
https://helda.helsinki.fi

Decentralizing indexing and bootstrapping for online applications

Schutz, Pierre

2021

Schutz , P , Gal , S , Chatzopoulos , D & Hui , P 2021 , ' Decentralizing indexing and

bootstrapping for online applications ' , IET Blockchain , vol. 1 , no. 1 , pp. 3-15 . https://doi.org/10.1049/blc2.12001

http://hdl.handle.net/10138/356240

https://doi.org/10.1049/blc2.12001

cc_by

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

https://ietresearch.onlinelibrary.wiley.com/action/showCampaignLink?uri=uri%3Adc7b40a7-5d03-47fc-b4a6-9b2e58bc8c20&url=https%3A%2F%2Fietresearch.onlinelibrary.wiley.com%2Fhub%2Fjournal%2F26341573%2Fhomepage%2Fcfp%3Futm_medium%3Ddisplay%26utm_source%3Ddartads%26utm_content%3DIET_ePDF_call_for_papers_feb23%26utm_term%3DBLC2&pubDoi=10.1049/blc2.12001&viewOrigin=offlinePdf

Received: 28 September 2020 Accepted: 22 December 2020 IET Blockchain

DOI: 10.1049/blc2.12001

ORIGINAL RESEARCH PAPER

Decentralizing indexing and bootstrapping for online applications

Pierre Schutz1 Stanislas Gal2 Dimitris Chatzopoulos3 Pan Hui3,4

1 Ecole Polytechnique Federale de Lausanne,
Lausanne, Switzerland

2 ETH Zürich, Zurich, Switzerland

3 The Hong Kong University of Science and
Technology, Hong Kong, China

4 University of Helsinki, Helsinki, Finland

Correspondence

Pan Hui, The Hong Kong University of Science and
Technology, China.
Email: panhui@cse.ust.hk

Abstract

Peer-to-peer (P2P) networks utilize centralized entities (trackers) to assist peers in find-
ing and exchanging information. Although modern P2P protocols are now trackerless and
their function relies on distributed hash tables (DHTs), centralized entities are still needed
to build file indices (indexing) and assist users in joining DHT swarms (bootstrapping).
Although the functionality of these centralized entities are limited, every peer in the net-
work is expected to trust them to function as expected (e.g. to correctly index new files). In
this work, a new approach for designing and building decentralized online applications is
proposed by introducing DIBDApp. The approach combines blockchain, smart contracts
and BitTorrent for building up a combined technology that permits to create decentral-
ized applications that do not require any assistance from centralized entities. DIBDApp
is a software library composed of Ethereum smart contracts and an API to the BitTor-
rent protocol that fully decentralizes indexing, bootstrapping and file storing. DIBDApp
enables any peer to seamlessly connect to the designed smart contracts via the Web3J pro-
tocol. Extensive experimentation on the Rinkeby Ethereum testnet shows that applications
built using the DIBDApp library can perform the same operations as in traditional back-
end architectures with a gas cost of a few USD cents.

1 INTRODUCTION

Peer-to-peer (P2P) file-sharing architectures were first devel-
oped 20 years ago and since then they have been significantly
improved. First-generation architectures (e.g. Napster) are heav-
ily centralized since their function depends on servers that store
indices of the shared files [1, 2]. Although second generations
(e.g. Gnutella) eliminate the need for centralized servers and
provide connections only between the users [3–5], searching
for a file takes time, especially if it does not exist in the peers
the searching peer can reach. BitTorrent protocol [6], via the
proposal of torrent files, removes the file searching process
from the P2P network via introducing a centralized entity, called
tracker, that stores metadata about the shared files. Trackers
themselves do not have copies of the files, they only track the
up/downloaders and make sure they can connect to each other.
Users interested in a file, first locate its torrent in a torrent
exchange website and then use a torrent client to find the peers
who have stored the file locally.

The employment of trackers introduced various vulnerabili-
ties that motivated the development of trackerless versions ([7,
8]) that employ distributed hash tables (DHTs) [9–11]. When

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.
© 2021 The Authors. IET Blockchain published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology

DHT is enabled, it connects to a bootstrap peer and gets infor-
mation about a set of DHT nodes and users to build up a small
group of connected peers. Those peers are then used to get new
peers. Although no tracker is required at any time, the users need
to find the torrent files of the files they are interested in before
using the DHT.

Blockchain-based systems, that appear after the development
of Bitcoin [12] further decentralize file-sharing systems while a
fraction of them enhances participants privacy too [13, 14].

In this work, we develop DIBDApp, a software library that
integrates a Kademlia DHT [11] and utilizes Ethereum smart
contracts [15] and the BitTorrent protocol [6] using the Java
based Web3J tool [16]. In contrast to IPFS [17], that enables ver-
sioned and decentralized distribution of files, DIBDApp does
not consider all files as part of the same generalized data struc-
ture. On the contrary, it employs smart contracts to minimize
the storage requirements of each P2P node since they only
need to store the files they are interested in exchanging with
others.

Also, unlike existing P2P architectures that are assisted by
the functions of blockchains [18, 19], the majority of the devel-
oped smart contracts implements read-only functions whose

IET Blockchain. 2021;1:3–15. wileyonlinelibrary.com/iet-blc 3

 26341573, 2021, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12001 by U

niversity O
f H

elsinki, W
iley O

nline L
ibrary on [15/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-4765-5085
https://orcid.org/0000-0001-6026-1083
mailto:panhui@cse.ust.hk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/iet-blc

4 SCHUTZ ET AL.

FIGURE 1 Via the DIBDApp library, an Ethereum smart contract assists
node ‘A’ to index a file she wants to share with a P2P network while, at the
same time, provides connectivity information to node ‘B’ in order to connect
to nodes ‘C’ and ‘D’ and join the P2P network

execution via the Web3J library is near-instant and not lim-
ited by the consensus protocols of the Ethereum blockchain.
Figure 1 depicts the cases where a peer wants to publish a file
or a new peer wants to join the network and needs information
to connect to other peers.

1.1 Example

We consider Instagram, a traditional centralized online media
sharing service, to illustrate how DIBDApp can be used to
design a fully decentralized equivalent. We show how one can
rely on DIBDApp to deploy such a service without having to
host any centralized authority nor to administrate one, delegat-
ing all the tasks of centralization to the decentralized networks
of Ethereum and of BitTorrent. We describe an Instagram ser-
vice that provides simple features: (i) publish pictures with a
description and tags, (ii) browse pictures by tags and authors,
and (iii) follow other authors. Additionally, we discuss how DIB-
DApp can be employed in the implementation of a decentral-
ized fake news detection mechanism [20] and in a decentralized
federated learning protocol [21].

The motivation behind the design of DIBDApp is to reach a
higher level of decentralization for online services. This goal can
be questioned since losing centralization comes with trade-offs.
One may think that removing any form of direct control from
authority over a network will introduce a threat to the infor-
mation made available by the network and bring in a potential
risk of cybercrime victimization. Thus, the failure-resistance a
decentralized network brings needs to be considered together
with its censorship-resistance. Nevertheless, high decentralisa-
tion promotes democracy and freedom of speech [22].

1.2 State-of-the-art

Before listing the contributions of this work, we discuss the two
more closely related projects, IPFS and Filecoin, and compare
them with DIBDApp.

The InterPlanetary File System (IPFS) is a peer-to-peer dis-
tributed file system that seeks to connect all computing devices
with the same system of files [17]. DIBDApp differs from IPFS
since it is built as a toolset to directly develop services and appli-
cations, implementing the building blocks of online applications
in a decentralized way. IPFS is a protocol aiming to replace
HTTP with a decentralized storing feature. DIBDApp’s secu-
rity and architecture also fundamentally relies on the Ethereum
blockchain, where IPFS implements its own decentralized net-
work. In IPFS, files must be tracked with a Git-like version con-
trol system, where files’ data (but not metadata) are considered
immutable in DIBDApp. Services built on top of IPFS (e.g.
IPLS [23]) can be integrated with DIBDApp using the devel-
oped API.

Filecoin [24], Sia [25], Swarm [26] and Storj [27] are decentral-
ized file storage system with similar functionality to DIBDApp
but none of them provides file-sharing functionalities. Filecoin
is a decentralized storage network that turns cloud storage into
an algorithmic market. Filecoin is also blockchain-based but
aims to host an actual market, where peers can rent hard drive
storage to others, utilizing proof-of-replication storage and reg-
istering deals on the blockchain. The underlying file storing sys-
tem is IPFS. Its purpose is different than DIBDApp’s since it is
a market in itself, while DIPDApp is a library, meant to be used
as a technical tool in development.

1.3 Contributions

Traditional backend services for online applications offer four
main functionalities:(i) file reading, (ii) data indexing, (iii) file
writing and (iv) data access policies. P2P desktop and mobile
applications can employ DIBDApp for assisting nodes to join
the P2P network (via the bootstrapping functions) and to find
shared files without accessing any centralized entity (using the
indexing functions). In detail, DIBDApp allows P2P applica-
tions to:

1) bootstrap (i.e. to connect with the other nodes in the P2P
network),

2) upload the files they want to share,
3) browse existing files in the P2P network and,
4) download an existing file, by orchestrating interactions

between Ethereum smart contracts and P2P nodes.

The rest of the paper is organized as follows: In Section 2 we
discuss the required background before introducing the DIB-
DApp in Section 3; in Section 4 we present the implementation
details of DIBDApp; in Section 6 the experimental results; in
Section 8 we provide an overall discussion; finally, in Section 9
we present the concluding remarks.

2 BACKGROUND

Before introducing the design of the DIBDApp library, the
implementation details, representative use cases and discussing

 26341573, 2021, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12001 by U

niversity O
f H

elsinki, W
iley O

nline L
ibrary on [15/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

SCHUTZ ET AL. 5

the performance, we introduced the required background for
understanding the function of DIBDApp.

2.1 Distributed hash tables

Hash tables are widely used in networked systems due to their
ability to search, insert and delete data in constant time, on aver-
age. Distributed Hash Tables (DHTs) provide efficient ways to
retrieve values associated with keys, similar to traditional hash
tables. DHTs have the advantage to eliminate the need for a
centralized authority that stores a complete hash table. DHTs
are distributed in multiple nodes and every node can retrieve all
the (key, value) pairs by communicating with the other peers.
Kademlia [11] is a well-known and widely used protocol. The
most popular uses are the BitTorrent protocol and the node
discovery protocol in Ethereum network. Its wide acceptance is
justified by the following features: (i) the number of configura-
tion messages is minimized, (ii) it uses parallel and asynchronous
queries to synchronize the nodes, (iii) it is not sensitive to node
failures, (iv) the integrated lookup algorithm that finds files in
other nodes is highly scalable.

2.2 BitTorrent

BitTorrent protocol [6] is the most popular file-sharing proto-
col due to its ability to scale with the number of peers. Primary
versions incorporate trackers, (i.e. online servers) to (i) facili-
tate the communication between peers by storing torrent files
and metadata and (ii) to assist peers on searching the files they
want to download. Popular trackers, such as “thepiratebay.org”
or “demonoid.com” index hundreds of thousands of torrent
files. These functionalities are based on the number of down-
loads or votes and let people download trusted files and increase
users safety.

Another primary role of a tracker is to keep track of where
file chunks are stored on the P2P network, and which peers
can make them available for download. More than a decade
ago, in 2008, BitTorrent started supporting trackerless torrent
downloading using the Mainline DHT [28]. Mainline is an
extension of Kademlia and is used by clients to find peers by
mapping the hash of a torrent file to the list of peers that store
the given file. In this way, a client can directly locate the peers
who can share the file. Nevertheless, Mainline does not support
file indexing which still requires a tracker to store torrent
files. Also, in order to join the DHT, peers need to bootstrap
via a known peer, which is often a tracker. Therefore, this
solution only decentralizes a subset of the trackers’ functions.
Magnet links [29] allow clients to download files directly using
the DHT without relying on torrent files. They store a set
of parameters, including a torrent hash and other details like
the specification of the file to download inside a torrent. This
method avoids storing torrent files and as a result reduces the
amount of data needed to download a file via the BitTorrent
protocol.

2.3 Ethereum

Blockchains [12, 30], one of the latest advances in permis-
sionless distributed systems, are immutable and append-only
distributed ledgers maintained by open distributed systems of
Internet-connected computers which are incentivized to ded-
icate part of their resources to the network and can discon-
nect and reconnect at any time. Blockchains are composed of
blocks of data that are stored in sequence. Each block contains
data generated by an address, and information that is neces-
sary for the operation of the blockchain. Although the most
popular blockchain data type is transactions that transfer credit
between addresses, blockchains have also been used to store
other types of data [14, 31]. Transactions have also been used
to store scripts, healthcare data, shared files, votes, ownership
titles and others. In addition to storing data, blockchains also
support decentralized applications, called DApps, that are com-
posed of smart contracts and can process the stored data and
protect sensitive information [14].

The limited scripting capabilities of the Bitcoin blockchain
motivated the development of Ethereum in 2014 [15].
Ethereum, via its virtual machine (EVM), provides an open plat-
form that allows anyone to build and use decentralized appli-
cations, like DIBDApp, that are composed of smart contracts.
Each smart contract contains one or more methods and vari-
ables that define its state. After its creation, a smart contract
acquires an address and its code cannot be changed. The meth-
ods of a smart contract can be called by users or other smart
contracts that transfer a sufficient amount of gas on the con-
tract’s address in order to execute it. The gas amount depends
on the type of code the method contains. Whenever the destina-
tion of a transaction is the address of a contract, the code of the
called method is executed before adding the transaction in a new
block and storing it in the blockchain. The methods included
in smart contracts are categorized to “write” and “read-only”.
Write methods are called via a transaction to the contract which
is broadcasted to the network, processed in exchange of gas and
eventually added to a block in the blockchain. This process takes
at least one block duration of time to confirm that the transac-
tion has been validated. Read-only methods are named calls and
read the state of the contract on the blockchain without any
transaction broadcasting nor gas consumption and returns their
return values instantly.

3 DIBDAPP LIBRARY

DIBDApp exposes an API, as presented in Table 1, to P2P
application developers who want to implement a decentralized
backend. The API offers four methods: upload, download,
browse and bootstrap that are listed in Table 1. In order to
expose the required functionality without using any centralized
entity, DIBDApp relies on two decentralized networks: the
Ethereum blockchain network and a DHT-based BitTorrent
network. For the implementation of the API, we design two
classes to describe the users who participate in the P2P network

 26341573, 2021, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12001 by U

niversity O
f H

elsinki, W
iley O

nline L
ibrary on [15/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

6 SCHUTZ ET AL.

TABLE 1 P2P applications can use bootstrap to connect to the BitTorrent network and upload, download and browse to share, download and find files,
respectively, by being assisted Ethereum smart contracts instead of centralized entities

Name Parameters Returns Constraints Description

upload(User user, User

author, File file,

String name,

List<String> keywords,

String description)

Author, file and keywords to
index the file on the
blockchain as well as a
description and the user that
calls the contract.

File ID that denotes its
position on the
blockchain if success, and
null in case of failure.

The author needs a
populated DHT

Adds a new file in the
network and publish its
metadata on the
blockchain.

download(User leecher,

String magnet, File

directory)

The leecher to search in her
DHT, a magnet URI to
recover the file in the
network, path to store the file

void, the file is downloaded
in the gived location.

The user needs a
populated DHT

Downloads a file from the
network if it is available

browse(User user, int

startIndex, int

windowSize,

List<String> keywords,

Address author)

Keywords, id, and/or author to
search + a window size and
start index to select the
number of answers + the
user that calls the contract.

List<FileMetadata> object
containing details of the
matching files.

None Searches for files indexed on
the blockchain using
keywords or author
addresses.

bootstrap(User user) User object with Ethereum
wallet, IP, port number

True if the operation
succeeds

Ethereum Wallet A user joins the DHT by
finding a bootstrap node
on the blockchain.

(User) and the exchanged files (FileMetadata). The basic
variables of these two classes are listed below.
class User(String name, DHT dht, Creden-
tials ethereumWallet, int port, String ip)
class FileMetadata(String name, String mag-
net, String authorAddress, String descrip-
tion)

Furthermore, to complement the functions of the API, we
deployed two smart contracts on the Ethereum blockchain:
BootstrapTracker and FileTracker.

Considering the development of a decentralized Instagram-
like application, an application developer can employ DIBDApp
for the backend services. In detail, the process of publishing a
picture and sharing it with other users can be handled via the
upload function using the tags of the picture as keywords, its
description and the picture itself as a file. The subscription of
a user to another user can be implemented using the upload
function with the subscription information as metadata without
seeding an actual file. In order to allow the users of the ser-
vice to browse pictures given an author or a tag, the browse
and download function would make it possible to retrieve such
files and then to display them after downloading them using Bit-
Torrent. When they connect to the service, peers would join
the network using the bootstrap function. Therefore, the
whole service is relying entirely on purely decentralized architec-
tures. Before listing the implementation details in the next sec-
tion, we describe in more detail the indexing and bootstrapping
processes.

3.1 Indexing

In contrast to traditional backend services that store data on
centralized servers, the data of a service developed using the

DIBDApp library is “stored” in the BitTorrent network and
located by peers using its DHT. The download function of
DIBDApp is used to guarantee this feature. In order to call the
download function, the user needs a magnet uniform resource
identifier (URI) that references it such that the file can be recov-
ered in the network. This leads to the other component of the
“reading” function: indexing. DIBDApp implements the index-
ing functionality using the Ethereum blockchain. A Smart Con-
tract called FileTracker plays the role of the “metadatabase”
of the online service. FileTracker uses mappings to store file
metadata (including magnet URIs) and indexes them with key-
words. DIBDApp’s browse function reads these data and com-
bines multiple calls to FileTracker to answer the query in the
most precise way. The file reading process is detailed in Figure 2.
Whenever an application wants to share a file, the upload func-
tion is called to upload file metadata and files on the Ethereum
and BitTorrent networks. This function allows to start seeding
the file in the BitTorrent network, adds it to the DHT, publishes
the related metadata on the FileTracker contract (some tool
functions allow to edit the description or add a keyword to
an already existing file). The uploading protocol is detailed in
Figure 3.

3.2 Bootstrapping

In order to join the BitTorrent network using its DHT without
a tracker or a centralized bootstrap node, the DIBDApp library
uses another Smart Contract called BootstrapTracker,
which stores permanently updated information about a subset
of users of the BitTorrent network to help new users to be boot-
strapped in the network. They are other users of DIBDApp that
previously called the bootstrap function. Indeed, once a user
has been correctly linked to the network, it may be used to

 26341573, 2021, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12001 by U

niversity O
f H

elsinki, W
iley O

nline L
ibrary on [15/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

SCHUTZ ET AL. 7

FileTracker SC

File metadata storage

BitTorrent client

SC interactions

(1) call the SC

(2) read

(3) return

browse(id=9,
author=X)

browse(id, author) metadata = ##
| id = 9 | author
= X

download(metadata
= ##)

DHT

(4) send DHT messages to locate file

(5) File seeded
by the network
to the user

metadata = ##

Service user W

BitTorrent-
like DHT-
based P2P
network

FIGURE 2 Search and download function of DIBDApp library. A user can use the browse function to search a file on the blockchain using its metadata, and
use the DHT of BitTorrent network to find seeds that can share the wanted file

FileTracker SC

metadata = ## | id
= 9 | author = X

File metadata storage

DHT

(2) DHT messages

(1) Torrent creation
and start seeding for

SC interactions

BitTorrent client

upload(id=9,
author=X, metadata
= ##)

createTorrent(File)

(3) passing
metadata of
the newly
created
torrent

(4) adding metadata to
the smart contract

Service user W

BitTorrent-
like DHT-
based P2P
network

FIGURE 3 Upload function of DIBDApp library. A user creates a torrent for a file she wants to share and start seeding it, making it available in the BitTorrent
network. The file’s metadata is then added on the blockchain to make the file public and accessible

bootstrap new ones. The bootstrapping protocol is detailed in
Figure 4.

4 IMPLEMENTATION

DIBDApp is composed of: (i) API Functions, (ii) a BitTorrent
client, and (iii) a Blockchain DApp. The API functions allow
developers to use the library. The BitTorrent client assists on
file exchanging over the BitTorrent network using the BitTor-
rent protocol. The DApp on the Ethereum blockchain is used
to store public information that is used by all users, that is, the
bootstrap nodes, a file index, and file metadata.

4.1 API functions

The four API functions, listed in Table 1, are the tip of the DIB-
DApp iceberg. They are the only part that a developer or user
needs to know to use all the features of DIBDApp. We list below
the implementation details of these functions.
upload(): The upload function adds the metadata of a

file on the blockchain and makes the file available in the Bit-
Torrent DHT. In addition to upload() DIBDApp exposes
two secondary functions called editDescription() and
addKeyword() which are available for the owner of a file that
can use a file ID to change the description of the file or add
a keyword.

download(): The download function calls the BitTorrent
client and downloads the file from the BitTorrent network after
locating it using the DHT by giving a magnet URI (which plays
the role of an identifier for the file on the DHT). The user needs
to have called the bootstrap function before in order to have
a working DHT that can search for files over the network. She
also need to have called the browse function to find the file she
wants to download by looking at its metadata to get the file’s
magnet URI.
browse(): The browse function calls the FileTracker

smart contract browsing function depending of the given argu-
ments. It will return a list of file metadata that match with the
arguments given as parameters. File metadata is composed of
a name, a magnet URI, the Ethereum address of the account
that uploaded the file, and a file description. The parameters of
the browse function is a list of keywords but the FileTracker
contract data structures are mappings from one keyword to
a set of files. Therefore sorting and filtering of the indices
is done by the Java code by computing the set intersection
with the results of multiple smart contract calls (as shown in
Algorithm 1).
bootstrap(): The bootstrap function calls the

get_node() function of the BootstrapTracker smart
contract to gain access to the information of some already-in-
the-network users. It will then use this information to join the
network and populate the DHT of the BitTorrent client. Then,
it will register itself to the smart contract as a bootstrap node
using the implemented join function.

 26341573, 2021, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12001 by U

niversity O
f H

elsinki, W
iley O

nline L
ibrary on [15/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

8 SCHUTZ ET AL.

BootstrapTracker SC

Bootstrap nodes

Service user W

X : ip, port
Y : ip, port
Z : ip, port

(4) request to

join DHT(5) DHT data resulting

on a new network link

boostrapping subset

join()

bootstrap()

SC interactions

BitTorrent client

DHT W : ip, port

(1) call the SC

(2) read

(6) call the SC (7) write

get_node()

(0) Information link resulting

of previous exchanges

(8) Newly created information link

BitTorrent-
like DHT-
based
P2P
network

XY

(0) Network link

FIGURE 4 Bootstrap function of DIBDApp library. A user asks for bootstrap nodes on the blockchain calling getNode function, and populates her BitTorrent
DHT using one of them. She finally becomes herself a bootstrap node by calling the join() function

ALGORITHM 1 Pseudocode of file browsing on the Java side

4.2 BitTorrent client

BitTorrent network has proved in the last decade to be an effi-
cient way to share files in a decentralized manner. It is also a
well-known option to share effectively large files. That is why it
became the most popular peer-to-peer file-sharing protocol.

The BitTorrent clients integrated with DIBDApp provide
tools for two functions in the library: the download and
upload fucntions. In order to do so, we used the two most
famous Java BitTorrent clients: bt [32] and tTorent-lib [33].

4.2.1 Bootstrapping

To use the BitTorrent protocol, we need to populate the
node’s DHT with other peers to find the files we want to

ALGORITHM 2 Pseudocode of bootstrapping

download. Once it is done, by communicating with other peers,
we will be able to update our DHT and have a better search
tool for files in the BitTorrent network. To do so, multiple calls
to the BootstrapTracker Ethereum smart contract are done
in order to provide a list of bootstrap nodes to the BitTor-
rent client. These nodes will share their DHT to populate the
new user’s one with the shared content. This will help her to
have a base on which she will be able to update the content
using the Kademlia node lookups. For each returned node, the
bootstrap function of the mainline DHT is called until she gets
a populated DHT. This process is presented in Algorithm 2.
Once the new user has a populated DHT, she will call again the
BootstrapTracker smart contract using the join function.
By doing so, she will share her IP and port on the blockchain
and become herself a bootstrap node.

4.2.2 Downloading

Downloading a file using DIBDApp is very similar to down-
loading a file using a traditional BitTorrent client (e.g. Vuze,
uTorrent, and others). The only difference comes from the way
you find the file, the tools you need to find it as well as find-
ing the peers that can share it with you. When a user wants to
download a file, she first looks for it using the FileTracker
smart contract and via browse function. Once she finds the file

 26341573, 2021, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12001 by U

niversity O
f H

elsinki, W
iley O

nline L
ibrary on [15/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

SCHUTZ ET AL. 9

she wants, she queries the DHT using the magnet URI from the
file’s metadata. This URI plays the role of the key in the DHT
and will link to peers that can share the file. Locating the nodes
is done in the same way as when updating the DHT: it searches
for the closest nodes for the provided key (magnet URI). Those
nodes have, by definition of distance in the Kademlia DHT,
more information about who owns the searched file. Therefore,
to make this request, the user needs to have her DHT populated.
Once the seeds are located, the user can start downloading the
file from them. The bt client is used for the download function.

4.2.3 Uploading

Uploading a file using DIBDApp is a two-sided process between
the BitTorrent client-side and the Ethereum blockchain. For the
BitTorrent side, we need to add a new entry to the DHT. This
entry will contain a mapping between the file torrent hash (con-
tained in a magnet URI), and the nodes that own and seed the
file. Therefore, initially, a torrent file is created from the user’s
file using the tTorrent library. Some metadata such as the cre-
ation date or the author’s name are added to the torrent file.
Once this torrent is generated, the hash is added to the DHT
linked to the user’s node by calling the Kademlia (or mainline
DHT) STORE function. After doing this, DIBDApp will add
the file’s metadata to the FileTracker smart contract using
the upload function to share it to everybody.

4.3 Ethereum DApp

Blockchain technologies provide a solution to the problem of
storing public information and sharing it with everybody with-
out relying on centralized authorities. By being freely acces-
sible, robust and censorship-resistant, it is a great candidate
to replace a central tracker in peer to peer interactions and
file indexing. To store the public data of DIBDApp, we used
two Ethereum smart contracts called BootstrapTracker and
FileTracker that form the DIBDApp decentralized appli-
cation (dApp) and operate as a decentralized tracker. The
BootstrapTracker smart contract manages the user’s con-
nection to the BitTorrent network by providing the bootstrap
nodes needed to join the DHT network. The FileTracker
smart contract manages the indexing of uploaded files by stor-
ing metadata to find the information necessary to download the
file using BitTorrent. It, therefore, assists DIBDApp users to
share and download files.

The role of the BootstrapTracker smart contract is to
help a new user to join the BitTorrent DHT network. To do
so, it stores a list of online users that can share the DHT called
to bootstrap nodes. Practically, the BootstrapTracker smart
contract, combined with the BitTorrent mainline DHT, imple-
ments the connectivity functionalities offered by BitTorrent
centralized trackers or simply replaces DHT bootstrap nodes.
The goal of this smart contract is to return to the client a
list of the peers that will assist her on bootstrapping (Algo-
rithm 2). This functionality is implemented in two functions

TABLE 2 BootstrapTracker functions

Name Description

join(string

_node)

Adds a user that already has a populated DHT to the
list of nodes. In order to join the list, the FIFO
replacement policy is applied: when a user joins the
bootstrap nodes list, she replaces the oldest node
on the list.

getNode(uint256

_index)

Returns the node at the position of the given index on
the list.

that are described in Table 2. The list of nodes stored in the
smart contract is of a fixed size. The nodes are defined by their
IP and the port number used for the DHT. Finally, the boot-
strap nodes replacement policy is first in first out (FIFO) and
each new online user becomes a bootstrap node until she is
replaced by another. In this way, the time a disconnected node
is still in the bootstrap list is minimized. There is a tradeoff
between the size of the list of the bootstrap nodes and the gas
needed. The higher the size of the list, the higher the gas needed
to store the IP and the port number of the nodes. However,
the higher the number of the nodes on the list, the higher the
probability of finding at least one that is online and can assist
a new user with her bootstrapping. Assuming N nodes in the
list with node i to be offline with probability pi , the probabil-
ity of all of them to be offline is f = ΠN

i=1 pi . For N = 10 and
p1 = p2 = ⋯ = p10 = 0.5, f = 1∕210 < 1%.

The role of the FileTracker contract is to help users find
a file previously uploaded to the network. To do so, it stores
metadata about uploaded files. Then, when someone is search-
ing for a file, this information is used to recover it. The two
parts of FileTracker are Uploading and Browsing. The func-
tion that implements the core functionality for uploading a file
is the upload function. It allows a user to add a new file, or
more precisely its metadata, to the smart contract storage. These
metadata are composed of the magnet URI of the files, a list
of keywords, the author’s address, a file name, a file ID and
the description of the file. The smart contract never stores the
actual data of a file because this would be extremely costly. This
smart contract only helps the user to find the files previously
uploaded on the network without storing this information on a
centralized server and therefore plays the file indexing role of
a BitTorrent tracker. The upload function uses the SHA-256
hash function and a mapping between the hash of each keyword
and the ID of the file. It uses another mapping between the
address of the author and the ID of the file. Therefore, all the
files corresponding with an author or a keyword can be further
retrieved. It is also possible to retrieve a file using its ID. All this
metadata being pushed to a list when files are uploaded. Two
more functions called addKeyword and editDescription
complete the uploading functionality. The addKeyword func-
tion allows the author of a file to add a new keyword to her file if
she wants to help people to find it more easily. It will, therefore,
add the file ID to the hash of the new keyword in the afore-
mentioned keyword-file ID mapping. The editDescription

 26341573, 2021, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12001 by U

niversity O
f H

elsinki, W
iley O

nline L
ibrary on [15/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

10 SCHUTZ ET AL.

function is used in the same way but to modify the descrip-
tion initially passed to the upload function. Those functions
are gas-consuming and are called via transactions by the DIB-
DApp client.

The Browsing part has a lot of functions that read the data
stored on the smart contracts. Therefore they are used through
blockchain ”calls”, with near-instant answers and no gas cost.
These functions are using the previously described mappings
and list to provide the information users need. They allow get-
ting the name, the keywords, the description, the author or the
magnet URI corresponding to a file using its ID. It also provides
the file IDs corresponding to a keyword or an author helping
users to search for a file. The only crucial information to down-
load a file using its metadata is the magnet URI that is used by
the BitTorrent client to search the file in the DHT. All other
information is here to index the file or provide further details
about it.

5 DESIGNING A DECENTRALIZED
INSTAGRAM

The developer of a decentralized Instagram needs to define the
format of the strings that are used as keywords when calling
the upload function. One of the ways would be to pass the tags
as keywords in a format ”tag=mocha” (DIBDApp includes an
upload function that automates this process by taking a JSON
object as a parameter instead of a list of keywords). This will
allow the developer to include other ways of browsing files, such
as the location of a file, by uploading files with keywords of the
form ”location=Mocha”. (Using directly ”mocha” as a keyword
for the initial tag feature would make it impossible to later dif-
ferentiate the pictures taken in Mocha, Yemen and a Starbucks
picture with the tag #mocha.) In this way, updating the decen-
tralized Instagram to include videos would also be easy, adding
the keyword ”type=video”.

Multiple new features can be added and a centralized database
can be imitated by following this format. Users can be authen-
ticated using their Ethereum addresses. When a user publishes
a picture, its metadata is uploaded on the FileTracker con-
tract, and the picture becomes searchable by its tags and by its
author. The developer then implements a feature that finds pic-
tures with a tag (or an author) given by its user (via browse)
and displays them on its screen after downloading them (via
download). When a user follows Giannis Antetokounmpo, the
upload function is called with the keyword “type=follow” and
“followed=giannis_an34” as a description but no magnet URI
is passed because this information does not index an actual
file stored on the BitTorrent network. When the user clicks
on its personal feed, the browse function with “type=follow”
as a keyword and the user herself as an author is called, and
all the descriptions are unwrapped to look for the last pic-
tures of the followed users. The application developer can, in
the same way, allow users to rename themselves. A bijection
between the author and metadata describing its username could
be uploaded to display it/allow it to be searched by its username
instead of the Ethereum address. The functions addKeyword

FIGURE 5 Example of a decentralized Android application that is using
DIBDapp and allows users to upload and edit their photos while sharing them
with their followers

and editDescription can also be used to allow the users to
edit their publications and modify their pictures tags.

Figure 5 shows two example Android activities implemented
to test DIBDapp on Instagram-“like” functions. Via the left
activity, the user can take a picture, add a few keywords, enter
a description of the picture and upload it. Via the right activity, a
user can add more keywords and edit the previous description.
Due to space limitations, we do not present more activities. In
conclusion, the user can publish pictures with tags and descrip-
tions, look for pictures given specific tags and authors and fol-
low the publications from chosen authors, without relying on a
central authority at any point. The user has full control over its
content and cannot be censored without actually updating the
code of the DIBDApp library and forcing other users to down-
load the new code. Nevertheless, the developer can keep some
control over its service. For example, it can customize the front
page of it by displaying a file she is the author of, which means
this file cannot be overwritten and she has total control over it.

6 PERFORMANCE EVALUTION

Blockchain-based systems introduce several characteristics that
need to be considered. First of all, adding a transaction to
the blockchain takes time and, therefore, when writing on the
blockchain, we need to evaluate the time needed to validate the
operation. A transaction can take a multiple of a block’s dura-
tion to be mined. Additionally, we need to evaluate the gas cost
introduced by transactions to smart contracts. This evaluation is
important for the upload and bootstrap functions that need
to write data on the blockchain. Some functions of DIBDApp

 26341573, 2021, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12001 by U

niversity O
f H

elsinki, W
iley O

nline L
ibrary on [15/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

SCHUTZ ET AL. 11

TABLE 3 Gas needs and cost of deployment of the two smart contracts

Name Gas needs

Cost in USD (gas

price: 0.05 GWei)

BootstrapTracker 325,003 0.0038350354

FileTracker 1,150,979 0.0135815522

also rely on the blockchain without using transactions but only
reading data. When the volume gets high, fetching can take time,
which is measured below.

Set up: We evaluate the performance of DIBDApp by
introducing code snippets collecting data in the Java code of
the DIBDApp client. We use the Remix IDE [34] to develop
the DIBDApp DApp with Solidity programming language [35].
We test the DIBDApp DApp by deploying the developed smart
contracts in the Rinkeby Ethereum test network [36]. This net-
work is used by developers on the Ethereum blockchain to test
their applications without needing to use the main network and
pay for the gas needs of their contracts. The collecting snippets
and Etherscan [37] allow us to know the time transactions
take and the gas they consume. We repeated each experiment
ten times, and in every plot, we present the mean measured
value and the standard deviation. Ethereum identifiers are
created using the Ethereum wallet [38], an open-source soft-
ware maintained by the Ethereum community used to send
transactions, deploy smart contracts, create wallets and other.
The wallets were funded with testnet Ethers using the Rinkeby
Authenticated Faucet [39]. We considered two sets of gas prices
(in Gwei, 1 ETH = 109 Gwei) during the experiments: “high”
= [0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 5, 10] and “low” = [0.05, 0.1,
0.15, 0.2]. Before examining the gas needs of each function, we
measure the deployment cost of the developed smart contracts
and show the results in Table 3. We use the cost of Ether on 24
May 2019 to calculate the deployment cost in USD.

The processing of an Ethereum transaction consumes gas,
and gas is not free. The price the user is willing to pay for the gas
works as an incentive and impacts the time needed for a trans-
action to be processed and added to the blockchain. Therefore,
the time that the program takes to execute a transaction of the
Ethereum blockchain depends on the price paid by the user.
Based on that, we design one set of experiments to measure
the time of execution for all transactions as a function of the
gas price paid to perform them. It is important to evaluate
the time needed to write data on the blockchain because this
process dominates the executing time of DIBDApp. Since
these times are aligned with the blocks in which the produced
transactions will be added, we measure them in numbers of
blocks. The average block time in the Ethereum blockchain is
15 s.

Reading data from the blockchain does not require any trans-
action. It is therefore not gas-consuming and independent of
the block time. Thus, testing the reading time of every call to
the smart contract is not necessary. However, when the number
of calls is massive, for example, to retrieve a very large number
of files, it may be interesting to see how the metadata-fetching
time evolves with the number of instances.

 0
 1
 2
 3
 4
 5
 6
 7
 8

0.2 0.4 0.6 0.8 1 2 5 10
0.01

0.1

0.6
1

T
im

e
(b

lo
ck

s)

U
SD

 c
os

t

Gas Price (Gwei)

Time USD Cost

(a) Different Gas prices.

1

2.5

3.5

1 2 3 5 10

T
im

e
(b

lo
ck

s)

Number of Keywords

(b) Different number of keywords.

FIGURE 6 Gas and time needs of the upload function

Actions associated with BitTorrent and its DHT are not
measured as the protocols have already been extensively eval-
uated and are considered efficient and reliable [11]. Since the
download function is purely BitTorrent-based, we do not
present its performance in this section.

6.1 Indexing performance

The performance of the indexing capabilities of DIBDApp
depends on the performance of upload and browse.

6.1.1 Upload function

This function relies on transactions since it writes data on chain.
It is used to find the average time it takes to upload a new file
on the network. Adding the file on the BitTorrent network only
means registering it in the DHT and seeding it to the network.
It is irrelevant to measure such actions. The time taken to
add metadata on the blockchain is the actual time-dominating
procedure of this feature. The only variable that can vary a lot
when uploading a file is the number of keywords associated
with it. The time for 1, 2, 3, 5, and 10 keywords is measured
for gas price = 1.0 Gwei. The time to upload a one-keyword
file is also measured against gas price. We see in Figure 6a
that for a time-requirement of the order of one block, 1.0
Gwei is a correct gas price for the upload function with one
keyword. It has to be noted that upload can be expensive, with
transaction costs of the order of ten cents. Figure 6b shows
that beyond 2 keywords, the execution time does not increase
significantly.

 26341573, 2021, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12001 by U

niversity O
f H

elsinki, W
iley O

nline L
ibrary on [15/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

12 SCHUTZ ET AL.

1 sec

10 sec

1 min

10 min
30 min

1 10 100 1000

T
im

e

Number of Files

FIGURE 7 Needs of browse for different number of files

 0

 0.5

 1

 1.5

 2

0.05 0.1 0.15 0.2
0.01

0.02

0.1

0.3

T
im

e
(m

in
)

U
SD

 c
os

t (
in

 c
en

ts
)

Gas Price (Gwei)

Time USD Cost

FIGURE 8 Time needs and USD costs for the smart contract join
function (in bootstrap API function)

6.1.2 Browse function

The browse function returns file metadata corresponding to
passed parameters. It is a read-only function, however, when the
files that match the parameters are numerous and the window
size is large enough, fetching the metadata for each of them can
be time-consuming (but still gas-free). The time it takes to fetch
file metadata with the browse function is measured against the
number of matching files as powers of ten (1, 10, 100, 1000).
We observe in Figure 7 that the time to fetch metadata increases
linearly with the number of files that match the lookup criteria.

6.2 Bootstrapping performance

The bootstrapping feature of our system interacts with the
blockchain in two different actions. First, it queries the boot-
strap nodes, doing multiple calls until someone populates the
DHT. Then, once one of these nodes has been used to be boot-
strapped in the DHT, the user registers itself as a bootstrap node
in the smart contract. The user does not have to wait for this
interaction to be completed and the time it takes is therefore
partially irrelevant (this action is pure network altruism so its
completion can take a lot of time without any consequences on
user experience). This time can be arbitrarily decreased to cut
the costs of the execution. A plot of the time of execution for
very small gas prices and the associated price of execution in
USD is shown in Figure 8. It can be seen on the figure that for
a waiting time of only around 1 minute, the cost of the join
function is of the order of the hundredth of cent of USD. Costs
can, therefore, be heavily reduced. It is important to understand
that this minute of waiting time is not the time the user waits
for the network but conversely: it is the time the network waits

 0

 50

 100

 150

 200

 250

join upload add
 keyword

edit
 description

G
as

 (
x1

00
0)

DIBDApp Functions with Gas Needs

FIGURE 9 Gas consumption of DIBDApp transaction-based operations
on smart contracts

for the user to declare itself as a bootstrap node. The network
is not impacted by this time being long because it does not wait
for only one node but for any node that has been bootstrapped,
which makes irrelevant the time that separates their bootstrap-
ping from their self-declaration.

6.3 Overall gas consumed and actual cost

After measuring the time needed for each of the aforemen-
tioned transaction-based and read-only functions, we measure
the gas needed for the transaction-based function and present
them in Figure 9. Functions with minimal changes in the states
of the smart contracts (e.g. the bootstrap function that relies
on the simple join() function of the BootstrapTracker
smart contract) have low requirements. On the other hand,
functions that store information (e.g. the upload function that
writes on the FileTracker smart contract) consume much
gas. Gas needs multiplied by the gas price shows how much
Ether needs to be paid.

6.4 Lessons learned

6.4.1 Joining the network

Based on Figure 8, we can say that it is very cheap to join the
network, which means the ”most altruistic” action of a node
using DIBDApp is designed in a way that its costs are as low
as possible. Also, necessary calls to join the network through
bootstrapping are read-only get_node, which means it is free
of charge and really quick to be bootstrapped in the network of
a DIBDApp-developed service.

6.4.2 Keywords

Adding a keyword to a file requires gas and given that it has
to be called for every keyword of a file, this may be an issue.
This comes from the fact than Solidity is not able to receive
a variable-size array of variable size types yet. It may be fixed
in the future. However, the design of DIBDApp succeeds to
avoid the heavy tradeoff this could be regarding execution-time.

 26341573, 2021, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12001 by U

niversity O
f H

elsinki, W
iley O

nline L
ibrary on [15/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

SCHUTZ ET AL. 13

Figure 6b shows that the time of adding keywords remains of
the same order for several keywords.

6.4.3 Files

The uploading performance depends on the time requirements
the developer has. If it needs to be performed quickly, that is,
within one block, it can be costly as Figure 9 shows. Upload-
ing consumes a lot of gas and a gas price of more than 1.0
Gwei could be needed to achieve the aforementioned time-
requirement. Figure 6a shows the USD cost that the upload
function can reach for too high gas prices when quickness is
expected by the caller.

6.4.4 Search

The browsing time requirements are linear to the number of the
browsed files, as depicted by Figure 7. This can be an issue if the
volume of files is massive, thus the parameters startIndex and
windowSize of the browse function allow the caller to regulate
the amount of data to be fetched.

7 USE CASES

In addition to the example of decentralized Instagram, we dis-
cuss two more use cases with very different foci, fake news and
federated learning and explain why their decentralized versions
do not require trust on any authority.

7.1 Fake news

The continuously increasing rate of Internet penetration, which
is associated with the proliferation of devices with Internet con-
nectivity, empowers anyone to disseminate information, using
social media platforms, that can reach a potentially huge audi-
ence. However, this comes with a disadvantage since anyone can
try to spread fallacious information and influence others to fur-
ther share this information without being sure about their cred-
ibility.

Fake news, that is, news articles that are intentionally and ver-
ifiably false, can affect the public’s perception. For example, C.
Silverman and J. Singer-Vine in 2016 [40] show that “fake news
headlines fool American adults about 75% of the time.” It goes
without saying that the type of information impacts the com-
plexity of verifying their truthfulness significantly.

DIBDApp can be trivially applied in a decentralized frame-
work that allows anyone who has evidence regarding the
trustworthiness of a news article or any published information,
in general. More specifically, in the scenario where someone
identifies an article as “fake” the considered framework can
create a keyword and invite anyone interested to contribute
on clarifying whether the article is fake or not. Similarly, in the
case of a published photo that has been processed and altered
before publication, DIBDApp can be trivially used to invite
anyone with contradicting or supporting evidence.

The motivation behind implementing a decentralized fake
news detection framework is based on that fact that it will not be
controllable by anyone and as a result, the objectiveness of the
produced rulings will depend only on the submitted evidence
and not in the interests of the entity that maintain the frame-
work.

7.2 Federated learning

The performance, usually in terms of accuracy, of machine
learning models, depends on the data that are used during the
production of the models. A process that is known as model
training and requires access to all the employed data. Federated
learning is a recently proposed model training method that does
not need to access to the data and enables entities that want to
collectively train a machine learning model to train it without
giving access to their data to each other. The process is orches-
trated by a centralized entity. In short, via federated learning,
multiple data owners can collaborate using a predetermined
protocol that works iteratively and requires only the exchange
or the model parameters between each participant and a cen-
tralized server and does not require sending the actual data [21].

DIBDApp can be used for the exchange of the model param-
eters and eliminate the need for a centralized entity. The motiva-
tion behind employing DIBDApp is to incentivize more entities
to participate since they will not have to trust a centralized entity.

8 DISCUSSION

In this section, we discuss the inherent characteristics of DIB-
DApp (e.g. privacy) as well as design decisions (e.g. integration
of reputation mechanisms) and potential optimizations (e.g. to
reduce the gas costs) that can be part of the next version of DIB-
DApp.

8.1 Privacy on DIBDApp

DIBDApp’s bootstrap function maintains a list of bootstrap
nodes on the blockchain following a full replacement policy,
thus writing IP addresses of every member of the network
on the public immutable ledger. This privacy tradeoff (similar
to the fact that IPs are easily monitored on DHT-BitTorrent
[41]) can be solved with a more sophisticated implementation
of the smart contract involving asymmetric cryptography, but
it would increase the number of transactions for a node to
bootstrap. Another way to diminish this trade-off is by imple-
menting a replacement policy for the bootstrap nodes based on
volunteering, where the community of the network would be
the distributed nodes allowing new peers to be bootstrapped.
This still leads to an incentives issue where registering as a
bootstrap node costs money (but is cheap as Figure 8 shows)
and resources to answer the bootstrapping queries. The func-
tionality of the DIBDApp DApp does not allow users to delete
the metadata of a file even if the file is no longer available for
sharing. The FileTracker smart contract does not have a

 26341573, 2021, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12001 by U

niversity O
f H

elsinki, W
iley O

nline L
ibrary on [15/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

14 SCHUTZ ET AL.

delete metadata function. Even if it had, the previous states
of the smart contract are available on the old blocks of the
blockchain and contain the previous versions of the metadata.
A signed flag protocol could be employed to propagate to other
peers of the off-chain network the request for not seeding nor
referring a file anymore, but nothing can oblige all pears to
conform. Developers can make some efforts to allow authors to
lower the visibility of their files, but the decentralized character
of the network prevents to ensure full deletion. This lack of
deletion reflects the ambiguity of GDPR [42] for decentralized
architectures. The right of erasure of GDPR (Article 17) cannot
be satisfied by the developer of a DIBDApp service. On the
other side, the developer is not fully in charge of her service
because she does not administrate its running version.

8.2 Mixing DIBDApp with centralized
entities

In DIBDApp, uploading metadata has a cost. A service that has
frequent changes of states writes frequently on the blockchain
and increases its monetary cost. DIBDApp can be consid-
ered to be mixed with a centralized server to design services
that are long-term decentralized but short-term centralized to
avoid excessive transactions. The state of the back-end could be
cached on a centralized server for the time of one “round” and
periodically pushed on-chain as a batch. In the case where the
centralized server would become unavailable, the service would
start to rely on the decentralized backup. On the long run, the
service does not have a permanent single point of failure and
cannot be censored.

8.3 Transaction fees of DIBDApp

DIBDApp faces the problem of assigning the responsibility of
paying the transaction fees when a user uses a feature that results
in an upload on the FileTracker contract. When the devel-
oper decides to charge the users, she forces them to have means
of payment (i.e. Ethereum wallets). The natural way of paying
these transactions is that the user triggers it herself, that is, her
Ethereum identifiers sign the transaction. However, if the pur-
pose of the online service has nothing to do with Ethereum
or cryptocurrencies, it may be tedious to require its users to
have Ethereum identifiers. Therefore, the developer can build a
payment management layer between transaction triggering and
user interaction, where the users pay a specific entity with a spe-
cific mean of payment, the funds are used to fill an Ethereum
account that is used to sign the transactions in the code. In this
way, the amount paid by the user can be a customized function
of how much they cost in reality.

8.4 Ethereum and BitTorrent reliance

The performance of DIBDApp relies on the assumption than
DHT-based BitTorrent and the Ethereum blockchain are secure
and efficient. BitTorrent, even though considered robust and

powerful, has been shown as vulnerable [43] and perfectible
[44]. It is clear that many ways exist to improve BitTorrent
(IPv6 [45] for NAT issues [46], seeding incentives [47] etc.). The
Ethereum network can also suffer from congestion and has sev-
eral points of potential improvements [48, 49]. Regarding scala-
bility, DIBDApp does not add any additional requirement over
those of BitTorrent and Ethereum. Thanks to DIBDApp’s sim-
ple and efficient implementation, the performance of a DIB-
DApp service does not decrease with the number of users (given
the scalability of Ethereum and BitTorrent).

8.5 Reputation mechanisms and incentives
for DIBDApp

The DIBDApp client offers the users the functionality of rat-
ing files via a transaction to the DIBDApp DApp. The rating
function is simple and can be called by any online peer. Consid-
ering that the DIBDApp DApp does not keep track of the users
who downloaded each file, this may lead to undesired behav-
ior by malicious users. A more sophisticated function that is
based on the rating history of each user and defines a repu-
tation score to each of them can characterize the accuracy of
their judgments and therefore regulate their impact in the file
rate [50, 51], even if the users are anonymous [52]. File rat-
ings are useful to the DIBDApp client since it can set up a
threshold under which it stops to seed them. Similarly, a reputa-
tion system for the off-chain network can assist the DIBDApp
clients to choose from whom to download or get the popu-
lated DHT. Apart from reputation mechanisms, incentives can
also be developed to demotivate bad behaviour. Proof-of-burn
mechanisms [53], for example, can automatically withdraw ETH
from users accounts for punishment and deposit ETH for their
serviceableness.

9 CONCLUSION AND FUTURE WORK

We implemented the DIBDApp library as a Java API relying on
Ethereum smart contracts and the BitTorrent protocol. Addi-
tionally, we used Solidity programming language to develop the
DIBDApp DApp that is composed of two smart contracts and
is deployed in the Rinkeby testnet. The contribution of the DIB-
DApp is threefold: (i) the process designed for users of a DHT-
based P2P network to join it eliminates the need for central-
ized bootstrap nodes. (ii) The functions designed to upload and
download files store metadata on a decentralized smart contract
and abolish the need for a centralized index of those files. (iii)
The combination of the indexing and the bootstrapping, asso-
ciated with a DHT-based BitTorrent network, makes it possible
to design online services of various forms without relying on
any centralized authority.

The future development of DIBDApp will be in two direc-
tions, one towards the development of more sophisticated and
optimized indexing to satisfy more demanding criteria of an
online service back-end. The second direction is towards the
decentralisation of existing popular applications, with Instagram
to be the first target.

 26341573, 2021, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12001 by U

niversity O
f H

elsinki, W
iley O

nline L
ibrary on [15/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

SCHUTZ ET AL. 15

ORCID

Dimitris Chatzopoulos https://orcid.org/0000-0002-4765-
5085
Pan Hui https://orcid.org/0000-0001-6026-1083

REFERENCES

1. Cunningham, B.M., et al.: Peer-to-peer file sharing communities. Inf. Econ.
and Policy 16(2), 197–213 (2004)

2. McCourt, T., Burkart, P.: When creators, corporations and consumers col-
lide: Napster and the development of on-line music distribution. Media
Cult. Soc. 25(3), 333–350 (2003)

3. Chawathe, Y., et al.: Making gnutella-like p2p systems scalable. In: Proceed-
ings of the 2003 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, pp. 407–418. ACM, New
York (2003)

4. Ripeanu, M.: Peer-to-peer architecture case study: Gnutella network. In:
IEEE Peer-to-Peer Computing, pp. 99–100. IEEE, Piscataway (2001)

5. Matei, R., et al.: Mapping the Gnutella network. IEEE Internet Comput.
6(1), 50–57 (2002)

6. Cohen, B.: The bittorrent protocol specification (2008)
7. Fry, C.P., Reiter, M.K.: Really truly trackerless bittorrent. School of Com-

puter Science, Carnegie Mellon University, Tech. Rep. 06–148 (2006)
8. Taddia, C., Mazzini, G.: A multicast-anycast based protocol for tracker-

less bittorrent. In: IEEE SoftCOM 2008, pp. 264–268. IEEE, Piscataway
(2008)

9. Stoica, I., et al.: Chord: A scalable peer-to-peer lookup service for internet
applications. ACM SIGCOMM CCR. 31(4), 149–160 (2001)

10. Lua, E.K., et al.: A survey and comparison of peer-to-peer overlay network
schemes. IEEE Commun. Surv. Tutorials 7(2), 72–93 (2005)

11. Maymounkov, P., Mazieres, D.: A peer-to-peer information system based
on the XOR metric. In: International Workshop on Peer-to-Peer Systems,
pp. 53–65. Springer, Berlin Heidelberg (2002)

12. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2009)
13. Chatzopoulos, D., et al.: Privacy preserving and cost optimal mobile

crowdsensing using smart contracts on blockchain. In: 2018 IEEE 15th
International Conference on Mobile Ad Hoc and Sensor Systems (MASS),
pp. 442–450. IEEE, Piscataway (2018)

14. Zyskind, G., et al.: Decentralizing privacy: Using blockchain to protect per-
sonal data. In: 2015 IEEE Security and Privacy Workshops, pp. 180–184.
IEEE, Piscataway (2015)

15. Wood, G.: Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, pp. 1–32 (2014)

16. blk.io. Where java meets the blockchain, https://github.com/web3j/
web3j, 2018. Accessed 25 September 2020

17. Benet, J.: Ipfs-content addressed, versioned, p2p file system. arXiv preprint
arXiv:1407.3561, 2014

18. Wilkinson, S., et al.: Metadisk a blockchain-based decentralized file storage
application. Storj Labs Inc., Technical Report, hal. pp. 1–11 (2014)

19. Chen, Y., et al.: An improved p2p file system scheme based on ipfs and
blockchain. In: 2017 IEEE International Conference on Big Data (Big
Data), pp. 2652–2657. IEEE, Piscataway (2017)

20. Edson, C.T., Jr, et al.: Defining “fake news” a typology of scholarly defini-
tions. Digit. Journal. 6(2), 137–153 (2018)

21. Yang, Q., et al.: Federated machine learning: Concept and applications.
ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

22. Thede, N.: Decentralization, democracy and human rights: A human
rights-based analysis of the impact of local democratic reforms on devel-
opment. J. Human Develop. Capabilities 10(1), 103–123 (2009)

23. Pappas, C., et al.: IPLS: A framework for decentralized federated learning,
2021

24. Filecoin Community: Filecoin: A cryptocurrency operated file storage net-
work, 2014

25. Nebulous Inc.: Sia: Simple decentralized storage. Accessed: 14 Oct 2014
26. Tron, V., et al.: Swarm: a decentralised peer-to-peer network for messaging

andstorage. Technical report, Ethersphere (2019)
27. Wilkinson, S., et al.: Storj: A peer-to-peer cloud storage network. (2014)
28. Loewenstern, A., Norberg, A.: BitTorrent DHT Protocol (2018)
29. Houlihan, T.: BitTorrent Magnet URI Extension (2017)

30. Swan, M.: Blockchain: Blueprint for a new economy. O’Reilly Media, Inc.
(2015)

31. Conoscenti, M., et al.: Blockchain for the internet of things: A systematic
literature review. In: 2016 IEEE/ACS 13th International Conference of
Computer Systems and Applications (AICCSA), pp. 1–6. IEEE, Piscat-
away (2016)

32. Tomashpolskiy, A.: Bt, http://atomashpolskiy.github.io/bt/, (2019).
Accessed 25 September 2020

33. JetBrains.: ttorrent-lib, https://github.com/jetbrains/ttorrent-lib, (2018).
Accessed 25 September 2020

34. Remix IDE. https://remix.ethereum.org Accessed 25 September 2020
35. Ethereum. Solididty. https://solidity.readthedocs.io Accessed 25 Septem-

ber 2020
36. Rinkeby Ethereum Testnet. https://www.rinkeby.io Accessed 25 Septem-

ber 2020
37. Etherscan: The Ethereum Block Explorer. https://etherscan.io/ Accessed

25 September 2020
38. The Ethereum Wallet. https://wallet.ethereum.org/ Accessed 25 Septem-

ber 2020
39. Rinkeby Authenticated Faucet. https://faucet.rinkeby.io/ Accessed 25

September 2020
40. Silverman, C., Singer-Vine, J.: Most americans who see fake news believe

it, new survey says. BuzzFeed News 6 (2016)
41. Wolchok, S., Halderman, J.A.: Crawling bittorrent DHTs for fun and profit

(2010)
42. European Parliament and Council of the European Union. General Data

Protection Regulation (2016)
43. Wang, L., Kangasharju, J.: Real-world sybil attacks in bittorrent mainline

dht. In: IEEE GLOBECOM, pp. 826–832. IEEE, Piscataway (2012)
44. Fan, B., et al.: The design trade-offs of bittorrent-like file sharing protocols.

IEEE/ACM Trans. Netw. 17(2), 365–376 (2009)
45. Xinxing, Z., et al.: A measurement study on mainline DHT and mag-

net link. In: IEEE First International Conference on Data Science in
Cyberspace (DSC), pp. 11–19. IEEE, Piscataway (2016)

46. Fan, B., et al.: Stochastic analysis and file availability enhancement for bt-
like file sharing systems. In: IEEE International Workshop on Quality of
Service, pp. 30–39. IEEE, Piscataway (2006)

47. Pouwelse, J., et al.: The bittorrent p2p file-sharing system: Measurements
and analysis. In: International Workshop on Peer-to-Peer Systems, pp.
205–216. Springer, Berlin Heidelberg (2005)

48. Chen, S., et al.: A comparative testing on performance of blockchain and
relational database: foundation for applying smart technology into cur-
rent business systems. In: Distributed, Ambient and Pervasive Interactions:
Understanding Humans: Proceedings (Part I) of the 6th International Con-
ference (DAPI 2018). Lecture Notes in Computer Science LNCS, vol.
10921, pp. 21–34. Springer, Cham (2018)

49. Kim, S.K., et al.: Measuring ethereum network peers. In: Proceedings of
the Internet Measurement Conference 2018, IMC ’18, pp. 91–104. ACM,
New York (2018)

50. Marti, S., Garcia-Molina, H.: Taxonomy of trust: Categorizing p2p reputa-
tion systems. Comput. Networks 50(4), 472–484 (2006)

51. Dingledine, R., et al.: Reputation in p2p anonymity systems. In: Workshop
on Economics of Peer-to-Peer Systems, vol. 92. ACM, New York (2003)

52. Marti, S., Garcia-Molina, H.: Identity crisis: anonymity vs reputation in
p2p systems. In: Proceedings of the Third International Conference on
Peer-to-Peer Computing, 2003 (P2P 2003), pp. 134–141. IEEE, Piscataway
(2003)

53. Stewart, I.: Proof of burn (2012)

How to cite this article: Schutz P, Gal S,
Chatzopoulos D, Hui P. Decentralizing indexing and
bootstrapping for online applications. IET Blockchain.
2021;1:3–15. https://doi.org/10.1049/blc2.12001

 26341573, 2021, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.12001 by U

niversity O
f H

elsinki, W
iley O

nline L
ibrary on [15/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-4765-5085
https://orcid.org/0000-0002-4765-5085
https://orcid.org/0000-0002-4765-5085
https://orcid.org/0000-0001-6026-1083
https://orcid.org/0000-0001-6026-1083
https://github.com/web3j/web3j
https://github.com/web3j/web3j
http://atomashpolskiy.github.io/bt/
https://github.com/jetbrains/ttorrent-lib
https://remix.ethereum.org
https://solidity.readthedocs.io
https://www.rinkeby.io
https://etherscan.io/
https://wallet.ethereum.org/
https://faucet.rinkeby.io/
https://doi.org/10.1049/blc2.12001

