. (2003a) first divide the FDI methods into ei-

ther model-based or process history based. Both of these groups are further divided

into quantitative and qualitative methods, as shown in Figure 2.1. This review

is organised on the basis of the categories proposed by Venkatasubramanian et al.

(2003a)

Traditionally, the FDI has been based on quantitative model-based methods; ob-

servers, filters, and parity relations. These methods are based on detecting devia-

tions in residuals that are generated, using the models, from the measurement data.

When the process parameters are unknown, parameter estimation methods are used,

and when the parameters are known, observers can be constructed. Parameter esti-

mation methods are suitable for detecting multiplicative faults, while observers are

mainly used to detect additive faults (Stephanopoulos and Han, 1996).

The robustness of observers against plant-model mismatch has been improved by
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introducing unknown input observers (Chen et al., 1996; Patton and Chen, 1997).

An optimal fault detection filter that maximises the isolation of faults for unknown

input observers has been introduced by Chen et al. (2003). The applicability of

observers for nonlinear cases has been improved by the introduction of sliding mode

observers (Slotine et al., 1986; Walcott et al., 1987; Edwards and Spurgeon, 1994).

Edwards et al. (2000) and Tan and Edwards (2002) further developed the method so

that faults could be reconstructed, thus providing more information about the fault.

Recently, Tan et al. (2008) suggested using a supplementary observer in cascade

with a normal observer to reconstruct the fault signals and to estimate the system

states. It has been shown that the dual observer systems are applicable to a wider

range of processes than single observers because the conditions of existence for dual

observer system are milder. Bhagwat et al. (2003) have used simultaneously multiple

observers and filters to detect process faults during transitions. Their method breaks

transitions into phases that are modelled separately using closed-loop observers for

observable, and open-loop observers for unobservable variables.

The work on utilising (extended) Kalman filters (KF, EKF) for FDD was pioneered

by Mehra and Peschon (1971). Chetouani (2004) utilised EKF for detecting faults

in a nonlinear, ideal, continuously stirred tank reactor (CSTR) process. Recently,

the area of applicability of the filter-based FDD methods has been expanded. Kano

et al. (2008) proposed a two-stage subspace identification method for designing

softsensors that can estimate unmeasured disturbances without making the normal

KF assumption of Gaussian innovations. The usability of the method has been

demonstrated with an application to industrial ethylene fractionator. Li et al. (2008)

presented an application of KF in non-uniformly sampled multirate systems.

The parity space methods are based on analytical redundancy. Balance equations,

called parity relations, are generated to relate input and output data and a model is

used to check whether process data satisfy the equations or not. Using parity space

methods for FDD has been researched e.g. by Gertler (1997). The parity relations
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can be designed to use values determined by observers, and thus these two model-

based techniques are very closely related, as shown in the work on the decoupling

of faults in linear periodic systems by Zhang and Ding (2007).

Constructing exact quantitative mathematical models for modern processes is chal-

lenging due to their complexity and thus the qualitative model-based and data-based

approaches have gained interest during the previous decades, signed digraphs (Iri

et al., 1979; Vedam and Venkatasubramanian, 1997; Cheng et al., 2008), fault trees

(Yang et al., 1995; Kavcic and Juricic, 2000; Papadopoulos, 2003; Kim and Zuo,

2007) and qualitative trend analysis (QTA) (Maurya et al., 2005 and 2007; Dash

and Venkatasubramanian, 2000; Janusz and Venkatasubramanian, 1991) receiving

most of the attention.

This thesis focuses on the statistical quantitative process history based and neural

network methods. They are reviewed in more detail in the following section.

Figure 2.1: Classification of diagnostic algorithms (Venkatasubramanian et al.,
2003a)
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2.2 Quantitative data based process modelling methods

The most commonly used statistical multivariate method is principal component

analysis (PCA). The idea of reducing the dimension of a data set by using principal

components was introduced by Pearson (1901). The significant initial developments

of PCA were performed by Hotelling (1933) and Rao (1964). Further development

on PCA started in the beginning of the 1990’s with the publication of a compre-

hensive handbook about the method by Jackson (1991). Kosanovich et al. (1994)

and Nomikos and MacGregor (1994) applied PCA to an industrial batch process

by unfolding the three-dimensional batch process data into two dimensions, and

then performing normal PCA using the 2-D data matrix. This technique is called

Multi-way PCA (MWPCA). The basic PCA models are linear and describe static

relationships between the variables. To extend the applicability of the methods to

dynamic situations, Ku et al. (1995) proposed augmenting the training data set

using time-lagged variables. This variant of the PCA that takes the autocorrelation

of the variables into account is known as dynamic PCA (DPCA). The suitability

of the DPCA for fault detection within the Tennessee Eastman process has been

demonstrated by Russell et al. (2000). DPCA has also been used for monitoring

the crystallisation process (Pöllänen et al., 2006).

To make the method suitable for nonlinear processes, several modifications have

been introduced. Gnanadesikan (1977) introduced the concept of generalised PCA

(GPCA) by expanding the measurement data matrix with variables whose values are

determined with nonlinear functions of the measured values, and then performing

normal PCA on the expanded data. In nonlinear PCA (NLPCA) the lines, i.e.

principal components describing the directions of the largest variations of the data,

are replaced by curves. The first NLPCA method was suggested by Kramer in

1991. The method utilised a 5-layer autoassociative neural network with a ’bottle-

neck’ layer to determine the curves. Tan and Mavrovouniotis (1995) proposed an

Input Training NN (ITNN) based NLPCA method that Jia et al. (1998) used for
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detecting faults in a complex nonlinear industrial reactor. An industrial case study

of ITNN based NLPCA combined with wavelets has been presented in Shao et

al. (1999). Dong and McAvoy (1996) used principal curves, together with neural

networks, to determine the nonlinear principal components. Schölkopf et al. (1998)

introduced the kernel PCA, in which the principal components are not determined

for the original variables, but for calculated variables having nonlinear relations with

original inputs. The problem with this type of NLPCA is that input data cannot be

reconstructed from the principal components. A nonlinear dynamic PCA based on

DPCA and an ANN classifying the process conditions in the principal component

sub-space has been introduced in Lin et al. (2000). A kernel PCA based FDI

system with an application to a nonlinear CSTR process was introduced by Choi et

al. (2005). Recently, Hsieh (2007) researched the overfitting problem of the ANN

based NLPCA methods, and presented a method for creating NLPCA models with

noisy data. Hsieh succeeded in constraining the complexity of the NN part of the

NLPCA and thus avoiding the overfitting problem, but the method is applicable

only to data sets with one dominating signal.

Bakshi (1998) combined PCA with wavelet analysis (multiscale PCA, MSPCA) for

more efficient use of information that is contained in different frequencies of the

measurement signals. For a successful implementation of MSPCA for process mon-

itoring and fault diagnosis see e.g. Misra et al. (2002). In cases where the process

data are not normally distributed, the estimate for the data correlation or covari-

ance matrix used in PCA will be inaccurate, resulting in insensitive PCA models.

Wang and Romagnoli (2005) addressed this problem in the MSPCA framework by

using robust M-estimators in each frequency band to replace multi-variate outliers

with their robust estimates in order to rectify the measurement data. The resulting

robust MSPCA (RMSPCA) achieved better results than MSPCA in a case study

of a pilot scale process, the drawback of the method being that it requires heavy

calculations during online use. The idea of monitoring different parts of a process

separately was introduced by Wold et al. in 1987 (multi-block PCA, MBPCA).
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Two different ways of combining information provided by the separate models of

MBPCA have been proposed, the hierarchical PCA (Westerhuis et al., 1998) and

the consensus PCA (Qin et al., 2001). Recently, Choi et al. (2008) studied the use

of multiple scales with KPCA for FDI with a simulated CSTR process.

Li et al. (2000) introduced two recursive algorithms for calculating PCA (RPCA).

RPCA can be used with processes that need an adaptive monitoring system due to

gradually changing process conditions. For similar cases, Kano et al. (2001) pro-

posed applying PCA to a moving time window, and changes in the process cause

a detectable change in the principal components (moving PCA, MPCA). Recently,

AlGhazzawi and Lennox (2008) introduced the idea of combining the RPCA with

MBPCA to achieve recursive multi-block PCA (RMBPCA). The RMBPCA has

proved to give better results than regular PCA or MBPCA with a condensate frac-

tionation process, having multiple operating points and two logical sections.

Another solution for monitoring processes with changing operation conditions is to

use multiple PCA models. The super PCA method utilising hierarchical clustering

was introduced by Hwang and Han (1999). Multiple models have also been used to

enhance the fault isolation properties of the PCA. Huang et al. (2000) introduced

a method for detecting sensor and analyser faults by making several smaller GPCA

and NLPCA models for the process. The structured partial models are designed so

that a single model is sensitive only to a specific subset of faults, and thus the faults

can be isolated using parity relations.

Another popular multivariate regression method is the partial least squares or pro-

jection to latent structures (PLS) introduced by H. Wold in the late 1970’s. The

suitability of the method for chemometry was first demonstrated by S. Wold et al.

(1983) and, ever since, its applicability for different types of processes has been im-

proved with a range of extensions and modifications. For time varying processes

an adaptive version of PLS is needed, and a recursive algorithm for PLS (RPLS)
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was introduced in Helland et al. (1992) and has since been enhanced by Dayal and

McGregor (1997), Qin (1993, 1998) and Wang et al. (2003). For very large data

sets, Lindgren et al. (1993) proposed transforming the large data matrix into a

smaller kernel matrix and then analysing the matrix with PLS (KPLS). Walczak

and Massart (1996) proposed a modification to the kernel PLS by using nonlinear ra-

dial basis functions for creating a nonlinear kernel matrix. Nomikos and MacGregor

(1995) presented an idea of multi-way PLS (MPLS) to apply PLS to batch processes.

Kourti et al. (1995) extended MPLS so that information about the initial conditions

of the batch can also be used in the model. More recently, Marjanovic et al. (2006)

introduced a variant of the MPLS that can be used to estimate the end-points of

variable length batches. The MPLS methods unfold the 3-dimensional batch pro-

cess data into two dimensions and then perform normal PLS. A true n-dimensional

PLS algorithm (N-PLS) for analyzing multidimensional data was introduced by Bro

(1996). The PLS has been used for solving the problem of product transfer between

plants, which considers finding operating conditions in one production plant to have

the same product qualities as the same product produced in another plant. The first

study in this area was reported in Jaeckle and MacGregor (2000). More recently,

Muñoz et al. (2005) formalized the so-called Joint-Y PLS (JYPLS) technique and

applied it to a scale-up case for a batch pulp digester.

Over the years numerous extensions have been proposed to make PLS applicable for

nonlinear processes. Wold et al. (1989) introduced quadratic PLS (QPLS) in which

nonlinear (quadratic) functions are used to describe the inner relationships between

the input score vectors and the latent variables. In 1992, Wold proposed using splines

to achieve NLPLS. Nonlinear versions of PLS (NLPLS) based on artificial neural

networks (ANNs) have been proposed by Qin and McAvoy (1992) and Malthouse

et al. (1996). Bang et al. (2003) have taken yet another approach, and integrated

fuzzy reasoning to PLS (FPLS) to handle nonlinear cases. By exploiting the Takagi-

Sugeno-Kang (TSK) fuzzy model, human expertise can be integrated into the FPLS

model.
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In addition to the modifications to the PCA and PLS, new statistical monitoring

methods have been proposed. The problem of blind source separation gave rise to

independent component analysis (ICA), which is used to isolate independent signals

from a mixture of signals. ICA has successfully been applied to a process monitoring

problem (Lee et al. 2004) and for analyzing stock market trends (Back and Weigend,

1997). ICA can also be used for feature extraction and data compression in order to

find a compact presentation of image, audio and other kinds of data. (Hyvärinen and

Oja, 2000). A dynamic version of ICA based on lagged variables has been presented

in Lee et al. (2004). Kano et al. (2002) proposed a process monitoring method called

DISSIM. The method is based on monitoring similarity between groups of data and

it can detect small continuous deviations from normal operating conditions.

A rather new idea in linear system identification is subspace model identification

(SMI). The SMI is used to define the A, B, C, and D matrices and the covari-

ance matrices of a state-space model directly from the measured process data. The

most common SMI algorithms are canonical variate analysis (CVA; Larimore, 1990),

numerical algorithms for subspace state space system identification (N4SID; van

Overschee and de Moor, 1994) and multivariable output error state space (MOESP;

Verhaegen, 1994). The similarities between the different algorithms are studied in

van Overschee and de Moor (1995) ), in which a unifying SMI theorem combining

the three algorithms is also proposed. For a detailed description of the SMI methods

see e.g. van Overschee and de Moor (1996). Chou and Verhaegen (1997) proposed

using instrumental variables to make SMI more insensitive against noise in input

and output data. Wang and Qin (2002) proposed using PCA with instrumental

variables for SMI. A similar errors-in-variables (EIV) approach has been presented

by Treasure et al. (2004). Their method allows the use of T 2 and squared prediction

error (SPE) statistics in fault detection. Li and Qin (2001) demonstrated the close

relationship between DPCA and SMI and proposed an EIV SMI-based method to

derive consistent dynamic PCA including optimal determination of the model or-

der. The traditional SMI methods (CVA, MOESP and N4SID) are biased under
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closed-loop conditions. An unbiased SMI method for closed-loop systems has been

presented in Chiuso and Picci (2005).

Another category of data-based modelling methods are the artificial neural net-

works (ANN). The idea of ANNs mimicking the functions of the human brain was

first suggested around 1960, when Rosenblatt introduced the concept of perceptron

(Rosenblatt, 1958). ANNs can be categorized by their training method or by their

architecture, number of layers and the type of activation functions. The most well

known type of ANN is the multilayer perceptron network (MLP), which is a mul-

tilayer feedforward network typically trained with the supervised back-propagation

learning algorithm. Each neuron in MLP is connected to all neurons in the subse-

quent layer, while there is no connection between neurons in the same layer. Accord-

ing to a study carried out in 1995, 81,2 % of all ANN based applications utilized the

MLP structure (Haykin, 1995). MLP has been utilised as such in detecting faults

in a packet distillation column (Sharma et al., 2004) and it has also been combined

with fuzzy logic systems (Ruiz et al., 2001). Yamamoto and Venkatasubramanian

(1990) introduced an FDD system for a process consisting of a CSTR and a dis-

tillation column based on separate MLP models for continuous and discontinuous

measurements.

The uncertainty of the ANN models have been studied by Mrugalski et al. (2007).

They proposed a method for minimising the structural and parametric uncertainty

of an MLP by the Outer Bounding Ellipsoid technique (Milanese et al., 1996).

Similarly, the uncertainty of a Group Method of Data Handling (GMDH) NN can

be estimated with the Bounded Error Approach (Milanese et al., 1996) to achieve

robust FDI. In order to obtain robustness against the parameter uncertainty of

GMDH NNs, Puig et al. (2007) proposed a method for determining adaptive fault

detection thresholds.

The easier interpretability of the NNs has been studied by Tan et al. (2007). They
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proposed a hybrid NN structure for a fault detection system providing automatic

generation of rules to classify process conditions. The FDI system based on fuzzy

ARTMAP (FAM) and rectangular basis function network (RecBFN) was tested with

a circulating water system of a power generation station.

To take into account the process dynamics, the neurons or the structure of the

networks are modified so as to utilise also the past values of the input variables. A

general structure for locally recurrent, globally feedforward networks (LRGF) has

been introduced by Tsoi and Back (1994). Patan and Parisini (2005) proposed using

Akaike Information Criterion and Final Prediction Error for selecting the proper

detailed LRGF structure. A fault detection application of LRGF to a catalytic

cracking process has been reported by Patan and Korbicz (2007). Instead of local

feedback structures, Zhou et al. (2003) proposed using polynomial features with

pure feedforward NNs to utilise the the past inputs. Yang et al. (2000) proposed

using an ANN and the dynamic features of process data, extracted with wavelets

and qualitative interpretation, to detect faults during transient process conditions

in a fluid catalytic cracking reactor.

Another popular type of ANN is the Self-Organizing Map (SOM), which is trained

with unsupervised competitive methods. The original SOM algorithm developed by

Kohonen (Kohonen, 1990) has been optimized and modified for different applica-

tions. Kangas et al. (1990) proposed algorithms for dynamic weighting and more

efficient definition of the neighbourhood parameter in SOM training, Shah-Hosseini

and Safabakhsh (2003) developed a time adaptive variant of SOM, TASOM. Hirose

and Nagashima (2003) introduced a variant of SOM with predictive properties, P-

SOM. The drawback of the original SOM is that the size of the map needs to be

determined before the training of the map. A solution to this problem has been pre-

sented by Fritzke (1995). The Growing Grid algorithm introduced by Fritzke utilises

an iterative training process in which the size of the map is increased when needed.

The repeated training of the map is time consuming and a more efficient algorithm
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for automatic determination of the size of SOMs, the Growing Hierarchical SOM

(GHSOM), was proposed by Rauber et al. (2002). GHSOM produces a hierarchical

structure of SOMs instead of only one map. A technique for merging the informa-

tion presented by the separate maps has been recently published (Soriano-Asensi et

al., 2008). To achieve robustness against outliers, two variants, (Marginal Median

SOM, MMSOM and Vector Median SOM, VMSOM) using median based weight

update algorithms have been published by Pitas et al. (1996). MMSOM has been

successfully applied to a document classification case by Georkakis et al. (2004) and

the benefits of the robustness have recently been analysed in Moschou et al. (2007).

Kohonen suggested using supervised learning vector quantization (LVQ) in training

the map for more efficient separation of different types of sample, if the SOM is used

only for solving a classification problem (Kohonen, 1990).

Radial Basis Function Networks (RBFN) are ANNs that utilise exponential Gaussian

activation functions to perform input output mapping and classification tasks. The

original ideas for RBFN were introduced by Moody and Darken (1989). RBFNs

have been used for classifying process faults (Leonard and Kramer, 1991) and for

detecting sensor faults in chemical processes (Yu et al., 1999). RBFNs have also

been used in combination with other methods to provide a classification of the

faults (Kämpjärvi et al., 2007; Zhou et al., 2003).

2.3 Prior knowledge in data based modelling

In addition to the the individual modelling methods, several modelling related tasks

common to all data based methods have also been researched. These tasks include

input data preparation, input variable set selection, reduction of the dimension of

the input variable set, and the use of combination models. The main ideas and

the latest developments of these supporting tasks are presented in this section, and

different ways to utilise prior knowledge in preparing input data sets and in model
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construction are also discussed.

The task of preparing the data sets that are used to train the data-based models

consists of three phases: (1) selection of input variables, (2) creation of additional

variables, and (3) removal of the effects of known process phenomena from the data.

The phases are discussed in the following.

In some applications, the process conditions change significantly during normal oper-

ation. The changes may be caused by e.g. variation in feed composition or changing

specifications of the product. Although these alterations are sometimes made inten-

tionally and may not be harmful as such, the variation they produce may conceal

the effects of the simultaneously occurring faults. To solve this problem, Takane

and Shibayama (1991) proposed a method to decompose the observed data ma-

trix so that the effects of the known phenomena could be removed from the data

before they are analysed with the monitoring methods. The data decomposition

method has successfully been tested e.g. with data collected in a styrene monomer

production plant (Yoon and MacGregor, 2001).

Processes that have clearly separable operating points or strategies may be easier to

model using multiple models. For each operating point, which is usually determined

by the current feed stock or the desired quality of the product, a separate model can

be constructed. The benefit of this approach is that it allows monitoring nonlinear

processes with multiple linear models (Zhang et al. 2003). Using a combination

of separate models to describe the linear dynamic and nonlinear static characteris-

tics of nonlinear processes has also been suggested. If the linear block precedes the

nonlinear block, then the structure is called a Wiener model, while the reverse situ-

ation is referred to as a Hammerstein model. Several methods have been suggested

for identifying Hammerstein models (e.g. Narendra and Gallman, 1966; Jia et al.,

2005; Pottmann et al., 1993 and Laksminarayanan et al., 1995) and Wiener models

(Billings and Fakhouri, 1982). The third published approach suggests combining
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data-based and first principles models. Existing process knowledge is used to create

a simple mechanistic model and it is used together with a separate black-box model

trained with the part of the training data that is not explained by the FP model.

This method has been applied successfully to a fed-batch penicillin fermentation

process by Thompson and Kramer (1994).

The role of prior knowledge in using statistical modelling methods is mostly re-

stricted to the input variable selection (IVS) and the creation of calculated vari-

ables. With neural networks, prior knowledge can be utilised more extensively. It

can be used to alleviate problems associated with noisy and/or sparse input data

(Thompson and Kramer, 1994), and the outputs of an ANN model can be made

to agree with the known facts about the modelled process. Joerding and Meador

(1991) classified the constraining methods into Architecture Constraint (AC) meth-

ods and Weight Constraint (WC) methods. In AC, the architecture of the ANN

is chosen so that it will always, regardless of the weights, fulfill the conditions set

by prior knowledge. In WC, the weights of the ANN are constrained during the

training so that the output does not violate the conditions. Later on, Chen and

Chen (2001) realized the need for a third category, Data Constraint (DC) methods.

The DC methods manipulate the data, which are used to train the ANNs in such

a way that the models’ outputs agree with the known values. These methods differ

from the design and training hybrid model approaches introduced by Thomson and

Kramer (1994) in that the modelling is accomplished with a single NN model. In

addition to the earlier categorisation, Chen and Chen (2001) proposed dividing the

methods into internal methods, that constrain the architecture or weights directly

and external methods, which encode the knowledge into the ANNs indirectly.
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3 Methodology for setting up a process monitoring

system

In this section, a systematic methodology for developing monitoring systems for

complex industrial processes is presented. The methodology consists of five major

parts. The first part consists of drawing up the specifications for the system and

defining the user requirements as presented in section 3.1. Guidelines for selecting

the most suitable data-based modelling method are presented in section 3.2. The

different phases of data analysis and preparation of the data sets for the modelling

are illustrated in section 3.3. Constructing the models is described in section 3.4,

and formulation of the change detection and fault identification blocks is described

in section 3.5. Finally, the steps required in analysing the results are presented in

section 3.6. The main phases of the methodology described in the following sections

are presented in Figure 3.1.

3.1 Specifications of a monitoring system and definitions of the

user requirements

The first phase of the preliminary analysis is to define the specifications of the target

application and the user requirements for the monitoring system. The background

information is acquired by interviewing experienced personnel at the production

plant. In order to obtain as wide a perspective as possible to the problem, persons

working in the different operational sectors are interviewed: operators, engineers,

and management personnel. The interviewing method could, for instance, be the

Delphi method (Linstone and Turof, 1975), which consists of number of interview

rounds. After each round the results are analysed and presented to the interviewees,

and the interviewing process is continued until the results have converged. The
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Figure 3.1: Major steps of the proposed methodology for creating an FDI system

following information is acquired through the interviews: (1) detailed description of

the required functionality of the FDI system, (2) description of the process conditions

under which the system will be used, (3) end-users’ attitudes toward false alarms

and missed detections, (4) specifications of the environment in which the system is

implemented, and (5) specifications of the user-interface. The first two items are

required in setting up the system, the third is related to the tuning of the system,

and last two concern the external restrictions.
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3.2 Selection of appropriate data-based modelling techniques

Selection of the most suitable modelling method for a specific monitoring problem

depends on the process and its dynamics. A wide selection of modelling methods is

available for linear processes, but only a few nonlinear methods can be used to model

nonlinear processes. Processes indicating strong nonlinear behaviour are modelled

with ANNs (e.g. MLP, RBFN, SOM) or nonlinear versions of the linear methods

like NLPCA, NLPLS, while it is recommended that linear and weakly nonlinear

processes are modelled with statistical modelling methods. A second important

characteristic of processes which affects selection of the modelling method is the

number of operating regions. Data representing multiple operating regions do not

follow the normal distribution and are therefore unsuitable for most of the statistical

modelling methods. Special cases in modelling are batch processes, because they

require accurate modelling of transient process phases. It is recommended that

batch processes are modelled with methods specially designed for handling process

transients, such as Multi-way PCA and Multi-way PLS.

The intended use of the model needs to be taken into account when deciding which

monitoring method to select. Three common aims of process monitoring models are:

(1) to detect deviations between the current process state and a desired reference

state, (2) to estimate the values of certain process variables, and (3) to classify the

current process state. The first task consists of monitoring a group of variables and

detecting deviations between a new data set and the original that was used for the

training. This kind of similarity analysis provides information about whether the

process is at the same operating point as when the training data were collected.

The information is important in the case of processes that have only one or a re-

stricted number of desired operating points available for detecting deviations from

the previously optimised conditions. The second monitoring task consists of using

values of measured variables to estimate the value of another variable. The estimates

produced by regression models are compared with the corresponding measured or
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analysed values in order to detect sensor or analyser faults. The third task is to

classify the process states and faults. The classification is similar to the first prob-

lem but, in this case, the current state is not compared against a single reference

state, but instead against multiple states that were present in the training data of

the models. These three cases are the most widely used ways to utilise process

monitoring systems. The tasks are clearly so different from each other that they

require specific model types for each case. Comparing the current process state with

a reference state can be performed by PCA, ICA and DISSIM, while the regression

models utilised in the second type of problem can be constructed with PLS, SMI,

MLP and RBFN. Commonly used classifying methods include SOM and ART.

In addition to the process characteristics and the intended use of the models, a num-

ber of other factors also need to be considered. For online monitoring systems, the

limit for the complexity of the mathematical operations that are performed in each

monitoring cycle is set by the specifications of the implementation environment.

The quality of the training data also limits the use of certain methods. Statistical

methods like PCA, PLS and ICA reduce the dimension of the data by identifying

general factors that explain the variation within the data. With certain limitations,

these factors are also valid for describing situations that have not been present in

the training data. In contrast, ANNs that are universal approximators do not find

general trends in the data, but rather approximate the values of the functions with

a very high degree of accuracy. This ability is the origin of the two drawbacks of

ANNs; overfitting, i.e. modelling the noise component in the training data, and the

poor performance in situations that were not present in the training data. RBFNs

are especially poor at extrapolating data due to the exponential nature of the Gaus-

sian functions and, consequently, should not be used with sparse data sets (Leger et

al., 1996). In addition, if the classification of faults is to be an important feature of

the monitoring system, then the data must also contain measurement information

about the faults that are to be be classified. One way to present the suitability of

the modelling methods described in the state-of-the-art section for different process
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types is described in Table 3.1, in which the methods that share similar character-

istics, e.g. all the NLPLS methods, are grouped together. The modelling accuracy

is not given in the table as a model characteristic because it depends strongly on

the case in question, and therefore ranking the methods on the basis of the re-

sults achieved in specific benchmark problems would be misleading. When all the

user requirements, the requirements set by the implementation environment and the

constrictions set by the data are taken into account, there might be several suitable

candidates for the modelling method. In this case, the simplest method should be

chosen.

The first monitoring task consists of analysis of the properties of one variable set

during process operation. Any deviations from the nominal values are interpreted

as faults. The PCA and its variants and the DISSIM are suitable methods for this

kind of task. The DISSIM method is especially useful for detecting slowly developing

faults (Kano et al., 2002). If the results of these methods are not acceptable, then

ICA can be used provided that the signals to be separated are statistically inde-

pendent. PLS and its variants can be used for detecting changes in the relationship

between two data sets, e.g. input and output. If a state-space model of the process

is needed, then SMI can be utilised to determine the related matrices. Regression

models constructed with PLS or SMI are also suitable for detecting sensor faults.

If the accuracy of the linear models for nonlinear processes are not satisfactory,

then ANNs should be used. ANNs can be used both for prediction and classification

problems. The MLP is the most common ANN type, but RBFN has recently gained

interest due to the number of advantages it has over MLP. SOM has proved to be a

powerful tool for classification problems (e.g. Laine et al., 2000).
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Table 3.1: Model characteristics of some data based fault detection methods
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Suitability for linear pro-

cesses

X X X X X X X x X X X X X X X x x x x

Suitability for nonlinear

processes

x x X X X X

Suitability for steady state

processes

X X X X X X X x X X X X X X X x x x x

Suitability for non-steady

state processes

X X X x X X X X

Suitability for batch pro-

cesses

X X X X

Ability to identify faults X X

Ability to detect new fault

types

X X X X X X X X X X X X X X X X X x x

Ability to detect simulta-

neous faults

x x

Heavy calculations during

online use

x x x x x x

Easy interpretation of re-

sults

x x x x x x x x X X X X X X X X X

Good updatability x x x

Strict requirements for

training data

x X X X X

Robustness against noise

in training data

x x x x X x x x x x x x x

The small ’x’ denotes that the property describes a method, capital ’X’ denotes that the property

describes a method very well.
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Processes that exhibit significant nonlinear behaviour cannot be accurately modelled

with linear models and nonlinear modelling methods should be used instead. How-

ever, linear models have the following strengths; they are easy to understand and

their behaviour is predictable under new operating situations. In contrast, nonlinear

ANNs are black-box models whose structure and parameter values have no direct

connection to the process phenomena and their effects on the outputs are therefore

difficult to understand. Moreover, the nonlinear nature of the models indicates that

they can provide unexpected results when new operating conditions are encountered.

For these reasons, the use of pure ANN models is not encouraged in real industrial

implementations. It is recommended to use a combination of the two in order to

obtain the benefits of both linear and nonlinear models. The type of models used in

the hybrid models could be e.g. PLS, SMI and MLP. Several methods for combining

the models exist: (1) completely independent models are used and the most suitable

model for each situation is selected online according to a predetermined switching

logic, (2) a linear model is constructed and the unexplained part of the data is used

to train a MLP model, and (3) a dimension reduction method, e.g. PLS, is used to

transform the input data into lower dimension space and the modified data is then

used to train a MLP model. The second approach is recommended in the method-

ology because, in the first approach, the creation of the switching logic provides

additional challenges for the modelling, and models constructed according to the

third option may give unexpected outputs in new operating conditions, as is the

case with pure ANNs.

In order to train the hybrid models, the linear part of the model is first created.

Then an MLP model is trained with the same input data set as the linear model,

while the output is the residual between the modelled variable and the correspond-

ing values estimated by the linear model. Before training the MLP, the residual

signal is bounded between −a and a in order to train the ANN to compensate for

deterministic modelling errors of the linear model and to minimise the effects of

isolated instances with large absolute values on the training process. The value of
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parameter a is determined on the basis of the case in question and on the accuracy

of the linear model.

3.3 Analysis of measurement data and preparation of modelling

data sets

3.3.1 Analysis and compensation of the process delays in the data

For non-stationary processes with significant delays or slow dynamics, there is no

causal relationship between measurements that are made simultaneously in different

parts of a process. For this reason, the process delays are commonly determined and

compensated for by time-shifting the data. By using time-shifted data, the process

delays can then also be taken into account with static modelling methods.

The outlier values in the data are removed prior to delay estimation. This can be

done e.g. with a median filter (3.1)

ufk = median{uk−(w−1)/2, ..., uk+(w−1)/2} (3.1)

where uf is the filtered value, and w is an odd number representing the length of

the filtering window. The value for w is determined by analysing the data. It is

recommended that this is set to a value greater than twice the length of the longest

sequence of outliers.

The delays can be determined by performing cross-correlation analysis between each

input-output variable pair. The analysis can be performed for input variables that

correlate with the outputs. The cross-correlation values of those variables that do

not affect the outputs of are often low over the analysed interval, thus indicating

the absence of a deterministic relationship between the variables. These variables

are discarded from the data set and are not used in the modelling.
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The estimates for the delays acquired with the cross-correlation analysis are only

approximate, and the delays may change according to the operating conditions. For

these reasons it is recommended to utilise several measured values in determining

the values of the time-shifted values of input variables. Using an average of multi-

ple measured values further suppresses the noise in the measurements. The delay

compensated i.e. time-shifted values can be determined by (3.2) as the average of

n samples measured before and after the estimated delay.

udck =

∑n
m=1

(
uk−d+floor(n/2)+1−m

)
n

(3.2)

where −b is the delay, udck is the delay compensated value of u at instant k, floor

is a function used to round down the ratio n/2, and n is the number of values used

in the filtering. Taking the moving average of the original values attenuates high

frequencies, but does not introduce a delay in the compensated value as long as the

estimated delay is longer than floor(n/2).

3.3.2 Augmenting the process data set with calculated variables

Calculated variables are quantities whose values are determined with mathemati-

cal functions using a subset of the measured variables as inputs. They are mainly

used for three purposes: (1) to reduce the number of variables, (2) to form vari-

ables describing process phenomena, and (3) to linearise the data. Data reduction

is the most common reason for utilising calculated variables, and several methods

are readily available for the task. Some traditionally used methods include clus-

tering methods (e.g. SOM, K-means), linear transformations of the input variables

(PCA, linear discrete analysis; LDA), spectral transformations (Fourier, Hadamard),

wavelet transformations or convolutions of kernels. The second motivation for using

calculated variables is to create variables that capture the complex characteristics

of processes (Laine et al., 2000 and Yang et al., 2000). The third reason for cre-

ating calculated variables is to convert the non-linear relationships of the process
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data into linear ones, thus making the data usable for linear modelling methods

(Kourti, 2002). Ramaker et al. (2002) suggests using logarithmic transformations

for creating such features.

The role of prior knowledge in data-based modelling is of great importance in the

creation of process phenomena related variables. They can be derived with mathe-

matical models like the fundamental balance equations (Guyon and Elisseeff, 2003).

This type of calculated variable is also referred to as a soft-sensor. According to

Nomikos and MacGregor (1994), using soft-sensors increases the information content

of a PCA model such that the variation related to the key phenomena will become

dominant in the principal components and thus improve the accuracy of the model.

Moreover, Yoon and MacGregor (2001) state that the use of soft-sensor estimated

values in the data matrix makes it easier to interpret the contribution plots because

only one principal component is highlighted. Adding calculated variables to the

data set without removing the original variables is also known as the augmented

data matrix method.

Two interesting modelling techniques for utilising the process phenomena type of

calculated variables are Functional Link ANNs (FLANNs) (Pao et al., 1992) and

Genetic Programming (GP) (Koza, 1992). FLANNs include a separate functional

expansion module in which the input signals are used to create calculated variables

that are passed to the ANN structure. The functions that are used in FLANNs

depend on the case in question, and need to be determined before the training of the

models. Patra and van den Bos (2000) studied the use of polynomial functions, such

as Chebyschev, Legendre and power series. As the input set is expanded to include

strongly nonlinear components, the structure of FLANNs can be simple. The ANN

part of the models has usually been a single layer network and, compared to MLP,

the FLANNs have produced almost as good results with a lower computational

burden. However, one problem associated with FLANNs is that the number of

functions needs to be high in order to improve the probability of finding suitable
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calculated variables. This leads to increased dimension of the input variables.

Koza (1992) introduced genetic programming (GP) for creating calculated variables

by forming tree structures consisting of operator and parameter nodes. The best

structure for presenting a modelled data set is searched using genetic algorithms. GP

has been successfully used in many applications (e.g. Greeff and Aldrich, 1998 and

Zhang et al., 2005), but the main drawback of the method is the heavy calculation

burden if the number of variables and operators is high. However, with more complex

systems, the models i.e. the calculated variables are harder to find by means of

evolutionary programming methods.

The calculated variables representing process phenomena make it easier to model the

process with data-based methods. To promote and systematise the use of calculated

variables that describe process specific phenomena and to overcome the restrictions

of FLANN and GP, the methodology includes a set of calculated variables. The set

consists of process primitives that are calculated variables representing unmeasured

quantities containing important information about the process conditions. Two ma-

jor benefits of using calculated variables describing nonlinear process phenomena

are (1) that linear models can be used with nonlinear processes, and (2) that there

is improved accuracy in interpolating and extrapolating the data. The interpolation

and extrapolation characteristics are important in situations where the data sets

do not cover the whole operating area for which the models should be valid. The

primitives presented here are divided into two categories: those related to process

equipment and those related to physico-chemical phenomena. The equipment-based

primitives are applicable to a wide range of industrial processes that comprise the

same types of process equipment. Furthermore, the primitives related to fundamen-

tal physical laws, e.g. mass transfer, are applicable to many processes. Primitives

describing the characteristics of chemical reactions are considered less useful as their

applicability is limited to specific reactions and processes.
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The first primitive type is the difference between two measured temperatures. These

primitives indicate, for instance, the part of the reactor in which an exo- or endother-

mic reaction takes place or the effectiveness of a heat exchanger. The differences

give operating point independent information about the process, which is useful

for detecting faults in multiple operating point processes. A general equation for

creating the primitive is given in (3.3).

u∆Temp = u1 − u2 (3.3)

where u1 and u2 are the temperature measurement values.

The second primitive type is the total quantity of a specific compound or property.

It can e.g. describe the total amount of substances that react in the same way in a

process. The primitive is determined with (3.4)

utq =
n∑
k=1

uk (3.4)

where utq is the total quantity of the substance, n is the number of different sources

of the substance and uk are the quantities of the separate sources of the substance.

When the fraction of a substance in the reactive material is more of a descriptive

quantity than the total quantity, a more suitable primitive is expressed as

ufr =
n∑
k=1

ukfrF
k

F k
(3.5)

where ufr is the total fraction of substance u after the flows, F k, including different

fractions of u, ukfr, have been combined. The n is the number of flows.

The third primitive type is the ratio of two process flows. This primitive describes

quantities that are often controlled, e.g. the mixing of inert and reactive substances

to control the strength of the reactions. The primitive is insensitive to the total feed

flow rate and can thus be used in FDI that relies on classification. On the other

hand, it is generally not usable as an input variable for regression models. The

primitive is described by (3.6).

Fratio =
F1

F2

(3.6)
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where Fratio is the ratio of flows F1 and F2.

Balance equations, especially the heat and mass balances, are a common type of

primitive. These primitives indicate changes, i.e. possible faults, within specified

subject areas, leaks in the case of mass balances, and malfunctions in heating devices

or insufficient insulation in the case of heat balances. Using balance primitives

requires prior knowledge about the interesting areas over which the balances are

created. The balance equation primitives are based on the conservation principle

given in (3.7) (Ogunnaike and Ray, 1994).

Accumulation = Input−Output + Internal Production (3.7)

Primitives that are connected closely to specific process equipment are also created.

For instance, an important primitive indicating operating conditions within distilla-

tion columns is the pressure compensated temperature. A linear approximation of

the pressure compensated temperature is given by (3.8).

upcT = uT − b(uP − a) (3.8)

where upcT is the pressure compensated temperature, uT and uP are measured tem-

perature and pressure, and a and b are tuning parameters.

All primitives are created when a monitoring system is being developed, and those

that are useful in modelling are identified using the input variable selection meth-

ods described in section 3.4.1. The set of calculated variables implemented in the

chemical engineering library is not exhaustive, and other primitives related to spe-

cific types of process equipment or processes can be constructed on the basis of

process-specific knowledge. The usefulness of primitives in fault detection have been

demonstrated e.g. in Laine et al. (2000), Komulainen et al. (2004) and Kämpjärvi

et al. (2007).

After augmenting the data set with calculated variables, all the information about
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the process in non-numerical form is presented in a numerical form and added to the

data set. The non-numerical information is related to quantities of processes that are

not measured, but are otherwise known, e.g. the composition of the feed might vary

depending on the raw material supplier. Non-numerical information is presented

as crisp class membership values, 1 if the value of a quantity belongs to a certain

class, 0 otherwise. The next steps of data augmentation are data regularisation

and interpolation, which are normally used with ANNs. In data regularisation the

measured values are rectified so that they more accurately describe the situations

in which they were measured. One typical requirement for rectified data is that it is

smooth. Creating additional data points by interpolation is done in order to avoid

the over fitting problems that follow if sparse training data is used with ANNs.

The last step described here is to augment the data matrix with the differences

between consecutive measurements. These rate-of-change variables enable static

modelling methods to model some of the dynamic characteristics of processes.

3.3.3 Analysis of the consistency of the data

Next, the consistency of the data and the suitability of the data for modelling are

determined. The inconsistencies within the data are mainly caused by measurement

noise and changes in the process and in the instrumentation during the data collec-

tion period. A method for determining the consistency and thus the validity of the

data set for modelling and the limits for acceptable modelling errors is presented in

the following.

For a single input single output (SISO) case in which only one variable is used to

explain the other variable, the consistency analysis is performed as follows. First,

the amplitude of the noise of the explanatory variable is determined. The noise is

assumed to be high frequency white noise and its amplitude is estimated from the
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residual of a low-pass filter. Second, the two variables are plotted against each other.

The minimum and maximum values of the explained variable and their difference are

determined for all values of the explanatory variable, taking into account the uncer-

tainty of the input variable. A graphical example for determining the maximum and

minimum values corresponding to a single measured value, 50, with uncertainty of

±10 is given in Figure 3.2. Three key figures for the maximum-minimum differences

are determined: the medium difference, the difference that is larger than that in 95

% of the cases and the maximum difference. For an optimal model trained with the

data set, the medium value divided by two is an expected value for the modelling

error, and the maximum value describes the largest expected modelling error. As

the largest errors are due to outliers, a more deterministic maximum value for the

expected systematic modelling error is the 95 % value.
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Figure 3.2: Analysing the quality of the modelling data, SISO case

In multivariable cases, in order to determine the data inconsistency a clustering tool

is required to find data samples with similar values in the input variables. The
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methodology recommends using SOM for this task. When the number of neurons in

a SOM is high compared to the number of samples in a data set, the data samples

classified in a single neuron have almost the same values for the input variables.

The minimum and maximum output values related to these data samples are readily

available and the analysis can be carried out. An important feature in the analysis

is related to finding the proper number of neurons in the SOM. An equation (3.9)

is given for determining the suitable number of neurons.

Nneurons =
r1

n1

m∏
k=2

b
rk
nk

(3.9)

where Nneurons is the number of neurons, k is the number of variables in the data

set, b is a tuning parameter, r is the range of a variable, and n is the amplitude of

the noise in the same variable. If the input variables are independent of each other

then the value for b is one. The stronger the correlation between the variables, the

closer the value is to zero. The inconsistency measure of a data set depends on the

selection of the explanatory variables, and thus the measure can be used in input

variable selection.

3.4 Construction of the data-based models

The data-based FDI models are then constructed. This starts with selection of

the input variables and determination of the training data set, and continues with

construction of the models. During the selection of input variables, the goodness of

different models needs to be evaluated. Generally used indicators for the goodness

of models include accuracy, understandability, applicability over a wide range of

operating conditions and reliability under new operation situations. In this study

the goodness of the models is determined on the basis of the root mean squared

error of the estimation (RMSE) index.
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3.4.1 Selection of the input variables

In order to deal with the large processes that are nowadays frequently encountered,

the modelling task should be divided into smaller, easier tasks whenever possible so

as to avoid unnecessary complexity. MacGregor et al. (1994) state that statistical

monitoring methods like PCA and PLS can be applied to large processes that consist

of partly independent process sections, by creating a model for each section. Instead

of dividing large monitoring problems into spatially or logically separated blocks,

they can be decomposed into smaller sections by modelling the different frequency

ranges of the process separately (Bakshi, 1998). The main advantage of dividing

up the monitoring problem, in addition to the reduction in the number of input

variables, is the easier interpretation of the monitoring results. The methodology

recommends dividing large monitoring problems into smaller sections if a suitable

division can be identified.

Even after the monitoring problem is divided into smaller parts, the number of avail-

able variables is often impractically high to be used with the data-based methods.

The dimensions of the input variable sets corresponding to the different process parts

are further reduced in connection with input variable selection (IVS). Langley (1994)

defined the IVS problem as selecting the best subset of variables in a search space

consisting of all possible combinations of variable subsets. Langley also formulates

the four main issues of the search: (1) determination of the starting point of the

search, (2) organisation of the search, i.e. rules on how to proceed from one variable

subset to another, (3) evaluation of the subsets of variables, and (4) determination

of the criterion used to stop the search.

Mathematical algorithms have been developed for the IVS task. John et al. (1994)

divide the algorithms into two categories, wrapper methods and filter methods. The

fundamental difference between the two categories is that the wrapper methods are

used to select variables for a specific monitoring method and the filtering methods
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try to select an optimal set that can be used with any method. Filter methods are

based on performing a statistical test between subsets of the input variables and the

desired outputs of the model. A commonly used statistic is correlation. Bonnlander

and Weigend (1994) proposed using a more complex measure, mutual information,

for analysing the strength of the relationship between two variables.

Wrapper methods consist of the following four steps: (1) selection of a process model,

(2) determination of an input variable set, (3) training of a model with the selected

variables, and (4) assessment of the performance of the model using a cost function.

Steps 2 - 4 are repeated until the stopping criterion is met. Method development

related to wrapper methods mainly focuses on choosing an input variable set. In

forward selection (FS), the starting subset is empty and variables with the strongest

correlations with the modelled output are included in the model, one variable at

a time. Backward elimination (BE) starts by using all the available variables and

then, at each iteration round, the variable that correlates the least with the desired

output is removed. Both FS and BE have more refined step-wise versions in which

variables can be discarded (FS) or re-selected (BE), or the variables can be selected

or eliminated in groups. A completely different approach for search organisation is

to select the candidate subsets randomly with a genetic algorithm (GA).

The performance of the IVS methods depends on the data that is used for evaluating

the performance of the set. The prediction results obtained with the leave-one-out

cross validation (LOOCV) method do not agree with the results obtained using

an independent testing data set. Using LOOCV, sequential forward floating selec-

tion (SFFS, Pudil et al., 1994) gives better results than sequential forward selection

(SFS), as shown in Kudo and Sklansky (2000). When a completely new data set is

used in testing, the simpler SFS is equally good to or even outperforms the SFFS

(Reunanen, 2003). The same phenomenon has been reported by Kohavi and Som-

merfield (1995), Kohavi and John, (1997), and Scheffer and Herbrich, (1997). The

methodology recommends using an independent data set in evaluating the perfor-
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mance of input variable sets.

In this methodology, an IVS method consisting of three main steps is proposed.

First, prior knowledge is used to remove irrelevant and otherwise unsuitable vari-

ables. Second, mathematical filter and wrapper methods are utilised, and a GA is

then used to find an input variable set. Third, the number of variables of the set

is reduced with PCA or similar data compression methods. While all of the sug-

gested IVS steps should always be carried out, the importance of the steps varies

depending on the case in question. If the target process is poorly instrumented,

i.e. only a relatively small number of variables are available for modelling, then

the emphasis in the IVS should be placed on using the prior knowledge. As the

number of variables increases, manually selecting the variables gradually becomes

more challenging. Thus, for complex and well-instrumented processes, the IVS is

mainly done with mathematical methods. The five main steps of the proposed IVS

method are described in the following.

Step 1. Irrelevant variables are discarded from the training data set. The relevance

of the variables is determined with prior knowledge. Typically, irrelevant variables

are those that are known not to have a causal relationship with the process of

interest. The averages of sensors that measure the same quantity, such as multiple

temperature sensors at the same location, are determined. During the monitoring,

the redundant measurements can first be used to check for faults in the measuring

devices, and an average of the non-faulty measurements can then be calculated and

used in monitoring.

Step 2. A preliminary selection of input variables is performed using the following

method. First, the variables are ranked according to the correlation between them

and the output variable. Input variables correlating weakly with the output variable

are discarded. The IVS starts with an empty variable subset, and all the variables

are included in the input variable set one at a time in the descending order of the
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correlation. After each addition, the resulting output of the model is compared to

the output of the previous model. If the performance measured with JMSE (3.10) is

improved, then the variable is included in the subset.

JMSE =
1

n

n∑
k=1

(ŷ(k)− y(k))2 (3.10)

After a variable has been included, the validities of all the previously included vari-

ables are tested in leave-one-out manner, and the corresponding JMSE values are

determined. If a lower JMSE value is achieved by leaving out a variable, then that

variable is removed from the rest of the input variable selection procedure. This

pruning of the input variable set is repeated for as long as the JMSE is improved

by removing variables. The search continues until all the variables have been added

to the subset. The calculation time of the method is considered to be moderate

because the JMSE is determined maximum of m2 + m − 2 times, where m is the

number of variables. Next, better input variable sets are searched for with a genetic

algorithm. The GA is given the input variable set found in the previous phase as

a starting point in order to speed up the search and to ensure that the resulting

variable set is at least as good as the reference set. The search is also made more effi-

cient by applying elitism, i.e. by preserving the best performing variable set as such

throughout the generations and also by automatically including it in the mutation

phase of GA. The genetic algorithm used in the methodology is as follows:

(1) m random chromosomes are created, where m is the number of available input

variables. The number of variables in the chromosomes is set such that there is one

chromosome with one variable, one with two, and so forth. The last chromosome

thus contains all the variables.

(2) Models are constructed using input variable sets determined by the chromosomes,

and the models’ performances are evaluated.

(3) m
2

chromosome pairs are chosen to create the next generation of chromosomes.
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The selection is done randomly, but the chromosomes producing models with good

performances have higher probabilities to be chosen.

(4) A new generation of chromosomes is created by mating the selected chromosomes

of the pairs. The chromosomes are cut into two pieces and then two new chromo-

somes are formed using the pieces. The cutting point is determined randomly and

the two chromosomes are cut using the same point in order to have pieces of suitable

length to form new chromosomes with exactly m genes. The chromosome pairs also

have a low probability of not becoming mated, and the new chromosomes are then

clones of the original ones. (5) The genes of the new chromosomes are mutated with

a low probability.

Repeat (2) to (5) until a stopping condition is met. The two stopping conditions

are: (1) a predetermined maximum number of generations is reached, and (2) the

performance of a model exceeds a predefined limit.

Step 3. The dimension of the input variable set is reduced. The aforementioned

mathematical methods search for input variable sets that minimise the prediction

errors of the models. If several input variable sets produce similar prediction er-

rors, then the one with the least variables is selected. In addition, the previously

determined input variable sets are also pruned with the following algorithm.

(1) Leave one variable out of the input variable set and determine the model’s

performance. Calculate the leave-one-out performance for every input variable.

(2) Discard the variable corresponding to the best leave-one-out performance.

Repeat (1) and (2) as long as the performance of the reduced model remains accept-

able. In addition to pruning, the dimension of the set can also be further reduced

using dimension reduction algorithms like PCA and ICA. In this manner, techniques
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that can also be used independently to model the processes, can be used as a part

of other methods.

3.4.2 Selection of a training data set

Next, the available process data must be divided into the training data set and the

testing data set that is used to evaluate the constructed model. Both data sets should

contain information about all possible process conditions. In this methodology it is

recommended that the training and testing data sets be constructed with selected

short periods of data covering the different parts of the data collection period and

all major process conditions. Following this recommendation ensures that both data

sets contain information about slowly occurring changes in the prevailing process

conditions, e.g. due to fouling of the process equipment.

3.5 Diagnostic information and fault decisions

Next, the diagnostic information provided by the FDI systems and the utilised

fault decision algorithm of the methodology are described. First, the individual

residuals provided by the models are presented in section 3.5.1. Then the proposed

change detection algorithms, utilising the residuals, are introduced in section 3.5.2.

The information provided by the change detection algorithms can be used in fault

tolerant control. The derivation of the confidence indices for the estimates are

described in section 3.5.3 and, finally, the tuning of the FDI system is presented in

section 3.5.4.
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3.5.1 Residual generation

In the methodology, the difference between the estimated and measured values is

the most important residual used in detecting faults. When using multivariate

statistical models, the separate residuals of all the estimated variables are squared

and summed together. This residual index is the squared prediction error (SPE),

also known as the Q indicator. Another multivariate index used in the methodology

is the Hotelling T 2 indicator. It describes the model’s validity for creating the

estimate under current operating conditions. The Hotelling T 2 index is determined

from the principal components or latent variables that have been included in the

model because the PCs or LVs that explain only a small fraction of the variance

of the input data are sensitive to noise and typically degrade the reliability of the

Hotelling T 2 index if they are included in the calculations (Chiang et al., 2001). The

Hotelling T 2 and SPE are used in determining the confidences of the estimates as

described in section 3.5.3.

3.5.2 Change detection algorithms

Making the decision about whether a monitored system is in a faulty or normal

state is a logical operation with a binary result. The decision is made by comparing

the residuals produced by the models to the values corresponding to normal process

operation. The limits for normal behaviour are commonly set within three times the

standard deviation of the normal data set from the average value. For data following

the normal distribution, these so called 3-sigma alarm levels correspond to a 0.27

% alpha risk, meaning that 99.73 % of the normal situations are classified correctly

and for 0.27 % of the cases a false alarm is given (e.g. Chiang and Colegrove, 2007).

An alarm limit for the Hotelling T 2 indicator (3.11) has been introduced by Jackson
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(1959), and for the SPE (3.12) by Jackson and Mudholkar (1979).

T 2
α =

m(n− 1)(n+ 1)

n(n−m)
Fα(m,n−m) (3.11)

where m is the number of principal components or latent variables included, n is the

number of data samples, and Fα(m,n−m) is the critical value for an F distribution

with m and n−m degrees of freedom.

Qα = Θ1

[
h0cα
√

2Θ2

Θ1

+ 1 +
Θ2h0(h0 − 1)

Θ2
1

] 1
h0

(3.12)

where Θi =
∑n

j=a+1 σ
2i
j , σ is a singular value, h0 = 1 − 2Θ1Θ3

3Θ2
2

and cα is the normal

deviate corresponding to the 1− α percentile.

Analysing the residual values separately is used to detect large abrupt faults, but the

method is vulnerable to outlier values of measurements that can cause false alarms.

The limit-checking methods are also insensitive for small and incipient faults. As

a consequence, more sophisticated tests are also used. For instance, alarms should

only be given after a few consecutive limit violations have been detected. The

same conservative approach should be adopted when deciding when the process has

recovered from a fault and is given a normal operation status. Waiting for a few

consecutive alarm limit violations will induce a delay in the fault detection, but it

will also greatly reduce the number of false alarms. Another option to avoid the

effects of noise and outliers is to use cumulative sums of the residuals in alarm limit

checking instead of single values. The use of CUSUMs was first suggested by Page

(1954) and has been utilised in an ANN based FDD system (Leger et al., 1996).

In the methodology, the main criteria for the fault decision making are the cor-

rectness of the decisions and the fault detection speed. An acceptable compromise

between these conflicting objectives is sought after using a modified Page-Hinkley

cumulative sums method. The algorithm has two branches, one for detecting up-

ward faults and another one to detect downward faults, and it performs both change

detection and fault diagnosis. The original Page-Hinkley algorithm equations for de-
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tecting positive jumps, i.e. changes in the signal, are presented below.

U0 = 0 (3.13)

Un =
n∑
k=1

(yd(k)− ν) (3.14)

mn = min
0≤k≤n

Uk (3.15)

f̂ = Un −mn (3.16)

where Un denotes the cumulative sum, yd is the residual, ν is the detection limit, i.e.

the magnitude of the smallest fault that will be detected, mn is the minimum value

of the cumulative sum, and f̂ is the estimated fault. After the change detection,

the fault diagnosis is made using a simple threshold method: If f̂ ≥ λf , where λf

is the predefined limit for fault, then a fault is detected. Similar sets of equations

are used to detect negative jumps.

The original Page-Hinkley algorithm has a flaw that may cause problems when the

algorithm has been running for a long time on a computer; the min and max values

approach minus and plus infinity when the signal represents normal behaviour. To

avoid this problematic situation, the algorithm is modified to keep the min and max

values at zero (3.17).

m
′

n = max(0,mn) (3.17)

where m
′
n is the modified minimum value, which is used instead of mn in (3.16). A

similar modification is made in the algorithm for detecting negative jumps.

Another weakness of the original algorithm is the wind-up: during a long-lasting

fault, the cumulative sum increases continuously and, after the fault has been fixed,

the algorithm still indicates the fault, because the cumulative sum remains above

or below the alarm limit. The algorithm is modified further to speed up the return

to a normal state. After three consecutive instants the residual is within the limits

for the normal state (i.e. yd(κ)− ν < 0), the cumulative sums are reset to zero and

the fault indication is removed.
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The reliability of a fault is determined on the basis of the ratio of the cumulative

sum and the threshold limit according to (3.18). (3.18).

Frel = min

(
(
Un
λf
− 1)/a, 1

)
(3.18)

where Frel is the reliability of the fault and a is a tuning parameter.

The magnitude and direction of detected faults are determined by comparing the

estimated values with the real outputs. The residual is the estimated magnitude of

the fault.

Fest = ŷ − y (3.19)

where Fest is the estimated magnitude of the fault, ŷ is the estimated value, and y

is the corresponding output.

3.5.3 Confidence index for the estimates.

Data-based models are valid only under process conditions that are described by

the training data. As a consequence, the estimates made under new conditions

are unreliable. To determine the validity of the models and the confidence of the

estimates an index is developed. For PCA and PLS models, the measures suitable

for the validity of the model are the Hotelling T 2 and SPE indices. These indices

give information about abnormal process measurement and systematic changes in

the structure of the data. It is assumed that, under these conditions, the models

are no longer valid.

The reliabilities of the estimates of the PCA and PLS models are based on the

Hotelling T 2 and SPE indices, as indicated in Equations (3.20) and (3.21).

HT 2
sig =

1

1− e−c(HT 2
0 /a−d)

(3.20)

SPEsig =
1

1− e−f(SPE0/b−g)
(3.21)
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where HT 2
sig and SPEsig are the scaled values of fault indices, HT 2

0 and SPE0 the

original values, and a, b, c, d, f , and g are tuning parameters. The final value for

the reliability when combining the two indices is determined by (3.22).

ŷrel = 1−
HT 2

sig + SPEsig

2
(3.22)

where ŷrel is the final reliability of the estimated value.

3.5.4 Tuning of the fault detection parameters and optimisation criteria for

fault detection decisions

The main objective of a FDI system is to classify the normal and faulty operation

conditions correctly. This is presented as an objective function (3.23).

Min Jtot =
n∑
i=1

(|f̂ 0(i)− f 0(i)|) (3.23)

where f̂ 0(i) ∈ 0, 1 and f 0(i) ∈ 0, 1 are the estimated and real status of the process, i

is the time instant, and n the length of the testing period. The parameters that are

optimised are the λ and ν of the fault detection equations (see section 3.5.2). Since

no general analytical solution is available for solving the minimisation problem, the

optimum tuning parameter values are determined by means of simulations.

3.6 Assessment of the performance of the FDI system

The last phase in the setting up of an FDI system is to evaluate its performance.

In the methodology, the performance is determined as the percentage of correctly

indicated states of the process. To obtain a realistic assessment of the performance,

the data used for validation should be rich process data containing different oper-

ation regions and transitions between the regions. The data should represent the
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process in the normal operation state and faults, similar to those occurring in the

process, are artificially added to the data. This arrangement is recommended be-

cause the exact starting times and magnitudes of the faults are then known, enabling

an accurate performance analysis.

In the evaluation of the FDI system consisting of multiple models, it is recommended

that the performances of the models be considered separately. This is important,

because the different types of model provide different kinds of information about

the process. Methods that monitor only process conditions, like DISSIM and PCA

which do not emphasise the importance of the product information, produce results

that can be used as the first indicators that something is happening in the process.

These changes in the process may not have a direct effect on the product quality

but, if left unsupervised, the deviation from normal state might grow and become a

more serious problem. PLS and other regression models monitor the process and give

more weight to those variables that affect product quality. Therefore alarms given

by these models should instigate an immediate response. It is recommended to give

more weight to the models using calculated variables, because they detect deviations

from the important process features represented by the calculated variables. The

rules governing the determination of the total outcome of the fault detection and

different roles of the models are determined using prior engineering knowledge.
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4 General description of the Naantali oil refinery

dearomatisation process and its automation and

control systems

The methodology presented in Chapter 3 is validated by building an FDI system

for the Naantali oil refinery dearomatisation process. Next, the process, including

the automation and control systems, is described.

4.1 Dearomatisation process

Dearomatisation processes are widely used in the oil refining industry. These pro-

cesses are used to remove aromatic compounds in the feedstock by hydrogenation.

The Naantali process consists of two trickle-bed reactors with packed beds of cat-

alyst, a distillation column, a filling plate stripper, several heat exchangers and

separation drums, and other unit operations. The process diagram of the dearoma-

tisation process at the Naantali refinery is presented in Figure 4.1.

The cold, liquid feedstock fed to the unit is heated with streams from the two

reactors in the heat exchangers EA1 and EA2 and with hot oil in EA3 and then

fed to the reactor DC1 together with hydrogen and recycle liquid. Exothermic

saturation reactions in the first reactor remove most of the aromatic compounds

when the catalyst is new, while most of the reactions occur in the second reactor

when the catalyst is older and has been partly deactivated. After dearomatisation

in the reactor DC1, the reaction product is cooled in the heat exchanger EA1 and

then fed to the gas separation drum FA1. Gaseous and liquid reaction products are

separated in the drum. Part of the liquid is circulated back to the reactor DC1.

The rest of the liquid, together with separated gas and fresh hydrogen, are fed to
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Figure 4.1: Dearomatisation process at the Naantali refinery. (Kinnunen, 2004)

the second reactor DC2, where the aromatics level of the product drops to near

zero. After the second reactor, the reaction product is cooled in the heat exchangers

EA2 and EA4 and fed to the second gas separation drum FA2. Gas separated

from the liquid mainly consists of unreacted hydrogen, which is recycled back to

the first reactor, and the rest of the gas is removed. The separated liquid is heated

with by-product and product streams in the heat exchangers EA5 and EA6. Part

of the liquid is further heated in the heat exchanger EA7 in order to achieve the

final temperature before the stream is fed to the distillation column DA1. The

overhead of the column is cooled in a cooler and then fed to the separation drum

FA3, where the gaseous part is removed and the liquid is divided into reflux and

distillate. The distillate consists of the lightest compounds of the reaction product.

The heat exchanger EA6 produces heat for reboiling the bottom stream. With

certain feed types a side stream is conducted to the stripper and heated up with

the heat exchanger EA8. A by-product stream is drawn off from the bottom of the
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stripper (DA2). The non-aromatic main product is drawn off as the bottom product

of the distillation column DA1 and cooled in the heat exchanger EA6. The quality

of the cooled product is determined online with the flash point temperature and

distillation curve analysers. Laboratory assays of the product quality are performed

twice a day. The dearomatisation process has no noticeable effect on the heaviest

parts of the distillation curve of the feedstock, but the properties of the lightest cuts

are strongly affected by the distillation. Six petroleum cuts with different properties

are used as feedstocks to the process and a change of feed type is made, on the

average, once every 4 days. In addition to having feed types with clearly distinct

properties, the composition of the feed may also vary within the feed types.

4.2 Online quality analysers

The product quality of the dearomatisation process is monitored by three online

quality analysers; distillation temperature analyser of the bottom product, flash-

point temperature analyser of the bottom product and flashpoint temperature anal-

yser of the side product. The higher level quality control uses the analyser results

as feedback. Faults in the analysers lead to situations in which the quality of the

product is higher than required or below the specifications. Both of these situations

cause losses in profitability. Because of the highly nonlinear blending characteris-

tics of the initial boiling point (IBP) and flashpoint (FP), even short periods of

off-spec production can contaminate large quantities of solvent in product tanks.

Contaminated products are reprocessed or downgraded to less valuable diesel oil.

The distillation analyser is used only with the dearomatisation process while the

bottom product FP analyser is also used for analysing product flow of another unit

process. As a consequence, the flashpoint temperature analysis results for the bot-

tom product may be unavailable for long periods of time. The side product flash

point temperature analyser is only used with certain feed stocks that require the

use of the second column, DA2.
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4.2.1 Bottom product distillation analyser

The distillation curve analyser operates on the principle that a sample is heated

up in a vessel and the vapours are conducted in another vessel. The volume of the

condensed fraction of the sample is measured. Temperatures, in which the volume

starts to increase and when 5, 10, 50, 90, 95 and 100 % increase of the volume

has been registered, are given as the outputs of the analyser. The values become

available in the automation system one after another with several minutes intervals,

as the evaporation and condensation progress. The most significant characteristic

of the distillation analyser is long cycle time between the assays. Handling of the

sample, cooling of the flask, careful heating of that sample and the cleaning of the

equipment between samples takes about 40 minutes. An additional feature of the

analyser is that the delays between the analysis cycles are not constant, but vary

between 40 and 43 minutes according to the quality of the sample.

4.2.2 Flashpoint analyser

The flashpoint temperature analysers operate by heating a liquid sample in an open-

air container. An electric spark is generated periodically over the container and the

temperature in which the mixture of air and evaporated sample ignites is given as

the flashpoint temperature. Opposed to the distillation analyser, the analysis cycle

of the flashpoint analyser is quite short, only about 2 minutes. The delay between

the analysis results is, however, variable and changes normally between 1 and 3

minutes.
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4.3 Automation system at the Naantali refinery

The automation system at the Naantali refinery follows the three layer structure

commonly encountered in process industry: process layer, basic control layer, and

supervisory control layer. The process layer consists of analog point-to-point con-

nections between the field devices and process stations. The basic control layer

consists of a Damatic XD DCS system. The DCS system connects various stations

(process stations (PCS), operation stations etc) in the same network and executes

the basic controls. The communication in the network is implemented with propri-

etary Damatic XD protocols. Due to the refinery’s high safety requirements, the

DCS system has been designed to be very reliable. The system is totally hot standby

doubled with explosion-proof instrumentation. In addition, the DCS system is built

up such that there are no significant network delays in process control. An outline

of the Naantali refinery automation system is presented in Figure 4.2.

On the supervisory control layer advanced controls are performed. One essential part

of the layer is a process control computer system. Advanced control applications,

such as the Neste Jacobs NAPCON advanced controller and real time database, are

implemented in the process computer. Connections to the DCS and other systems,

such as Oil Movement and Storage (OMS) are established through the process con-

trol computer. The operation system of the process control computer is OpenVMS

for AXP Alpha, and the programming language that is most widely used in the

advanced applications of the computer is DEC Fortran. The network in the su-

pervisory control layer is implemented with Ethernet technology. The supervisory

control layer is connected to the basic control layer through the process computer

interface gateway station (GTW). The gateway forwards commands, control out-

puts and data sent by the process computer to the DCS system, and vice versa.

Proprietary application protocols are used in the communication.

The process data acquired through the DCS system are stored in the real time
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Figure 4.2: Simplified view of the Naantali refinery automation system hierarchy.
(Vatanski et al., 2005)

database. The raw, high frequency, measurement data is first compressed to 1-

minute averages which are stored for several weeks before further compressing them

into 1-hour averages. As the process dynamics are quite slow, the 1-minute average

data is suitable to be used for fault detection.

4.4 Control of the dearomatisation process

The dearomatisation process is a highly instrumented process environment with a

large number basic and upper level controls. The overall control strategy is pre-

sented in the following. The volume of the liquid feedstock fed to the first reactor is

set by the product flow coming from a desulphuration process preceding the dearo-
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matisation process. The feed flow rates into the second reactor and the distillation

column are determined by the level controls of the separation drums. The bottom

levels of the distillation column and side stripper are controlled by manipulating

the product flow rates. Pressure in the first reactor is controlled by manipulating

the hydrogen recycle feed flow rate from the separator drum, and by controlling the

pressure of the hydrogen feed. The pressure of the hydrogen feed can be lowered

by directing a fraction of the flow to other sub-processes using the same hydro-

gen line. The pressure level and pressure difference over the reactors are measured

with four pressure sensors. The inflow and outflow temperatures of both reactors

are measured. Temperature profiles of the catalyst beds inside the reactors are

monitored using four equally spaced temperature sensors in each reactor. Only the

operation temperature and the temperature of the inflow of the first reactor are con-

trolled. The desired inflow temperature is achieved by bypassing heat exchangers

or by enabling the hot oil heat exchanger. Since the operation of the first two heat

exchangers is strongly connected to the process, control of the inflow temperature is

usually done by manipulating the hot oil heat exchanger flow rate. The rate of the

exothermic hydrogenation reaction is controlled with the hydrogen recycle stream

with low aromatic content from the separator drum. The control is based on keeping

the temperature difference between the reactor and the hydrogen feed flow below

the maximum value. In the distillation part of the process, the temperature of the

feed flow rate is controlled with the flow from the desulphuration process to heat

exchanger EA6. The reflux ratio of the distillation column is maintained constant

by controlling the flow rate of the recycle stream. The pressure of the column is kept

stable with gas treatment flow controls. The operating condition of the distillation

column is controlled by adjusting the amount of flow into the bottom boiler and by

changing the boiler’s power setting. (Komulainen, 2003)
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5 Preliminary analysis and conceptual structure

design of the fault detection system for a

dearomatisation process

The first phase of the testing of the proposed methodology with the dearomatisa-

tion process is the preliminary analysis of the process and the conceptual structure

design of the fault detection system. The reliable functioning of the multivariate

quality control of the dearomatisation process is an essential factor in maintaining

the profitability of Neste Oil Oyj Naantali refinery. Thus, the importance of the

multivariate control and the related instrumentation is emphasised in defining the

aims and user requirements for the FDI and system as presented in section 5.1. The

quality control relies on the feedback provided by the online analysers. Thus the

reliable operation of the analysers is important and the most common faults within

the process are presented in section 5.2. The fault detection problem is defined and

the structure of the system, including the FTC part, is presented in section 5.3.

5.1 General fault detection and isolation requirements for a pro-

cess monitoring system

The online product quality analysers are essential parts of the Naantali dearoma-

tisation process enabling the higher level quality control of the dearomatisation

process. The determination of the user requirements for the system was done by

interviewing refinery’s personnel representing different user groups from operation

and maintenance personnel — experts, engineers, technicians, operators, mainte-

nance personnel, and managers — about the requirements of the monitoring sys-

tem. The interviewing method was based on the Delphi method (Linstone and
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Turof, 1975) consisting of two interviewing rounds. The interviews consisted of four

main topics. First, the properties and features of the FDI system related to the user

interface, interfaces to other software, and installing, updating and upkeeping of

the FDI system were enquired after. Second, typical faults related to the analysers

were analysed in more detail. The emphasis was on faults that can be predicted

and prevented and on faults that are difficult to foresee but whose effects on the

process can be mitigated. Third, tools and information currently available for the

operating personnel for detecting faults were discussed to determine the possibilities

for improving the situation either by detecting previously undetectable faults or by

more rapid detection of other faults. The fourth and last topic was related to the

actions that are taken after a fault has been detected. The current situation was

enquired and the need for new partly or completely automated recovery actions was

discussed. After the first round of interviews the answers were analysed and a set of

more detailed questions about the most important analyser faults was created and

used in the second round of the interviews. The interviews were conducted at the

Naantali refinery on October 27th and November 9th 2004. The requirements relat-

ing to the monitoring and fault detection are presented in the following sections.

The complete set of the requirements, are given in Vatanski et al. (2005).

The faults occurring in industrial production sites have been classified in four dis-

tinctive categories to focus the efforts in developing specific fault detection and fault

tolerant control (FTC) algorithms. Two main categories are predictable and unpre-

dictable faults. Predictable faults can be foreseen if the variables involved can be

measured to an adequate accuracy. Unpredictable faults, on the other hand, occur

without any measurable warning. Both predictable and unpredictable faults can be

further divided into two categories, faults whose effects can be mitigated or restricted

to a specific area, and faults whose effects cannot be mitigated. The fault detection

methods implemented in the FDI system are aimed at detecting those predictable

faults whose effects can be mitigated or restricted. In the interviews, special atten-

tion was paid to reducible predictable faults as they are the most suitable targets for
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fault detection and fault tolerant control. The general FDI requirements are listed

in Table 5.1.

Because the two online analysers operate independently of each other, the monitor-

ing problem was decided to be divided into two parts, i.e. to construct separate FDI

models for the flashpoint analyser and for the distillation analyser. The distillation

analyser gives multiple outputs, but only the initial boiling point temperature (IBP)

used in quality control, was decided to be considered in monitoring. Thus, the two

variables in which faults are detected are the flash point temperature (FP) and the

IBP. A dynamic simulator with an existing model of the dearomatisation process

was decided to be utilised in the creation of the FDI system for two reasons. First,

data generated by the simulator could be used in creating the FDI models for the

real process as shown in Brydon et al (1997) and second, using the simulator allowed

more rigorous testing of the application before the it was validated at the refinery.
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Table 5.1: General requirements for the fault detection system of the dearomati-
sation process

Requirement topic Requirement

Detected types of fault

(REQ-1)

The FDI system shall detect incipient faults that do not

cause variables to violate their alarm limits. (REQ-1.1)

The FDI system should detect faults, especially drifting

of the measuring devices. (REQ-1.2)

Time instant of fault

detection (REQ-2)

The system should be able to inform the operator about

faulty conditions as early as possible. When the faults

are detected in time, their effects are easier to mitigate

and have a smaller impact on the overall process. (REQ-

2.1)

Background informa-

tion about the FDI

methods (REQ-3)

The system shall provide background information about

the fault detection and isolation methods used, as well

as the assumptions used in diagnosis.

FDI taking into ac-

count external factors

(REQ-4)

The FDI system shall identify and be aware of the cur-

rent operating point in order to able to detect smaller

deviations from nominal operation conditions. (REQ-

4.1)

The change in operation point shall also be detected and

must not be categorised as a fault. (REQ-4.2)

Being aware of the cal-

ibration of measuring

devices (REQ-5)

The effects of calibrating measurement devices shall be

stored and taken into account in fault diagnosis because

calibration produces sudden changes in measurement

values, and these might be detected as faults. (REQ-

5.1)

The date of calibration shall be used as one reliability

measure of the measurement. (REQ-5.2)
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5.2 Most common faults in the dearomatisation process

Next phase of testing the methodology is the analysis of the faults occurring in the

dearomatisation process. In the study (Liikala, 2005) the refinery’s logbook and

process history were examined in order to gather specific information of the faults

and the abnormal situations in the dearomatisation process. The chart in Figure

5.1 illustrates the different types of faults and their proportion out of all the faults

recorded during one year of operation. The majority of the faults were related

to analyser malfunctions. This result was confirmed by the interviews. Based on

the interviews and the Liikala study, it was anticipated that the most significant

potential for improving the operation of the process lies in the earlier detection of

analyser faults. Early detection of faults enable timely execution of corrective control

actions and the quality of the end product can be kept within the production limits,

thus improving the plants economical performance.

Figure 5.1: Most common faults in the dearomatisation process during one year
of operation. (Liikala, 2005)

The distillation and flashpoint analysers suffer mainly from contamination of the

sample with water and in the case of distillation analyser, from the carbonisation
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of the flask. The contamination of the sample causes the analyser outputs drop

abruptly while the fouling of the flask introduces slowly progressing deviation from

the correct value. Currently, the analyser faults are detected and handled in the

following manner: First, the analyser faults are mainly detected heuristically by

comparing the analyser measurement values with results expected on the basis of

process measurements. In some cases, the first indication of a fault is an abnormal

set point value given by the advanced control system. If a fault is suspected, an

additional laboratory analysis is made and the suspected analyser fault is verified by

comparing the analyser result to the result of a laboratory analysis. If the presence

of a fault is verified, the control of the corresponding quality variable is disabled

in the advanced control system and an analyser maintenance team responsible for

repairing the analysers is informed. The process is then operated on the basis of

the last laboratory analysis. During these situations when the analyser if off, the

laboratory carries out analyses more frequently than during normal operation. In

some cases, changes are made to the product flows in order to mitigate the effects

of the fault. After the analyser has been repaired, it is taken back into use and the

previously disabled quality control is switched on.

5.3 Structure of the monitoring system for the dearomatisation

process

Next, a preliminary design of the structure of the FDI system was created. The

monitoring system was decided to be implemented as a part of a more complex

operator support system developed within the Networked Control Systems Tolerant

to Faults (NeCST) project. This system consists of two main parts: a fault detec-

tion (FDI) system and a fault tolerant control (FTC) system, acting on a model

predictive controller (MPC). The FDI system is responsible for detecting faults in

the online quality analysers of the dearomatisation process. Information provided



91

by the FDI is given to the FTC, which executes fault tolerant actions according to

a predefined triggering logic. The FTC actions affect the tuning parameters of the

MPC and are thus realised with the MPC and lower level controllers. The NeCST

software prototype was designed to have an access to the Naantali refinery automa-

tion system through the process control computer. The structure is presented as a

simplified block diagram in Figure 5.2.

Figure 5.2: Conceptual structure of the existing Naantali refinery automation
system and the NeCST system. (Vatanski et al. 2005)

In addition to the structure, also a functional model, illustrated in Figure 5.3, of the

system was developed to ensure that the functionality of the NeCST platform will

fulfill the requirements on FDI and FTC. The model was designed using partial CIM-

OSA models (Kosanke et al., 1999) with IDEF0 modelling language. The importance

of FDI/FTC of the process related faults was emphasised over the faults of the

communication network. This was due to safety and economical reasons, but also
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Figure 5.3: Functional model of the NeCST system at the Naantali refinery.
(Vatanski et al. 2005)

due to the fact that at the refinery, the communication network is duplicated and has

not experienced any problems in the past. Because the faults in the communication

network were considered less important, the blocks related to those issues were

greyed out and were not implemented.
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The FDI system was decided to be implemented into two separate environments with

slightly different characteristics. The first environment was used to test the system

offline, with both simulated data and with real measurement data transferred over a

remote connection to the testing facilities. The second application was implemented

at the Naantali refinery environment for online testing.

The FDI system is a part of a larger process monitoring and control system including

FDI and FTC functionalities. To test the systems functionality offline a database

dump from the process control computer of the Naantali oil-refinery was transferred

every 30 minutes to a local computer. A so-called local application gave new process

data sample every minute as an XML-based message to so-called global application.

The global application consisted of several functionalities of the CASIP (property of

PREDICT) system. The FDI routines were attached to the CASIP as C++ .dll and

.lib files compiled from the Matlab m-files with the Matlab v6.5 compiler. Based on

the information produced by the FDI, CASIP orchestrated the FTC actions that

had no effect on the process control in this remote setting. An alternative off-line

set-up was to connect the global application to a dynamic simulator (PROSimula-

tor). In this setting, the simulated process measurements were used with the FDI

and the FTC actions were given to NAPCON controlling the simulated process.

The described offline system was mostly used for testing the systems FTC func-

tions, more through testing of the FDI functions was carried out using only Matlab.

The structure of the online system was similar to the offline version. The major

difference being that in this setting the local application ran within the process

control computer and the process measurement values given to the global system

were the current ones. In addition, during the online validation the quality control

(NAPCON MPC) was affected by the FTC actions and thus FDI/FTC affected the

operation of the real process. The structures of the different implementations are

presented in Figure 5.4 below.

During the online evaluation, the FDI system acquired all the process values through
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Figure 5.4: Structures of the offline and the online implementations of the NeCST
system

the process computer, which provided means to introduce the faults. To introduce

a bias to the original analyser outputs a separate function block was implemented

at the process computer and thus the analyser values received by the FDI system

could be modified for testing purposes. Also the higher level quality control used

the modified analyser output in calculating the control actions.

The information provided by the system is shown to the operators with a display,

shown in Figure 5.5. The display also enables operators to access the most important

functions necessary to use the system. The display is divided into two parts: on

the left, operator has buttons to enable and disable the FDI and FTC, to initialise

the bias removal, and to acknowledge the detected faults. On right, the two curves

display information about the IBP and FP analyser outputs and the corresponding

estimates, residuals and reliabilities of detected faults.

In the multiple operating region simulation study, the data was generated with the
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Figure 5.5: Operator display of the NeCST FTC-system.

PROSimulator that was connected to a database. The Neste Advanced Process

Controller (NAPCON) was used in creating evaluation data sets with higher level

control enabled. The fourth essential part of the simulation environment was Mat-

lab, that was used to create changes in the relevant process variables during the

simulations and to every minute store the history data of the process variables. The

dynamic PROSimulator simulated the operation of the process and calculated new

values of the process variables in 5 second intervals. Once every 60 seconds the

values are stored into the database. At the same frequency the NAPCON read

the values of the process variables and made changes to the values of the manip-

ulated variables (Table 6.2) to control the initial boiling point temperature of the

bottom product. Matlab made changes to process variables that are known to be

relevant to modelling. The changes were performed at different frequencies so that
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the variables’ values were first decreased in 20 steps to a minimum value and then

kept constant for 240 minutes. After that the value was increased in 40 steps to

it maximum value, where it remained for another 240 minutes. Finally the value

was decreased to its original value in 20 steps. In the ramp like changes the delay

between two successive steps was 9 minutes. The variables’ values were changed

one at a time and the process was let to stabilise for 240 minutes before starting

the change sequence on another variable. The PROSimulator, database (TMLDB)

and NAPCON are all developed by Neste Jacobs Oy, the Matlab is property of

MathWorks Inc. The application specific Matlab scripts and functions are written

by the author. The simulation environment is illustrated in Figure 5.6.

Figure 5.6: Environment for making the dearomatisation process simulations
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6 Selection of the data-based monitoring methods

and preparation of modelling data for training the

models

Next, the appropriate monitoring methods for the dearomatisation process are de-

termined in section 6.1 according to the guidelines of the methodology presented

in Chapter 3. In section 6.2 the measurement data are prepared for training the

models.

6.1 Selection of monitoring methods for the dearomatisation

process

The fault detection system of the dearomatisation process has two main objectives:

first, to detect faults in the product quality sensors i.e. the online analysers and

second, to provide information of the reliabilities and magnitudes of the detected

faults to the FTC. The first objective can be achieved with all the FDI methods

mentioned earlier in Chapter 2, but estimating the magnitudes of the faults requires

using regression type of models. The methodology recommends using the following

regression methods, different versions of PLS, SMI, MLP and RBFN (Table 3.1).

This group can be expanded further with PCA and SOM, as they can be modified

to give estimates for single variables, in this case the analyser outputs.

The second major factor for selection of monitoring methods is the nature of the

target process. The dearomatisation process is known to be nonlinear, but the

nonlinearities are not so strong that they would prevent the use of linear FDI models

(Komulainen et al., 2004). Instead of strong nonlinearities, the most challenging
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characteristic of the process is the changing operating conditions. Recommended

methods for monitoring non-stationary processes are Moving PCA, Recursive PCA,

Recursive PLS, and the ANNs: MLP, RBFN, SOM and ART.

The third factor that needs to be considered in the selection of the monitoring meth-

ods is the restrictions set by the implementation environment. The FDI system for

the dearomatisation process was planned to be implemented on the real time NeCST

software platform. The real time operation restricts the use of models which rely on

heavy mathematical operations. Mathematically light methods include the PCA,

Dynamic PCA, PLS, Nonlinear PLS, Multi-way PLS, SMI, and the ANNs. The sec-

ond restriction imposed by the NeCST platform application is the maximum number

of FDI models and thus only six models could be included in the implementation.

The final limiting factors in the model selection are the quantity and quality of

the available process history data. The acquired data covered the operation of

the process for a period of four months and one week and thus the number of the

data samples was sufficiently high for all of the methods listed above. The quality,

however, was not optimal for the data driven modelling. In spite of the length of

the data collection period, the data did not cover the whole operating range. The

reason for this was the numerous feed stock types, some of which are used only

rarely. Because not all possible operation conditions were presented in the data set,

the RBFN and ART relying on local approximation functions were decided to be

unsuitable for the modelling. Furthermore, the multivariate outlier values degrade

the performance of the methods based on minimising a least square cost function,

PCA and PLS (Daszykowski et al., 2007) and the noise included in the data degrades

the performance of the ANNs.

In conclusion, no single method met all of the requirements set by the users, the

implementation environment and the process characteristics. Considering these re-

quirements, the most suitable method based on its characteristics was found to be
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MLP. The drawbacks of MLP were however its sensibility to noise, possibly leading

to over-fitting problems and its unpredictable behaviour in new process conditions.

PLS on the other hand can handle the noisy input data, but the nonlinear charac-

teristics of the process are only approximated (Wold et al., 2001). The same is true

for SMI, which met all the other criteria. Fourth possible method, SOM, met all the

presented requirements, but the downside of using SOM as a regression method is

the limited resolution of the model; the number of different output values is equal to

the number of neurons of the SOM. PLS was selected as one modelling method as

the nonlinear properties of the process were considered to be rather mild. PLS has

also been shown to be suitable method for the process (Komulainen et al., 2004).

To address the possible problems in modelling the nonlinear process characteris-

tics, the PLS model was decided to be augmented with an MLP model. Using the

MLP together with a linear method, also reduced the significance of the weaknesses

of noise handling and unpredictable behaviour of the MLP. This PLS-MLP com-

bination model was the second selected model type. The third one was SMI, and

for the same reasons as with PLS, it was also augmented with an additional MLP

model part. Total maximum number of the implemented models was limited to six,

and thus only these methods, PLS, SMI, PLS-MLP and SMI-MLP were chosen for

modelling the two analyser outputs of the dearomatisation process FDI application.

To evaluate the applicability of the methodology for different types of cases two

simulation cases were studied. The first testing experiment considered the detection

of faults in online analysers of a simulated dearomatisation process within a single

operating region. In this case, data covered the whole operating range, the process

was stationary and could be assumed to be linear. Thus, following the reasoning

presented earlier in this section and using Table 3.1, the selected methods for this

case were: PCA, PLS, SMI and SOM. In the second testing experiment, the dearo-

matisation process operation was simulated in multiple operating regions and the

data corresponded thus to a non-stationary process. The nonlinearities of the sim-

ulated process were assumed to be less complex than those of the real process. The
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same monitoring methods were selected than with the real process case, but as the

maximum number of the models was not limited in this case, SOM and a pure MLP

model were also included.

6.2 Preparation of the data for training the monitoring models

6.2.1 Analysis and preparation of simulated process data

The data used in the single operating region study were created with the PROSim-

ulator software developed by Neste Jacobs Oy. A data set consisting of 2395 data

points, covering a period of almost 40 hours of operation, was used for modelling.

Every hour of simulated operation the values of 1-3 variables were manipulated in or-

der to create variance in the data. These manipulations initiated changes to process

measurements similar to changes in real process data caused by normal operation

actions. The feed type was not changed during the simulation and thus only one of

the many possible operating regions was presented. The variables used to excite the

process are presented in Table 6.1. The basic level control loops of the simulated

process were closed, but the higher-level quality control was not active.

For the simulated multiple operation region case, 7 data sets were generated; one

for creating the models and 6 for evaluating the performances of the models under

different operation conditions. In the real dearomatisation process, the properties

of the feed stock vary depending on the quality of the original feed material and the

operation of previous processes. During the simulations two clearly different qualities

are used; feed type 1 consisting of the lighter fractions of processed solvent and feed

type 4 consisting of the heavier fractions. The initial boiling point temperature for

feed type 1 is typically around 160 oC and for the feed type 4 it is around 210 oC.
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Table 6.1: Manipulated variables of the first testing experiment simulation

Composition of the solvent feed

Flow rate of the solvent feed

Composition of the hydrogen feed

Temperature of the hot oil to heat the boiler of the column 1

Flow of reflux from the separation tank 1 to the reactor 1

Temperature of hot oil to heat up the feed to the reactor 1

Fan speed of air cooling of solvent before the separation tank 2

Flow of reflux to column 1

Temperature of hot oil to heat up the stripper

Setpoint of pressure controller of the column 1

Setpoint of temperature controller of the flow from the stripper to the column 1

The first simulation was done to generate a data set suitable for constructing the

models, thus the higher level control (NAPCON) was disabled. The simulation

started with the feed type 4. Ramp type changes were made to 19 variables to excite

the process. The manipulated variables are listed in Table 6.2. In the table, the

typical values of the variables associated with the two feed types are listed as well as

the magnitudes of the changes. The ramp changes were performed both downwards

and upwards with the feed type 4, and then the feed stock was changed to feed

type 1. During the transition phase, the variables whose values differ between the

feed types were gradually changed, in 20 steps, to the new values related to the feed

type 1 operation. Then the experiment sequence was performed again in the new

operation region. The data set consist of 35500 data samples, each corresponding

to 1 min of process time i.e. the data covers 24 days, 15 hours and 40 minutes of

operation.

The two operation regions are clearly distinct as illustrated by IBP having 50 oC
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Table 6.2: Manipulated variables of the second testing experiment simulation,
quality control off

Description Feed 1 Feed 4 Max. change

Temperature setpoint for the solvent entering the re-

actor 1 [oC]

140 170 30

Temperature difference across the reactor 1 [oC] 21 21 5

Temperature of solvent feed [oC] 50 2 20

Temperature of the H2 feed [oC] 79 79 20

Flow rate of the cooling water for the distillate of

column 1 [t/h]

75 75 5

Temperature of the cooling water for the distillate of

column 1 [oC]

25 25 5

Hot stream 2 temperature [oC] 288 333 8

Column 1 reflux flow rate, setpoint [t/h] 7.9 7.9 0.1

Column 1 pressure, setpoint [kPa] 230 265 5

C-2 boiler heating oil flow rate, setpoint [t/h] 0 225 5

Feed flow rate [t/h] 0.9 0.9 0.2

Flow rate to H-4 (cooling after R-2) [t/h] 36 35 10

Hot stream 2 flow rate [t/h] 60 60 10

Feed entering column 1 temperature [oC] 186 235 5

Feed flow rate to column 2 [t/h] 0 1.8 1

Feed 1 flow rate to the process [t/h] 29 0 4

Feed 4 flow rate to the process [t/h] 0 27 4

higher temperature with feed type 4 than with feed type 1. The histories of the IBP

and FP during the simulation are shown in Figure 6.1 where the change between

the operating regions starts at simulation step 17000.

The first evaluation data set consists of experiments similar to those made in the first

simulation with the variables listed in Table 6.3 using feed type 4 and a feed type

change to feed type 1. The higher level controller, NAPCON, was active controlling
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Figure 6.1: IBP and FP of the simulated data set used for training the FDI models

the IBP of the bottom product. Two types of faults were simulated to lower the

analysis result for the bottom product IBP value. The first fault type consists of

gradually increasing faults and the second of abrupt faults. During the simulation,

both fault types were introduced in 3 different magnitudes. The data set can be used

to evaluate the performance of the models with feed type 4 and during a transition

between the feed types. The set contains 10850 data samples, corresponding to

7 days, 12 hours and 50 minutes of operating time. The effect of the NAPCON

controller on IBP in presence of downward analyser faults is illustrated in Figure

6.2. As the IBP decreases, the controller compensates for this and as a consequence,

the real IBP is raised over the desired level meaning give-away in the product quality

and decreased profit for the plant.

The second evaluation data set includes experiments in variables listed in Table 6.3

during feed type 1 operation. The NAPCON was on, and the same sequence of

faults as in the first evaluation data set were introduced. This data set was used
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Table 6.3: Manipulated variables of the second testing experiment simulation,
quality control on

Description Feed 1 Feed 4 Maximum

change

Temperature setpoint for the solvent entering the re-

actor 1 [oC]

140 170 30

Temperature difference across the reactor 1 [oC] 21 21 5

Temperature of solvent feed [oC] 50 2 20

Temperature of the H2 feed [oC] 79 79 20

Flow rate of the cooling water for the distillate of

column 1 [t/h]

75 75 5

Temperature of the cooling water for the distillate of

column 1 [oC]

25 25 5

Hot stream 2 temperature [oC] 288 333 8

H2 feed flow rate [t/h] 0.9 0.9 0.2

Feed 1 flow rate to the process [t/h] 29 0 4

Feed 4 flow rate to the process [t/h] 0 27 4

for evaluating the models performance within the operating region associated with

the feed type 1. The set contains 11000 data samples, corresponding to 7 days, 15

hours and 20 minutes of operating time.

The third evaluation set is otherwise similar to the first evaluation set, except in

this set the direction of the faults was different, raising the analyser outputs. The

set contains 6360 data samples, corresponding to 4 days and 10 hours of operating

time.

Evaluation data set 4 consists of experiments within the operating region associated

with feed type 4. The NAPCON was off and no faults were introduced in the

analyser outputs during the simulation, as there was no feedback to the process.

Instead, the faults in IBP were introduced after the simulation. Variables that were
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Figure 6.2: Effects of the NAPCON quality control on IBP in the presence of
downward faults. True IBP (A), faulty IBP (B) and magnitudes of faults (C)

used to excite the process are listed in Table 6.2. In addition to manipulating these

variables, the composition of the feed was altered. The changes introduced in the

feed composition were similar to the differences between feed types 1 and 4, only

the magnitudes were smaller. This data set is used to evaluate the performance of

the models when the quality of the feed is changed. The set contains 2469 data

samples, corresponding to 1 day, 17 hours and 9 minutes of operating time.

The fifth evaluation data set was generated while the process was operated with the

feed type 4. The NAPCON was used to control the IBP, and both drift and abrupt

types of faults were introduced to decrease the analyser outputs. Experiments were

made in a random sequence manipulating the variables listed in Table 6.3. The

magnitudes of the changes and also the delays between experiments were random.

The data set is used to evaluate the performance of the models in a more realistic

operation situation, when changes are made more frequently than in the evaluation

data sets 1 to 4. The set contains 8553 data samples, corresponding to 5 days, 22
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hours, and 33 minutes of operating time.

The sixth evaluation data set was simulated with feed type 1. The NAPCON was

inactive and no faults were introduced. The variables that were changed are listed

in the Table 5. The set contains 17079 data samples, corresponding to 11 days, 20

hours, and 39 minutes of operating time.

The main characteristics of the data sets are summarized in the Table 6.4. For the

multiple operating region case the described training data set was used as such for

creating the models and the seven data sets describing different operating conditions

were used for model evaluation.

Table 6.4: Characteristics of the simulated data sets

Data set NAPCON Faults Feed type Feed

type

change

Changes to vari-

ables

Training Off NO Feed 4, Feed 1 YES Table 6.2

Evaluation 1 On YES, down Feed 4 YES Table 6.3

Evaluation 2 On YES, down Feed 1 YES Table 6.3

Evaluation 3 On YES, up Feed 4 NO Table 6.3

Evaluation 4 Off NO Feed 4 NO Table 6.2 and feed

composition

Evaluation 5 On YES, down Feed 4 NO Table 6.3, random

order

Evaluation 6 Off NO Feed 1 NO Table 6.2

6.2.2 Analysis and preparation of the real process history data

The data for training the models was acquired from the Naantali oil refinery and it

covered the operation of the dearomatisation process during a period of 4 months
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and 1 week (1.12.2006 - 5.4.2007). The measurement values were 1 minute samples

except the analyser results, which had a sampling frequency of about 2 minutes in

the case of FP and about 40 minutes in the case of IBP. During the data collection

period, 7 types of feed were used. The operation conditions for the different feed

types were significantly different, as indicated by the significantly high variation in

IBP (77 oC) and FP (62 oC) between the lightest and heaviest feed stocks. Some

key figures of the data are summarized in Table 6.5. It is noted that a bias has been

added to the presented values of IBP and FP as it is a policy of the Naantali refinery

that no real production data is published. Nonetheless, the differences between the

modified values corresponding to the different feed stocks are real. The frequent

changes in the feed stock are noted and special care needs to be taken to handle

these situations within the FDI system. The values of FP and IBP during the data

collection period set are shown in Figure 6.3.

Table 6.5: Key figures of the real process data used for training the FDI models

Feed

type

Mean

IBP

(oC)

Mean

FP (oC)

Number of

runs

Average

length of a

run (min)

Percentage

of total

period (%)

1 -38.16 -20.89 5 7137 18.5

2 -10.24 0.82 8 4899 20.3

3 5.08 16.65 2 7362 7.6

4 37.52 39.78 4 7549 15.7

5 34.25 1.03 5 9540 24.7

9 38.82 40.72 2 8526 8.8

11 -5.50 10.73 2 4191 4.3

The raw measurement data set contains sections that represent abnormal operation

of the process or the analysers. These sections must not be used in the modelling and

have been removed. The removal of the erroneous samples was feasible as the large
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Figure 6.3: Modified IBP (A) and FP (B) temperatures during the data collection
period

number of data samples allowed the removal of unsuitable periods of data without

introducing problems that come from using too small data sets in modelling. The

majority of removed data corresponded to periods when the distillation analyser

had been switched off. For these long periods, the median filter (3.1) is unsuitable

because the length of the filtering window would have to bee too long. Instead, the

outliers were removed manually. The minimum value for the IBP was set in the DCS

to be well below the limits for normal operation and thus the low valued outliers

were easy to recognise and remove. In addition to the sections during which the

analysers had been off, it was noted that during certain periods, e.g. around data

sample 160000 the analyser values fluctuated vigorously. These periods of abnormal
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process behaviour were examined in detail and certain periods listed in Table 6.6

were discarded from the modelling data.

Table 6.6: Data sections of the real process training data corresponding to abnor-
mal operation of the distillation analyser

Removed data samples Reason for removal

7960-8010 Calibration of the analyser

11250-13700 Analyser not in use

29550-29750 Fault in the analyser

65740-68560 Fault in the analyser

72000-79000 Fluctuation in analyser results

92500-99000 Fluctuation in analyser results

109000-110000 Analyser off-line and a possible calibration

118900-119500 Analyser off-line and a possible calibration

126500-136500 Analyser off-line and a possible calibration

153500-156500 Analyser off-line and a possible calibration

157500-159000 Outlier values in analyser outputs

160500-161500 Outlier values in analyser outputs

164000-166500 Fluctuation in analyser results

169000-169500 Possible calibration of the analyser

189350-189500 Possible calibration of the analyser

193000-195500 Unsteady process state after feed stock change

223000-224000 Fault in the analyser

228500-229000 Fault in the analyser

Also the flashpoint analyser had some clear outlier values, e.g. around data samples

50000 and 140000. The periods during which the analyser had been used with

another process were also clear, as then the analyser values were equal to zero. The

data sections with outlier values have been removed.
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Next, the data was analysed to find possible periods of faulty analyser operation. As

described in section 5.2, the analysers are mainly troubled with two different types of

faults, abruptly occurring contamination of the sample and slowly occurring fouling

of the flask. The water contamination of the sample typically causes the initial

boiling point temperature to drop abruptly while the other distillation temperatures

remain at the normal values. The phenomenon is illustrated in Figure 6.4 showing

the abnormal behaviour of the IBP marked with tan colour (the line with lowest

values). Several instances of this fault type were discovered and the corresponding

data sections were removed. The second fault type occurs more infrequently in the

analysers of the dearomatisation process and no clear indication of the carbonisation

of the flask could be found when the data was analysed.
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Figure 6.4: Examples of distillation analysis results when samples have been con-
taminated with water

A visual inspection of the analyser values revealed occasional arbitrary changes of

few degrees Celcius in the analyser values. These changes were caused by calibration

of the analysers. The calibrations are done after the weekly laboratory analysis if



111

there is a difference of over 4 oC between the distillation analyser and laboratory

results or over 2 oC deviation with the flash point analyser. The frequent calibration

of the distillation analyser is required since the outputs are biased and the values of

the biases have nonlinear dependence with the distillation temperatures. Thus, the

analyser outputs are unbiased only for one operating region at a time. The calibra-

tion is done separately for each boiling point temperature and in most cases only one

or two distillation points have been calibrated simultaneously. It was noted that the

laboratory analysis results that were used for calibrating the online analysers, were

also subject to errors. In consequence, the biases in the analyser outputs and the

calibrations need to be considered factors that limit the best achievable modelling

accuracy.

Industrial data always includes noise and other components that are not explained

by the available measurements. In the case of dearomatisation process, calibrations

are one type of unmodellable events that affect the outputs of the analysers. Other

typical factors reducing the accuracy of the models include the variation i.e. noise

of the analyser results, changes in the composition of the feed and the events taking

place in other unit processes that affect the dearomatisation process e.g. through

energy integration. The effects of these anomalies on modelling, the integrity of

the data set was analysed as described in section 3.3.3. First, the noise amplitudes

were estimated. For the analysers, the noise estimation was challenging due to two

reasons. First, during the long delays between the IBP results the product quality

may have changed significantly and thus the differences between the successive re-

sults are not caused only by noise. Second, the amplitude of noise in the flashpoint

analyser is not constant, but depends on the operating region. Typical sequences of

IBP and FP results and the corresponding noise components have been illustrated

in Figure 6.5. For FP, the minimum noise amplitude was found to be about 0.5 oC

and the maximum value was about 1.5 oC. For convenience, a constant value of 1.0

oC was used in data quality analysis. For IBP, the amplitude of noise could only be

approximated during longer periods when the process was almost at steady state.
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The value for IBP noise amplitude in the data quality analysis was estimated to be

1.0 oC.

The consistency of the data set, using all input variables, was analysed with SOM as

described in the methodology. The consistency values for the real process data are

given in Table 6.7. For comparison, the corresponding values for the more consistent

simulated training data are also shown.

Table 6.7: Data integrity index values of real and simulated data sets

Real plant data Simulated data

IBP FP IBP FP

max inconsistency 89.712 24.650 11.434 1.871

95% inconsistency 1.8514 0.8659 0.6152 0.5936

average inconsistency 0.6581 0.2672 0.2303 0.2440

Next, the data was time-shifted to compensate for the process delays as described

in the methodology (section 3.3.1). The data set used in the delay compensation

was chosen to present normal operation conditions and to include two feed stock

changes. The set consisted of 20 000 data samples covering a period of almost two

weeks. The determined delays of all variables relevant to modelling are presented in

Table 6.8. The estimated delays were used to time-shift the measurement data.

Next, process knowledge was used to generate calculated variables describing process

phenomena as described in section 3.3.2. The dominating unit of the process is

the main distillation column and thus the efforts for creating calculated variables

were directed to variables describing the state of the distillation column. Under

normal operating conditions, the temperatures at different plates of the column

are mostly determined by the characteristics of the feed type. This dependence

of the unmeasured feed quality makes the temperature measurements less useful
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Figure 6.5: FP (top 2 figures) and IBP (bottom 2 figures) analyser outputs for
estimating noise amplitude and the corresponding sequences with moving average
of 11 samples removed
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Table 6.8: Estimated delays between process measurements and analyser outputs
of the real dearomatisation process

Variable Delay to analyser outputs (min)

IBP FP

Side product flow rate 80 74

Column 2 reboiler oil flow rate 30 35

Column 1 top pressure 63 59

Column 2 top pressure 41 42

Column 2 bottom pressure 41 38

Column 1 feed temperature 68 54

Column 1 lowest middle temperature 52 46

Column 1 lower top temperature 2 0

Column 1 upper middle temperature 56 44

Column 1 lower middle temperature 65 57

Column 1 upper bottom temperature 52 45

Column 1 reboiler temperature 46 42

Column 1 recycle flow rate 85 52

Column 1 reboiler hot oil flow rate 60 43

Column 1 lowest middle temperature, pressure compensated 53 47

in the fault detection. The differences between the temperatures at different plates

are, however, less affected by the feed composition, and offer thus useful information

about the status of the process in all operation conditions. These calculated variables

are shown in Table 6.9 as Group 1. The second major group of calculated variables

are ratios of process flows around the distillation column and the fractions of the

feed they represent. The absolute flow rates depend on the feed rate and thus

correlate strongly with the operating region. The ratios between the flows depend

less on the operating region and are thus more useful quantities in abnormal situation

detection. The constructed calculated variables describing the ratios of flow rates

are also presented in Table 6.9. This kind of flow rate ratio calculated variable is

also used as a controlled variable in NAPCON quality control.
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Table 6.9: Calculated variables of the dearomatisation process

Group 1: Temperature differences

Over distillation column 1 (DC1)

In the bottom part of DC1

Bottom part temperature - pressure corrected middle temp of DC1

Lower middle part temperature - pressure corrected middle temp of DC1

Over middle part of DC1

Middle - top part of DC1

In the top part of DC1

Group 2: Ratios of flows

AUX Distillate / Bottom prod flow

AUX Distillate / Reflux

AUX Distillate / Column feed

AUX Reflux / Column feed

AUX Reflux / Bottom prod flow

AUX Bottom prod flow / Column feed

The final phase in the preparation of the data was the determination of the training

and evaluation data sets. During the data collection period there were no major

changes in the instrumentation of the target process. For this reason, it was not

necessary to construct the data sets using randomly chosen sequences as stated in

the methodology, section 3.4.2. Training data of the real process was selected to

include 150000 data samples from the beginning of the data collection period of

which the bad sections were then removed (Table 6.6). The dimension of the data

set was further reduced by removing all data samples for which there was no new

analyser result available. In the case of distillation analyser, new values are received

about once in every 40 minute. Thus the final training data set for the distillation

analyser was 2586 samples and the data set used for model evaluation consisted of
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873 samples. In the flash point analyser case, the dimension of the data was not

reduced and the training data set consisted of 119360 and the evaluation data set of

41470 samples. The values of FP and IBP for the training and the evaluation sets

are shown in Figure 6.6. The training data contained all 7 feed types while the data

set used for evaluating the models included 5 most common feed types while two of

the rarer feed stock types were not represented.
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(bottom) the models
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7 Construction of the data-based monitoring models

for detecting analyser faults in the

dearomatisation process

Next the models for detecting faults in the online analysers of the dearomatisation

process are created. To test the methodology, several testing experiments are made.

The first experiment is performed with simulated data covering process operation

in a single region. The second experiment utilises simulated data covering multiple

operating regions. The third experiment is performed with real process measurement

data. Separate models are created for each experiment. The estimation accuracies

of the built data based models are evaluated and their suitability for detecting

the analyser faults is assessed. Mathematical descriptions of the utilised modelling

methods are presented in Appendix 1.

7.1 FDI models for the first testing experiment

The first simulation case consisted of training of four different monitoring methods

and studying their suitability for detecting the analyser faults within one operat-

ing region of the dearomatisation process (Vermasvuori et al., 2005). The tested

modelling techniques were PCA, PLS, SMI and SOM. Two PCA models, one for

each analyser, were constructed using process measurements and the corresponding

analyser output as input variables. Another two models were created including also

calculated variables. All PCA models were constructed of four PCs explaining about

97 % of the total variance of the data.

Two PLS models were constructed for both analysers, one using the direct measure-

ments as inputs and the other also using the calculated variables. The outputs were
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the corresponding analyser results. The latent variables of the PLS were calculated

with the NIPALS algorithm (Wold, 1975). The PLS models were created with the

five latent variables that captured about 95 % of the variance of the input data and

82 % of the output data.

Subspace identified state-space models were created so that the maximum dimension

of the system matrices was set to five, and in the PCA data reduction phase three

PCs were used. Again, two models were created for each analyser, one with the

calculated variables and one without.

In the study, two separate types of SOM were created. Both sets consisted of

four models; one without and the other one with the calculated variables for both

analysers. The models in the first set were trained with the original autoscaled data

including the analyser output. The second set of SOMs was trained with analyser

results and PCA transformed data. After autoscaling, PCA was performed and four

PCs explaining about 97 % of the variation were selected and the data were then

projected into the PC space and used to train the second set of SOMs. During the

testing, the analyser output was not used in determining the best matching neuron.

Instead the analyser output value related with the neuron was the output of the

model.

7.2 FDI models for the second testing experiment

The modelling methods selected in section 6.1 for the multiple operating region case

study were: PLS, MLP, SMI, SOM, PLS-MLP, and SMI-MLP were chosen to be

implemented. Each of these model types has at least one tuning parameter (listed

in Table 7.1) that needs to be set before training the models. The optimal values

of the tuning parameters were determined by minimising the RMSE of the models
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(7.1).

JRMSE =
1

n

n∑
i=1

√
(ŷi − yi)2 (7.1)

where ŷ is the estimated value for the output, y is the real output and n is the

number of analysed samples.

Table 7.1: Tuning parameters of the models of the second testing experiment.

Modelling method Tuning parameter

PLS Number of latent variables

MLP Number of neurons in the hidden layer

SMI Number of states

SOM Number of neurons

The effect of the number of LVs on the performance of a PLS model is illustrated in

Figure 7.1. It was noted that for the FP model, the lowest average RMSE values for

the evaluation sets one to six were achieved with models having two, four, five and

six LVs. Several models had almost equal performance and the one with fewest LVs

should have been chosen. However, the model with four LVs had almost as good

RMSE and significantly lower maximum estimation error than the model with two

LVs. Thus, instead of choosing the best PLS model purely based on the optimisation

criterion (RMSE), the one with four LVs was decided to be the best one. Also for

IBP, the model trained with four LVs was the best.

The MLP models had one hidden layer and tansig activation functions. The train-

ing was performed with the Levenberg-Marquardt training algorithm (A.27) with

50 epochs. The performance values of the MLP models with different number of

neurons in the hidden layer are presented in Figure 7.2. The results reveal the

characteristic property of ANNs, i.e. the overfitting of the training data and poor

prediction capabilities of evaluation data sets when the number of hidden neurons

is too high. For both the FP and IBP the best models for estimating the analyser
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Figure 7.1: Average RMSEs using the evaluation data sets 1-6 (top) and the
maximum estimation error of PLS models for FP (bottom left) and IBP (bottom
right) with different number of latent variables

results with the evaluation data sets were the models trained with only one neuron

in the hidden layer.

With SMI models, the number of available states had only minor effect on the

estimation capabilities of the models. The best model for FP was found to be

the one with three states, having the lowest RMSE and only moderately higher

maximum error than the model with two states. For IBP the best results were

achieved with a model with eight states. The performance values of SMI models

with different number of states are shown in Figure 7.3.

The tuning parameter of SOMs is the number of neurons i.e. the size of the map.

Another factor affecting the performance of the models is how the neurons are

organised. In this study the neurons of all SOMs were organised in hexagonal grid

with equal number of rows and columns. The best performing SOM for estimating
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Figure 7.2: Average RMSEs using the evaluation data sets 1-6 (top) and the
maximum estimation error of MLP models for FP (bottom left) and IBP (bottom
right) with different number of hidden neurons

FP was the model with 100 neurons. It had the lowest average RMSE and almost

as small a maximum error as the model with 64 neurons. Most accurate estimations

for IBP were given by the model with 121 neurons. The performance values of the

different sized SOMs are given in Figure 7.4.

The combination models PLS-MLP and SMI-MLP were shown to have optimal

performance when the MLP part had only a few neurons in the hidden layer. The

PLS-MLP models with the lowest RMSEs were obtained by combining the best PLS

model for FP with an MLP having 2 hidden neurons and the best PLS model for

IBP with an MLP having 1 hidden neuron. The average RMSEs of the combination

models for the evaluation data sets were lower than those of the pure PLS models.

In contrast, augmenting the best SMI models with an MLP part always resulted in

worse estimation accuracy than what was achieved with the pure SMI models alone.

An MLP with one hidden neuron had smallest impact on the performance of the
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Figure 7.3: Average RMSEs using the evaluation data sets 1-6 (top) and the
maximum estimation error of SMI models for FP (bottom left) and IBP (bottom
right) with different number of states

SMI models for FP and IBP and the resulting combination models were almost as

good as the pure SMI models. The results of the combination models with the MLP

models having different number of hidden neurons are shown in Figures 7.5 and 7.6.

During the search for the best values of the tuning parameters in model creation,

the input variable sets were optimised separately for each of the models. First, the

wrapper type IVS algorithm based on the Forward Selection (FS) method (section

3.4.1) was utilised after which the variable sets are further optimised with GA. The

GA was set to use 50 generations, as it was noted that no sets with significant

improvements in the modelling performance were found with longer searches. In

GA, the mating probability was set to 0.7 and the mutation probability to 0.1. The

input variables selected for different model types by the modified FS and GA are

listed in Table 7.2. It is noted that the different methods utilised different number of
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Figure 7.4: Average RMSEs using the evaluation data sets 1-6 (top) and the
maximum estimation error of SOM models for FP (bottom left) and IBP (bottom
right) with different number of neurons

variables. PLS and SOM models used only 5 to 6 variables while the other extreme,

the MLP models, used 15 to 20 variables. The SMI model for FP with three states

used only 6 variables while the IBP model with eight states needed 19 variables.

The combination models used all the variables of the PLS and SMI models and

additional variables for the MLP parts. The SMI-MLP for IBP was the only model

utilising all the 22 variables that were found useful with the correlation analysis.

The RMSE values i.e. the values of the minimised objective function corresponding

to the best models of each model type are summarised in Table 7.3. It is noted that

with all methods the RMSE for the training data set of the FP models were higher

than of the IBP models. This is mainly due to the higher number of samples in

the FP data set compared to the IBP data set. With the evaluation data sets the

opposite is true, the estimates for the FP were more accurate that the estimates for

the IBP, although the magnitudes of the RMSEs were similar for both modelled out-
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Figure 7.5: Average RMSEs using the evaluation data sets 1-6 (top) and the max-
imum estimation error of PLS-MLP models for FP (bottom left) and IBP (bottom
right) with 4 latent variables (PLS) and different number of neurons (MLP)

puts. The most limiting factor in modelling the IBP was the signal’s discontinuous

nature. Between the tested modelling methods, the SMI produced most accurate

models both for the FP and IBP and almost as good was the SMI-MLP combina-

tion. The PLS produced the third best models, the FP and IBP models having very

similar accuracy. The MLP model for the FP was better than the corresponding

PLS model, but in the IBP case the MLP model was significantly worse. The logical

explanation for this is the lower number of samples in the IBP training set allowing

the ANN model to become overfitted even with one neuron in the hidden layer.

The least accurate of the models were the SOMs. The method was able to fit the

training data, but the estimation accuracy with the evaluation data sets was much

worse. Possible explanation for this is the lack of extrapolating ability of the SOM;

all situations that will be encountered when using the model, should be included

in the training data set. Another weakness of the SOMs is the limited number of

possible outputs, a SOM with 100 neurons has only 100 possible output values.
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Figure 7.6: Average RMSEs using the evaluation data sets 1-6 (top) and the max-
imum estimation error of SMI-MLP models for FP (bottom left) and IBP (bottom
right) with 3 states (SMI) and different number of neurons (MLP)

The estimation accuracies and the distributions of the errors of the best models of

each model type for the training data set and all evaluation data sets were analysed.

As indicated by the average RMSE values, the most accurate estimations for FP were

provided by the SMI model, only with evaluation data set 3 the MLP produced more

accurate estimations. The MLP and PLS models offered acceptable performance,

but in many cases the SOM was unable to model the behaviour of the FP. The SOMs

estimates were limited to the maximum value that was presented in the training data

and with evaluation data set 1, the model was unable to give accurate estimates for

the high values of FP.

For IBP, the most accurate estimates were given by the PLS-MLP model for the

training data and evaluation data set 2, 3, and 5. Normal PLS model performed

best with evaluation data sets 1 and 4 and the SMI model with evaluation data set 6.

However, the differences between the model types were small and SMI, SMI-MLP,
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Table 7.2: Input variable sets for FP and IBP models trained with simulated data
of the second testing experiment
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Solvent feed flow rate [t/h] X X X X X X X

C1 feed flow rate [t/h] X X X X X X X

C2 feed flow rate [t/h] X X X X

C1 upper middle temp. [oC] X X X X X X X X X

C1 lower middle temp. [oC] X X X X X X X X X X

C1 upper bottom temp. [oC] X X X X X X X X

C1 lower bottom temp. [oC] X X X X X X X X X X

C2 top pressure [kPa] X X X X

C2 bottom pressure [kPa] X X X X

C1 topmost bottom temp., pressure compensated [oC] X X X X X X

TCA 2 X X X X X X X X

C2 vapour distillate temp. [oC] X X X X X X X X

C1 topmost bottom temp. [oC] X X X X X X X X

C1 product after 2 heat exchangers temp. [oC] X X X X X X

C2 product after heat exchanger temp. [oC] X X X X X X X X

C1 side product temp. [oC] X X X X X X

C1 feed temp. [oC] X X X X X X

C1 feed before heat exchanger temp. [oC] X X X X X X

C1, lower bottom - upper bottom temp. [oC] X X X X X X X X

C1, upper bottom - pressure compensated topmost bottom

temp. [oC]

X X X X X X X

C1, pressure compensated topmost bottom - lower middle

temp. [oC]

X X X X X X X X

C1, lower middle - upper middle temp. [oC] X X X X X X X X

C1 stands for ’Column 1’ and C2 for ’Column 2’

PLS-MLP and PLS had very similar average accuracy. Only MLP and SOM models

were significantly more inaccurate.
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Table 7.3: RMSE values for training and evaluation data sets one to six of all
models in the second testing experiment
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PLS FP 0.370 0.352 1.278 0.066 0.112 0.186 1.099 0.515

MLP FP 0.317 0.421 0.403 1.281 0.051 0.329 0.142 0.498

SMI FP 0.343 0.203 0.852 0.061 0.078 0.083 0.980 0.376

SOM FP 0.498 0.748 2.047 0.169 0.704 0.870 0.762 0.883

PLS-MLP FP 0.365 0.354 1.195 0.070 0.117 0.192 0.998 0.488

SMI-MLP FP 0.344 0.198 0.851 0.065 0.081 0.085 0.980 0.377

PLS IBP 0.273 0.294 0.826 0.086 0.081 0.127 1.888 0.550

MLP IBP 0.269 0.560 1.030 0.087 0.560 0.262 2.606 0.851

SMI IBP 0.269 0.306 0.785 0.092 0.095 0.134 1.614 0.504

SOM IBP 0.371 1.072 2.176 0.259 0.962 1.032 2.172 1.279

PLS-MLP IBP 0.268 0.298 0.751 0.084 0.085 0.124 1.865 0.535

SMI-MLP IBP 0.268 0.322 0.780 0.090 0.102 0.129 1.625 0.508

The data corresponding to the the training data set and the evaluation data set 1

are presented in Figures 7.7 to 7.10. Corresponding figures for other data sets are

presented in Appendix B.

In addition to determining the performances of the models with RMSE values, the

compositions of the input variable sets were assessed by analysing the dependen-

cies between the estimation errors and the values of estimation and separate input

variables. The estimation errors were plotted against the estimated values and the

values of each input variable. E.g. the values corresponding to the PLS models for

FP and IBP are shown in Figure 7.11. For other models, see Figures in Appendix B.

In the figures, the two main operating regions are clearly separated and the connec-

tion between the two clusters represents the transition from feed type 4 operation to

feed type 1 operation. The estimation errors within the two operating regions had
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Figure 7.7: Simulated and estimated values of FP for the training data set (top
left), corresponding estimation errors (bottom left) and the cumulative distribution
of the estimation errors (right)
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Figure 7.8: Simulated and estimated values of FP for the evaluation data sets 1 (top
left), corresponding estimation errors (bottom left) and the cumulative distribution
of the estimation errors (right)

near zero averages and were evenly distributed around zero indicating that there was

no systematic modelling errors. On the contrary, the estimation error was system-

atically positive when the estimated values and temperatures of the lower parts of

the column were between the typical values for feed types 4 and 1. For other input

variables the estimation error was always zero mean. The fact that the estimation
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Figure 7.9: Simulated and estimated values of IBP for the training data set (top
left), corresponding estimation errors (bottom left) and the cumulative distribution
of the estimation errors (right)
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Figure 7.10: Simulated and estimated values of IBP for the evaluation data sets 1
(top left), corresponding estimation errors (bottom left) and the cumulative distri-
bution of the estimation errors (right)

error had similar dependency on the temperatures of the lower parts of the column

with both linear and non-linear model types suggests that the phenomenon was not

caused by the non-linearities of the process. As the training data only contained a

transition from a higher temperature operating region to a lower one, the systematic

errors in estimations are assumed to be caused by errors in delay compensation, i.e.
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the estimated values for delays between the input variables and the output were too

high.
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A final analysis of the models’ validity was carried out by calculating the autocor-

relations of the estimation errors. For the training data set all models produced

an estimation error signal that had low autocorrelation. Thus the errors at any

given time were not related to the previous errors meaning that there was no ma-

jor systematic errors in the estimates. The systematic errors occurring during the

transition phase between the two operation regions presented only a very minor

proportion of the whole data and the effect was thus not seen in the autocorrelation

analysis.

In general, all the tested modelling methods except SOM, could be used to construct

models that provided accurate estimates for the FP and IBP values of the simulated

process. The performances of the other methods were on the same level, but the

SOM models had significantly worse characteristics with an average RMSE of 0.883

and a maximum evaluation error of 3.3 oC. The small size of the best SOM indicates

that the data used for training the models was not rich enough for that modelling

method. The average RMSEs for the other model types for the evaluation data sets

were 0.515 oC or less and the error signals had near zero means and low autocorre-

lation values. The analysis of the estimation capabilities of the models showed that

it was feasible to use CUSUMs based fault detection methods with tight detection

limits.
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7.3 FDI models for the third testing experiment with real indus-

trial dearomatisation process data

For the real industrial process, six models selected in section 6.1 were created: PLS

models for IBP and FP temperatures, SMI model for IBP, a SMI-MLP model for

FP and PLS-MLP models for IBP and FP. The models were trained with the train-

ing data set described in Section 6.2.2. The tuning parameters of the models were

determined according to the methodology in the same way as in the multiple op-

eration region simulation case study. The input variable selection was performed

according to the steps of the methodology. The optimal tuning parameter values

and the corresponding RMSE values for the models are given in Table 7.4 and the

input variable sets are given in Table 7.5. It is noted that the estimates of the

FP models were more accurate than those of the IBP models both for the training

and the evaluation data sets. In case of FP, the average estimation error for the

evaluation data was 1.8-1.9 oC, about two times as large as the 95 % inconsistency

value for the FP data (Table 6.7). For IBP the average estimation error was 3.9-4.1

oC, also about two times as large as the 95 % inconsistency value for the IBP data.

Most accurate models for both FP and IBP were the PLS and PLS-MLP, but the

results of the SMI and SMI-MLP models were almost as good. The estimations of

all models, the estimation errors and the cumulative distribution of the errors are

presented for the training and evaluation data sets in Figures 7.12 to 7.15.

Next, the autocorrelation of the estimation errors were analysed. For the training

data, the estimations of IBP were not correlated (Figure 7.16). However, the FP

estimation errors were not independent and especially in case of the SMI-MLP

model, the errors showed some correlation with previous errors. With evaluation

data set, the autocorrelations of the estimation errors were more prominent. In

case of IBP, all the models showed correlation peaks around samples 280 and 1320.

The estimation errors that correlate were produced during similar transition periods
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shown in Figure 7.14 (upper left hand corner) at around steps 170 and 690, when

the estimation errors were very high for all models (lower left hand corner). In case

of FP, the errors were even more correlated. The correlations were caused by the

too low estimations of the SMI-MLP model in the middle of the evaluation data set

and at the end of the testing period for all models as shown in Figure 7.15.

Table 7.4: Optimal tuning parameter values and corresponding RMSE values of
the FP and IBP models trained with real process data

Model Tuning Parameter RMSE

parameter values Training data Evaluation data

PLS FP No. of LVs 5 2.125 1.833

SMI-MLP FP No. of states and neurons 2 and 3 2.102 1.920

PLS-MLP FP No. of LVs and neurons 5 and 4 1.532 1.796

PLS IBP No. of LVs 3 2.811 3.853

SMI IBP No. of states 3 3.033 4.123

PLS-MLP IBP No. of LVs and neurons 5 and 5 2.513 3.885
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Figure 7.12: Measured and estimated values of IBP for the real process training
data set (top left), corresponding estimation errors (bottom left) and the cumulative
distribution of the estimation errors (right)

To improve the insensitivity of the models to unexpected disturbances in the mea-

surement data, the estimates were checked against known process behaviour and
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Table 7.5: Input variable sets for FP and IBP models trained with real plant data
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Side product flow rate [t/h] X

Column 1 reboiler hot oil flow rate [t/h] X

Column 1 upper middle temperature [oC] X X

Column 1 lower middle temperature [oC] X X X

Column 1 top pressure [kPa] X X X X X X

Column 1 topmost bottom temp., pressure compensated [oC] X X X

Column 1 topmost bottom temperature [oC] X X X X

Column 1 reboiling temperature [oC] X X X

Product grade X X

Column 1, upper bottom temp. - topmost bottom temp. [oC] X

Column 1, topmost bottom temp. - lower middle temp. [oC] X X

Column 1, upper middle temp. - lower top temp. [oC] X X

Column 2 top pressure [kPa] X
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Figure 7.13: Measured and estimated values of FP for the real process training
data set (top left), corresponding estimation errors (bottom left) and the cumulative
distribution of the estimation errors (right)
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Figure 7.14: Measured and estimated values of IBP for the real process evaluation
data set (top left), corresponding estimation errors (bottom left) and the cumulative
distribution of the estimation errors (right)
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Figure 7.15: Measured and estimated values of FP for the real process evaluation
data set (top left), corresponding estimation errors (bottom left) and the cumulative
distribution of the estimation errors (right)

modified when needed. The distillation column of the dearomatisation process con-

tains large volume of solvent during normal operation. This storage of solvent acts

as an integrator filtering all high frequency variations in the bottom product quality.

To take this into account, the estimates for FP are constrained to have a maximum
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Figure 7.16: Autocorrelation of the estimation error signals for training data of all
the IBP models (top) and FP models (bottom)
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Figure 7.17: Autocorrelation of the estimation error signals for evaluation data of
all the IBP models (top) and FP models (bottom)

rate of change and a maximum change in the rate of change (7.2 - 7.5).

Lu = 2 ∗ estk−1 − estk−2 + ∆roc (7.2)
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Ll = 2 ∗ estk−1 − estk−2 −∆roc (7.3)

If est0k > Lu then estmodk = min (Lu, lroc) and (7.4)

If est0k < Ll then estmodk = max (Lu, lroc) (7.5)

where Lu is the upper limit, Ll is the lower limit, estk−n is the modified estimate n

instants ago, ∆roc is the change in the rate of change, lroc is the maximum rate of

change, est0k is the original estimate value, and estmodk is the modified current esti-

mate at instant k. Suitable values for the parameters ∆roc and lroc were identified

from the data to be 0.1oC/min and 0.4oC/min. The estimated values for IBP are

not constrained as during the long delays between consecutive measurements the

real temperatures may change dramatically.
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8 Diagnostic information and fault detection

decisions of the FDI system for the

dearomatisation process

Next, in testing the methodology the change detection and fault diagnosis meth-

ods for the dearomatisation process were defined and the values of the FDI tuning

parameters for the different testing experiments were determined.

The selected change detection method for the testing experiments was the Page-

Hinkley method as suggested by the methodology. The algorithm also performed

the fault diagnosis and thus no separate method is needed. The Page-Hinkley algo-

rithm has two tuning parameters, the smallest significant error and the threshold for

the cumulative sums (section 3.5.2), whose values were determined by using separate

evaluation data sets. In the second testing experiment the evaluation data were the

evaluation data sets 1 and 2. For the third testing experiment with real dearomati-

sation process data, the evaluation data set was the one described in section 6.2.2.

The heuristic classification of the analyser statuses for the reference period of the

real industrial data possibly included errors and introduced errors to the parameter

optimisation of the FDI system. In both cases the fault free analyser output values

were modified to represent abrupt and drifting type of faults with different magni-

tudes. E.g. the real and faulty FP and IBP values of the simulated evaluation data

sets are illustrated in Figure 8.1.

The performances of the FDI systems were determined on the basis of the classifi-

cation errors, i.e. the false alarms and missed detections. The objective functions

for the FDI systems are given in (8.1) and (8.2)

Min JBPA =
n∑
i=1

(|f̂BPA(i)− f 0
BPA(i)|) (8.1)
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Min JFPA =
n∑
i=1

(|f̂FPA(i)− f 0
FPA(i)|) (8.2)

where f̂BPA(i) ∈ 0, 1 and f̂FPA(i) ∈ 0, 1 are the estimated analyser states, f 0
BPA(i) ∈

0, 1 and f 0
FPA(i) ∈ 0, 1 are the real states, i is the time instant and n is the length

of the evaluation period.
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Figure 8.1: FP and IBP of evaluation data sets 1 and 2, simulated and faulty
values

To minimise the values of the objective functions the several models were trained

with different combinations of the tuning parameters. The minimised values of cost

functions and the corresponding optimal FDI tuning parameter values are presented

in Table 8.1. The error values represent the total number of minutes when the

FDI systems’ assessments of the analyser states was incorrect. The total length of
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the testing signal was 21680 samples (minutes), containing 21680 FP and 542 IBP

analysis results.

Table 8.1: Fault detection performances of the FDI systems based on different
models and the corresponding optimal tuning parameters for the CUSUM.
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PLS 3909 18.0 1.9 3.8 134 24.7 3.1 0.1

MLP 3570 16.5 2.2 3.4 113 20.9 1.5 0.1

SMI 2714 12.5 2.5 3.0 139 25.7 2.1 0.1

SOM 6077 28.0 2.5 14.8 171 31.6 2.4 1.7

PLS-MLP 3521 16.2 2.1 3.2 134 24.7 3.2 0.1

SMI-MLP 2706 12.5 2.4 3.2 139 25.7 1.9 0.1

The optimisation criterion for the fault detection considered only the number of

samples when the state of the analysers was estimated incorrectly. Instead, prior

knowledge could have been used to set weighting coefficients to the two types of

misclassification in the objective functions so that the system would avoid either

false alarms or missed detections. In the same way, the system could have been

made to be more sensitive to faults that either increase or decrease the analyser

results. E.g. in the dearomatisation process analysers showing too high values is

more harmful than faults that cause the analyser to indicate too low values.
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Figure 8.2: Faults in FP of evaluation data set 1 and corresponding fault indica-
tions of the different FDI models

It is noted that the faults used in the FDI tuning were small: The maximum mag-

nitudes of the faults were only 1-3 oC. Furthermore, during the drift type faults

and the smallest abrupt fault, the fault magnitudes were less than or equal to 1 oC

for total of 4467 minutes of the total length of faults, 10033 minutes. The small

magnitudes of the faults together with the objective functions with equal penalties

for false alarms and missed detections lead to parameter values that made the FDI

systems very sensitive to deviations in the analyser outputs. The high sensitivity

to faults was preferred as the results of the FDI were given to the fault tolerant

control. In the case of a dearomatisation process when the analyser results are in-

frequently available, the FTC strategies need to react to the earliest indications of

suspected faults to maintain the process at the desired state. To support the early

FTC-actions, the FDI was tuned to indicate even minor faults that could not be

detected with certainty. Consequently, the FDI system also provide the FTC system

with information about the reliability of the fault decisions. Also the reliabilities
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Figure 8.3: Faults in FP of evaluation data set 2 and corresponding fault indica-
tions of the different FDI models

of the estimated distillation and flashpoint temperatures were given as an output

and help in determining whether the models were functioning well under the current

operating conditions. The final piece of diagnostic information provided by FDI was

the estimated size of a detected fault including the direction of the fault. In the

following sections the derivation of these pieces of information are presented.

The reliability for the fault decision is given by (3.18) with a having a value of 4,

i.e.:

Frel = min

(
(
Un
λ
− 1)/4, 1

)
(8.3)

where Frel is the reliability of the fault indication. The magnitudes of faults is

estimated with (3.19) and the reliabilities of the estimated analyser outputs are

determined with (3.22).

The suggested fault detection method based on cumulative sums is suitable for
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issuing alarms under normal operation conditions. However, when the feed type

is changed, the resulting rapid changes of significant magnitude in the operating

conditions may cause the algorithm to trigger false alarms. This is mainly due to the

fact that the delays in IBP and FP analysis are not constant. The estimation errors

caused by comparing the analyser results few minutes too early or too late with the

current estimated values may trigger the false alarms. It should be noted that under

normal operation conditions the product quality does not change remarkably in few

minutes, but during a feed type change the IBP and FP may increase or decrease

notably. As a consequence, the varying delay in analysis becomes problematic. To

prevent this problem, all fault indications were suppressed for an adjustable period

of time after a feed type change was detected. This feature corresponds to the user

requirement for gracefully handling the feed type changes (REQ-4.2 in Table 5.1)

and the momentary loss of fault detection capability was seen as a better alternative

to false alarms by the operating personnel.
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9 Assessment of the performance of the FDI system

for the dearomatisation process

Next phase in the validation of the methodology is to assess the performance of

the three FDI systems for the dearomatisation process developed in the testing

experiments.

9.1 FDI results of the first testing experiment

The fault-detecting abilities of the FDI systems based on the different models were

evaluated using the simulated testing data set consisting of 1440 data points repre-

senting a period of 24 hours. Four faults to be detected were created on the analyser

outputs: a large abrupt error (-50 % drop in the temperature), a smaller abrupt er-

ror (-20 % drop in the temperature), rapidly progressing drift (-10 oC per hour) and

slowly progressing drift (-5 oC per hour). The abrupt faults correspond to the water

contamination of the analysed sample fault of the real process and the drifting faults

correspond to the carbonisation of the flask of the distillation analyser. In the first

experiment the PCA models did not estimate the analyser outputs and consequently

the fault decisions were not performed with the CUSUM method.

First, the PCA-based FDI system was evaluated. The Hotelling T 2 index was cal-

culated and used to detect the faults. When the index alarm limit was set to 14,

the PCA-based monitoring method was able to detect the abrupt faults correctly

without a delay. The first drifting type fault in IBP and FP were detected after a

delay of 74 minutes. The models were not, however, able to detect the slowly pro-

gressing analyser faults. In addition, the models gave false alarms after the first and

before the fourth fault. Figure 9.1 (A) shows the faults in the evaluation data and
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the alarms given by the six PCA models. The x-axis of the figure represents time

and the y-axis the monitoring results; values close to zero mean a normal process

situation, and values near to one represent given alarms.

The residuals between the PLS model outputs and analyser results were calculated

and, when they exceeded a limit value of 1.4, an alarm was triggered. The PLS-

based fault detection system performed well and it was able to detect the abrupt

faults with no delay, and the incipient faults with delays of 9 and 23 minutes. The

first drifting fault was detected when the analyser error was 2-3 oC and the second

one before it was 2 oC. The PLS based monitoring system gave no false alarms.

Figure 9.1 (B) shows the alarms given by the method against the actual fault.

Next, the SMI models were tested. The residuals between the estimated and simu-

lated analyser outputs were calculated, and an alarm was given by the system when

the index exceeded an alarm limit of 2.8. The system was able to detect the abrupt

faults immediately and the incipient faults with delays of 8 and 35 minutes, when

the deviation from the nominal was 1.5-3 oC. The SMI model for IBP gave few false

alarms before the fourth fault. Figure 9.1 (C) shows the alarms given by the method

and the actual faults.

Finally, the FDI systems based on the SOM models were tested. Both the SOMs

trained with normal measurements and the ones trained with PCA transformed

data were able to detect the abrupt faults immediately. In detecting the drifting

type faults PCA pre-treated SOM was superior to the normal SOM. PCA-SOMs

average detection delay of the slowly developing fault was 22 minutes compared

to the normal SOMs average delay of 45 minutes. The difference in performance

derives from the fact that the residuals produced by the PCA-SOMs had smaller

variation than those of the normal SOMs allowing the use of a lower alarm limit of

4.5 instead of 5. Using the lower alarm limit with the normal SOMs would have

resulted in a number of false alarms. The alarms given by the SOMs are shown in



147

Figures 9.1 (D) and (E).

Figure 9.1: True states of the analysers and fault indications of the PCA (A), PLS
(B), SMI (C), Normal SOM (D) and PCA-SOM (E) models

All the tested methods except PCA were able to detect the abrupt fault with greater

magnitude without delays, as shown in Table 9.1. The alarm signals were given as

soon as the fault occurred and they lasted as long as the fault persisted. The subtle

differences in the performance of the methods became visible only in detecting the

slowly developing faults: On the average the fastest method to detect faults was PLS

followed by slightly slower SMI. The PCA pre-treated SOM performed better than

the normal SOM. The performance of the PCA was worst of the tested methods; its

detection delays were the longest and it was unable to detect all of the drifting faults.

The poor performance of the PCA could be explained by the fact that the detected

faults affected only one variable of the input variable set. Had the higher-level

quality control been in use, the faults would have propagated into other variables and

the fault would have been easier to detect. PLS models on the contrary considered



148

the input and output separately and performed well as the faults affected the whole

set of outputs i.e. the analyser output. The SOMs were used here as nonlinear

regression tools and the FDI results were good. The PCA treatment of the data

done prior to the training of the maps proved to be beneficial as the PCA-SOMs

detected the faults faster than normal SOMs. The training of the maps was also

less time consuming as only five variables were used. Using the process phenomena

describing calculated variables together with the direct process measurement data

in monitoring improved the results of the SOM models in some cases, but on few

occasions it made the delays longer. The fault detection performances of the different

models are summarised in Table 9.1.

Table 9.1: Delays of fault detection, first testing experiment

Fault 1 Fault 2 Fault 3 Fault 4

Dir CV Dir CV Dir CV Dir CV

FP

PCA 0 0 23 23 74 74 — —

PLS 0 0 0 0 9 9 22 22

SMI 0 0 0 0 11 11 27 27

SOM norm 0 0 0 0 20 20 43 43

SOM PCA 0 0 0 0 20 20 27 31

IBP

PCA 0 0 0 0 74 74 — —

PLS 0 0 0 0 9 9 21 21

SMI 0 0 0 0 9 8 15 13

SOM norm 0 0 0 0 21 22 44 43

SOM PCA 0 0 0 0 20 21 22 22

’Dir’ stands for models using only measured variables,

’CV’ are the models created with measurements and

calculated variables
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The first simulation study showed that the PLS was the most suitable of the tested

fault detection methods in this case covering operation of the dearomatisation with

a single feed stock type. Deviations of about 2-3oC between the faulty and the

nominal analyser output values were detected. This can be considered as a good

result, as the nominal analyser measurements were not ideal, but included noise

with amplitude of 1oC. SMI and SOM also proved to be very useful tools in FDI.

The performance of the PCA was poor; either the faults were recognised only after

their presence was obvious and/or a large number of false alarms were generated.

9.2 FDI results of the second testing experiment

Next, the fault detection performance of the FDI systems based on different model

types were evaluated with the evaluation data sets 3 and 4. The testing data set

consisted of 8641 samples (minutes) consisting 8641 FP and 217 IBP analysis results.

The FDI system based on SOM model was the most accurate in detecting faults

in the FP analyser. It was able to correctly classify 87.2 % of the analysis results,

while the least accurate system, based on PLS model, correctly classified 81.4 %

of the analysis results. For IBP, the system based on PLS-MLP model was most

accurate with 88.0 % of the analyser results correctly classified, followed closely by

the system based on PLS model (87.6 % correct classification). The least accurate

results, 75.1 %, were achieved with the system based on MLP model. The systems

based on the most accurate models SMI and SMI-MLP (see Chapter 7), performed

well for both analysers. They were the second and third most accurate systems in

detecting faults in the FP analyser and third and fourth in detecting faults in the

IBP analyser. Considering both analysers, the most accurate FDI system was the

one based on PLS-MLP model (85.4 % correct classifications) followed by systems

based on SMI, SMI-MLP, and SOM, all three having the same classification accuracy

of 84.6 %.
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The testing results are comparable with the results acquired during the fault detec-

tion parameter optimisation described in Chapter 8 (Table 8.1) with two exceptions.

During the optimisation, the system based on SOM was the least accurate in classi-

fying the FP analyser results. The inaccurate estimations caused the optimal value

of λ to be signicantly higher compared to the corresponding value of other systems.

In consequence, during the testing, the system gave only few false alarms resulting

in an accurate detection of faults. The other exception is the performance of the

system based on MLP model. During the parameter optimisation, the system gave

the most accurate estimations, and in consequence the optimal fault detection pa-

rameter values were smaller than with the other systems. In contrast, for the testing

data, the estimates based on the MLP model were less accurate and because of the

tight detection limits, several false alarms were given lowering the overall detection

accuracy.

The results of the testing and the fault detection parameters of the systems based

on the different model types are given in Table 9.2.

9.3 FDI results of the third testing experiment with real dearo-

matisation process data

Next, the online validation of the FDI system with the third testing experiment was

performed during 29 days from May 3rd 2007 - May 31st 2007 onsite at the Naantali

oil refinery, Finland. During the period, 4 different feed types were used in 6 runs.

Most significant changes in operation were related to the feed type changes. For the

last 12 days of the evaluation period, exceptionally heavy feed stock was used that

provided another challenge for the FDI system.
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Table 9.2: Fault detection performances for evaluation data sets 3 and 4 of the
FDI systems based on different model types, second testing experiment
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PLS 1607 18.6 1.9 3.8 27 12.4 3.1 0.1 15.5

MLP 1551 17.4 2.2 3.4 54 24.9 1.5 0.1 21.2

SMI 1423 16.5 2.5 3.0 31 14.3 2.1 0.1 15.4

SOM 1110 12.8 2.5 14.8 39 18.0 2.4 1.7 15.4

PLS-MLP 1477 17.1 2.1 3.2 26 12.0 3.2 0.1 14.6

SMI-MLP 1429 16.5 2.4 3.2 31 14.3 1.9 0.1 15.4

9.3.1 Fault detection results during the onsite validation period

To evaluate the performance of the implemented FDI system, abrupt and drifting

types of faults were introduced to the two online analysers. The emphasis was on

faults lowering the analyser reading, as most of the real analyser faults are of that

type. In order to minimise the disturbances caused by the introduced faults, the

fault detection limits were tuned to be more sensitive than normally for the duration

of the fault tests. In the following sections, typical examples of the fault scenarios

are presented and analysed for both fault types and both analysers.

First, abrupt faults were introduced on the distillation analyser. The first fault

scenario consisted of a single drop of 20 oC in the IBP. As a consequence, the
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estimation errors increased and the first faulty analyser result caused the cumulative

error sums to exceed the threshold limits. The fault was thus immediately detected

by all tested methods. Because of the considerably large magnitude of the fault,

the cumulative sums were well above the threshold limits after the fault had been

removed and the system continued to indicate the fault for more than 200 minutes.

The normal analyser operation was detected after three consecutive estimations

agreed with the analyser results. The real, faulty and estimated IBPs are shown in

Figure 9.2. In the figure, also the estimation errors, cumulative error sums and fault

indications are presented for each model type.
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Figure 9.2: Abrupt fault in the distillation analyser. Periods of the introduced fault
and the faults indicated by the models are highlighted with light grey background.

Next, drifting faults were introduced to the distillation analyser.
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The IBP was first dropped by 2 oC and then by 1 oC and 0.4 oC, after which it was

raised by 0.2 oC and finally, 340 minutes after the start of the experiment it was

returned to its real value. The fault caused deviations between the measured and

estimated analyser outputs, which in turn, increased the values of the cumulative

sums. The Page-Hinkley parameter for smallest detected fault was 3 oC and the

threshold for the cumulative error sum 3. 215 minutes after the first modification

to the analyser output, all the models detected a fault. The larger fault of -3 oC

had been present for 41 minutes. The bias was removed 126 minutes later and after

51 minutes, the FDI system returned to indicate normal operation of the analyser.

During the fault, the confidence indices for the fault were raised to about 0.3 with the

SMI and PLS-MLP models and to about 0.4 with the PLS model. The confidence

values started to go down immediately after the fault was removed. In this case of

a small fault with a short duration, the return to the normal state was caused by

the cusums dropping below the thresholds.

Next, abrupt faults were introduced on the FP analyser. The output value was first

raised abruptly by 1.5 oC and then it was further raised in 0.1 oC steps to 2.2 oC.

After 80 minutes, it was raised to 2.4 oC. The fault was first detected by PLS based

system 67 minutes after the introduction of the fault when the fault magnitude was

2.2 oC. The second fault indication was given by the SMI based system when the

magnitude of the fault was 2.4 oC. The detection delay with SMI model was 133

minutes. The PLS-MLP based system missed the fault completely. The fault was

removed after 158 minutes, and the PLS system returned to indicate normal analyser

operation 21 minutes later and the SMI system 28 minutes later. The progress of

the fault detection during the fault scenario is presented in Figure 9.4.

The last fault scenario consisted of drifting type faults in the FP analyser. In the

example fault scenario, a fault was introduced by lowering the analyser output by

0.1 oC steps in 5 minutes intervals. The final magnitude of the fault was 2.4 oC.

In this case, the system based on PLS-MLP was the fastest to detect the fault, 94
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Figure 9.3: Drifting fault in the distillation analyser. Periods of the introduced
fault and the faults indicated by the models are highlighted with light grey back-
ground.

minutes after the start of the fault. Two minutes later the PLS system detected

the fault and followed by the SMI system one minute later. During the times of

detection, the magnitude of the fault was 2.0 oC. The duration of the fault was

214 minutes, and after it was removed all the FDI systems returned to indicate

normal analyser operation 3 minutes later. The relevant FDI information during

the scenario is presented in Figure 9.5.
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Figure 9.4: Abrupt fault in the flashpoint analyser. Periods of the introduced fault
and the faults indicated by the models are highlighted with light grey background.

9.3.2 Identification of the feed stock changes and suppression of faults

One of the user requirements (REQ-4.2 in Table 5.1) was the identification of the feed

stock changes. To suppress all fault indications during the transients in the process,

the method described in section 8 was used. A separate function was implemented in

the NeCST platform to detect the feed stock changes based on a variable describing

the feed type. After a change in the variable value was detected, all faults detected

by the system were suppressed for a period of 500 minutes. During that period, the

process had stabilised to its new operating point and the normal operation of the

FDI system was resumed.



156

T
em

pe
ra

tu
re

 [°
C

]

Time instant [min]

FP

50 100 150 200 250 300
2
4
6
8 Real FP value

Faulty FP value   .
PLS est
SMI est
PLS−MLP est

In
de

x

Time instant [min]

PLS based detection

50 100 150 200 250 300
−40
−20

0
20
40

Cusum limit
Detected error limit
Estimation error
Cusum down
Cusum up

In
de

x

Time instant [min]

SMI based detection

50 100 150 200 250 300
−40
−20

0
20
40

Cusum limit
Detected error limit
Estimation error
Cusum down
Cusum up

In
de

x

Time instant [min]

PLS−MLP based detection

50 100 150 200 250 300
−40
−20

0
20
40 Cusum limit

Detected error limit
Estimation error
Cusum down
Cusum up

Figure 9.5: Drifting fault in the flashpoint analyser. Periods of the introduced fault
and the faults indicated by the models are highlighted with light grey background.
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10 Utilising the FDI information in fault tolerant

control of the dearomatisation process

As described in Chapter 1 FTC systems are being developed to automatically utilise

the information provided by the FDI systems. In the methodology, the structure

of the FDI implementation was designed to support FTC actions (Chapter 5). In

this section the implemented fault tolerant control (FTC) of the dearomatisation

process is shortly described. The effects of the FTC on the process operation were

evaluated onsite at the Naantali refinery and are illustrated through an example

fault scenario.

10.1 Fault tolerant control of dearomatisation process

First, the minimum necessary FTC functions for the dearomatisation process were

defined (Järvinen et al., 2006). The developed FTC scheme consists of two types of

strategies: proactive and reactive making intensive use of the fault detection relia-

bility information produced by the FDI. The reactive FTC strategies are triggered

when a fault has been detected with a high reliability. They are designed to can-

cel the further effects of the fault on the process. The first reactive FTC-action is

to temporarily deactivate the feedback from the analyser to the model predictive

controller (MPC) in order to prevent the faulty measurement from affecting control.

Once the MPC feedback is deactivated, the MPC uses exclusively its internal models

to estimate the product quality. If the detected analyser fault produces higher than

true values, there is a risk of off-specification product due to the feedback action.

In that case, a target manipulation strategy, is applied. In the target manipulation

strategy, the target value of the controlled variable is modified using the information

of the estimated size of the fault provided by the FDI system. The target manip-
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ulation causes the control to reduce the effects of the previous control actions that

have been made using the faulty feedback before the fault was detected.

Proactive FTC strategies are used to restrict any control actions when the analyser

feedback is suspected to be faulty i.e. a fault is detected with a low reliability. At

the same time, these FTC strategies aim at the same time to minimise the loss of

control performance in cases the fault detection later turns out to be false. The

proactive strategies automatically set new values for MPC parameters so that the

control relies less on the analyser measurements. With the distillation analyser, the

tuning parameter is a feedback filter factor and for the flashpoint analyser it is the

deadband. Although the retuning can be a continuous function of the reliability

index, in this application three threshold levels; I, II and III, with III being the

most severe, were used for easier interpretability of the alarms.

The FTC is performed each minute and the actions are automatically activated or

deactivated as required. Retuning is automatically cancelled if the fault detection

turns out to be false. If a reactive FTC strategy is triggered, the proactive strategies

become ineffective with the deactivation of the analyser feedback. In that case the

retuning actions are automatically cancelled and cannot be reactivated before the

fault has been corrected and the reactive actions cancelled.

10.2 Online testing of the FTC at the Naantali refinery

The typical behaviour of the FTC system in the real industrial environment is

illustrated with a case similar to the previously described fault scenarios in section

9.3. In this case the analyser result for IBP is artificially cumulatively increased

by 4.5 oC in 4 steps within a period of three hours. The elevation in the faulty

IBP remained relatively small as the MPC controlled the process keeping the IBP

close to the desired level. The controller used the distillation column temperature
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to control the IBP and under closed loop operation, the fault in the IBP result

was most prominently reflected in the value of this manipulated variable (MV). 72

min after the fault is introduced, the FDI gave a fault indication with moderate

reliability and a proactive FTC strategy of MPC retuning I was triggered. After

the first retuning action, the reliability of the fault increased rapidly and the next

distillation analyser result for IBP became available, the reactive FTC strategies

of MPC feedback deactivation and CV target manipulation were triggered. As a

result of these FTC actions, the drop in the value of the column temperature caused

by the faulty analyser feedback is almost completely cancelled as in the simulated

case. The progress of the relevant process measurements and the outputs of the FDI

system during the upward incipient fault are illustrated in Figure 10.1. In the figure,

the IBP and column temperature (MV) are shown in addition to the information

provided by the FDI: the estimated IBP, the fault indication, the reliability of the

fault indication and the estimated magnitude of the fault. The pressure compensated

temperature of the column with the corresponding MPC set point values are shown

on the bottom of the figure.
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Figure 10.1: Incipient fault in the distillation analyser during onsite validation.
IBP temperatures (top), FDI information (middle) and the pressure compensated
temperature in column with corresponding MPC set point value (bottom)
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11 Analysis and summary of the FDI results of the

applying the methodology for a dearomatisation

process case

The effects of the proposed improvements to the previously established FDI methods

are illustrated with several comparative studies. First, the effects of the refined data

preprocessing techniques of IVS and delay compensation are studied. Second, the

benefits of creating and using process primitives have been studied by comparing the

results of models exploiting the primitives to those that are trained only with direct

process measurements. These studies correspond to the Tasks 3 and 4 described in

section 1 for proving the claims of the hypothesis.

The effects of the delay compensation and the more sophisticated input variable

methods on the modelling accuracy of the most accurate model for FP, the SMI,

are illustrated within Table 11.1. In the table, the RMSE values are given for the

SMI-MLP model created according to the methodology and for SMI-MLP models

created using different combination of the steps recommended by the methodology.

The input variable set for the reference model trained without methodology steps has

been determined with the standard forward selection method (section 3.4.1). The

input variable selection (IVS) step refers to the modified forward selection method.

The effects of the GA in IVS were studied separately. The methodology steps of

delay compensation and IVS, when used without others, resulted in more accurate

models than the reference model. The corresponding average RMSE values for all

evaluation data sets were 48 % and 56 % lower than with the reference. When

calculated variables step was used without other steps, the results were the same

than those of the reference model. However, when calculated variables were used

together with delay estimation or IVS, additional drops of 4 % and 1 % in the

average RMSE values were achieved. Using all three steps of delay compensation,
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IVS and calculated variables, the average RMSE was 55 % lower than with the

reference model. The most accurate model was achieved by also including GA in

the IVS. The average estimation error of the model was 0.38 oC, 60 % lower than

with the reference model. It was noted that by using the methodology, the number

of states within the model was lower compared to the reference. The downside of

the methodology is the significant increase of the approximate execution time of the

training script.

Table 11.1: RMSEs of SMI models for FP trained with different combinations of
steps described in methodology
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Meth. 0.203 0.852 0.061 0.078 0.083 0.980 0.376 3

Ref. 0.569 2.614 0.282 0.262 0.455 1.487 0.945 116 6

X 0.301 1.268 0.061 0.147 0.126 1.043 0.491 128 1

X 0.244 0.442 0.132 0.123 0.163 1.410 0.419 160 1

X 0.569 2.614 0.282 0.262 0.455 1.487 0.945 118 6

X X 0.262 1.045 0.071 0.116 0.140 1.099 0.455 329 8

X X 0.170 0.762 0.097 0.093 0.118 1.487 0.454 136 1

X X 0.229 0.494 0.167 0.171 0.221 1.195 0.413 209 2

X X X 0.258 1.004 0.062 0.139 0.104 1.013 0.430 455 1

In case of the IBP the most accurate estimations were provided by the SMI-MLP

model. The effects on the estimation accuracy of the methodology steps are similar

to those in the FP case (Table 11.2). All steps improved the accuracy when used

separately most significantly using IVS reduced the RMSE by 53 % compared to

the reference. The best results for using two steps together were given by the

model trained with IVS and calculated variables. Most accurate results were again
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obtained by utilising all steps of the methodology including GA in IVS. The average

estimation error of the model was 0.38 oC, 56 % lower than with the reference model.

Table 11.2: RMSEs of SMI-MLP models for IBP trained with different combina-
tions of steps described in methodology
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Meth. 0.198 0.851 0.065 0.081 0.085 0.980 0.377 1

Ref. 0.503 2.459 0.178 0.293 0.217 1.512 0.861 129 2

X 0.309 1.271 0.065 0.155 0.121 1.040 0.494 132 1

X 0.246 0.440 0.092 0.096 0.123 1.419 0.403 205 1

X 0.566 2.476 0.066 0.184 0.169 1.435 0.816 108 1

X X 0.329 0.957 0.059 0.175 0.136 1.081 0.456 210 2

X X 0.174 0.776 0.091 0.083 0.135 1.485 0.457 130 3

X X 0.299 0.551 0.095 0.112 0.172 1.173 0.400 263 3

X X X 0.300 0.790 0.068 0.154 0.139 1.012 0.410 253 3

To analyse the effects of the steps in general, the results of all of the model types

have been averaged (Table 11.3). The most accurate estimations were produced

with models that were trained according to the methodology, but without GA in

IVS. Using GA in the selection of the input variables produced in some cases, es-

pecially with MLP, more inaccurate estimates for the evaluation data sets. As a

consequence, the GA may not be suitable for modelling methods that are prone to

overfitting problems. Generally the models trained according to the methodology

were significantly less complex, i.e. the models had fewer LVs, neurons, and/or

states. Two individual steps clearly contributing in this reduction of model com-

plexity were the IVS and calculated variables. The modified forward selection IVS

method (section 3.4.1) was also the most important step in reducing the estimation
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errors. Using calculated variables also had positive effects on the estimation accu-

racies of the models, but a more significant improvement was their ability to reduce

the dimension of the measurement data set. The delay compensation was proved

to be an effective way to improve the estimation accuracy of the models in general.

The static models, PLS, MLP and SOM benefit most from the delay compensation,

but also SMI produced more accurate state-space models when delay compensated

data was used.

The detailed RMSE corresponding to all other tested model types are given in

Appendix C.

Table 11.3: Average RMSEs of PLS, MLP, SMI, SOM, PLS-MLP and SMI-MLP
models for IBP and FP
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Meth. 0.427 1.081 0.201 0.252 0.296 1.394 0.614 3.750

Ref. 0.577 1.933 0.158 0.282 0.340 1.722 0.835 745 9.000

X 0.388 1.606 0.102 0.231 0.248 1.613 0.698 742 8.250

X 0.474 1.124 0.120 0.244 0.271 1.613 0.641 3424 3.833

X 0.559 1.995 0.140 0.264 0.303 1.715 0.829 836 6.750

X X 0.433 1.339 0.096 0.224 0.267 1.298 0.610 3451 8.000

X X 0.374 1.556 0.129 0.214 0.255 1.602 0.688 519 8.833

X X 0.407 1.088 0.133 0.241 0.259 1.680 0.635 4828 5.750

X X X 0.403 1.168 0.102 0.237 0.267 1.384 0.594 4662 5.167
* The degrees of freedom for the tested models are the number of latent variables (PLS), number

of neurons in the hidden layer (MLP), number of states (SMI), and size of the SOMs.
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12 Conclusion

In this work a methodology is presented for constructing a fault detection (FDI)

system for a complex industrial process utilising data-based modelling methods.

The possibilities of using prior knowledge in data-based modelling have been stud-

ied. The importance of the selection of a proper data-based modelling method has

been emphasised and general guidelines have been presented for partly solving the

problem. Indices for describing the integrity of data sets and the reliability of de-

tected faults have been introduced. In addition, information about the FDI has been

used to achieve fault tolerant control (FTC) of the monitored process. In order to

validate the methodology, three separate FDI/FTC systems for a dearomatisation

process have been created utilising data created with a dynamic simulator and real

process data collected from the Neste Oil Oyj Naantali refinery. The performance of

the FDI/FTC system, created with real dearomatisation process history data, was

validated onsite at the refinery.

The hypotheses presented in Chapter 1 are: (1) information provided by data-based

modelling methods can be utilised to achieve FTC, (2) the estimation accuracy

of the linear models (PLS and SMI) can be improved by combining them with a

nonlinear ANN model (MLP), and (3) better input variable sets are achieved by

including calculated variables. The hypotheses have been verified using the results

of three experimental FDI systems for the dearomatisation process.

In the future, the tasks related to data-based modelling that need to be further

researched include more rigorous methods for selecting optimal modelling methods

based on the properties of the process history data. Also the possibilities for si-

multaneously using different types of models to perform FDI need to be considered

in more detail. The third important research topic is the more efficient use of ex-

isting prior knowledge in data-based modelling. Creating calculated variables that
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describe complex, unmeasured process phenomena offers one possibility for more

accurate and robust data-based modelling.
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partial least squares to nonlinear pattern recognition problems: diagnosis of

process faults. Analytica Chimica Acta 331, pages 187–193.

[166] D. Wang and J. A. Romagnoli. 2005. Robust multi-scale principal component

analysis with applications to process monitoring. Journal of Process Control

15, pages 869–882.

[167] J. Wang and J. Qin. 2002. A new subspace identification approach based on

principal component analysis. Journal of Process Control 12, pages 841–855.

[168] X. Wang, U. Kruger, and B. Lennox. 2003. Recursive partial least squares

algorithms for monitoring complex industrial processes. Control Engineering

Practice 11, pages 613–632.

[169] J. Westerhuis, T. Kourti, and J. MacGregor. 1998. Analysis of multiblock

and hierarchical PCA and PLS models. Journal of Chemometrics 12, pages

301–321.



185

[170] H. Wold. 1975. Path models with latent variables: The NIPALS approach.

In: H.M. Blalock et al. Quantitative Sociology: International perspectives

on mathematical and statistical model building, Academic Press, NY, pages

307–357.

[171] S. Wold. 1992. Nonlinear partial least squares modelling II. Spline inner

relation. Chemometrics and Intelligent Laboratory Systems 14, pages 71–84.

[172] S. Wold, K. Esbensen, and P. Geladi. 1987. Principal component analysis.

Chemometrics and Intelligent Laboratory Systems 23, pages 37–52.

[173] S. Wold, N. Kettaneh-Wold, and B. Skagerberg. 1989. Nonlinear PLS mod-

eling. Chemometrics and Intelligent Laboratory Systems 7, pages 53–65.

[174] S. Wold, H. Martens, and H. Wold. 1983. The multivariate calibration

method in chemistry solved by the PLS method. In: Proc. of Conf. Ma-

trix Pencils Lecture Notes in Mathematics, pages 286–293.
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Appendix A Mathematical descriptions of the

utilised modelling methods

PCA is used to analyse only one data set, the process measurements. PCA can

therefore be used to detect changes in the process, but it does not provide any infor-

mation how those changes will affect the quality of the process product. The PCA

is based on decomposing process history data X(m,n) into principal component

scores, T , and loadings P and residual term E (Jackson, 1990).

X = TP ′ + E (A.1)

The PC scores and loadings can be determined by solving an eigenvalue decompo-

sition of the sample covariance matrix S,

S =
1

n− 1
X ′sXs = V ΛV ′ (A.2)

where the loading vectors are the orthogonal columns of the matrix V and the

diagonal matrix Λ contains the non-negative real eigenvalues, λi, representing the

variance in the direction of the corresponding loading vector. An alternative way to

get the scores and the loadings is to use singular value decomposition:

1√
n− 1

Xs = UΣV ′ (A.3)

where the diagonal matrix Σ contains the non-negative real singular values, σi.

Singular values and eigenvalues are related as λi = σ2
i . The loading matrix P is

constructed of r < m column vectors of V corresponding to r largest eigenvalues

(or singular values) and the score matrix T = XP . The ith transformed variable

ti = x′pi is called the ith principal component of x, where x is a column vector of

measurements and pi is the ith row of P . When the data matrix X̂ is reconstructed

(A.4), the residual E between the original and reconstructed data matrices can be

determined (A.5) (Chiang et al., 2001).

X̂ = TP ′ (A.4)
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E = X − X̂ (A.5)

In PCA the first problem is to choose the optimal number of principal components

(PCs). For this situation, different approaches have been proposed: (1) Select the

first PCs until the break point in the slope of the cumulative explaining curve is

reached. (2) Select the PCs which explain more than 1 % of the variation of the

data. (3) Select the PCs so that the cumulative explaining capacity is more than

90 %. All the before mentioned methods for selecting the number of PCs serve

only as guidelines and the optimal number of PCs should be determined by select-

ing different numbers of PCs and comparing the FDI performance of the resulting

models.

PLS is in principle similar to PCA, but instead of using one data set it uses two,

e.g. the process measurements and the product quality information. Utilising the

quality information separately gives PLS an edge over PCA as the latent variables

are formed so that they explain the variance of the product quality. The basic

equations of PLS are given below (Chiang et al., 2001). The auto-scaled predictor

data set Xs is decomposed as

Xs = TP ′ + E (A.6)

and the scaled predicted set Ys as

Ys = UQ′ + F̃ (A.7)

where E and F̃ are residual matrices. The connection between (A.6) and (A.7) is

the relation of the score vectors ti and ui shown in (A.8).

ûi = biti (A.8)

where ûi is the regression estimate of the score vector ui and bi are the regression

coefficients. (A.7) can be written in a matrix form

Û = BT (A.9)
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which can then be used to substitute U in Equation A.7 resulting

Ys = BTQ′ + F (A.10)

The basic problem in PLS-based modelling is to determine the optimal number of

latent variables. This is similar situation to the previously presented selection of PCs

and the same methods are used to solve the problem. The second problem is related

to the data sets: for effective use of PLS the quality measurements should closely

correlate to the process measurements. There should also be more than one quality

parameter to get more accurate view of the quality (Nomikos and MacGregor, 1995).

Several subspace methods to determine the matrices A, B, C, and D for a state-

space model have been presented in literature. The method used in this study

utilises PCA in reducing the quantity of the states (Hyötyniemi, 2001). First, the

state-space model is expressed asx(κ+ 1) = Ax(κ) +Bu(κ) + ε(κ)

y(κ) = Cx(κ) +Du(κ) + ε(κ)

(A.11)

where u(κ) is the system input with dimension nx1, x(κ) is the state vector with

dimension dx1 and y(κ) is the system output with dimension mx1. ε represent a

white noise sequence. Input and output data matrices containing information of the

past and the future are defined as

U past
k−2β+1

=


u1xn(1) u1xn(2) . . . u1xn(β)

...
...

. . .
...

u1xn(k − 2β + 1) u1xn(k − 2β + 2) . . . u1xn(k − β)

 (A.12)

Ypast =


y(1) y(2) . . . y(β)

...
...

. . .
...

y(k − 2β + 1) y(k − 2β + 2) . . . y(k − β)

 (A.13)

Ufuture =


u(β + 1) u(β + 2) . . . u(2β)

...
...

. . .
...

u(k − β + 1) u(k − β + 2) . . . u(k)

 (A.14)
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Yfuture =


y(β + 1) y(β + 2) . . . y(2β)

...
...

. . .
...

y(k − β + 1) y(k − β + 2) . . . y(k)

 (A.15)

The model that is being created estimates the future outputs based on all inputs

and past outputs. Thus using definitions

χ = (Ypast|Upast|Ufuture) and Z = (Yfuture) (A.16)

there should be a mapping from χ to Z. The mapping can be performed with least

squares method, resulting

Zest = χest(χ
Tχ)−1χTZ = (Ypast,est|Upast,est|Ufuture,est)(χTχ)−1χTZ (A.17)

Because the values of Ufuture,est are not known, the model is divided into parts

Zpast + Zfuture = (Ypast,est|Upast,est|0)(χTχ)−1χTZ + (0|0|Ufuture,est)(χTχ)−1χTZ

(A.18)

now the Zpast contains all available information from the past and a refined data

matrix is determined as

X = Zpast = (Ypast,est|Upast,est|0)(χTχ)−1χTZ (A.19)

This matrix is set as the preliminary system state matrix. The dimension of the

highly redundant states is high and thus it is reduced with a suitable method, PCA.

The final system matrices are determined by defining X− as a submatrix of X with

the last row eliminated and X+ as a submatrix of X with the first row eliminated

and the input and the output matrices (A.20)

Uk−βxn =


uT (β)

...

uT (k − β − 1)

 and Yk−βxm =


yT (β)

...

yT (k − β − 1)

 (A.20)

The model can be written asx(κ+ 1)

y(κ)

 =

 A B

C D

x(κ)

y(κ)

 (A.21)
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and there holds

(X+|Y ) = (X−|U)

 AT CT

BT DT

 (A.22)

so, finally the matrices A, B, C and D can be solved in least squares sense: A B

C D

 = (X+|Y )T (X−|U)((X−|U)T (X−|U))−1 (A.23)

Multilayer perceptron is one of the most commonly used neural network algorithms,

according to a study in 1995, 81,2 % of all ANN based applications used MLP

structure (Haykin, 1995). The MLP models usually consist of 3 layers of perceptrons

that perform the nonlinear input - output mapping. MLP is an interesting tool

for process modelling as it can approximate functions to arbitrary accuracy if the

number of perceptrons is sufficiently high. Unfortunately, this also makes the MLP

models vulnerable to over fitting, as they can also model the noise in the training

data. The output of a single perceptron is given by (A.24).

y = ϕ(
n∑
i=1

wixi + b) (A.24)

where y is the output, w is a weight, x in an input, b is a bias term and ϕ is the

nonlinear sigmoid activation function

ys =
1

1 + e−a
(A.25)

For a single hidden layer MLP, the model mapping inputs to outputs can be pre-

sented as:

y = Bϕ(Ax+ a) + b (A.26)

where y is the vector of outputs, x the vector of inputs, A and a are the weight and

bias vectors of the first layer, B and b are the weight and bias vectors of the second

layer, ϕ denotes the nonlinear activation function. The training of the MLP can

be performed with the Levenberg-Marquardt (LM) method in which the changes of

weights, ∆w, is determined by solving (A.27) (Costa et al., 2007).

∆w =
(
JT (w)J(w) + µI

)−1
JT (w)e(w) (A.27)
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where w is the weight vector, e is the vector of output errors, J(w) is the Jacobian

matrix of the partial derivativies of e with respect to the weights, I is an identity

matrix and µ is a parameter that is adjusted during the training.

SOMs are two layer neural networks used for analysing the operating states and for

classifying measurement vectors. SOM maps multidimensional measurement data

(the first layer) into two-dimensional plane (the second layer) so that the topology

of the data is preserved. One of the benefits of the SOM algorithm is that the two-

dimensional representation of the data is visual and easy to understand compared to

the original n-dimensional data. The size i.e. the maximum number of classes and

the shape of the SOM are determined before the training. The SOM uses compet-

itive, unsupervised training consisting of two parts: (1) determining the distances

between the neurons and a new measurement vector (A.28) and (2) updating the

weights of the neuron having the shortest distance with the measurement vector and

the the weights of its neighbouring neurons with (A.29).

D(x,wi) =
m∑
k=1

(kk − wik)2 (A.28)

where D(x,wi) is the distance between the measurement vector and a neuron i, m

is the number of variables, xk is the kth element of the measurement vector and wik

is the kth element of the weight vector of the neuron i.

wik(t+ 1) = wik(t) + hci(t)(xk(t)− wik(t)) (A.29)

where hci is scalar Gaussian kernel function:

hci = α(t)exp(−‖ri − rc‖
2

2σ(t)2
) (A.30)

where α is the rate of learning foefficient, σ is the size of the affected neighbourhood

and r’s are coordinates of neurons. (Kohonen, 1990)
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Appendix B Graphical presentations of the

performance of the models for the

second testing experiment
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Figure B.1: Simulated and estimated values of FP for the training data set (top
left), corresponding estimation errors (bottom left) and the cumulative distribution
of the estimation errors (right)
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Figure B.2: Simulated and estimated values of FP for the evaluation data sets 1
to 3 (top left), corresponding estimation errors (bottom left) and the cumulative
distribution of the estimation errors (right)



B–3

0 10 20 30 40 50 60 70 80 90 100
73.5

74

74.5

75

75.5

76

76.5

77
Evaluation data set 4

T
em

pe
ra

tu
re

 [°
C

]

Samples

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

E
st

im
at

io
n 

er
ro

r 
[°

C
]

Samples
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

10

20

30

40

50

60

70

80

90

100
Evaluation data set 4

C
um

ul
at

iv
e 

fr
ac

tio
n 

of
 e

st
im

at
es

 [%
]

Estimation error

PLS
MLP
SMI
SOM
PLS−MLP
SMI−MLP

0 50 100 150 200 250 300 350
73

74

75

76

77

78
Evaluation data set 5

T
em

pe
ra

tu
re

 [°
C

]

Samples

0 50 100 150 200 250 300 350
−3

−2

−1

0

1

E
st

im
at

io
n 

er
ro

r 
[°

C
]

Samples
0 0.5 1 1.5 2 2.5

0

10

20

30

40

50

60

70

80

90

100
Evaluation data set 5

C
um

ul
at

iv
e 

fr
ac

tio
n 

of
 e

st
im

at
es

 [%
]

Estimation error

PLS
MLP
SMI
SOM
PLS−MLP
SMI−MLP

0 100 200 300 400 500 600 700
20

25

30

35

40

45

50

55
Evaluation data set 6

T
em

pe
ra

tu
re

 [°
C

]

Samples

0 100 200 300 400 500 600 700
−15

−10

−5

0

5

10

15

E
st

im
at

io
n 

er
ro

r 
[°

C
]

Samples
0 1 2 3 4 5 6 7 8 9

0

10

20

30

40

50

60

70

80

90

100
Evaluation data set 6

C
um

ul
at

iv
e 

fr
ac

tio
n 

of
 e

st
im

at
es

 [%
]

Estimation error

PLS
MLP
SMI
SOM
PLS−MLP
SMI−MLP

Figure B.3: Simulated and estimated values of FP for the evaluation data set 4
to 6 (top left), corresponding estimation errors (bottom left) and the cumulative
distribution of the estimation errors (right)
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Figure B.4: Simulated and estimated values of IBP for the training data set (top
left), corresponding estimation errors (bottom left) and the cumulative distribution
of the estimation errors (right)
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Figure B.5: Simulated and estimated values of IBP for the evaluation data sets
1 to 3 (top left), corresponding estimation errors (bottom left) and the cumulative
distribution of the estimation errors (right)
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Figure B.6: Simulated and estimated values of IBP for the evaluation data set 4
to 6 (top left), corresponding estimation errors (bottom left) and the cumulative
distribution of the estimation errors (right)
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Figure B.7: Dependence of the estimation errors on the estimation and the input
variables, training data, MLP FP model (top) and IBP model (bottom)
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Figure B.8: Dependence of the estimation errors on the estimation and the input
variables, training data, SMI FP model (top) and IBP model (bottom)
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Figure B.10: Dependence of the estimation errors on the estimation and the input
variables, training data, PLS-MLP FP model (top) and IBP model (bottom)
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Figure B.11: Dependence of the estimation errors on the estimation and the input
variables, training data, SMI-MLP FP model (top) and IBP model (bottom)
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Appendix C Estimation accuracies of the FDI

models

Table C.1: RMSEs of PLS models for IBP trained with different combinations of
steps described in methodology
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Methodology 0.273 0.294 0.826 0.086 0.081 0.127 1.888 0.550 4

Plain PLS 0.301 0.423 1.093 0.184 0.189 0.261 2.689 0.806 21 6

X 0.273 0.295 0.828 0.086 0.098 0.128 1.988 0.570 23 5

X 0.290 0.445 1.000 0.094 0.107 0.145 2.842 0.772 31 6

X 0.301 0.423 1.093 0.184 0.189 0.261 2.689 0.806 21 6

X X 0.273 0.293 0.833 0.088 0.083 0.130 1.859 0.548 33 4

X X 0.272 0.292 0.802 0.087 0.084 0.130 1.935 0.555 24 8

X X 0.294 0.408 0.976 0.140 0.172 0.207 2.749 0.775 36 5

X X X 0.273 0.293 0.833 0.088 0.083 0.130 1.859 0.548 37 4
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Table C.2: RMSEs of PLS models for FP trained with different combinations of
steps described in methodology
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Meth. 0.370 0.352 1.278 0.066 0.112 0.186 1.099 0.515 2

Ref. 0.243 0.756 0.136 0.101 0.165 1.492 0.482 179 6

X 0.200 0.887 0.116 0.093 0.136 1.581 0.502 175 3

X 0.251 0.862 0.126 0.091 0.152 1.615 0.516 981 3

X 0.243 0.756 0.136 0.101 0.165 1.492 0.482 127 7

X X 0.333 1.299 0.066 0.125 0.140 1.056 0.503 1038 5

X X 0.200 0.887 0.116 0.093 0.136 1.581 0.502 125 3

X X 0.232 0.692 0.148 0.112 0.186 1.416 0.465 1058 3

X X X 0.333 1.299 0.066 0.125 0.140 1.056 0.503 1324 5
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Table C.3: RMSEs of MLP models for IBP trained with different combinations of
steps described in methodology
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Meth. 0.269 0.560 1.030 0.087 0.560 0.262 2.606 0.851 1

Ref. 0.276 0.842 0.066 0.153 0.095 1.179 0.435 3163 12

X 0.226 1.213 0.064 0.161 0.088 1.258 0.502 2102 6

X 0.520 0.933 0.077 0.352 0.153 0.559 0.432 12609 2

X 0.286 1.125 0.064 0.141 0.098 0.580 0.382 3098 5

X X 0.738 1.143 0.067 0.511 0.376 0.425 0.543 12844 13

X X 0.186 1.186 0.068 0.178 0.099 1.611 0.555 1581 11

X X 0.362 1.310 0.049 0.163 0.139 0.609 0.439 18667 3

X X X 0.392 1.084 0.062 0.250 0.126 1.260 0.529 18294 2
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Table C.4: RMSEs of MLP models for FP trained with different combinations of
steps described in methodology
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Meth. 0.317 0.421 0.404 1.280 0.051 0.329 0.142 0.498 1

Ref. 0.334 1.968 0.063 0.199 0.135 0.789 0.582 2307 13

X 0.187 1.607 0.069 0.160 0.097 1.285 0.568 3196 5

X 0.515 1.072 0.057 0.313 0.135 0.686 0.463 12866 1

X 0.268 0.741 0.062 0.143 0.098 1.221 0.422 2783 5

X X 0.274 1.735 0.058 0.123 0.127 0.896 0.536 13232 3

X X 0.269 1.351 0.067 0.145 0.090 0.906 0.471 1364 5

X X 0.269 0.908 0.058 0.177 0.081 0.875 0.395 19547 3

X X X 0.287 0.965 0.051 0.170 0.123 1.276 0.479 17941 2
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Table C.5: RMSEs of SMI models for IBP trained with different combinations of
steps described in methodology
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Meth. 0.269 0.306 0.785 0.092 0.095 0.134 1.614 0.504 8

Ref. 1.103 4.027 0.183 0.428 0.200 2.443 1.397 95 2

X 0.295 0.886 0.090 0.105 0.133 1.731 0.540 107 14

X 0.348 0.679 0.144 0.215 0.165 1.795 0.558 194 1

X 1.103 4.027 0.183 0.428 0.200 2.443 1.397 97 2

X X 0.280 0.724 0.082 0.090 0.116 1.651 0.491 218 6

X X 0.286 0.779 0.082 0.093 0.116 1.834 0.532 103 14

X X 0.317 0.783 0.146 0.211 0.169 1.479 0.518 229 3

X X X 0.274 0.780 0.087 0.104 0.136 1.586 0.495 243 10
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Table C.6: RMSEs of SOM models for IBP trained with different combinations of
steps described in methodology
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Meth. 0.371 1.072 2.176 0.259 0.962 1.032 2.172 1.279 11x11

Ref. 0.929 3.493 0.156 0.377 0.521 2.263 1.290 234 23x23

X 0.689 3.088 0.189 0.386 0.603 2.223 1.196 284 24x24

X 0.787 2.823 0.170 0.448 0.731 2.113 1.178 1088 16x16

X 0.929 3.493 0.156 0.377 0.521 2.263 1.290 241 23x23

X X 0.835 2.293 0.226 0.474 0.776 2.283 1.148 1281 16x16

X X 0.689 3.088 0.189 0.386 0.603 2.223 1.196 274 24x24

X X 0.787 2.823 0.170 0.448 0.731 2.113 1.178 1384 16x16

X X X 0.835 2.293 0.226 0.474 0.776 2.283 1.148 1535 16x16
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Table C.7: RMSEs of SOM models for FP trained with different combinations of
steps described in methodology
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Meth. 0.498 0.748 2.047 0.169 0.704 0.870 0.762 0.883 10x10

Ref. 0.767 1.719 0.178 0.522 0.839 1.164 0.865 727 19x19

X 0.785 2.352 0.179 0.542 0.869 1.282 1.001 671 24x24

X 0.992 1.586 0.214 0.674 1.047 0.855 0.895 7005 12x12

X 0.767 1.719 0.178 0.522 0.839 1.164 0.865 722 19x19

X X 0.593 1.449 0.148 0.400 0.674 0.859 0.687 6626 23x23

X X 0.785 2.352 0.179 0.542 0.869 1.282 1.001 663 24x24

X X 0.633 1.383 0.292 0.800 0.674 1.950 0.955 7872 24x24

X X X 0.813 1.236 0.124 0.571 0.923 0.925 0.765 8375 12x12
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Table C.8: RMSEs of PLS-MLP models for IBP trained with different combinations
of steps described in methodology
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Meth. 0.365 0.354 1.195 0.070 0.117 0.192 0.998 0.488 2

Ref. 0.235 0.629 0.132 0.094 0.276 1.475 0.473 1814 2

X 0.207 0.803 0.088 0.126 0.219 1.485 0.488 1929 5

X 0.254 0.795 0.122 0.091 0.148 1.658 0.511 5569 1

X 0.316 0.593 0.082 0.113 0.112 1.497 0.452 2557 2

X X 0.471 1.127 0.059 0.236 0.104 0.808 0.467 5246 9

X X 0.240 0.814 0.100 0.132 0.124 1.490 0.484 1664 8

X X 0.521 0.662 0.091 0.132 0.088 1.283 0.463 8166 2

X X X 0.264 0.932 0.057 0.257 0.129 0.856 0.416 7001 5
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Table C.9: RMSEs of PLS-MLP models for FP trained with different combinations
of steps described in methodology
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Meth. 0.268 0.298 0.751 0.084 0.085 0.124 1.865 0.535 1

Ref. 0.429 1.085 0.185 0.117 0.318 2.477 0.768 62 8

X 0.298 0.831 0.086 0.160 0.141 1.761 0.546 63 9

X 0.470 1.026 0.099 0.138 0.144 2.848 0.787 178 1

X 0.403 1.044 0.125 0.114 0.232 2.655 0.762 66 2

X X 0.293 0.797 0.086 0.083 0.129 1.833 0.537 186 2

X X 0.299 0.769 0.117 0.091 0.157 1.926 0.560 64 3

X X 0.383 0.906 0.123 0.133 0.264 2.729 0.756 229 3

X X X 0.292 0.845 0.085 0.083 0.130 1.858 0.549 227 1



C–10

Table C.10: RMSEs of SMI-MLP models for FP trained with different combina-
tions of steps described in methodology
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Meth. 0.268 0.322 0.780 0.090 0.102 0.129 1.625 0.508 1

Ref. 1.113 2.506 0.147 0.650 0.595 1.699 1.118 91 9

X 0.865 4.236 0.131 0.634 0.320 2.682 1.478 98 2

X 0.619 1.831 0.107 0.281 0.141 1.560 0.757 203 1

X 0.835 4.262 0.165 0.597 0.484 1.652 1.333 94 3

X X 0.500 2.668 0.137 0.268 0.361 1.731 0.944 173 5

X X 0.898 5.107 0.358 0.652 0.478 1.463 1.493 99 2

X X 0.444 1.562 0.121 0.262 0.181 2.586 0.859 271 2

X X X 0.492 1.950 0.248 0.438 0.342 1.627 0.850 263 1
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