2,191 research outputs found

    News Cohesiveness: an Indicator of Systemic Risk in Financial Markets

    Get PDF
    Motivated by recent financial crises significant research efforts have been put into studying contagion effects and herding behaviour in financial markets. Much less has been said about influence of financial news on financial markets. We propose a novel measure of collective behaviour in financial news on the Web, News Cohesiveness Index (NCI), and show that it can be used as a systemic risk indicator. We evaluate the NCI on financial documents from large Web news sources on a daily basis from October 2011 to July 2013 and analyse the interplay between financial markets and financially related news. We hypothesized that strong cohesion in financial news reflects movements in the financial markets. Cohesiveness is more general and robust measure of systemic risk expressed in news, than measures based on simple occurrences of specific terms. Our results indicate that cohesiveness in the financial news is highly correlated with and driven by volatility on the financial markets

    Exploiting prior knowledge and latent variable representations for the statistical modeling and probabilistic querying of large knowledge graphs

    Get PDF
    Large knowledge graphs increasingly add great value to various applications that require machines to recognize and understand queries and their semantics, as in search or question answering systems. These applications include Google search, Bing search, IBM’s Watson, but also smart mobile assistants as Apple’s Siri, Google Now or Microsoft’s Cortana. Popular knowledge graphs like DBpedia, YAGO or Freebase store a broad range of facts about the world, to a large extent derived from Wikipedia, currently the biggest web encyclopedia. In addition to these freely accessible open knowledge graphs, commercial ones have also evolved including the well-known Google Knowledge Graph or Microsoft’s Satori. Since incompleteness and veracity of knowledge graphs are known problems, the statistical modeling of knowledge graphs has increasingly gained attention in recent years. Some of the leading approaches are based on latent variable models which show both excellent predictive performance and scalability. Latent variable models learn embedding representations of domain entities and relations (representation learning). From these embeddings, priors for every possible fact in the knowledge graph are generated which can be exploited for data cleansing, completion or as prior knowledge to support triple extraction from unstructured textual data as successfully demonstrated by Google’s Knowledge-Vault project. However, large knowledge graphs impose constraints on the complexity of the latent embeddings learned by these models. For graphs with millions of entities and thousands of relation-types, latent variable models are required to exploit low dimensional embeddings for entities and relation-types to be tractable when applied to these graphs. The work described in this thesis extends the application of latent variable models for large knowledge graphs in three important dimensions. First, it is shown how the integration of ontological constraints on the domain and range of relation-types enables latent variable models to exploit latent embeddings of reduced complexity for modeling large knowledge graphs. The integration of this prior knowledge into the models leads to a substantial increase both in predictive performance and scalability with improvements of up to 77% in link-prediction tasks. Since manually designed domain and range constraints can be absent or fuzzy, we also propose and study an alternative approach based on a local closed-world assumption, which derives domain and range constraints from observed data without the need of prior knowledge extracted from the curated schema of the knowledge graph. We show that such an approach also leads to similar significant improvements in modeling quality. Further, we demonstrate that these two types of domain and range constraints are of general value to latent variable models by integrating and evaluating them on the current state of the art of latent variable models represented by RESCAL, Translational Embedding, and the neural network approach used by the recently proposed Google Knowledge Vault system. In the second part of the thesis it is shown that the just mentioned three approaches all perform well, but do not share many commonalities in the way they model knowledge graphs. These differences can be exploited in ensemble solutions which improve the predictive performance even further. The third part of the thesis concerns the efficient querying of the statistically modeled knowledge graphs. This thesis interprets statistically modeled knowledge graphs as probabilistic databases, where the latent variable models define a probability distribution for triples. From this perspective, link-prediction is equivalent to querying ground triples which is a standard functionality of the latent variable models. For more complex querying that involves e.g. joins and projections, the theory on probabilistic databases provides evaluation rules. In this thesis it is shown how the intrinsic features of latent variable models can be combined with the theory of probabilistic databases to realize efficient probabilistic querying of the modeled graphs

    Architecture and Knowledge Modelling for Smart City

    Get PDF

    Social Network Data Management

    Get PDF
    With the increasing usage of online social networks and the semantic web's graph structured RDF framework, and the rising adoption of networks in various fields from biology to social science, there is a rapidly growing need for indexing, querying, and analyzing massive graph structured data. Facebook has amassed over 500 million users creating huge volumes of highly connected data. Governments have made RDF datasets containing billions of triples available to the public. In the life sciences, researches have started to connect disparate data sets of research results into one giant network of valuable information. Clearly, networks are becoming increasingly popular and growing rapidly in size, requiring scalable solutions for network data management. This thesis focuses on the following aspects of network data management. We present a hierarchical index structure for external memory storage of network data that aims to maximize data locality. We propose efficient algorithms to answer subgraph matching queries against network databases and discuss effective pruning strategies to improve performance. We show how adaptive cost models can speed up subgraph matching query answering by assigning budgets to index retrieval operations and adjusting the query plan while executing. We develop a cloud oriented social network database, COSI, which handles massive network datasets too large for a single computer by partitioning the data across multiple machines and achieving high performance query answering through asynchronous parallelization and cluster-aware heuristics. Tracking multiple standing queries against a social network database is much faster with our novel multi-view maintenance algorithm, which exploits common substructures between queries. To capture uncertainty inherent in social network querying, we define probabilistic subgraph matching queries over deterministic graph data and propose algorithms to answer them efficiently. Finally, we introduce a general relational machine learning framework and rule-based language, Probabilistic Soft Logic, to learn from and probabilistically reason about social network data and describe applications to information integration and information fusion

    Natural Language Processing and Graph Representation Learning for Clinical Data

    Get PDF
    The past decade has witnessed remarkable progress in biomedical informatics and its related fields: the development of high-throughput technologies in genomics, the mass adoption of electronic health records systems, and the AI renaissance largely catalyzed by deep learning. Deep learning has played an undeniably important role in our attempts to reduce the gap between the exponentially growing amount of biomedical data and our ability to make sense of them. In particular, the two main pillars of this dissertation---natural language processing and graph representation learning---have improved our capacity to learn useful representations of language and structured data to an extent previously considered unattainable in such a short time frame. In the context of clinical data, characterized by its notorious heterogeneity and complexity, natural language processing and graph representation learning have begun to enrich our toolkits for making sense and making use of the wealth of biomedical data beyond rule-based systems or traditional regression techniques. This dissertation comes at the cusp of such a paradigm shift, detailing my journey across the fields of biomedical and clinical informatics through the lens of natural language processing and graph representation learning. The takeaway is quite optimistic: despite the many layers of inefficiencies and challenges in the healthcare ecosystem, AI for healthcare is gearing up to transform the world in new and exciting ways

    Exploiting Latent Features of Text and Graphs

    Get PDF
    As the size and scope of online data continues to grow, new machine learning techniques become necessary to best capitalize on the wealth of available information. However, the models that help convert data into knowledge require nontrivial processes to make sense of large collections of text and massive online graphs. In both scenarios, modern machine learning pipelines produce embeddings --- semantically rich vectors of latent features --- to convert human constructs for machine understanding. In this dissertation we focus on information available within biomedical science, including human-written abstracts of scientific papers, as well as machine-generated graphs of biomedical entity relationships. We present the Moliere system, and our method for identifying new discoveries through the use of natural language processing and graph mining algorithms. We propose heuristically-based ranking criteria to augment Moliere, and leverage this ranking to identify a new gene-treatment target for HIV-associated Neurodegenerative Disorders. We additionally focus on the latent features of graphs, and propose a new bipartite graph embedding technique. Using our graph embedding, we advance the state-of-the-art in hypergraph partitioning quality. Having newfound intuition of graph embeddings, we present Agatha, a deep-learning approach to hypothesis generation. This system learns a data-driven ranking criteria derived from the embeddings of our large proposed biomedical semantic graph. To produce human-readable results, we additionally propose CBAG, a technique for conditional biomedical abstract generation
    • …
    corecore