2,354 research outputs found

    On Constructing Persistent Identifiers with Persistent Resolution Targets

    Get PDF
    Persistent Identifiers (PID) are the foundation referencing digital assets in scientific publications, books, and digital repositories. In its realization, PIDs contain metadata and resolving targets in form of URLs that point to data sets located on the network. In contrast to PIDs, the target URLs are typically changing over time; thus, PIDs need continuous maintenance -- an effort that is increasing tremendously with the advancement of e-Science and the advent of the Internet-of-Things (IoT). Nowadays, billions of sensors and data sets are subject of PID assignment. This paper presents a new approach of embedding location independent targets into PIDs that allows the creation of maintenance-free PIDs using content-centric network technology and overlay networks. For proving the validity of the presented approach, the Handle PID System is used in conjunction with Magnet Link access information encoding, state-of-the-art decentralized data distribution with BitTorrent, and Named Data Networking (NDN) as location-independent data access technology for networks. Contrasting existing approaches, no green-field implementation of PID or major modifications of the Handle System is required to enable location-independent data dissemination with maintenance-free PIDs.Comment: Published IEEE paper of the FedCSIS 2016 (SoFAST-WS'16) conference, 11.-14. September 2016, Gdansk, Poland. Also available online: http://ieeexplore.ieee.org/document/7733372

    Graffiti Networks: A Subversive, Internet-Scale File Sharing Model

    Full text link
    The proliferation of peer-to-peer (P2P) file sharing protocols is due to their efficient and scalable methods for data dissemination to numerous users. But many of these networks have no provisions to provide users with long term access to files after the initial interest has diminished, nor are they able to guarantee protection for users from malicious clients that wish to implicate them in incriminating activities. As such, users may turn to supplementary measures for storing and transferring data in P2P systems. We present a new file sharing paradigm, called a Graffiti Network, which allows peers to harness the potentially unlimited storage of the Internet as a third-party intermediary. Our key contributions in this paper are (1) an overview of a distributed system based on this new threat model and (2) a measurement of its viability through a one-year deployment study using a popular web-publishing platform. The results of this experiment motivate a discussion about the challenges of mitigating this type of file sharing in a hostile network environment and how web site operators can protect their resources

    Peer-to-Peer Secure Updates for Heterogeneous Edge Devices

    Get PDF
    We consider the problem of securely distributing software updates to large scale clusters of heterogeneous edge compute nodes. Such nodes are needed to support the Internet of Things and low-latency edge compute scenarios, but are difficult to manage and update because they exist at the edge of the network behind NATs and firewalls that limit connectivity, or because they are mobile and have intermittent network access. We present a prototype secure update architecture for these devices that uses the combination of peer-to-peer protocols and automated NAT traversal techniques. This demonstrates that edge devices can be managed in an environment subject to partial or intermittent network connectivity, where there is not necessarily direct access from a management node to the devices being updated

    Distributed Protocols at the Rescue for Trustworthy Online Voting

    Get PDF
    While online services emerge in all areas of life, the voting procedure in many democracies remains paper-based as the security of current online voting technology is highly disputed. We address the issue of trustworthy online voting protocols and recall therefore their security concepts with its trust assumptions. Inspired by the Bitcoin protocol, the prospects of distributed online voting protocols are analysed. No trusted authority is assumed to ensure ballot secrecy. Further, the integrity of the voting is enforced by all voters themselves and without a weakest link, the protocol becomes more robust. We introduce a taxonomy of notions of distribution in online voting protocols that we apply on selected online voting protocols. Accordingly, blockchain-based protocols seem to be promising for online voting due to their similarity with paper-based protocols

    KISS: Stochastic Packet Inspection Classifier for UDP Traffic

    Get PDF
    This paper proposes KISS, a novel Internet classifica- tion engine. Motivated by the expected raise of UDP traffic, which stems from the momentum of Peer-to-Peer (P2P) streaming appli- cations, we propose a novel classification framework that leverages on statistical characterization of payload. Statistical signatures are derived by the means of a Chi-Square-like test, which extracts the protocol "format," but ignores the protocol "semantic" and "synchronization" rules. The signatures feed a decision process based either on the geometric distance among samples, or on Sup- port Vector Machines. KISS is very accurate, and its signatures are intrinsically robust to packet sampling, reordering, and flow asym- metry, so that it can be used on almost any network. KISS is tested in different scenarios, considering traditional client-server proto- cols, VoIP, and both traditional and new P2P Internet applications. Results are astonishing. The average True Positive percentage is 99.6%, with the worst case equal to 98.1,% while results are al- most perfect when dealing with new P2P streaming applications

    Preliminary specification and design documentation for software components to achieve catallaxy in computational systems

    Get PDF
    This Report is about the preliminary specifications and design documentation for software components to achieve Catallaxy in computational systems. -- Die Arbeit beschreibt die Spezifikation und das Design von Softwarekomponenten, um das Konzept der Katallaxie in Grid Systemen umzusetzen. Eine Einführung ordnet das Konzept der Katallaxie in bestehende Grid Taxonomien ein und stellt grundlegende Komponenten vor. Anschließend werden diese Komponenten auf ihre Anwendbarkeit in bestehenden Application Layer Netzwerken untersucht.Grid Computing

    Hidden and Uncontrolled - On the Emergence of Network Steganographic Threats

    Full text link
    Network steganography is the art of hiding secret information within innocent network transmissions. Recent findings indicate that novel malware is increasingly using network steganography. Similarly, other malicious activities can profit from network steganography, such as data leakage or the exchange of pedophile data. This paper provides an introduction to network steganography and highlights its potential application for harmful purposes. We discuss the issues related to countering network steganography in practice and provide an outlook on further research directions and problems.Comment: 11 page

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems

    Decentralizing indexing and bootstrapping for online applications

    Get PDF
    https://doi.org/10.1049/blc2.12001Abstract Peer-to-peer (P2P) networks utilize centralized entities (trackers) to assist peers in finding and exchanging information. Although modern P2P protocols are now trackerless and their function relies on distributed hash tables (DHTs), centralized entities are still needed to build file indices (indexing) and assist users in joining DHT swarms (bootstrapping). Although the functionality of these centralized entities are limited, every peer in the network is expected to trust them to function as expected (e.g. to correctly index new files). In this work, a new approach for designing and building decentralized online applications is proposed by introducing DIBDApp. The approach combines blockchain, smart contracts and BitTorrent for building up a combined technology that permits to create decentralized applications that do not require any assistance from centralized entities. DIBDApp is a software library composed of Ethereum smart contracts and an API to the BitTorrent protocol that fully decentralizes indexing, bootstrapping and file storing. DIBDApp enables any peer to seamlessly connect to the designed smart contracts via the Web3J protocol. Extensive experimentation on the Rinkeby Ethereum testnet shows that applications built using the DIBDApp library can perform the same operations as in traditional back-end architectures with a gas cost of a few USD cents.Peer reviewe
    corecore