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Abstract

Online Reputation Monitoring (ORM) is concerned with the use of computational
tools to measure the reputation of entities online, such as politicians or companies. In
practice, current ORM methods are constrained to the generation of data analytics
reports, which aggregate statistics of popularity and sentiment on social media. We
argue that this format is too restrictive as end users often like to have the flexibility to
search for entity-centric information that is not available in predefined charts.

As such, we propose the inclusion of entity retrieval capabilities as a first step
towards the extension of current ORM capabilities. However, an entity’s reputation is
also influenced by the entity’s relationships with other entities. Therefore, we address
the problem of Entity-Relationship (E-R) retrieval in which the goal is to search for
multiple connected entities. This is a challenging problem which traditional entity
search systems cannot cope with.

Besides E-R retrieval we also believe ORM would benefit of text-based entity-centric
prediction capabilities, such as predicting entity popularity on social media based on
news events or the outcome of political surveys. However, none of these tasks can
provide useful results if there is no effective entity disambiguation and sentiment
analysis tailored to the context of ORM.

Consequently, this thesis address two computational problems in Online Reputation
Monitoring: Entity Retrieval and Text Mining. We researched and developed methods
to extract, retrieve and predict entity-centric information spread across the Web.

We proposed a new probabilistic modeling of the problem of E-R retrieval together
with two fusion-based design patterns for creating representations of both entities and
relationships. Furthermore, we propose the Entity-Relationship Dependence Model, a
novel early-fusion supervised model based on the Markov Random Field framework
for Retrieval. Together with a new semi-automatic method to create test collections
for E-R retrieval, we released a new test collection for that purpose that will foster
research in this area. We performed experiments at scale with results showing that
it is possible to perform E-R retrieval without using fix and pre-defined entity and
relationship types, enabling a wide range of queries to be addressed.
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We tackled Entity Filtering and Financial Sentiment Analysis using a supervised
learning approach and studied several possible features for that purpose. We partici-
pated in two well known external competitions on both tasks, obtaining state-of-the-art
performance. Moreover, we performed analysis of the predictive power of a wide set of
signals extracted from online news to predict the popularity of entities on Twitter. We
also studied several sentiment aggregate functions on Twitter to study the feasibility
of using entity-centric sentiment on social media to predict political opinion polls.

Finally, we created and released an adaptable Entity Retrieval and Text Mining
framework that puts together all the building blocks necessary to perform ORM and can
be reused in multiple application scenarios, from computational journalism to politics
and finance. This framework is able to collect texts from online media, identify entities
of interest, perform entity and E-R retrieval as well as classify sentiment polarity and
intensity. It supports multiple data aggregation methods together with visualization
and modeling techniques that can be used for both descriptive and predictive analytics.



Resumo

A Monitorização da Reputação Online (MRO) consiste na utilização de ferramentas
computacionais para medir a reputação de entidades online, como por exemplo, políticos
ou empresas. Na prática, os métodos actuais de MRO estão restringidos à produção
de relatórios constituídos por análises de dados, tais como estatísticas agregadas da
popularidade e do sentimento nos media sociais. Consideramos que esta prática é
demasiado restritiva uma vez que os utilizadores finais das plataformas MRO desejam
frequentemente ter a flexibilidade que lhes permita pesquisar por informação centrada
nas entidades que vai além da disponibilizada nos gráficos pré-definidos.

Por conseguinte, propomos a inclusão da capacidade de recuperação de entidades
como um primeiro passo no sentido de estender as o estado atual das ferramentas de
MRO. No entanto, a reputação de uma dada entidade também é influenciada pelas
relações desta com outras entidades. Neste sentido, propomo-nos a tratar do problema
de recuperação de entidade-relações (E-R) onde o objectivo consiste na pesquisa por
múltiplas entidades relacionadas entre si. Trata-se de um desafio que os sitemas
tradicionais de recuperação de entidades ainda não são capazes de lidar.

Para além da recuperação E-R, também acreditamos que a MRO iria beneficiar da
capacidade de efectuar previsões baseadas em texto e centradas nas entidades, como por
exemplo a previsão da popularidade de entidades nos media sociais utilizando eventos
retratados nas notícias ou o resultado de sondagens. No entanto, nenhuma destas
tarefas terá sucesso e utilidade se não houver a capacidade efetiva de desambiguar
entidades mencionadas nos textos, assim como uma análise de sentimento específica
para o contexto da MRO.

Consequentemente, esta tese trata dois problemas computacionais da Monitorização
da Reputação Online: Recuperação de Entidades e Prospeção de Texto. Investigámos
e desenvolvemos métodos para extrair, recuperar e prever informação centrada em
entidades e espalhada pela Internet.

Propomos um novo modelo probabilístico do problema de recuperação E-R con-
juntamente com dois padrões de desenho baseados em fusão de texto para criar
representações de entidades e relações. Propomos também o Modelo de Dependência
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Entitdade-Relação (MDER), um novo modelo supervisionado de fusão antecipada
baseado no Campo Aleatório de Markov para a Recuperação de Informação. Conju-
tamente com um novo método semi-automático de geração de coleções de teste para
recuperação E-R, lançamos uma nova coleção de teste com esse propósito que irá
fomentar a investigação nesta área. Efetuamos experiências de grande escala e os
resultados mostram que é possível realizar recuperação E-R sem utilizar tipos fixos e
pré-definidos de entidades e relações, o que permite atuar sobre o conjunto alargado de
pesquisas.

Tratamos também das tarefas de Filtragem de Entidades e Análise de Sentimento
Financeiro utilizando uma abordagem de aprendizagem supervisionada em que estu-
damos várias características para esse fim. Participámos em duas competições exterrnas
em ambas as tarefas, atingindo resultados ao nível do estado da arte. Além disso,
realizámos uma análise do poder preditivo de um grande conjunto de sinais extraídos
das notícias online para parever a popularidade de entidades no Twitter. Assim como,
um estudo de várias funções de agregação de sentimento do Twitter para estudar a
praticabilidade de utilizar informação de sentimento nos media sociais para prever
sondagens eleitorais.

Finalmente, criámos e disponibilizámos uma plataforma de recuperação de entidades
e prospeção de texto que conjuga todos os blocos necessários para a realização de
MRO. Pode ser reutilizada em diversos cenários de aplicação, desde o jornalismo
computacional à política e finança. Esta plataforma é capaz de recolher textos dos
media online, identificar entidades alvo, efectuar recuperação de entidades e relaçãos,
assim como classificar sentimento e intensidade associada. Suporta vários métodos de
agregação de dados e juntamente com métodos de visualização e previsão pode ser
utilizada tanto para análises descritivas como preditivas.
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Chapter 1

Introduction

Nowadays, people have pervasive access to connected devices, applications and services
that enable them to obtain and share information almost instantly, on a 24/7 basis.
With Social Media growing at an astonishing speed, user opinions about people, com-
panies and products quickly spread over large communities. Consequently, companies
and personalities are under thorough scrutiny, with every event and every statement
potentially observed and evaluated by a global audience, which reflects one’s perceived
reputation.

Van Riel and Fombrun [1] define reputation as the “overall assessment of organiza-
tions by their stakeholders.” The authors use the term organization in the definition,
but it may as well apply to individuals (e.g. politicians) or products (e.g. mobile phone
brands). A stakeholder is someone who has some relationship with the organization,
such as employees, customers or shareholders. This definition and other similar ones
[2], focus on the perspective that reputation represents perceptions that others have
on the target entity.

However, the rise of Social Media and online news publishing has brought about
wider public awareness about the entities’ activities, influencing people’s perceptions
about their reputation. While traditional reputation analysis is mostly manual and
focused on particular entities, with online media it is possible to automate much of
the process of collecting, preparing and understanding large streams of content, to
identify facts and opinions about a much wider set of entities. Online Reputation
Monitoring (ORM) addresses this challenge: the use of computational tools to mea-
sure the reputation of entities from online media content. Early ORM started with
counting occurrences of a brand name in Social Media as a channel to estimate the
knowledge/reach of a brand.
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There are several challenges to collect, process and mine online media data for these
purposes [3]. Social Media texts are short, informal, with many abbreviations, slang,
jargon and idioms. Often, the users do not care about the correct use of grammar and
therefore the text tends to have misspellings, incomplete and unstructured sentences.
Furthermore, the lack of context poses a very difficult problem for tasks relevant in the
context of Text Mining, such as Named Entity Disambiguation or Sentiment Analysis.
Once we classify the sentiment polarity of a given document (e.g. tweet or news title),
it is necessary to aggregate several document scores to create meaningful hourly/daily
indicators. These tasks are technically complex for most of the people interested in
tracking entities on the web. For this reason, most research has focused on investigating
parts of this problem leading to the development of tools that only address sub-tasks
of this endeavor.

Text data usually includes a large number of entities and relationships between them.
We broadly define an entity to be a thing or concept that exists in the world, such as a
person, a company, organization, an event or a film. Entities exist as mentions across
documents and in external knowledge resources. In recent years, entities have gained
increased importance as the basic unit of information to answer particular information
needs, instead of entire documents or text snippets [4, 5]. The volume of entity-centric
data is rapidly increasing on the Web, including RDF and Linked Data, Schema.org,
Facebook’s Open Graph, and Google’s Knowledge Graph, describing entities (e.g.,
footballers and coaches) and relationships between them (e.g., “manages”).

These developments have a great impact in Online Reputation Monitoring as it is
mainly focused on entities. More specifically, the ORM process consists in searching
and tracking an entity of interest: the personality, the company, organization or
brand/product under analysis. On the other hand, news stories, topics and events
discussed in the news or Social Media usually contain mentions of entities or concepts
represented in a Knowledge Base. Thus, we can say that entities are the gravitational
force that drives the Online Reputation Monitoring process.

1.1 Thesis Statement
The ultimate goal of ORM is to track everything that is said on the Web about a
given target entity and consequently, to assess/predict the impact on its reputation.
From our perspective, this goal is very hard to achieve for two reasons. The first
reason has to do with the difficulty of computationally processing, interpreting and
accessing the huge amount of information published online everyday. The second
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reason is inherent to the definition of reputation as being intangible but having tangible
outcomes. More specifically, Fombrun and Van Riel [6] and later Stacks [7] found
a correlation between several indicators, such as reputation or trust, and financial
indicators, such as sales or profits. However, this finding does not imply causality, as
financial indicators can be influenced by many factors, besides stakeholders’ perceived
reputation. In conclusion, there is no consensus on how to measure reputation, neither
intrinsically nor extrinsically.

To the best of our knowledge, current ORM is still very limited and naive. The
most standard approach consists in counting mentions of entity names and applying
sentiment analysis to produce descriptive reports of aggregated entity popularity and
overall sentiment. We propose to make progress in ORM by tackling two computational
problems: Entity Retrieval and Text Mining (Figure 1.1).

Online Reputation Monitoring

Entity Retrieval Text Mining

Text and Entities

Fig. 1.1 Entity Retrieval and Text Mining as computational problems of ORM.

We believe that a ORM platform, besides providing aggregated statistics and trends
about entity popularity and sentiment on the news and social media, would benefit
from providing entity retrieval capabilities. End users often like to have the flexibility
to search for specific information that is not available in predefined charts. However,
ORM has some specificities that traditional entity search systems cannot cope with.
More specifically, an entity’s reputation is also influenced by the entity’s relationships
with other entities.
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For instance, the reputation of Apple Inc. was severely damaged with the so called
“Apple Foxconn scandal”. Foxconn was one of the several contractor companies in
Apple’s supply chain that was accused of exploiting Chinese workers. Although the facts
were not directly concerned with Apple itself, its relationship with Foxconn triggered
bad public opinion about Apple. The same happened recently with the “Weinstein sex
scandal”, as accusations of sexual harassment aimed at Harvey Weinstein created a
wave of damage to companies and personalities associated with the disgraced Hollywood
producer.

Therefore, a ORM platform should provide entity-relationship search capabilities.
Entity-Relationship (E-R) Retrieval is a complex case of entity retrieval where the goal
is to search for multiple unknown entities and relationships connecting them. Contrary
to traditional entity queries, E-R queries expect tuples of connected entities as answers.
For instance, “US technology companies contracts Chinese electronics manufacturers"
can be answered by tuples <Apple, Foxconn>, while “Companies founded by disgraced
Hollywood producer" is expecting tuples <Miramax, Harvey Weinstein>. In essence,
an E-R query can be decomposed into a set of sub-queries that specify types of entities
and types of relationships between entities.

On the other hand, ORM requires accurate and robust text processing and data
analysis methods. Text Mining plays an essential enabling role in developing better
ORM. There are several challenges with collecting and extracting relevant entity-centric
information from raw text data. It is necessary to filter noisy data otherwise downstream
processing tasks, such as sentiment analysis, will be compromised. More specifically, it
is essential to develop named entity disambiguation approaches that can distinguish
relevant text passages from non-relevant. Named entities are often ambiguous, for
example, the word “bush” is a surface form for two former U.S. presidents, a music
band and a shrub. The ambiguity of named entities is particularly problematic in
social media texts, where users often mention entities using a single term.

ORM platforms would be even more useful if they would be able to predict if social
media users will talk a lot about the target entities or not. For instance, on April 4th
2016, the UK Prime-minister, David Cameron, was mentioned on the news regarding
the Panama Papers story. He did not acknowledge the story in detail on that day.
However, the news cycle kept mentioning him about this topic in the following days
and his mentions on social media kept very high. He had to publicly address the issue
on April 9th, when his reputation had already been severely damaged, blaming himself
for not providing further details earlier. Thus we also want to study the feasibility of



1.2 Objectives 5

using entity-centric knowledge extracted from Social Media and online news to predict
real world surveys results, such as political polls.

1.2 Objectives
The work reported on this dissertation aimed to understand, formalize and explore
the scientific challenges inherent to the problem of using unstructured text data from
different Web sources for Online Reputation Monitoring. We now describe the specific
research challenges we proposed to overcome.

Entity-Relationship Retrieval: Existing strategies for entity search can be divided
in IR-centric and Semantic-Web-based approaches. The former usually rely on statistical
language models to match and rank co-occurring terms in the proximity of the target
entity [8]. The latter consists in creating a SPARQL query and using it over a structured
knowledge base to retrieve relevant RDF triples [9]. Neither of these paradigms provide
good support for entity-relationship (E-R) retrieval.

Recent work in Semantic-Web search tackled E-R retrieval by extending SPARQL
to support joins of multiple query results and creating an extended knowledge graph
[10]. Extracted entities and relationships are typically stored in a knowledge graph.
However, it is not always convenient to rely on a structured knowledge graph with
predefined and constraining entity types.

In particular, ORM is interested in transient information sources, such as online
news or social media. General purpose knowledge graphs are usually fed with more
stable and reliable data sources (e.g. Wikipedia). Furthermore, predefining and
constraining entity and relationship types, such as in Semantic Web-based approaches,
reduces the range of queries that can be answered and therefore limits the usefulness
of entity search, particularly when one wants to leverage free-text.

To the best of our knowledge, E-R retrieval using IR-centric approaches is a new
and unexplored research problem within the Information Retrieval research community.
One of the objectives of our research is to explore to what degree we can leverage the
textual context of entities and relationships, i.e., co-occurring terminology, to relax the
notion of an entity or relationship type.

Instead of being characterized by a fixed type, e.g., person, country, place, the entity
would be characterized by any contextual term. The same applies to the relationships.
Traditional knowledge graphs have fixed schema of relationships, e.g. child of, created
by, works for while our approach relies on contextual terms in the text proximity of
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every two co-occurring entities in a raw document. Relationships descriptions such
as “criticizes”, “hits back”, “meets” or “interested in” would be possible to search for.
This is expected to significantly reduce the limitations which structured approaches
suffer from, enabling a wider range of queries to be addressed.

Entity Filtering and Sentiment Analysis: Entity Filtering is a sub-problem of
Named Entity Disambiguation (NED) in which we have a named entity mention and
we want to classify it as related or not related with the given target entity. This is
a relatively easy problem in well formed texts such as news articles. However, social
media texts pose several problems to this task. We are particularly interested in Entity
Filtering of tweets and we aim to study a large set of features that can be generated to
describe the relationship between a given target entity and a tweet, as well as exploring
different learning algorithms to create supervised models for this task.

Sentiment Analysis has been thoroughly studied in the last decade [11]. There have
been several PhD thesis entirely dedicated to this subject. It is a broad problem with
several ramifications depending on the text source and specific application. Within the
context of ORM, we will focus in a particular domain: finance. Sentiment Analysis
on financial texts has received increased attention in recent years [12]. Neverthless,
there are some challenges yet to overcome [13]. Financial texts, such as microblogs or
newswire, usually contain highly technical and specific vocabulary or jargon, making
the development of specific lexical and machine learning approaches necessary.

Text-based Entity-centric Prediction: We hypothesize that for entities that are
frequently mentioned on the news (e.g. politicians) it is possible to establish a predictive
link between online news and popularity on social media. We cast the problem as a
supervised learning classification approach: to decide whether popularity will be high
or low based on features extracted from the news cycle. We aim to assess if online
news are valuable as source of information to effectively predict entity popularity on
Twitter. More specifically, we want to find if online news carry different predictive
power based on the nature of the entity under study and how predictive performance
varies with different times of prediction. We propose to explore different text-based
features and how particular ones affect the overall predictive power and specific entities
in particular.

On the other hand, we will study if it is possible to use knowledge extracted from
social media texts to predict the outcome of public opinion surveys. The automatic
content analysis of mass media in the social sciences has become necessary and possible
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with the rise of social media and computational power. One particularly promising
avenue of research concerns the use of sentiment analysis in microblog streams. However,
one of the main challenges consists in aggregating sentiment polarity in a timely fashion
that can be fed to the prediction method.

A Framework for ORM: The majority of the work in ORM consists in ad-hoc
studies where researchers collect data from a given social network and produce their
specific analysis or predictions, often unreproducible. The availability of open source
platforms in this area is scarse. Researchers typically use specific APIs and software
modules to produce their studies. However, there has been some effort among the
research community to address these issues through open source research platforms.
We therefore aim to create an adaptable text mining framework specifically tailored
for ORM that can be reused in multiple application scenarios, from politics to finance.
This framework is able to collect texts from online media, such as Twitter, and identify
entities of interest and classify sentiment polarity and intensity. The framework
supports multiple data aggregation methods, as well as visualization and modeling
techniques that can be used for both descriptive analytics, such as analyze how political
polls evolve over time, and predictive analytics, such as predict elections.

1.3 Research Methodology
We adopted distinct research methodologies in the process of developing the research
work described in this thesis. The origin of this work was the POPSTAR project.
POPSTAR (Public Opinion and Sentiment Tracking, Analysis, and Research) was a
project that developed methods for the collection, measurement and aggregation of
political opinions voiced in microblogs (Twitter), in blogs and online news. A first
prototype of the framework for ORM was implemented and served as the backend
of the POPSTAR website (http://www.popstar.pt/). The ground work concerned
with the development of a framework for ORM was carried in the scope of the project.
Therefore, the POPSTAR website served as use case for validating the effectiveness
and adaptability of the framework.

The Entity Filtering and Sentiment Analysis modules of the framework were evalu-
ated using well known external benchmarks resulting in state-of-the-art performance.
We participated in RepLab 2013 Filtering Task and evaluated our Entity Filtering
method using the dataset created for the competition. One of our submissions obtained
the first place at the competition. We also participated in SemEval 2017 Task 5:

http://www.popstar.pt/


8 Introduction

Fine-grained Sentiment Analysis on Financial Microblogs and News. We were ranked
4th using one of the metrics at the sub-task 5.1 Microblogs.

We performed two experiments regarding the text-based entity centric predictions.
For predicting entity popularity on Twitter based on the news cycle we collected tweets
and news articles from Portugal using the SocialBus twitter collector and online news
from 51 different news outlets collected by SAPO. We used the number of entity
mentions on Twitter as target variable and we extracted text-based features from the
news datasets. Both datasets were aligned in time. We used the same Twitter dataset
for studying different sentiment aggregate functions to serve as features for predicting
political polls of a private opinion studies company, Eurosondagem.

Improvements of Entity-Relationship (E-R) retrieval techniques have been hampered
by a lack of test collections, particularly for complex queries involving multiple entities
and relationships. We created a method for generating E-R test queries to support
comprehensive E-R search experiments. Queries and relevance judgments were created
from content that exists in a tabular form where columns represent entity types and
the table structure implies one or more relationships among the entities. Editorial
work involved creating natural language queries based on relationships represented
by the entries in the table. We have publicly released the RELink test collection
comprising 600 queries and relevance judgments obtained from a sample of Wikipedia
List-of-lists-of-lists tables.

We evaluated the new methods proposed for E-R retrieval using the RELink query
collection together with two other smaller query collections created by research work
in Semantic Web-based E-R retrieval. We used a large web corpus, the ClueWeb-09B
containing 50 million web pages for creating E-R retrieval tailored indexes for running
our experiments. Moreover, we implemented a demo using a large news collection of
12 million Portuguese news articles, resulting in the best demo award at ECIR 2016.

1.4 Contributions and Applications
This work resulted in the following contributions:

1. A Text Mining framework that puts together all the building blocks required
to perform ORM. The framework is adaptable and can be reused in different
application scenarios, such as finance and politics. The framework provides entity-
specific Text Mining functionalities that enable the collection, disambiguation,
sentiment analysis, aggregation, prediction and visualization of entity-centric
information from heterogeneous Web data sources. Furthermore, given that it is
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built using a modular architecture providing abstraction layers and well defined
interfaces, new functionalities can easily be integrated.

2. Generalization of the problem of entity-relationship search to cover entity types
and relationships represented by any attribute and predicate, respectively, rather
than a pre-defined set.

3. A general probabilistic model for E-R retrieval using Bayesian Networks.

4. Proposal of two design patterns that support retrieval approaches using the E-R
model.

5. Proposal of a Entity-Relationship Dependence model that builds on the basic
Sequential Dependence Model (SDM) to provide extensible entity-relationship
representations and dependencies, suitable for complex, multi-relations queries.

6. An Entity-relationship indexing and retrieval approach including learning to
rank/data fusion methods that can handle entity and relationships ranking and
merging of results.

7. The proposal of a method and strategy for automatically obtaining relevance
judgments for entity-relationship queries.

8. We make publicly available queries and relevance judgments for the previous
task.

9. Entity Filtering and Financial Sentiment Analysis methods tailored for Twitter
that is able to cope with short informal texts constraints.

10. Analysis of the predictive power of online news regarding entity-centric metrics
on Twitter, such as popularity or sentiment.

11. Analysis of how to combine entity-centric knowledge obtained from heterogeneous
sources for survey-like prediction tasks.

We believe this work can be useful in a wide range of applications from which we
highlight six:

Reputation Management is concerned with influencing and controlling com-
pany or individual reputation and consequently tracking what is said about
entities online is one of the main concerns of this area. For instance, knowing if
a given news article will have a negative impact on entity’s reputation would be
crucial for damage control.
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Digital Libraries are special libraries comprising a collection of digital objects
(e.g. text or images) stored in a electronic media format. They are ubiquitous
nowadays, from academic repositories, to biomedical databases, law enforcement
repositories, etc. We believe the contributions we make to the Entity-Relationship
Retrieval research problem can be applied to any digital library enabling a new
wide range of search capabilities.

Fraud Detection and inside trading detection is an area where information
about entities (individuals and companies) and relationships between entities is
very useful to discover hidden relationships and contexts of entities that might
represent conflicts of interests or even fraud.

Journalism, or more specifically, computational journalism would benefit of a
powerful entity-relationship search tool in which journalists could investigate how
entities were previously mentioned on the Web, including online news through
time, as well as relationships among entities and their semantics.

Political Science has given a lot of attention to Social Media in recent years due
to the sheer amount of people reactions and opinions regarding politically relevant
events. Being able to analyze the interplay between online news and Social Media
from a political entity perspective can be very interesting for political scientists.
On the other hand, it is becoming increasingly difficult to obtain pollsresponses
via telephone and it is necessary to start testing alternative approaches.

Social Media Marketing focuses on communicating through social networks
with company potential and effective customers. Evaluating the success of a
given campaign is a key aspect of this area. Therefore assessing the volume and
polarity of mentions of a given company before and after a campaign would be
very useful.

1.5 Foundations
Most of the material of this thesis was previously published in journal, conference and
workshop publications:

• P.Saleiro, E. M. Rodrigues, C. Soares, E. Oliveira, “TexRep: A Text Mining
Framework for Online Reputation Monitoring”, New Generation Computing,
Volume 35, Number 4 2017 [14]
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• P. Saleiro, N. Milic-Frayling, E. M. Rodrigues, C. Soares, “RELink: A Research
Framework and Test Collection for Entity-Relationship Retrieval”, 40th Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2017) [15]

• P. Saleiro, N. Milic-Frayling, E. M. Rodrigues, C. Soares, “Early Fusion Strategy
for Entity-Relationship Retrieval”, The First Workshop on Knowledge Graphs
and Semantics for Text Retrieval and Analysis (KG4IR@SIGIR 2017) [16]

• P. Saleiro, L. Sarmento, E. M. Rodrigues, C. Soares, E. Oliveira, “Learning Word
Embeddings from the Portuguese Twitter Stream: A Study of some Practical
Aspects”, Progress in Artificial Intelligence (EPIA 2017) [17]

• P. Saleiro, E. M. Rodrigues, C. Soares, E. Oliveira, “FEUP at SemEval-2017 Task
5: Predicting Sentiment Polarity and Intensity with Financial Word Embeddings”,
International Workshop on Semantic Evaluation (SemEval@ACL 2017) [18]

• P. Saleiro and C. Soares, “Learning from the News: Predicting Entity Popularity
on Twitter” in Advances in Intelligent Data Analysis XV (IDA 2016) [19]

• P. Saleiro, J. Teixeira, C. Soares, E. Oliveira, “TimeMachine: Entity-centric
Search and Visualization of News Archives” in Advances in Information Retrieval:
38th European Conference on IR Research (ECIR 2016) [20]

• P. Saleiro, L. Gomes, C. Soares, “Sentiment Aggregate Functions for Political
Opinion Polling using Microblog Streams” in International C* Conference on
Computer Science and Software Engineering (C3S2E 2016) [21]

• P. Saleiro, S. Amir, M. J. Silva, C. Soares , “POPmine: Tracking Political Opinion
on the Web” in IEEE International Conference on Computer and Information
Technology; Ubiquitous Computing and Communications; Dependable, Auto-
nomic and Secure Computing; Pervasive Intelligence and Computing (IUCC
2015) [22]

• P. Saleiro, L. Rei, A. Pasquali, C. Soares, et al., “POPSTAR at RepLab 2013:
Name ambiguity resolution on Twitter” in Fourth International Conference of
the CLEF initiative (CLEF 2013) [23]
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1.6 Thesis Outline
In Chapter 2 we discuss related work to this thesis. In Chapter 3 we present a
formalization of the problem of E-R retrieval using a IR-centric approach. We provide
two design patterns for fusion-based E-R retrieval: Early Fusion and Late Fusion. We
end the chapter by introducing a new supervised early fusion-based Entity Relationship
Dependence Model (ERDM) that can be seen as an extension of the MRF framework
for retrieval adapted to E-R retrieval. In Chapter 4 we describe a set of experiments
on E-R retrieval over a Web corpus. First we introduce a new query collection, RELink
QC, specifically tailored to this problem. We developed a semi-automatic approach
to collect relevance judgments from tabular data and the editorial work consisted in
creating E-R queries answered by those relevance judgments. We run experiments
using the ClueWeb09-B as dataset and provide evaluation results for the new proposed
methods for E-R retrieval.

Chapter 5 is dedicated to Entity Filtering and Financial Sentiment Analysis. We
evaluate our approaches using well known external benchmarks, namely, RepLab
2013 and SemEval 2017. In Chapter 6, we present two experiments of text-based
entity-centric predictions. In the first experiment, we try to predict the popularity of
entities on social media using solely features extracted from the news cycle. On the
second experiment, we try to assess which sentiment aggregate functions are useful in
predicting political polls results.

In Chapter 7, we present an unified framework of ORM. The framework is divided
in two major containers: RELink (Entity Retrieval) and TexRep (Text Mining). We
present the data flow within the framework and how it can be used as a reference
open source framework for researching in ORM. We also present some case studies of
using this framework. We end this thesis with Chapter 8 which is dedicated to the
conclusions.
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Background and Related Work

This chapter introduces an overview of the background concepts and previous research
work on the tasks addressed in this dissertation. We start by presenting a brief
description of the task of Online Reputation Monitoring (ORM), including related
frameworks for ORM. We then survey previous research work in Entity Retrieval and
Semantic Search, including a detailed explanation of the Markov Random Field model
for retrieval and its variations. We describe the tasks of Named Entity Disambiguation,
Sentiment Analysis and previous work on training word embeddings. We end this
chapter by providing an overview of related work on text-based predictions, including
predicting social media attention or the outcome of political elections.

2.1 Online Reputation Monitoring
The reputation of a company is important for the company itself but as well for the
stakeholders. More specifically, stakeholders make decisions about the company and its
products faster if they are aware of the image of the company [24]. From the company
perspective, reputation is an asset as it attracts stakeholders and it can represent
economic profit at the end [25, 6]

In 2001, Newell and Goldsmith used questionnaire and survey methodologies to
introduce the first standardized and reliable measure of credibility of companies from a
consumer perspective [26]. There have been also studies that find a correlation between
company indicators such as reputation, trust and credibility, and financial indicators,
such as sales and profits [6, 7]. These studies found that although reputations are
intangible they influence tangible assets. Following this reasoning, Fombrum created a
very successful measurement framework, named RepTrak [27].
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A different methodology compared to questionnaires is media analysis (news, TV
and radio broadcasts). Typically, the analysis involves consuming and categorizing
media according to stakeholder and polarity (positive, negative) towards the company.
Recently, Social Media analysis is becoming an important proxy of people opinion,
originating the field of Online Reputation Monitoring [28]. While traditional reputation
monitoring is mostly manual, online media pose the opportunity to process, understand
and aggregate large streams of facts about about a company or individual.

ORM requires some level of continuous monitoring [29]. It is crucial to detect early
the changes in the perception of a company or personality conveyed in Social Media.
Online buzz may be good or bad and consequently, companies must react and address
negative trends [30, 31]. It also creates an opportunity to monitor the reputation
of competitors. In this context, Text Mining plays a key, enabling role as it offers
methods for deriving high-quality information from textual content [32]. For instance,
Gonzalo [31] identifies 5 different Text Mining research areas relevant to ORM: entity
filtering, topic tracking, reputation priority detection, user profiling and automatic
reporting/summarization.

Social Media as a new way of communication and collaboration is an influence
for every stakeholder of society, such as personalities, companies or individuals [33].
Social Media users share every aspect of their lives and that includes information about
events, news stories, politicians, brands or organizations. Companies have access to all
this sharing which opens new horizons for obtaining insights that can be valuable to
them and their online reputation. Companies also invest a big share of their public
relations on Social Media. Building a strong reputation can take long time and effort
but destroying it can take place overnight. Therefore, as the importance of Social
Media increased, so did the importance of having powerful tools that deal with this
enormous amount of data.

2.1.1 Related Frameworks

The great majority of work in ORM consists in ad-hoc studies and platforms for ORM
are usually developed by private companies that do not share internal information.
However, there are some open source research projects that can be considered as related
frameworks to this work.

Trendminer [34] is one of such platforms that enables real time analysis of Twitter
data, but has a very simple sentiment analysis using word counts and lacks flexibility
in order to support entity-centric data processing. A framework for ORM should be
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entity-centric, i.e., collect, process and aggregate texts and information extracted from
those texts in relation to the entities being monitored.

conTEXT [35] addresses adaptability and reusability by allowing a modular inter-
face and allowing plugin components to extend their framework, specially from the
perspective of the data sources and text analysis modules. For instance, it does not
support Sentiment Analysis module by default but it could be plugged in. Neverthless,
conTEXT does not support the plugin of aggregation and prediction modules which
makes it not suitable for ORM. The FORA framework [30] is specifically tailored for
ORM. It creates an ontology based on fuzzy clustering of texts but it is only concerned
with extracting relevant linguistic units regarding the target entities and does not
include automatic sentiment analysis and it does not allow the plugin of new modules.

POPmine [36] was the first version of our Text Mining framework for ORM and
it was developed specifically in the context of a project in political data science. It
comprises a richer set of modules, including cross media data collection (Twitter, blog
posts and online news) and real-time trend analysis based on entity filtering and
sentiment analysis modules. In fact, our current version of TexRep, our Text Mining
framework for ORM, can be seen as an extension of the POPmine architecture by
creating a more general purpose framework for ORM which is not restricted to political
analysis. While it would be possible to adapt POPmine’s entity disambiguation and
sentiment analysis modules, its aggregations are specific to the political scenarios. On
the other hand, TexRep supports users to define and plug custom-specific aggregate
functions. Moreover, POPmine has limited user configurations (e.g. lacks support for
pre-trained word embeddings) and does not include predictive capabilities.

2.2 Entity Retrieval and Semantic Search
Information Retrieval deals with the “search for information”. It is defined as the
activity of finding relevant information resources (usually documents) that meet an
information need (usually a query), from within a large collection of resources of an
unstructured nature (usually text) [37].

In early boolean retrieval systems, documents were retrieved if the exact query term
was present and they were represented as a list of terms [37]. With the introduction
of the Vector Space Model, each term represents a dimension in a multi-dimensional
space, and consequently, each document and query are represented as vectors [38].
Values of each dimension of the document vector correspond to the term frequency
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(TF) of the term in the document. Therefore, the ranking list of documents is produced
based on their spatial distance to the query vector.

The concept of inverse document frequency (IDF) was later introduced to limit the
effect of common terms in a collection [39]. A term that occurs in many documents
of the collection has a lower IDF than terms that occur less often. The combination
TF-IDF and variants, such as BM25 [40], became commonly used weighting statistics
for Vector Space Model.

Recently, it has been observed that when people have focused information needs,
entities better satisfy those queries than a list of documents or large text snippets
[5]. This type of retrieval is called Entity Retrieval or Entity-oriented retrieval and
includes extra Information Extraction tasks for processing documents, such as Named
Entity Recognition (NER) and Named Entity Disambiguation (NED). Entity Retrieval
is closely connected with Question answering (QA) though, QA systems focus on
understanding the semantic intent of a natural language query and deciding which
sentences represent the answer to the user.

Considering the query “British politicians in Panama papers”, the expected result
would be a list of names rather than documents related to British politics and the
“Panama Papers” news story. There are two search patterns related to Entity Retrieval
[4]. First, the user knows the existence of a certain entity and aims to find related
information about it. For example, a user searching for product related information.
Second, the user defines a predicate that constrains the search to a certain type of
entities, e.g. searching for movies of a certain genre.

Online Reputation Monitoring systems usually focus on reporting statistical insights
based on information extracted from Social Media and online news mentioning the
target entity. However, this kind of interaction limits the possibility of users to explore
all the knowledge extracted about the target entity. We believe Entity Retrieval could
enhance Online Reputation Monitoring by allowing free text search over all mentions of
the target entity and, consequently, allow users to discover information that descriptive
statistical insights might not be able to identify.

Entity Retrieval differs from traditional document retrieval in the retrieval unit.
While document retrieval considers a document as the atomic response to a query, in
Entity Retrieval document boundaries are not so important and entities need to be
identified based on occurrence in documents [41]. The focus level is more granular as
the objective is to search and rank entities among documents. However, traditional
Entity Retrieval systems does not exploit semantic relationships between terms in the
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query and in the collection of documents, i.e. if there is no match between query terms
and terms describing the entity, relevant entities tend to be missed.

Entity Retrieval has been an active research topic in the last decade, including
various specialized tracks, such as Expert finding track [42], INEX entity ranking track
[43], TREC entity track [44] and SIGIR EOS workshop [45]. Previous research faced
two major challenges: entity representation and entity ranking. Entities are complex
objects composed by a different number of properties and are mentioned in a variety
of contexts through time. Consequently, there is no single definition of the atomic unit
(entity) to be retrieved. Additionally, it is a challenge to devise entity rankings that
use various entity representations approaches and tackle different information needs.

There are two main approaches for tackling Entity Retrieval: “profile based approach”
and “voting approach” [46]). The “profile based approach” starts by applying NER
and NED in the collection in order to extract all entity occurrences. Then, for each
entity identified, a meta-document is created by concatenating every passage in which
the entity occurs. An index of entity meta-documents is created and a standard
document ranking method (e.g. BM25) is applied to rank meta-documents with
respect to a given query [47, 48]. One of the main challenges of this approach is the
transformation of original text documents to an entity-centric meta-document index,
including pre-processing the collection in order to extract all entities and their context.

In the “voting approach”, the query is processed as typical document retrieval to
obtain an initial list of documents [46, 49]. Entities are extracted from these documents
using NER and NED techniques. Then, score functions are calculated to estimate the
relation of entities captured and the initial query. For instance, counting the frequency
of occurrence of the entity in the top documents combined with each document score
(relevance to the query) [46]. Another approach consists in taking into account the
distance between the entity mention and the query terms in the documents [50].

Recently, there is an increasing research interest in Entity Search over Linked Data,
also referred as Semantic Search, due to the availability of structured information
about entities and relations in the form of Knowledge Bases [51–53]. Semantic Search
exploits rich structured entity related in machine readable RDF format, expressed as a
triple (entity, predicate, object). There are two types of search: keyword-based and
natural language based search [54, 55]. Regardless of the search type, the objective is
to interpret the semantic structure of queries and translate it to the underlying schema
of the target Knowledge Base. Most of the research focus is on interpreting the query
intent [54, 55] while others focus on how to devise a ranking framework that deals with
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similarities between different attributes of the entity entry in the KB and the query
terms [53]

Relationship Queries: Li et al. [56] were the first to study relationship queries
for structured querying entities over Wikipedia text with multiple predicates. This
work used a query language with typed variables, for both entities and entity pairs, that
integrates text conditions. First it computes individual predicates and then aggregates
multiple predicate scores into a result score. The proposed method to score predicates
relies on redundant co-occurrence contexts.

Yahya et al. [10] defined relationship queries as SPARQL-like subject-predicate-
object (SPO) queries joined by one or more relationships. The authors cast this problem
into a structured query language (SPARQL) and extended it to support textual phrases
for each of the SPO arguments. Therefore it allows to combine both structured
SPARQL-like triples and text simultaneously. It extended the YAGO knowledge base
with triples extracted from ClueWeb using an Open Information Extraction approach
[57].

In the scope of relational databases, keyword-based graph search has been widely
studied, including ranking [58]. However, these approaches do not consider full doc-
uments of graph nodes and are limited to structured data. While searching over
structured data is precise it can be limited in various respects. In order to increase the
recall when no results are returned and enable prioritization of results when there are
too many, Elbassuoni et al. [59] propose a language-model for ranking results. Similarly,
the models like EntityRank by Cheng et al. [60] and Shallow Semantic Queries by
Li et al. [56], relax the predicate definitions in the structured queries and, instead,
implement proximity operators to bind the instances across entity types. Yahya et al.
[10] propose algorithms for application of a set of relaxation rules that yield higher
recall.

Entity Retrieval and proximity: Web documents contain term information
that can be used to apply pattern heuristics and statistical analysis often used to infer
entities as investigated by Conrad and Utt [61], Petkova and Croft [50], Rennie and
Jaakkola [62]. In fact, early work by Conrad and Utt [61] demonstrates a method that
retrieves entities located in the proximity of a given keyword. They show that using a
fixed-size window around proper-names can be effective for supporting search for people
and finding relationship among entities. Similar considerations of the co-occurrence
statistics have been used to identify salient terminology, i.e. keyword to include in the
document index [50].
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2.2.1 Markov Random Field for IR

In this section we detail the generic Markov Random Field (MRF) model for retrieval
and its variation, the Sequential Dependence Model (SDM). As we later show, this
model is the basis for our entity-relationship retrieval model.

The Markov Random Field (MRF) model for retrieval was first proposed by Metzler
and Croft [63] to model query term and document dependencies. In the context of
retrieval, the objective is to rank documents by computing the posterior P (D|Q), given
a document D and a query Q:

P (D|Q) = P (Q,D)
P (Q) (2.1)

For that purpose, a MRF is constructed from a graph G, which follows the local
Markov property: every random variable in G is independent of its non-neighbors
given observed values for its neighbors. Therefore, different edge configurations imply
different independence assumptions.

Fig. 2.1 Markov Random Field document and term dependencies.

Metzler and Croft [63] defined that G consists of query term nodes qi and a document
node D, as depicted in Figure 2.1. The joint probability mass function over the random
variables in G is defined by:

PG,Λ(Q,D) = 1
ZΛ

∏
c∈C(G)

ψ(c; Λ) (2.2)

where Q = q1, ...qn are the query term nodes, D is the document node, C(G) is the
set of maximal cliques in G, and ψ(c; Λ) is a non-negative potential function over clique
configurations. The parameter ZΛ = ∑

Q,D

∏
c∈C(G) ψ(c; Λ) is the partition function

that normalizes the distribution. It is generally unfeasible to compute ZΛ, due to
the exponential number of terms in the summation, and it is ignored as it does not
influence ranking.
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The potential functions are defined as compatibility functions between nodes in a
clique. For instance, a tf-idf score can be measured to reflect the “aboutness” between
a query term qi and a document D. Metzler and Croft [63] propose to associate one
or more real valued feature function with each clique in the graph. The non-negative
potential functions are defined using an exponential form ψ(c; Λ) = exp[λcf(c)], where
λc is a feature weight, which is a free parameter in the model, associated with feature
function f(c). The model allows parameter and feature functions sharing across cliques
of the same configuration, i.e. same size and type of nodes (e.g. 2-cliques of one query
term node and one document node).

For each query Q, we construct a graph representing the query term dependencies,
define a set of non-negative potential functions over the cliques of this graph and rank
documents in descending order of PΛ(D|Q):

PΛ(D|Q) rank= log PΛ(D|Q)
rank= log PΛ(Q,D)− log PΛ(Q)
rank=

∑
c∈C(G)

log ψ(c; Λ)

rank=
∑

c∈C(G)
log exp[λcf(c)]

rank=
∑

c∈C(G)
λcf(c)

(2.3)

(2.4)

Metzler and Croft concluded that given its general form, the MRF can emulate
most of the retrieval and dependence models, such as language models [64].

2.2.2 Sequential Dependence Model

The Sequential Dependence Model (SDM) is the most popular variant of the MRF
retrieval model [63]. It defines two clique configurations represented in the following
potential functions ψ(qi, D; Λ) and ψ(qi, qi+1, D; Λ). Basically, it considers sequential
dependency between adjacent query terms and the document node.

The potential function of the 2-cliques containing a query term node and a
document node is represented as ψ(qi, D; Λ) = exp[λTfT (qi, D)]. The clique con-
figuration containing contiguous query terms and a document node is represented
by two real valued functions. The first considers exact ordered matches of the
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two query terms in the document, while the second aims to capture unordered
matches within N fixed window sizes. Consequently, the second potential function is
ψ(qi, qi+1, D; Λ) = exp[λOfO(qi, qi+1, D) + λUfU(qi, qi+1, D)].

Replacing ψ(c; Λ) by these potential functions in Equation 3.38 and factoring out
the parameters λ, the SDM can be represented as a mixture model computed over
term, phrase and proximity feature classes:

P (D|Q) rank= λT

∑
qi∈Q

fT (qi, D) +

λO

∑
qi,qi+1∈Q

fO(qi, qi+1, D) +

λU

∑
qi,qi+1∈Q

fU(qi, qi+1, D)

where the free parameters λ must follow the constraint λT +λO+λU = 1. Coordinate
Ascent was chosen to learn the optimal λ values that maximize mean average precision
using training data [65]. Considering tf the frequency of the term(s) in the document
D, cf the frequency of the term(s) in the entire collection C, the feature functions in
SDM are set as:

fT (qi, D) = log
[

tfqi,D+µ
cfqi
|C|

|D|+µ

]
(2.5)

fO(qi, qi+1, D) = log
 tf#1(qi,qi+1),D+µ

cf#1(qi,qi+1)
|C|

|D|+µ

 (2.6)

fU(qi, qi+1, D) = log
 tf#uwN(qi,qi+1),D+µ

cf#uwN(qi,qi+1)
|C|

|D|+µ

 (2.7)

where µ is the Dirichlet prior for smoothing, #1(qi, qi+1) is a function that searches
for exact matches of the phrase “qi qi+1” and #uwN(qi, qi+1) is a function that searches
for co-occurrences of qi and qi+1 within a window of fixed-N terms (usually 8 terms)
across document D. SDM has shown state-of-the-art performance in ad-hoc document
retrieval when compared with several bigram dependence models and standard bag-of-
words retrieval models, across short and long queries [66].
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2.2.3 MRF for Entity Retrieval

The current state-of-the-art methods in ad-hoc entity retrieval from knowledge graphs
are based on MRF [53, 67]. The Fielded Sequential Dependence Model (FSDM) [53]
extends SDM for structured document retrieval and it is applied to entity retrieval
from knowledge graphs. In this context, entity documents are composed by fields
representing metadata about the entity. Each entity document has five fields: names,
attributes, categories, similar entity names and related entity names. FSDM builds
individual language models for each field in the knowledge base. This corresponds to
replacing SDM feature functions with those of the Mixture of Language Models [68].
The feature functions of FSDM are defined as:

f̃T (qi, D) = log
F∑
j

wT
j

tfqi,Dj
+ µj

cfqi,j

|Cj |

|Dj|+ µj

 (2.8)

f̃O(qi, qi+1, D) = log
F∑
j

wO
j

tf#1(qi,qi+1),Dj
+ µj

cf#1(qi,qi+1),j

|Cj |

|Dj|+ µj

 (2.9)

f̃U(qi, qi+1, D) = log
F∑
j

wU
j

tf#uwN(qi,qi+1),Dj
+ µj

cf#uwN(qi,qi+1),j

|Cj |

|Dj|+ µj

 (2.10)

where µj are the Dirichlet priors for each field and wj are the weights for each field
and must be non-negative with constraint ∑F

j wj = 1. Coordinate Ascent was used in
two stages to learn wj and λ values [53].

The Parameterized Fielded Sequential Dependence Model (PFSDM) [67] extends
the FSDM by dynamically calculating the field weights wj to different query terms.
Part-of-speech features are applied to capture the relevance of query terms to specific
fields of entity documents. For instance, NNP feature is positive if query terms
are proper nouns, therefore the query terms should be mapped to the names field.
Therefore, the field weight contribution of a given query term qi and a query bigram
qi,qi+1 in a field j are a linear weighted combination of features:

wqi,j =
∑

k

αU
j,kϕk(qi, j) (2.11)

wqi,qi+1,j =
∑

k

αB
j,kϕk(qi, qi+1, j) (2.12)
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where ϕk(qi, j) is the k feature function of a query unigram for the field j and αU
j,k

is its respective weight. For bigrams, ϕk(qi, qi+1, j) is the k feature function of a query
bigram for the field j and αB

j,k is its respective weight. Consequently, PFSDM has
F ∗ U + F ∗B + 3 total parameters, where F is the number of fields, U is the number
of field mapping features for unigrams, B is the number of field mapping features for
bigrams, plus the three λ parameters. Their estimation is performed in a two stage
optimization. First α parameters are learned separately for unigrams and then bigrams.
This is achieved by setting to zero the corresponding λ parameters. In the second
stage, the λ parameters are learned. Coordinate Ascent is used in both stages.

The ELR model exploits entity mentions in queries by defining a dependency
between entity documents and entity links in the query [69].

2.3 Named Entity Disambiguation
Given a mention in a document, Named Entity Disambiguation (NED) or Entity
Linking aims to predict the entity in a reference knowledge base that the string
refers to, or NIL if no such entity is available. Usually the reference knowledge base
(KB) includes a set of documents, where each document describes one specific entity.
Wikipedia is by far the most popular reference KB [70].

Previous research typically performs three steps to link an entity mention to a KB:
1) representation of the mention, i.e. extend the entity mention with relevant knowledge
from the background document, 2) candidate generation, i.e. find all possible KB
entries that the mention might refer to and their representation 3) disambiguation, by
computing the similarity between the represented mention and the candidate entities.

Entity Filtering, or targeted entity disambiguation, is a special case of NED in
which there is only one candidate entity, i.e. the entity that is being monitored. There
is an increasing interest in developing Entity Filtering methods for Social Media texts,
considering its specificities and limitations [71, 72]. These approaches focus on finding
relevant keywords for positive and negative cases using co-occurrence, web and collection
based features. Another line of work creates topic-centric entity extraction systems
where entities belong to a certain topic and are used as evidence to disambiguate
the short message given its topic [73]. Similarly, Hangya et al. [74] create features
representing topic distributions over tweets using Latent Dirichlet Allocation (LDA).

The majority of research work in NED is usually applied to disambiguate entities in
reasonably long texts as news or blog posts. In recent years, there has been an increasing
interest in developing NED methods for Social Media texts and its specificities and
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limitations [75–78]. A survey and evaluation of state-of-the-art NER and NED for
Tweets concluded that current approaches do not perform robustly on “ill-formed, terse,
and linguistically compressed” microblog texts [79]. Some Twitter-specific methods
reach F1 measures of over 80%, but are still behind the state-of-the-art results obtained
on well-formed news texts.

Social Media texts are too short to provide sufficient information to calculate
context similarity accurately [76, 80, 78, 77, 81]. In addition, most of state-of-the-
art approaches leverage on neighboring entities in the documents but, once again,
tweets are short and do not have more than one or two entities mentioned. Most of
them [82, 77, 81] extract information obtained from other tweets, and disambiguate
entity mentions in these tweets collectively. The assumption is that Twitter users are
content generators and tend to scatter their interests over many different messages
they broadcast, which is not necessarily true [83].

Entity Filtering has also been studied in the context of real-time classification.
Davis et al. [81] propose a pipeline containing three stages. Clearly positive examples
are exploited to create filtering rules comprising collocations, users and hashtags.
The remaining examples are classified using a Expectation-Maximization (EM) model
trained using the clearly positive examples. Recently, Habib et al. [84] proposed an
hybrid approach where authors first query Google to retrieve a set of possible candidate
homepages and then enrich the candidate list with text from the Wikipedia. They
extract a set of features for each candidate, namely, a language model and overlapping
terms between tweet and document, as well as URL length and mention-URL string
similarity. In addition, a prior probability of the mention corresponding to a certain
entity on the YAGO [85] knowledge base is also used.

Recent work in NED or Entity Linking includes graph based algorithms for collective
entity disambiguation, such as TagMe[86], Babelfy [87] and WAT [88]. Word and entity
embeddings have been also used for entity disambiguation [89–91]. More specifically,
Fang [90] and Moreno [91] propose to learn an embedding space for both entities and
words and then compute similarity features based on the combined representations.

2.4 Sentiment Analysis
In the last decade, the automatic processing of subjective and emotive text, commonly
known as Sentiment Analysis, has triggered huge interest from the Text Mining research
community [92]. A typical task in Sentiment Analysis is text polarity classification and
in the context of this work can be formalized as follows: given a text span that mentions
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a target entity, decide whether it conveys positive, negative or neutral sentiment towards
the target.

With the rise of Social Media, research on Sentiment Analysis shifted towards
Twitter. New challenges have risen, including slang, misspelling, emoticons, poor gram-
matical structure [92]. A number of competitions were organized, such as SemEval [93],
leading to the creation of resources for research [94].

There are two main approaches to sentiment polarity classification: lexicon-based -
using a dictionary of terms and phrases with annotated polarity – or supervised learning
– building a model of the differences in language associated with each polarity, based
on training examples. In the supervised learning approach, a classifier is specifically
trained for a particular type of text (e.g. tweets about politics). Consequently, it is
possible to capture peculiarities of the language used in that context. As expected,
this reduces the generality of the model, as it is biased towards a specific domain.
Supervised learning approaches require training data. In Twitter, most of previous
work obtained training data by assuming that emoticons represent the tweet polarity
(positive, negative, neutral) [95], or by using third party software, such as the Stanford
Sentiment Analyzer [96].

Lexicon-based approaches have shown to work effectively on conventional text [97]
but tend to be ill suited for Twitter data. With the purpose of overcoming this
limitation, an algorithm that uses a human-coded lexicon specifically tailored to Social
Media text was introduced [98]. SentiStrength has become a reference in recent
years due to its relatively good performance and consistent performance on polarity
classification of Social Media texts. Nevertheless, it is confined to a fixed set of words
and it is context independent.

The recent interest in deep learning led to approaches that use deep learned
word embeddings as features in a variety of Text Mining tasks [99, 100]. In Sentiment
Analysis, recent work integrated polarity information of text into the word embedding by
extending the probabilistic document model obtained from Latent Dirichlet Allocation
[101]. While others learned task-specific embeddings from an existing embedding and
sentences with annotated polarity [102]. Or learning polarity specific word embeddings
from tweets collected using emoticons [103] and directly incorporating the supervision
from sentiment polarity in the loss functions of neural networks [104].
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2.5 Word Embeddings
The most popular and simple way to model and represent text data is the Vector Space
Model [105]. A vector of features in a multi-dimensional feature space represents each
lexical item (e.g. a word) in a document and each item is independent of other items
in the document. This allows to compute geometric operations over vectors of lexical
items using well established algebraic methods. However, the Vector Space Model
faces some limitations. For instance, the same word can express different meanings in
different contexts - the polysymy problem - or different words may be used to describe
the same meaning - the synonymy problem. Since 2000, a variety of different methods
(e.g. LDA [106]) and resources (e.g. DBpedia [107]) have been developed to try to
assign semantics, or meaning, to concepts and parts of text.

Word embedding methods aim to represent words as real valued continuous vectors
in a much lower dimensional space when compared to traditional bag-of-words models.
Moreover, this low dimensional space is able to capture lexical and semantic properties
of words. Co-occurrence statistics are the fundamental information that allows creating
such representations. Two approaches exist for building word embeddings. One creates
a low rank approximation of the word co-occurrence matrix, such as in the case of
Latent Semantic Analysis [108] and GloVe [109]. The other approach consists in
extracting internal representations from neural network models of text [110, 111, 100].
Levy and Goldberg [112] showed that the two approaches are closely related.

Although, word embedding research goes back several decades, it was the recent
developments of Deep Learning and the word2vec framework [100] that captured
the attention of the NLP community. Moreover, Mikolov et al. [113] showed that
embeddings trained using word2vec models (CBOW and Skip-gram) exhibit linear
structure, allowing analogy questions of the form “man:woman::king:??.” and can boost
performance of several text classification tasks.

In this context, the objective is to maximize the likelihood that words are predicted
given their context. word2vec has two models for learning word embeddings, the
skip-gram model (SG) and the continuous-bag-of-word model (CBOW). Here we focus
on CBOW. More formally, every word is mapped to a unique vector represented
by a column in a projection matrix W ∈ Rd×V with d as embedding dimension
and V as the total number of words in the vocabulary. Given a sequence of words
w−2, w−1, wt, w1, w2, ..., wT , the objective is to maximize the average log probability:

1
T

V∑
t=1

∑
−c≤j≤c,j ̸=0

log P (wt|wt+j) (2.13)
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where c is the size of the context window and wt+j is a word in the context window
of the center word wt. The context vector is obtained by averaging the embeddings of
each word w−c≤j≤c,j ̸=0 and the prediction of the center word wt is performed using a
softmax multiclass classifier over all vocabulary V :

P (wt|wt+j) = eywt∑
eywi

(2.14)

Each of yi is un-normalized log-probability for each output word i. After training, a
low dimensionality embedding matrix E encapsulating information about each word in
the vocabulary and its surrounding contexts is learned, transforming a one-hot sparse
representation of words into a compact real valued embedding vector of size d × 1.
This matrix can then be used as input to other learning algorithms tailored for specific
tasks to further enhance performance.

For large vocabularies it is unfeasible to compute the partition function (normalizer)
of softmax therefore Mikolov [100] proposes to use the hierarchical softmax objective
function or to approximate the partition function using a technique called negative
sampling. Stochastic gradient descent is usually applied for training the softmax where
the gradient is obtained via backpropagation.

There are several approaches to generating word embeddings. One can build
models that explicitly aim at generating word embeddings, such as Word2Vec or GloVe
[100, 109], or one can extract such embeddings as by-products of more general models,
which implicitly compute such word embeddings in the process of solving other language
tasks.

One of the issues of recent work in training word embeddings is the variability of
experimental setups reported. For instance, in the paper describing GloVe [109] the
authors trained their model on five corpora of different sizes and built a vocabulary
of 400K most frequent words. Mikolov et al. [113] trained with 82K vocabulary
while Mikolov et al. [100] was trained with 3M vocabulary. Recently, Arora et al.
[114] proposed a generative model for learning embeddings that tries to explain some
theoretical justification for nonlinear models (e.g. word2vec and GloVe) and some
hyper parameter choices. The authors evaluated their model using 68K vocabulary.

SemEval 2016-Task 4: Sentiment Analysis in Twitter organizers report that par-
ticipants either used general purpose pre-trained word embeddings, or trained from
Tweet 2016 dataset or “from some sort of dataset” [115]. However, participants neither
report the size of vocabulary used neither the possible effect it might have on the task
specific results.
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Recently, Rodrigues et al. [116] created and distributed the first general purpose
embeddings for Portuguese. Word2vec gensim implementation was used and authors
report results with different values for the parameters of the framework. Furthermore,
authors used experts to translate well established word embeddings test sets for
Portuguese language, which they also made publicly available and we use some of those
in this work.

2.6 Predicting Collective Attention
Online Reputation Monitoring systems would be even more useful if they would be
able to know in advance if social media users will talk a lot about the target entities
or not. In recent years, a number of research works have studied the relationship and
predictive behavior of user response to the publication of online media items, such
as, commenting news articles, playing Youtube videos, sharing URLs or retweeting
patterns [117–120]. The first attempt to predict the volume of user comments for
online news articles used both metadata from the news articles and linguistic features
[119]. The prediction was divided in two binary classification problems: if an article
would get any comments and if it would be high or low number of comments. Similarly,
other studies found that shallow linguistic features (e.g. TF-IDF or sentiment) and
named entities have good predictive power [121, 122].

Research work more in line with ours, tries to predict the popularity of news articles
shares (url sharing) on Twitter based on content features [117]. The authors considered
the news source, the article’s category, the article’s author, the subjectivity of the
language in the article, and number of named entities in the article as features. Recently,
there was a large study of the life cycle of news articles in terms of distribution of
visits, tweets and shares over time across different sections of the publisher [123]. Their
work was able to improve, for some content type, the prediction of web visits using
data from social media after ten to twenty minutes of publication.

Other lines of work, focused on temporal patterns of user activities and have
consistently identified broad classes of temporal patterns based on the presence of
a clear peak of activity [124–126, 118]. Classes differentiate by the specific amount
and duration of activity before and after the peak. Crane and Sornette [124] define
endogenous or exogenous origin of events based on being triggered by internal aspects
of the social network or external, respectively. They find that hashtag popularity is
mostly influenced by exogenous factors instead of epidemic spreading. Other work [125]
extend these classes by creating distinct clusters of activity based on the distributions
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in different periods (before, during and after the peak) that can be interpreted based
on semantics of hashtags. Consequently, the authors applied text mining techniques to
semantically describe hashtag classes. Yang and Leskovec [118] propose a new measure
of time series similarity and clustering. The authors obtain six classes of temporal
shapes of popularity of a given phrase (meme) associated with a recent event, as well
as the ordering of media sources contribution to its popularity.

Recently, Tsytsarau et al. [127] studied the time series of news events and their
relation to changes of sentiment time series expressed on related topics on social media.
The authors proposed a novel framework using time series convolution between the
importance of events and media response function, specific to media and event type.
Their framework is able to predict time and duration of events as well as shape through
time.

2.7 Political Data Science
Content analysis of mass media has an established tradition in the social sciences,
particularly in the study of effects of media messages, encompassing topics as diverse as
those addressed in seminal studies of newspaper editorials [128], media agenda-setting
[129], or the uses of political rhetoric [130], among many others. By 1997, Riffe and
Freitag [131], reported an increase in the use of content analysis in communication
research and suggested that digital text and computerized means for its extraction
and analysis would reinforce such a trend. Their expectation has been fulfilled: the
use of automated content analysis has by now surpassed the use of hand coding [132].
The increase in the digital sources of text, on the one hand, and current advances
in computation power and design, on the other, are making this development both
necessary and possible, while also raising awareness about the inferential pitfalls
involved [133, 134].

One avenue of research that has been explored in recent years concerns the use of
social media to predict present and future political events, namely electoral results [135–
143]. Although there is no consensus about methods and their consistency [144, 145].
Gayo-Avello [146] summarizes the differences between studies conducted so far by
stating that they vary about period and method of data collection, data cleansing
and pre-processing techniques, prediction approach and performance evaluation. One
particular challenge when using sentiment is how to aggregate opinions in a timely
fashion that can be fed to the prediction method. Two main strategies have been
used to predict elections: buzz, i.e., number of tweets mentioning a given candidate or
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party and the use of sentiment polarity. Different computational approaches have been
explored to process sentiment in text, namely machine learning and linguistic based
methods [147–149]. In practice, algorithms often combine both strategies.

Johnson et al. [150] concluded that more than predicting elections, social media
can be used to gauge sentiment about specific events, such as political news or speeches.
Defending the same idea, Diakopoulos el al. [151] studied the global sentiment variation
based on Twitter messages of an Obama vs McCain political TV debate while it was
still happening. Tumasjan et al. [140] used Twitter data to predict the 2009 Federal
Election in Germany. They stated that “the mere number of party mentions accurately
reflects the election result”. Bermingham et al. [135] correctly predicted the 2011 Irish
General Elections also using Twitter data. Gayo-Avello et al. [145] also tested the
share of volume as predictor in the 2010 US Senate special election in Massachusetts.

On the other hand, several other studies use sentiment as a polls result indicator.
Connor et al. [142] used a sentiment aggregate function to study the relationship
between the sentiment extracted from Twitter messages and polls results. They defined
the sentiment aggregate function as the ratio between the positive and negative messages
referring an specific political target. They used the sentiment aggregate function as
predictive feature in the regression model, achieving a correlation of 0.80 between the
results and the poll results, capturing the important large-scale trends. Bermingham
et al. [135] also included in their regression model sentiment features. Bermingham
et al. introduced two novel sentiment aggregate functions. For inter-party sentiment,
they modified the share of volume function to represent the share of positive and
negative volume. For intra-party sentiment , they used a log ratio between the number
of positive and negative mentions of a given party. Moreover, they concluded that the
inclusion of sentiment features augmented the effectiveness of their model. Gayo-Avello
et al. [145] introduced a different aggregate function. In a two-party race, all negative
messages on party c2 are interpreted as positive on party c1, and vice-versa.

In summary, suggestions for potentially independent or in other words predictive
metrics appear in a wide variety of forms: the mention share that a party received
within all party mentions during a given time-span [135, 152–155, 140], the mention
share of political candidates [156–159, 153], the share of positive mentions a party
received [135, 160], the positive mention share of candidates [142, 161, 158], the share of
users commenting on a candidate or party [155], the share of mentions for a candidate
followed by a word indicative of electoral success or failure [162], the relative increase
of positive mentions of a candidate [163] or simply a collection of various potentially
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politically relevant words identified by their statistical relationship with polls or political
actors in the past [164–167].

Suggestions for the dependent variable, metrics of political success, show a similar
variety. They include the vote share that a party received on election day [135, 163, 152–
154], the vote share of a party adjusted to include votes only for parties included in
the analysis [140], the vote share of candidates on election day [157–159, 162, 153],
campaign tracking polls [164, 165, 158, 166, 142, 161, 160], politicians’ job approval
ratings [167, 142], and the number of seats in parliament that a party received after
the election [155].





Chapter 3

Entity Retrieval for Online
Reputation Monitoring

We start by presenting a formal definition of E-R queries and how can we model the
E-R retrieval problem from a probabilistic perspective. We assume that a E-R query
can be formulated as a sequence of individual sub-queries each targeting a specific
entity or relationship. If we create specific representations for entities (e.g. context
terms) as well as for pairs of entities, i.e. relationships then we can create a graph of
probabilistic dependencies between sub-queries and entity/relationship representations.
We show that these dependencies can be depicted in a probabilistic graphical model,
i.e. a Bayesian network. Therefore, answering an E-R query can be reduced to a
computation of factorized conditional probabilities over a graph of sub-queries and
entity/relationship documents.

However, it is not possible to compute these conditional probabilities directly from
raw documents in a collection. Such as with traditional entity retrieval, documents
serve as proxies to entities (and relationships) representations. It is necessary to fuse
information spread across multiple documents. We propose two design patterns inspired
from Model 1 and Model 2 of Balog et al. [46] to create entity/relationship centric and
document centric representations.

The first design pattern - Early Fusion - consists in aggregating context terms
of entity and relationship occurrences to create two dedicated indexes, the entity
index and the relationship index. Then it is possible to use any retrieval method
to compute the relevance score of entity and relationship documents given the E-R
sub-queries. The second design pattern - Late Fusion - can be applied on top of a
standard document index alongside a set of entity occurrences in each document. First
we compute the relevance score of documents given a E-R sub-query, then based on
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the entity occurrences of the top k results we compute individual entity or relationship
scores. Once again any retrieval method can be used to score documents.

When combined with traditional retrieval methods (e.g. Language Models or BM25)
these design patterns can be used to create unsupervised baselines for E-R retrieval.
Finally, we follow a recent research line in entity retrieval [53, 69, 67] which exploits
term dependencies using the Markov Random Field (MRF) framework for retrieval[63].
We introduce the Entity-Relationship Dependence Model (ERDM), a novel supervised
Early Fusion-based model for E-R retrieval that creates a MRF to compute term
dependencies of E-R queries and entity/relationship documents.

3.1 Entity-Relationship Retrieval
E-R retrieval is a complex case of entity retrieval. E-R queries expect tuples of related
entities as results instead of a single ranked list of entities as it happens with general
entity queries. For instance, the E-R query “Ethnic groups by country" is expecting
a ranked list of tuples <ethnic group, country> as results. The goal is to search for
multiple unknown entities and relationships connecting them.

Table 3.1 E-R retrieval definitions.

Q E-R query (e.g. “congresswoman hits back at US president”).
QEi Entity sub-query in Q (e.g. “congresswoman”).
QRi−1,i Relationship sub-query in Q (e.g. “hits back at”).
DEi Term-based representation of an entity (e.g. <Frederica Wilson> =

{representative, congresswoman}). We use the terminology representation
and document interchangeably.

DRi−1,i Term-based representation of a relationship (e.g. <Frederica Wilson,
Donald Trump> = {hits,back}). We use the terminology representation
and document interchangeably.

QE The set of entity sub-queries in a E-R query (e.g. {“congresswoman”,“US
president” }).

QR The set of relationship sub-queries in a E-R query.
DE The set of entity documents to be retrieved by a E-R query.
DR The set of relationship documents to be retrieved by a E-R query.
|Q| E-R query length corresponding to the number of entity and relationship

sub-queries.
TE The entity tuple to be retrieved (e.g. <Frederica Wilson, Donald

Trump>).
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In this section, we present a definition of E-R queries and a probabilistic formulation
of the E-R retrieval problem from an Information Retrieval perspective. Table 3.1
presents several definitions that will be used throughout this chapter.

3.1.1 E-R Queries

E-R queries aim to obtain a ordered list of entity tuples TE = <E1, E2, ..., En> as a
result. Contrary to entity search queries where the expected result is a ranked list of
single entities, results of E-R queries should contain two or more entities. For instance,
the complex information need “Silicon Valley companies founded by Harvard graduates”
expects entity-pairs (2-tuples) <company, founder> as results. In turn, “European
football clubs in which a Brazilian player won a trophy" expects triples (3-tuples) <club,
player, trophy> as results.

Each pair of entities Ei−1, Ei in an entity tuple is connected with a relationship
R(Ei−1, Ei). A complex information need can be expressed in a relational format,
which is decomposed into a set of sub-queries that specify types of entities E and types
of relationships R(Ei−1, Ei) between entities.

For each relationship sub-query there must be two sub-queries, one for each of the
entities involved in the relationship. Thus a E-R query Q that expects 2-tuples, is
mapped into a triple of sub-queries Q = {QE1 , QR1,2 , QE2}, where QE1 and QE2 are
the entity attributes queried for E1 and E2 respectively, and QR1,2 is a relationship
attribute describing R(Ei, Ei+1).

If we consider a E-R query as a chain of entity and relationship sub-queries
Q = {QE1 , QR1,2 , QE2 , ..., QEn−1 ,QRn−1,n , QEn} and we define the length of a E-R
query |Q| as the number of sub-queries, then the number of entity sub-queries must
be |Q|+1

2 and the number of relationship sub-queries equal to |Q|−1
2 . Consequently, the

size of each entity tuple TE to be retrieved must be equal to the number of entity
sub-queries. For instance, the E-R query “soccer players who dated a top model” with
answers such as <Cristiano Ronaldo, Irina Shayk>) is represented as three sub-queries
QE1 = {soccer players}, QR1,2 = {dated}, QE2 = {top model}.

Automatic mapping of terms from a E-R query Q to sub-queries QEi or QRi−1,i is
out of the scope of this work and can be seen as a problem of query understanding
[168, 54, 169]. We assume that the information needs are decomposed into constituent
entity and relationship sub-queries using Natural Language Processing techniques or
by user input through an interface that enforces the structure Q = {QE1 , QR1,2 , QE2 ,
..., QEn−1 ,QRn−1,n , QEn}.
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3.1.2 Modeling E-R Retrieval

Our approach to E-R retrieval assumes that we have a raw document collection (e.g.
news articles) and each document Dj is associated with one or more entities Ei. In other
words, documents contain mentions to one or more entities that can be related between
them. Since our goal is to retrieve tuples of related entities given a E-R query that
expresses entity attributes and relationship attributes, we need to create term-based
representations for both entities and relationships. We denote a representation of an
entity Ei as DEi .

In E-R retrieval we are interested in retrieving tuples of entities TE =<E1, E2, ..., En>

as a result. The number of entities in each tuple can be two, three or more depending
on the structure of the particular E-R query. When a E-R query aims to get tuples
of more than two entities, we assume it is possible to combine tuples of length two.
For instance, we can associate two tuples of length two that share the same entity to
retrieve a tuple of length three. Therefore we create representations of relationships as
pairs of entities. We denote a representation of a relationship R(Ei−1, Ei) as DRi−1,i .

Considering the example query “Which spiritual leader won the same award as a
US vice president?” it can be formulated in the relational format as QE1 = {spiritual
leader}, QR1,2 = {won}, QE2 = {award}, QR2,3 = {won}, QE3 = {US vice president}.
Associating the tuples of length two <Dalai Lama, Nobel Peace Prize> and <Nobel
Peace Prize, Al Gore> would result in the expected 3-tuple <Dalai Lama, Nobel Peace
Prize, Al Gore>.

For the sake of clarity we now consider an example E-R query with three sub-queries
(|Q| = 3). This query aims to retrieve a tuple of length two, i.e. a pair of entities
connected by a relationship. Based on the definition of a E-R query, each entity in the
resulting tuple must be relevant to the corresponding entity sub-queries QE. Moreover,
the relationship between the two entities must also be relevant to the relationship
sub-queries QR. Instead of calculating a simple posterior P (D|Q) as with traditional
information retrieval, in E-R retrieval the objective is to rank tuples based on a joint
posterior of multiple entity and relationship representations given a E-R query, such as
P (DE2 , DE1 , DR1,2 |Q) when |Q| = 3.

E-R queries can be seen as chains of interleaved entity and relationship sub-
queries. We take advantage of the chain rule to formulate the joint probability
P (DE2 , DE1 , DR1,2 , Q) as a product of conditional probabilities. Formally, we want
to rank entity and relationship candidates in descending order of the joint posterior
P (DE2 , DE1 , DR1,2 |Q) as:
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P (DE2 , DE1 , DR1,2|Q) rank= P (DE2 , DE1 , DR1,2 , Q)
P (Q)

rank= P (DE2|DE1 , DR1,2 , Q).P (DE1|DR1,2 , Q).P (DR1,2|Q).P (Q)
P (Q)

rank= P (DE2 |DR1,2 , Q).P (DE1 |DR1,2 , Q).P (DR1,2|Q)
rank∝ P (DE2 |DR1,2 , QE2).P (DE1|DR1,2 , QE1).P (DR1,2|QR1,2)

(3.1)

(3.2)

We consider conditional independence between entity representations within the
joint posterior, i.e., the probability of a given entity representation DEi being relevant
given a E-R query is independent of knowing that entity DEi+1 is relevant as well. As an
example, consider the query “action movies starring a British actor”. Retrieving entity
representations for “action movies” is independent of knowing that <Tom Hardy> is
relevant to the sub-query “British actor”. However, it is not independent of knowing
the set of relevant relationships for sub-query “starring”. If a given action movie is not
in the set of relevant entity-pairs for “starring” it does not make sense to consider it as
relevant. Consequently, P (DE2|DE1 , DR1,2 , Q) = P (DE2|DR1,2 , Q).

Since E-R queries can be decomposed in constituent entity and relationship sub-
queries, ranking candidate tuples using the joint posterior P (DE2 , DE1 , DR1,2|Q) is
rank proportional to the product of conditional probabilities on the corresponding
entity and relationship sub-queries QE2 , QE1 and QR1,2 .

We now consider a longer E-R query aiming to retrieve a triple of connected entities.
This query has three entity sub-queries and two relationship sub-queries, thus |Q| = 5.
As we previously explained, when there are more than one relationship sub-queries
we need to join entity-pairs relevant to each relationship sub-query that have one
entity in common. From a probabilistic point of view this can be seen as conditional
dependence from the entity-pairs retrieved from the previous relationship sub-query,
i.e. P (DR2,3|DR1,2 , Q) ̸= P (DR2,3|Q). To rank entity and relationship candidates we
need to calculate the following joint posterior:
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P (DE3 , DE2 ,DE1 , DR2,3 , DR1,2|Q) rank= P (DE3 |DE2 , DE1 , DR2,3 , DR1,2 , Q).
P (DE3 |DE2 , DR2,3 , DR1,2 , Q).P (DE1 |DR2,3 , DR1,2 , Q).
P (DR2,3|DR1,2 , Q).P (DR1,2|Q)

rank= P (DE3|DR2,3 , Q).P (DE2|DR2,3 , DR1,2 , Q).
P (DE1|DR1,2 , Q).P (DR2,3|DR1,2 , Q).P (DR1,2|Q)

rank∝ P (DE3|DR2,3 , QE3).P (DE2 |DR2,3 , DR1,2 , QE2).
P (DE1|DR1,2 , QE1).P (DR2,3|DR1,2 , QR2,3).P (DR1,2 |QR1,2)

(3.3)

(3.4)

When compared to the previous example, the joint posterior for |Q| = 5 shows
that entity candidates for DE2 are conditional dependent of both DR2,3 and DR1,2 . In
other words, entity candidates for DE2 must belong to entity-pairs candidates for both
relationships representations that are connected with E2, i.e. DR2,3 and DR1,2 .

We are now able to make a generalization of E-R retrieval as a factorization of
conditional probabilities of a joint probability of entity representations DEi , rela-
tionship representations DRi−1,i , entity sub-queries QEi and relationship sub-queries
QRi−1,i . These set of random variables and their conditional dependencies can be easily
represented in a probabilistic directed acyclic graph,i.e. a Bayesian network [170].

In Bayesian networks, nodes represent random variables while edges represent
conditional dependencies. Every other nodes that point to a given node are considered
parents. Bayesian networks define the joint probability of a set of random variables
as a factorization of the conditional probability of each random variable conditioned
on its parents. Formally, P (X1, . . . , Xn) = ∏n

i=1 P (Xi|pai), where pai represents all
parent nodes of Xi.

Figure 3.1 depicts the representation of E-R retrieval for different query lengths |Q|
using Bayesian networks. We easily conclude that graphical representation contributes
to establish a few guidelines for modeling E-R retrieval. First, each sub-query points to
the respective document node. Second, relationship document nodes always point to
the contiguous entity representations. Last, when there are more than one relationship
sub-query, relationship documents also point to the subsequent relationship document.

Once we draw the graph structure for the number of sub-queries in Q we are able to
compute a product of conditional probabilities of each node given its parents. Adapting
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(a) |Q| = 3 (b) |Q| = 5

(c) |Q| = 7

Fig. 3.1 Bayesian networks for E-R Retrieval with queries of different lengths.

the general joint probability formulation of Bayesian networks to E-R retrieval we come
up with the following generalization:

P (DE, DR|Q) rank=
|Q|+1

2∏
i=1

P (DEi |DRi−1,i , DRi,i+1 , QEi)
|Q|−1

2∏
i=1

P (DRi,i+1|DRi−1,i , QRi,i+1)

(3.5)
We denote DR as the set of all candidate relationship documents in the graph and

DE the set of all candidate entity documents in the graph. In Information Retrieval is
often convenient to work in the log-space as it does not affect ranking and transforms
the product of conditional probabilities in a summation, as follows:

P (DE, DR|Q) rank= log P (DE, DR|Q)

rank=
|Q|+1

2∑
i=1

logP (DEi |DRi−1,i , DRi,i+1 , QEi) +
|Q|−1

2∑
i=1

logP (DRi,i+1|DRi−1,i , QRi,i+1)

(3.6)

(3.7)
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We now present two design patterns to compute each conditional probability for
every entity and relationship candidate documents.

3.2 Design Patterns for Entity-Relationship Retrieval
Traditional ad-hoc document retrieval approaches create direct term-based represen-
tations of raw documents. A retrieval model (e.g. Language Models) is then used
to match the information need, expressed as a keyword query, against those repre-
sentations. However, E-R retrieval requires collecting evidence for both entities and
relationships that can be spread across multiple documents. It is not possible to create
direct term-based representations. Raw documents serve as proxy to connect queries
with entities and relationships.

Abstractly speaking, entity retrieval can be seen as a problem of object retrieval in
which the search process is about fusing information about a given object, such as in
the case of verticals (e.g. Google Finance). Recently, Zhang and Balog [171] presented
two design patterns for fusion-based object retrieval.

The first design pattern – Early Fusion – is an object-centric approach where a term-
based representation of objects is created earlier in the retrieval process. First, it creates
meta-documents by aggregating term counts across the documents associated with
the objects. Later, it matches queries against these meta-documents using standard
retrieval methods.

The second design pattern - Late Fusion - is a document-centric approach where
relevant documents to the query are retrieved first and then later in the retrieval process,
it ranks objects associated with top documents. These design patterns represent a
generalization of Balog’s Model 1 and Model 2 for expertise retrieval [46].

In essence, E-R retrieval is an extension, or a more complex case, of object-retrieval
where besides ranking objects we need to rank tuples of objects that satisfy the
relationship expressed in the E-R query. This requires creating representations of both
entities and relationships by fusing information spread across multiple raw documents.
We propose novel fusion-based design patterns for E-R retrieval that are inspired from
the design patterns presented by Zhang and Balog [171] for single object-retrieval.
We extend those design patterns to accommodate the specificities of E-R retrieval.
We hypothesize that it should be possible to generalize the term dependence models
to represent entity-relationships and achieve effective E-R retrieval without entity or
relationship type restrictions (e.g. categories) as it happens with the Semantic Web
based approaches.
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3.2.1 Early Fusion

The Early Fusion strategy presented by Zhang and Balog [171] consists in creating
a term-based representation for each object under retrieval, i.e., a meta-document
containing all terms in the proximity of every object mention across a document
collection. As described in previous section, E-R queries can be formulated as a
sequence of multiple entity queries QE and relationship queries QR. In a Early Fusion
approach, each of these queries should match against a previously created term-based
representation. Since there are two types of queries, we propose to create two types of
term-based representations, one for entities and other for relationships.

Our Early Fusion design pattern is similar to Model 1 of Balog et al. [46]. It can
be thought as creating two types of meta-documents DE and DR. A meta-document
DEi is created by aggregating the context terms of the occurrences of Ei across the
raw document collection. On the other hand, for each each pair of entities Ei−1 and Ei

that co-occur close together across the raw document collection we aggregate context
terms that describe the relationship to create a meta-document DRi−1,i

In our approach we focus on sentence level information about entities and relation-
ships although the design pattern can be applied to more complex segmentations of
text (e.g. dependency parsing). We rely on Entity Linking methods for disambiguating
and assigning unique identifiers to entity mentions on raw documents D. We collect
entity contexts across the raw document collection and index them in the entity index.
The same is done by collecting and indexing entity pair contexts in the relationship
index.

We define the (pseudo) frequency of a term t for an entity meta-document DEi as
follows:

f(t,DEi) =
n∑

j=1
f(t, Ei, Dj)w(Ei, Dj) (3.8)

where n is the total number of raw documents in the collection, f(t, Ei, Dj) is the
term frequency in the context of the entity Ei in a raw document Dj . w(Ei, Dj) is the
entity-document association weight that corresponds to the weight of the document
Dj in the mentions of the entity Ei across the raw document collection. Similarly,
the term (pseudo) frequency of a term t for a relationship meta-document DRi−1,i is
defined as follows:

f(t,DRi−1,i) =
n∑

j=1
f(t, Ri−1,i, Dj)w(Ri−1,i, Dj) (3.9)
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where f(t, Ri−1,i, Dj is the term frequency in the context of the pair of entity men-
tions corresponding to the relationship Ri−1,i in a raw document Dj and w(Ri−1,i, Dj)
is the relationship-document association weight. In this work we use binary associations
weights indicating the presence/absence of an entity mention in a raw document, as
well as for a relationship. However, other weight methods can be used.

The relevance score for an entity tuple TE can then be calculated using the posterior
P (DE, DR|Q) defined in previous section (equation 3.6). We calculate the individual
conditional probabilities as a product of a retrieval score with an association weight.
Formally we consider:

logP (DEi |DRi−1,i , DRi,i+1 , QEi) = score(DEi , QEi)w(Ei, Ri−1,i, Ri,i+1)
logP (DRi,i+1 |DRi−1,i , QRi,i+1) = score(DRi,i+1 , QRi,i+1)w(Ri,i+1, Ri−1,i)

(3.10)

(3.11)

where score(DRi,i+1 , QRi,i+1) represents the retrieval score resulting of the match of
the query terms of a relationship sub-query QRi,i+1 and a relationship meta-document
DRi,i+1 . The same applies to the retrieval score score(DEi , QEi) which corresponds to
the result of the match of an entity sub-query QEi with a entity meta-document DEi .
For computing both score(DRi,i+1 , QRi,i+1) and score(DEi , QEi) any retrieval model
can be used. Different scoring functions will be introduced below.

We use a binary association weight for w(Ei, Ri−1,i, Ri,i+1) which represents the
presence of a relevant entity Ei to a sub-query QEi in its contiguous relationships in
the Bayesian network, i.e. Ri−1,i and Ri,i+1 which must be relevant to the sub-queries
QRi−1,i and QRi,i+1 . This entity-relationship association weight is the building block
that guarantees that two entities relevant to sub-queries QE that are also part of a
relationship relevant to a sub-query QR will be ranked higher than tuples where just
one or none of the entities are relevant to the entity sub-queries QE. On the other hand,
the entity-relationship association weight w(Ri,i+1, Ri−1,i) guarantees that consecutive
relationships share one entity between them in order to create triples or 4-tuples of
entities for longer E-R queries (|Q| > 3).

The relevance score of an entity tuple TE given a query Q is calculated by summing
individual relationship and entity relevance scores for each QRi−1,i and QEi in Q. We
define the score for a tuple TE given a query Q as follows:
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P (DE, DR|Q) rank=
|Q|+1

2∑
i=1

score(DEi , QEi)w(Ei, Ri−1,i, Ri,i+1)+

|Q|−1
2∑

i=1
score(DRi,i+1 , QRi,i+1)w(Ri,i+1, Ri−1,i)

(3.12)

(3.13)

Considering Dirichlet smoothing unigram Language Models (LM) the constituent
retrieval scores can be computed as follows:

scoreLM(DRi,i+1 , QRi,i+1) =
∑

t∈DRi,i+1 ∩QRi,i+1

log

f(t,DRi,i+1) + f(t,CR)
|CR| µ

R

|DRi,i+1|+ µR

 (3.14)

scoreLM(DEi , QEi) =
∑

t∈DEi ∩QEi

log

f(t,DEi) + f(t,CE)
|CE | µ

E

|DEi |+ µE

 (3.15)

where t is a term of a sub-query QEi or QRi,i+1 , f(t,DEi) and f(t,DRi,i+1) are
the (pseudo) frequencies defined in equations 3.8 and 3.9. The collection frequencies
f(t, CE), f(t, CR) represent the frequency of the term t in either the entity index CE

or in the relationship index CR. |DEi| and|DRi,i+1| represent the total number of terms
in a meta-document while |CR| and |CE| represent the total number of terms in a
collection of meta-documents. Finally, µE and µR are the Dirichlet prior for smoothing
which generally corresponds to the average document length in a collection.

3.2.2 Association Weights

Both Early Fusion and Late Fusion share three components: w(Ri,i+1, Dj), w(Ei, Dj)
and w(Ei, Ri,i+1). The first two represent document associations which determine
the weight a given raw document contributes to the relevance score of a particular
entity tuple TE. The last one is the entity-relationship association which indicates the
strength of the connection of a given entity Ei within a relationship Ri,i+1.

In our work we only consider binary association weights but other methods could
be used. According to the binary method we define the weights as follows:

w(Ri,i+1, Dj) = 1 if R(Ei, Ei+1) ∈ Dj , 0 otherwise (3.16)
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w(Ei, Dj) = 1 if Ei ∈ Dj , 0 otherwise (3.17)

w(Ei, Ri−1,i, Ri,i+1) = 1 if Ei ∈ DRi−1,iand Ei ∈ DRi,i+1 , 0 otherwise (3.18)

w(Ri,i+1, Ri−1,i) = 1 if Ei ∈ DRi−1,iand Ei ∈ DRi,i+1 , 0 otherwise (3.19)

Under this approach the weight of a given association is independent of the number
of times an entity or a relationship occurs in a document. A more general approach
would be to assign real numbers to the association weights depending on the strength
of the association [8]. For instance, uniform weighting would be proportional to the
inverse of the number of documents where a given entity or relationship occurs. Other
option could be a TF-IDF approach.

3.2.3 Early Fusion Example

Let us consider an illustrative example of the Early Fusion design pattern for E-R
retrieval using unigram Language Models and the E-R query Q = {soccer players who
dated a top model}. This query can be decomposed in three sub-queries, QEi = { soccer
players}, QEi+1 = { top model} and QRi,i+1 = { dated }. The first two sub-queries
target the entity index and the last targets the relationship index. Table 3.2 presents
a toy entity index with 3 entities as example for each of the two entity sub-queries,
including the term frequency f(t,DEi) for each sub-query term.

Table 3.2 Illustrative example of the entity index in Early Fusion.

Ei f(t,DEi) |DEi |

<Tom Brady> soccer:0
player:600 3000

<Cristiano Ronaldo> soccer:800
player:800 5000

<Lionel Messi> soccer:700
player:700 4000

<Luís Figo> soccer:200
player:200 800

<Gisele Bundchen> top:400
model:400 3000

<Irina Shayik> top:300
model:300 2000

<Helen Svedin> top:150
model:150 600

... ... ...
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Considering the remaining variables required to calculate the scoreLM(DEi , QEi):

|CE| = 100000

|µE| = 1500

f(soccer, CE) = 3000

f(player, CE) = 8000

f(top, CE) = 8000

f(model, CE) = 4000

We calculate the scoreLM (DEi , QEi) for the respective entities and sub-queries. For
the first entity query – “soccer players” – the ranked list of relevant entities and the
respective LM score would be the following:

1. <Lionel Messi>: -1.6947

2. <Cristiano Ronaldo>: -1.7351

3. <Luís Figo>: -1.8291

4. <Tom Brady>: -2.7958

For the second entity query – “top models”:

1. <Gisele Bundchen>: -1.6295

2. <Irina Shayik>: -1.7093

3. <Helen Svedin>: -1.9698

Table 3.3 shows 3 relationships, i.e. entity pairs, relevant to the sub-query “dated”
and the respective term frequency f(t,DRi,i+1).

Considering the remaining variables required to calculate the scoreLM (DRi,i+1 , QRi,i+1):

|CR| = 20000

|µR| = 500

f(dated, CR) = 5000
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Table 3.3 Illustrative example of the relationship index in Early Fusion.

Ri,i+1 f(t,DRi,i+1) |DRi,i+1|
<Gisele Bundchen, Tom Brady> dated:500 800
<Irina Shayik, Cristiano Ronaldo> dated:300 600
<Helen Svedin, Luís Figo> dated:100 200
... ... ...

We calculate the scoreLM(DRi,i+1 , QRi,i+1)for the respective relationship and the
sub-query and we obtain the following ranked list:

1. <Gisele Bundchen, Tom Brady>: -0.3180

2. <Irina Shayik, Cristiano Ronaldo>: -0.4130

3. <Helen Svedin, Luís Figo>: -0.4929

We can now sum up individual scores for each sub-query and calculate the final
score for the early fusion design pattern score(TE, Q) using the equation 3.12. The
final ranked list of tuples is the following:

1. <Irina Shayik, Cristiano Ronaldo>: -3.8575

2. <Helen Svedin, Luís Figo>: -4.2919

3. <Gisele Bundchen, Tom Brady>: -4.6977

The entity tuple <Irina Shayik, Cristiano Ronaldo> is the most relevant to the
query “soccer players who dated a top model”. Although <Gisele Bundchen, Tom
Brady> has higher individual scores in two sub-queries (“top model” and “dated”) it
ranks last due to the poor relevance of Tom Brady to the sub-query “soccer player”.
The entity <Lionel Messi> is the most relevant entity to the sub-query “soccer player”
but it is not relevant to the relationship sub-query, therefore it is excluded from the
final ranked list of entity tuples.

3.2.4 Late Fusion

The Late Fusion design pattern presented by Zhang and Balog [171] is a document-
centric strategy, i.e. first we query raw individual documents then we aggregate
the associated objects with the relevant documents. Instead of creating term-based
representations of entities and relationships (pairs of entities), in late fusion we use the
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raw documents as hidden variables, separating the E-R query from the relevant entity
tuples to be retrieved.

Our vision of ORM implies processing raw documents to detect entities occurrences
and extract sentence level information that will be used in downstream Entity Retrieval
and Text Mining tasks. Therefore, we are not interested in applying a Late Fusion
strategy in this work. However, we believe it makes sense to present a theoretical
formulation of a Late Fusion design pattern for E-R retrieval. We leave the practical
experiments with Late Fusion for future work in the context of generic E-R retrieval.

The process of retrieving entity tuples using our late fusion strategy consists in
processing each sub-query independently, as in the early fusion strategy, but in this
case, we use a single index comprising a term based representation of the collection
of raw documents. A retrieval model is used to calculate a relevance score of each
individual raw document and a given sub-query. Once we have the relevant documents
we use entity linking to extract the entities that are mentioned in each relevant raw
document. Following this strategy we calculate aggregated counts of entity occurrences
weighted by the individual relevance score of the individual raw documents. At the
end, we join the results of each sub-query and calculate the overall relevance score of
the entity tuples.

Formally, we define the relevance score of an entity tuple TE given a query Q as
follows:

P (DE, DR|Q) rank=
|Q|+1

2∑
i=1

n∑
j=1

score(Dj, Q
Ei)w(Ei, Dj)w(Ei, Ri−1,i, Ri,i+1)+

|Q|−1
2∑

i=1

n∑
j=1

score(Dj, Q
Ri,i+1)w(Ri,i+1, Dj)w(Ri,i+1, Ri−1,i)

(3.20)

(3.21)

where score(Dj, Q
Ri,i+1) represents the retrieval score resulting of the match of the

query terms of a relationship sub-query QRi,i+1 and a raw document Dj. The same
applies to the retrieval score score(Dj, Q

Ei) which corresponds to the result of the
match of an entity sub-query QEi with a raw document Dj. The weights w(Ri,i+1, Dj)
and w(Ei, Dj) represent association weights between relationships and raw documents,
and entities and raw documents, respectively. We use binary association weights in
this work but other weights can be used. We also use a binary association weight
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for w(Ei, Ri−1,i, Ri,i+1) and w(Ri,i+1, Ri−1,i) which represent the entity-relationship
association weights, similarly to what happens with the case of Early Fusion.

For computing both score(Dj, Q
Ri,i+1) and score(Dj, Q

Ei) any retrieval model can
be used. Considering BM25 the scores can be computed as follows:

scoreBM25(Dj, Q
Ri,i+1) =

∑
t∈Dj∩QRi,i+1

logN − n(t) + 0.5
n(t) + 0.5 .

f(t,Dj)(K1 + 1)
f(t,Dj) +K1(1− b+ b |Dj |

avg(|D|))
(3.22)

scoreBM25(Dj, Q
Ei) =

∑
t∈Dj∩QEi

logN − n(t) + 0.5
n(t) + 0.5 .

f(t,Dj)(K1 + 1)
f(t,Dj) +K1(1− b+ b |Dj |

avg(|D|))
(3.23)

where t is a term of a sub-query QEi or QRi,i+1 and f(t,Dj) is the query term
frequency in a raw document Dj . The inverse document frequency, IDF (t), is computed
as logN−n(t)+0.5

n(t)+0.5 with N as the number of documents on the collection and n(t) the
number of documents where the term occurs.|Dj| is the total number of terms in a
raw document Dj and avg(|D|) is the average document length. K1 and b are free
parameters usually chosen as 1.2 and 0.75, in the absence of specific optimization.

3.2.5 Late Fusion Example

Considering the same toy example query introduced in the previous sub-section, we
now have a single index, the document index, as illustrated in Table 3.4. The remaining
parameters required for calculating the scoreBM25(Dj, Q

Ei) and scoreBM25(Dj, Q
Ri,i+1)

are the following:

• N=2000

• n(soccer)=100

• n(player)=130

• n(dated)=60

• n(top)=250

• n(model)=80

• avg(|D|)=120
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Table 3.4 Illustrative example of the document index in Late Fusion.

Dj f(t,Dj) |Dj| Ei

docid-1 soccer:10
player:10 200 <Cristiano Ronaldo>

<Lionel Messi>

docid-2 soccer:5
player:5 150 <Cristiano Ronaldo>

docid-3 soccer:5
player:5 100 <Luís Figo>

docid-4 top:4
model:4 150 <Gisele Bundchen>

docid-5 dated:5 80 <Gisele Bundchen>
<Tom Brady>

docid-6 top:6
model:6 100 <Irina Shayik>

docid-7
model:4
dated:2
player:2

100
<Gisele Bundchen>
<Adriana Lima>
<Tom Brady>

docid-8 dated:3 120 <Irina Shayik>
<Cristiano Ronaldo>

docid-9

top:2
model:2
dated:2
soccer:2
player:2

150 <Luís Figo>
<Helen Svedin>

... ... ... ...

For the first entity sub-query, “soccer players”, the relevant documents ranked by
the scoreBM25(Dj, Q

Ei) are the following:

1. docid-1 (<Cristiano Ronaldo>, <Lionel Messi>): 4.7606

2. docid-3 (<Luís Figo>): 4.6426

3. docid-2 (<Cristiano Ronaldo>): 4.3716

4. docid-9 (<Luís Figo>, <Helen Svedin>): 3.2803

5. docid-7 (<Gisele Bundchen>, <Adriana Lima>, <Tom Brady>): 1.8418

For the second entity sub-query, “top model”:

1. docid-6 (<Irina Shayik>): 3.1618
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2. docid-4 (<Gisele Bundchen>): 2.7393

3. docid-9 (<Luís Figo>, <Helen Svedin>): 2.1694

4. docid-7 (<Gisele Bundchen>, <Adriana Lima>, <Tom Brady>): 1.4714

For the relationship sub-query, “dated”:

1. docid-5 (<Gisele Bundchen>, <Tom Brady>): 2.8081

2. docid-8 (<Irina Shayik>, <Cristiano Ronaldo>): 2.3668

3. docid-7 (<Gisele Bundchen>, <Adriana Lima>, <Tom Brady>): 2.1728

4. docid-9 (<Luís Figo>, <Helen Svedin>): 1.9349

Since in Late Fusion there is no relationship meta-documents that could be used
directly as entity tuples, we need to extract the candidate tuples from the raw documents
retrieved using the relationship sub-query. When there are more than two entity
associations in a relevant document we combine entities to create tuples. For instance,
docid-7 has three entity associations therefore we extract three candidate tuples:
<Gisele Bundchen, Tom Brady>, <Gisele Bundchen, Adriana Lima> and <Adriana
Lima, Tom Brady>.

For each candidate tuple we sum up scoreBM25(Dj, Q
Ri,i+1)w(Ri,i+1, Dj) over

every relevant document Dj for the relationship sub-query that is associated with each
entity tuple. The same applies to individual entities from the candidate tuples that
are associated with relevant documents for each entity sub-query. For instance, for the
entity sub-query “soccer players” we sum score(Dj, Q

Ei)w(Ei, Dj)w(Ei, Ri,i+1) over
the relevant documents that mentioned an entity that belongs to a candidate tuple.

When both entities of the candidate tuple are mentioned in relevant documents for
both entity sub-queries, e.g. <Helen Svedin, Luís Figo>, we assign each entity to the
sub-query that maximizes the final score score(TE, Q), i.e., we use the scores of the
entity sub-query “soccer player” for <Luís Figo> and the entity sub-query “top model”
for <Helen Svedin>. The final ranked list of entity tuples is the following:

1. <Irina Shayik, Cristiano Ronaldo>: 14.0443

2. <Helen Svedin, Luís Figo>: 12.5970

3. <Gisele Bundchen, Tom Brady>: 10.9784
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4. <Gisele Bundchen, Adriana Lima>: 9.3459

5. <Adriana Lima, Tom Brady>: 6.9245

Once again <Lionel Messi> is excluded from the final ranked list of entity tuples
because he is not associated with any document relevant to the relationship sub-query
“dated”. On the other hand, <Adriana Lima> is included in the final ranking although
it is not true that she has dated either <Tom Brady> or <Gisele Bundchen>. In
this example, the top three entity tuples are ranked in the same order as in the Early
Fusion strategy example.

3.2.6 Implementation

In this section we proposed two design patterns for E-R retrieval: Early Fusion (EF)
and Late Fusion (LF). Both can be seen as a flexible framework for ranking tuples of
entities given a E-R query expressed as a sequence of entity and relationship sub-queries.

This framework is flexible enough to allow using any retrieval method to compute
individual retrieval scores between document and query nodes in a E-R graph structure.
When using Language Models (LM) or BM25 as scoring functions, these design patterns
can be used to create unsupervised baseline methods for E-R retrieval (e.g. EF-LM,
EF-BM25, LF-LM, LF-BM25, etc.).

In the case of Early Fusion there is some overhead over traditional document search,
since we need to create two E-R dedicated indexes that will store entity and relationship
meta-documents. The entity index is created by harvesting the context terms in the
proximity of every occurrence of a given entity across the raw document collection.
This process must be carried for every entity in the raw document collection. A similar
process is applied to create the relationship index. For every two entities occurring
close together in a raw document we extract the text between both occurrences as
a term-based representation of the relationship between the two. Once again, this
process must be carried for every pair of co-occurring entities in sentences across the
raw document collection.

Late Fusion requires less overhead and can be implemented on top of a web search
engine with reduced effort. We only need to have a list of entity occurrences alongside
each document. Therefore there is no need to create a separate index(es). On the
other hand, it requires more processing on query time since we need to first rank raw
documents for each sub-query and then aggregate entity occurrences at the top k
documents retrieved. Moreover, it does not contain any proximity-based information
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on the entity occurrences, so two entities occurring very far in the text might be
considered as relationship candidates. It might be prone to a higher false positive rate.

One advantage of Early Fusing lies in its flexibility as we need to create two separate
indexes for E-R retrieval it is possible to combine data from multiple sources in seamless
way. For instance, one could use a well established knowledge base (e.g. DBpedia) as
entity index and use a specific collection, such as a news collection or a social media
stream, for harvesting relationships having a more transient nature.

Common to both design patterns is a challenge inherent to the problem of E-R
retrieval: the size of the search space. Although the E-R problem is formulated as a
sequence of independent sub-queries, the results of those sub-queries must be joined
together. Consequently, we have a multi-dimensional search space in which we need to
join results based on shared entities.

This problem becomes particularly hard when sub-queries are short and contain
very popular terms. Let us consider “actor” as QEi , there will be many results to
this sub-query, probably thousands. There is a high probability that will need to
process thousands of sub-results before finding one entity that is also relevant to the
relationship sub-query QRi−1,i . If at the same time we have computational power
constraints, we will probably apply a strategy of just considering top k results for
each sub-query which can lead to reduced recall in the case of short sub-queries with
popular terms.

3.3 Entity-Relationship Dependence Model
In this section we present the Entity-Relationship Dependence Model (ERDM), a novel
supervised Early Fusion-based model for E-R retrieval. Recent approaches to entity
retrieval [53, 67, 69] have demonstrated that using models based on Markov Random
Field (MRF) framework for retrieval [63] to incorporate term dependencies can improve
entity search performance. This suggests that MRF could be used to model E-R query
term dependencies among entities and relationships documents.

One of the advantages of the MRF framework for retrieval is its flexibility, as we
only need to construct a graph G representing dependencies to model, define a set of
non-negative potential functions ψ over the cliques of G and to learn the parameter
vector Λ to score each document D by its unique and unnormalized joint probability
with Q under the MRF [63].

The non-negative potential functions are defined using an exponential form ψ(c; Λ) =
exp[λcf(c)], where λc is a feature weight, which is a free parameter in the model,
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associated with feature function f(c). Learning to rank is then used to learn the feature
weights that minimize the loss function. The model allows parameter and feature
functions sharing across cliques of the same configuration, i.e. same size and type of
nodes (e.g. 2-cliques of one query term node and one document node).

3.3.1 Graph Structures

The Entity-Relationship Dependence Model (ERDM) creates a MRF for modeling
implicit dependencies between sub-query terms, entities and relationships. Each entity
and each relationship are modeled as document nodes within the graph and edges reflect
term dependencies. Contrary to traditional ad-hoc retrieval using MRF (e.g. SDM),
where the objective is to compute the posterior of a single document given a query, the
ERDM allows the computation of a joint posterior of multiple documents (entities and
relationships) given a E-R query which consists also of multiple sub-queries.

Fig. 3.2 Markov Random Field dependencies for E-R retrieval, |Q| = 3.

The graph structures of the ERDM for two E-R queries, one with |Q| = 3 and
other with |Q| = 3 are depicted in Figure 3.2 and Figure 3.3, respectively. Both
graph structures contain two different types of query nodes and document nodes:
entity query and relationship query nodes, QE and QR, plus entity and relationship
document nodes, DE and DR. Within the MRF framework, DE and DR are considered
“documents” but they are not actual real documents but rather objects representing
an entity or a relationship between two entities. Unlike real documents, these objects
do not have direct and explicit term-based representations. Usually, it is necessary to
gather evidence across multiple real documents that mention the given object, in order
to be able to match them against keyword queries. Therefore, ERDM can be seen as
Early Fusion-based retrieval model. The existence of two different types of documents
implies two different indexes: the entity index and the relationship index.
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Fig. 3.3 Markov Random Field dependencies for E-R retrieval, |Q| = 5.

The relationship-specific dependencies of ERDM are found in the 2-cliques formed
by one entity document and one relationship document: DEi−1 - DRi−1,i , DEi- DRi−1,i

and for |Q| = 5, DEi- DRi,i+1 and DRi−1,i - DRi,i+1 . The graph structure does not
need to assume any explicit dependence between entity documents given a relationship
document. They have an implicit connection through the dependencies with the
relationship document. The likelihood of observing an entity document DEi given a
relationship document DRi−1,i is not affected by the observation of any other entity
document.

Explicit dependence between the two entity documents could be used to represent
the direction of the relationship between the two entities. To support this dependence,
relationship documents would need to account the following constraint: R(Ei−1, Ei) ̸=
R(Ei, Ei−1), ∀ DRi−1,i ∈ CR, with CR representing the relationship index. Then, we
would compute an ordered feature function between entities in a relationship, similar to
the ordered bigram feature function in SDM. In this work, we do not explicitly model
asymmetric relationships. For instance, if a user searches for the relationship entity
A “criticized” entity B but was in fact entity B who criticized entity A we assume
that the entity tuple <entity A, entity B> is still relevant for the information need
expressed in the E-R query.

ERDM follows the SDM [63] dependencies between query terms and documents
due to its proved effectiveness in multiple contexts. Therefore, ERDM assumes a
dependence between neighboring sub-query terms:

P (qEi
j |DEi , qEi

j ̸=l) = P (qEi
j |DEi , qEi

j−1, q
Ei
j+1) (3.24)
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P (qRi−1,i

j |DRi−1,i , q
Ri−1,i

j ̸=l , DEi) = P (qRi−1,i

j |DRi−1,i , q
Ri−1,i

j−1 , q
Ri−1,i

j+1 ) (3.25)

MRF for retrieval requires the definition of the sets of cliques (maximal or non-
maximal) within the graph that one or more feature functions is to be applied to. The
set of cliques in ERDM containing at least one document are the following:

• TE - set of 2-cliques containing an entity document node and exactly one term
in a entity sub-query.

• OE - set of 3-cliques containing an entity document node and two ordered terms
in a entity sub-query.

• TR - set of 2-cliques containing a relationship document node and exactly one
term in a relationship sub-query.

• OR - set of 3-cliques containing a relationship document node and two ordered
terms in a relationship sub-query.

• SER - set of 2-cliques containing one entity document node and one relationship
document node.

• SRER - set of 3-cliques containing one entity document node and two consecutive
relationship document nodes.

The joint probability mass function of the MRF is computed using the set of
potential functions over the configurations of the maximal cliques in the graph [63].
Non-negative potential functions are constructed from one or more real valued feature
functions associated with the respective feature weights using an exponential form.

3.3.2 Feature Functions

ERDM has two types of feature functions: textual and non-textual. Textual feature
functions measure the textual similarity between one or more sub-query terms and a
document node. Non-textual feature functions measure compatibility between entity
and relationship documents, i.e., if they share a given entity.

Table 3.5 presents an overview of the feature functions associated with clique
sets and the type of input nodes. Although we could define a wide set of different
feature functions, we decided to adapt SDM textual feature functions to ERDM clique
configurations. Therefore we define unigram based feature functions fE

T and fR
T to
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Table 3.5 Clique sets and associated feature functions by type and input nodes.

Clique Set Feature Functions Type Input Nodes
TE fE

T Textual {qEi
j , DEi}

OE fE
O and fE

U Textual {qEi
j , qEi

j+1, D
Ei}

TR fR
T Textual {qRi−1,i

j , DRi−1,i}
OR fR

O and fE
U Textual {qRi−1,i

j , q
Ri−1,i

j+1 , DRi−1,i}
SER fER

S Non-textual {DEi , DRi−1,i}
SRER fRER

S Non-textual {DEi , DRi−1,i , DRi,i+1}

2-cliques containing a single sub-query term and a entity or relationship document
node.

For 3-cliques containing consecutive sub-query terms and a document node, we
define two feature functions. One considers consecutive sub-query terms and matches
ordered bigrams with entity or relationship documents. This feature function is denoted
as fE

O and fR
O , depending if the clique is OE or OR. The second feature function matches

bigrams with documents using an unordered window of 8 terms (uw8), i.e., it matches
bigrams with documents if the two terms of the bigram occur with a maximum of
6 other terms between each other. This feature function is denoted as fE

U and fR
U ,

depending if the clique is OE or OR.
For each textual feature function we decided to use two variants: Dirichlet smoothing

Language Models (LM) and BM25. We now present the summary of the textual feature
functions used in this work.

LM-T-E

fE
T,LM(qEi

j , DEi) = log

f(qEi
j ,DEi )+

f(q
Ei
j

,CE)

|CE |
µE

|DEi |+µE



LM-O-E

fE
O,LM(qEi

j , qEi
j+1, D

Ei) = log

f#1(qEi
j ,q

Ei
j+1,DEi )+

f#1(q
Ei
j

,q
Ei
j+1,CE)

|CE |
µE

|DEi |+µE


LM-U-E

fE
U,LM(qEi

j , qEi
j+1, D

Ei) = log

f#uw8(qEi
j ,q

Ei
j+1,DEi )+

f#uw8(q
Ei
j

,q
Ei
j+1,CE)

|CE |
µE

|DEi |+µE


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LM-T-R

fR
T,LM(qRi−1,i

j , DRi−1,i) = log

f(q
Ri−1,i
j ,DRi−1,i )+

f(q
Ri−1,i
j

,CR)

|CR|
µR

|DRi−1,i |+µR


LM-O-R

fR
O,LM(qRi−1,i

j , q
Ri−1,i

j+1 , DRi−1,i) = log

f#1(q
Ri−1,i
j ,q

Ri−1,i
j+1 ,DRi−1,i )+

f#1(q
Ri−1,i
j

,q
Ri−1,i
j+1 ,CR)

|CR|
µR

|DRi−1,i |+µR


LM-U-R

fR
U,LM(qRi−1,i

j , q
Ri−1,i

j+1 , DRi−1,i) = log

f#uw8(q
Ri−1,i
j ,q

Ri−1,i
j+1 ,DRi−1,i )+

f#uw8(q
Ri−1,i
j

,q
Ri−1,i
j+1 ,CR)

|CR|
µR

|DRi−1,i |+µR



Here, f(qEi
j , DEi) and f(qRi−1,i

j , DRi−1,i) represent the sub-query term frequencies in a
entity document and relationship document, respectively. The collection frequencies
f(qEi

j , CE), f(qRi−1,i

j , CR) represent the frequency of sub-query term in either the entity
index CE or in the relationship index CR. The variants of these functions f#1 and
f#uw8 represent ordered and unordered bigram matching frequency. |DEi | and|DRi,i+1|
represent the total number of terms in a meta-document while |CR| and |CE| represent
the total number of terms in a collection of meta-documents. Finally, µE and µR are
the Dirichlet prior for smoothing which generally corresponds to the average document
length in a collection.

BM25-T-E

fE
T,BM25(qEi

j , DEi) = logNE−n(qEi
j )+0.5

n(qEi
j )+0.5

.
f(qEi

j ,DEi )(K1+1)
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Here, NE and NR represent the total number of documents in the entity index and
relationship index, respectively. The document frequency of unigrams and bigrams
is represented using n(),n#1() and n#uw8(). |DEi | and |DRi−1,i| are the total number
of terms in a entity or relationship document while avg(|DE|) and avg(|DR|) are the
average entity or relationship document length. K1 and b are free parameters usually
chosen as 1.2 and 0.75, in the absence of specific optimization.

We define two non-textual features in ERDM. The first one, fER
T is assigned to

2-cliques composed by one entity document and one relationship document and it is
inspired in the feature function fE of Hasibi and Balog’s ELR model [69]. It is defined
as follows:

fER
S (DEi , DRi−1,i) =

[
(1− α)f(DEi , DRi−1,i) + αn(Ei)

NR

]
(3.36)

where the linear interpolation implements the Jelinek-Mercer smoothing method
with α ∈ [0, 1] and f(DEi , DRi−1,i) = {0, 1} which measures if the entity Ei represented
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in DEi belongs to the relationship R(Ei−1, Ei) represented in DRi−1,i . The background
model employs the notion of entity popularity within the collection of relationship
documents. n(DEi) represents the number of relationship documents DR that contain
the entity Ei and NR represents the total number of relationship documents in the
relationship index.

For E-R queries with more than one relationship sub-query, we draw an edge
between consecutive relationship documents within the ERDM graph. This edge
creates a 3-clique containing two relationship documents and one entity document.
The feature function fRER

S measures if a given entity Ei is shared between consecutive
relationship documents within the graph. We opted to define a simple binary function:

fER
S (DEi , DRi−1,i , DRi,i+1) = 1 if Ei ∈ DEi ∩DRi−1,i ∩DRi,i+1 , 0 otherwise (3.37)

In summary, we described the set of feature functions associated with each clique
configuration within the ERDM graph. We leave for future work the possibility of
exploring other type of features to describe textual similarity and compatibility between
different nodes in the ERDM graph, such as neural language models.

3.3.3 Ranking

We have defined the set of clique configurations and the real valued feature functions
that constitute the non-negative potential functions over the cliques in the graph of
ERDM. We can now formulate the calculation of the posterior P (DE, DR|Q using the
probability mass function of the MRF, as follows:
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(3.39)

In essence, E-R retrieval using the ERDM corresponds to ranking candidate entity
tuples using a linear weighted sum of the feature functions over the cliques in the graph.
Therefore, we can apply any linear learning to rank algorithm to optimize the ranking
with respect to the vector of feature weights Λ. Given a training set T composed
by relevance judgments, a ranking of entity tuples RΛ and an evaluation function
E(RΛ; T ) that produces a real valued output, our objective is to find the values of the
vector Λ that maximizes E . As explained in [65], we require E to only consider the
ranking produced and not individual scores. This is the standard characteristic among
information retrieval evaluation metrics (e.g. MAP or NDCG).

3.3.4 Discussion

In this section we introduced the Entity-Relationship Dependence Model (ERDM), a
novel supervised Early Fusion-based model for E-R retrieval. Inspired by recent work
in entity retrieval we believe that modeling term dependencies between sub-queries
and entity/relationship documents can increase search performance.
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ERDM can be seen as an extension of the SDM model [63] for ad-hoc document
retrieval in a way that besides modeling query term dependencies we create graph
structures that depict dependencies between entity and relationship documents. Conse-
quently, instead of computing a single posterior P (D|Q) we propose to use the MRF for
retrieval for computing a joint posterior of multiple entity and relationship documents
given a E-R query, P (DE, DR|Q).

Moreover, since ERDM is a supervised model, we believe that tuning weights of
feature functions, besides optimizing search performance, can also help to explain the
inter-dependencies between sub-query terms and the respective documents, but also
how entity documents and relationship documents contribute to the overall relevance
of entity tuples given a E-R query.

3.4 Summary of the Contributions
In this chapter we present several contributions to the problem of entity-relationship
retrieval from a IR perspective:

• Generalization of the problem of entity-relationship search to cover entity types
and relationships represented by any attribute and predicate, respectively, rather
than a predefined set.

• A general probabilistic model for E-R retrieval using Bayesian Networks.

• Proposal of two design patterns that support retrieval approaches using the E-R
model.

• Proposal of a Entity-Relationship Dependence model that builds on the basic
Sequential Dependence Model (SDM) to provide extensible entity-relationship
representations and dependencies, suitable for complex, multi-relations queries.



Chapter 4

Entity-Relationship Retrieval over
a Web Corpus

We start this chapter by presenting a new semi-automatic method for generating E-R
test collections together with a new E-R test collection, the RELink Query Collection
comprising 600 E-R queries. We leverage web tabular data containing entities and
relationships among them as they share the same row in a table. We exploit the
Wikipedia Lists-of-lists-of-lists tree of articles containing lists of Entities in the form of
tables. We developed a table parser that extracts tuples of entities from these tables
together with associated metadata. This information is then provided to editors that
create E-R queries fulfilled by the extracted tuples.

We then report a set of evaluations of the ERDM model using four different query
sets. In order to leverage information about entities and relations in a corpus, it is
necessary to create a representation of entity related information that is amenable
to ER search. In our approach we focus on sentence level information about entities
although the method can be applied to more complex segmentation of text. Our
experiments are based on the ClueWeb-09-B data set with FACC1 text annotation
that refer to entities found in the text, including the variances of their surface forms.
Each entity is designated by its unique ID and for each unique entity instance we
created ’entity documents’ comprising a collection of sentences that contain the entity.
These context documents are indexed, comprising the entity index. The same is done
by creating entity pair documents and the entity pair index. These two indexes enable
us to execute E-R queries using different retrieval models, including the ERDM that
models the dependence between entities.
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4.1 RELink Query Collection 1

Improvements of entity-relationship (E-R) search techniques have been hampered by a
lack of test collections, particularly for complex queries involving multiple entities and
relationships. In this section we describe a method for generating E-R test queries to
support comprehensive E-R search experiments. Queries and relevance judgments are
created from content that exists in a tabular form where columns represent entity types
and the table structure implies one or more relationships among the entities. Editorial
work involves creating natural language queries based on relationships represented by
the entries in the table.

We have publicly released the RELink test collection comprising 600 queries and
relevance judgments obtained from a sample of Wikipedia List-of-lists-of-lists tables.
The latter comprise tuples of entities that are extracted from columns and labelled by
corresponding entity types and relationships they represent.

Improvement of methods for both extraction and search is hampered by a lack of
query sets and relevance judgments, i.e., gold standards that could be used to compare
effectiveness of different methods. In this section we introduce:

1. A low-effort semi-automatic method for acquiring instances of entities and entity
relationships from tabular data.

2. RELink Query Collection (QC) of 600 E-R queries with corresponding relevance
judgments

Essential to our approach is the observation that tabular data typically includes
entity types as columns and entity instances as rows. The table structure implies
a relationship among table columns and enables us to create E-R queries that are
answered by the entity tuples across columns. Following this approach, we prepared
and released the RELink QC comprising 600 E-R queries and relevance judgments
based on a sample of Wikipedia List-of-lists-of-lists tables.

The query collection and the research framework are publicly available2, enabling
the community to expand the RELink Framework with additional document collections
and alternative indexing and search methods. It is important to maintain and enhance
the RELink QC by providing updates to the existing entity types and creating new
queries and relevant instances from additional tabular data.

1The material contained in this section was published in P. Saleiro, N. Milic-Frayling, E. M.
Rodrigues, C. Soares, “RELink: A Research Framework and Test Collection for Entity-Relationship
Retrieval”[15].

2https://sigirelink.github.io/RELink/

https://sigirelink.github.io/RELink/
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4.1.1 Tabular Data and Entity Relationships

Information that satisfies complex E-R queries is likely to involve instances of entities
and their relationships dispersed across Web documents. Sometimes such information
is collected and published within a single document, such as a Wikipedia page. In such
cases, traditional search engines can provide excellent search results without applying
special E-R techniques or considering entity and relationship types. Indeed, the data
collection, aggregation, and tabularization has been done by a Wikipedia editor.

That also means that a tabular Wikipedia content, comprising various entities, can
be considered as representing a specific information need, i.e., the need that motivated
editors to create the page in the first place. Such content can, in fact, satisfy many
different information needs. We focus on exploiting tabular data for exhaustive search
for pre-specified E-R types. In order to specify E-R queries, we can use column headings
as entity types. All the column entries are then relevance judgments for the entity
query. Similarly, for a given pair of columns that correspond to distinct entities, we
formulate the implied relationship. For example the pair <car, manufacturing plant>
could refer to “is made in” or “is manufactured in” relationships. The instances of
entity pairs in the table then serve as evidence for the specific relationship. This can
be generalized to more complex information needs that involve multiple entity types
and relationships.

Automated creation of E-R queries from tabular content is an interesting research
problem. For now we asked human editors to provide natural language and structured
E-R queries for specific entity types. Once we collect sufficient amounts of data from
human editors we will be able to automate the query creation process with machine
learning techniques. For the RELink QC we compiled a set of 600 queries with E-R
relevance judgments from Wikipedia lists about 9 topic areas.

4.1.2 Selection of Tables

Wikipedia contains a dynamic index “The Lists of lists of lists”3 which represents
the root of a tree that spans curated lists of entities in various domains. We used a
Wikipedia snapshot from October 2016 to traverse “The Lists of lists of lists” tree
starting from the root page and following every hyperlink of type “List of ” and their
children. This resulted in a collection of 95,569 list pages. While most of the pages
contain tabular data, only 18,903 include tables with consistent column and row
structure. As in [172], we restrict content extraction to wikitable HTML class that

3http://en.wikipedia.org/wiki/List_of_lists_of_lists

http://en.wikipedia.org/wiki/List_of_lists_of_lists


66 Entity-Relationship Retrieval over a Web Corpus

typically denotes data tables in Wikipedia. We ignore other types of tables such as
infoboxes.

In this first instance, we focus on relational tables, i.e., the tables that have a key
column, referring to the main entity in the table [173]. For instance, the ”List of books
about skepticism” contains a table “Books” with columns “Author”, “Category” and
“Title”, among others. In this case, the key column is “Title” which contains titles of
books about skepticism. We require that any relationship specified for the entity types
in the table must contain the “Title” type, i.e., involve the “Title” column.

In order to detect key columns we created a Table Parser that uses the set of
heuristics adopted by Lehmberg et al. [173], e.g., the ratio of unique cells in the
column or text length. Once the key column is identified, the parser creates entity
pairs consisting of the key column and one other column in the table. The content
of the column cells then constitutes the set of relevant judgments for the relationship
specified by the pair of entities.

For the sake of simplicity we consider only those Wikipedia lists that contain a
single relational table. Furthermore, our goal is to create queries that have verifiable
entity and entity pair instances. Therefore, we selected only those relational tables
for which the key column and at least one more column have cell content linked to
Wikipedia articles.

With these requirements, we collected 1795 tables. In the final step, we selected 600
tables by performing stratified sampling across semantic domains covered by Wikipedia
lists. For each new table, we calcuated the Jaccard similarity scores between the title
of the corresponding Wikipedia page and the titles of pages associated with tables
already in the pool. By setting the maximum similarity threshold to 0.7 we obtained a
set of 600 tables.

The process of creating RELink queries involves two steps: (1) automatic selection
of tables and columns within tables and (2) manual specification of information needs.
For example, in the table “Grammy Award for Album of the Year” the columns
“winner”, “work” were automatically selected to serve as entity types in the E-R query
(Figure 4.1). The relationship among these entities is suggested by the title and we let
a human annotator to formulate the query.

The RELink query set was created by 6 annotators. We provided the annotators
with access to the full table, metadata (e.g., table title or the first paragraph of the
page) and entity pairs or triples to be used to specify the query (Figure 4.2). For each
entity pair or triple the annotators created a natural language information need and an
E-R query in the relational format Q = {QEi−1 , QRi−1,i , QEi}, as shown in Table 4.1.
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Fig. 4.1 Example of Wikipedia table row.

Fig. 4.2 Example of metadata provided to editors.

4.1.3 Formulation of Queries

The relational query format is introduced to support a variety of experiments with
E-R queries. In essence, a complex information need is decomposed into a set of sub-
queries that specify types of entities E and types of relationships R(Ei−1, Ei) between
entities. For each relationship query there is one query for each entity involved in the
relationship. Thus a query Q that expects a pair of entities for a given relationship,
is mapped into three sub-queries (QEi−1 , QRi−1,i , QEi), where QEi−1 and QEi are the
entity types for Ei−1 and Ei respectively, and QRi−1,i is a relationship type describing
R(Ei−1, Ei).

4.1.4 Collection Statistics

RELink QC covers 9 thematic areas from the Lists-of-Lists-of-Lists in Wikipedia:
Mathematics and Logic, Religion and Belief Systems, Technology and Applied Sciences,
Miscellaneous, People, Geography and Places, Natural and Physical Sciences, General
Reference and Culture and the Arts. The most common thematic areas are Culture
and the Arts with 70 queries and Geography and Places with 67 queries.

In Table 4.2 we show the characteristics of the natural language and relational
queries. Among 600 E-R queries, 381 refer to entity pairs and 219 to entity triples. As
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Table 4.1 Examples of query annotations.

ID NL Query Relational Format
RELink_P_164 What are the regiments held

by the Indian Army?
{regiment, held by, In-
dian Army}

RELink_T_071 In which seasons NHL players
scored more than 50 goals and
the team they represented?

{NHL season, scored
more than 50 goals in,
NHL player, played for,
NHL team }

Table 4.2 RELink collection statistics.

2-entity 3-entity All
Total queries 381 219 600
Avg. queries length 56.5 83.8 66.5
Avg. QE length 20.9 20.9 20.9
Avg. QR length 11.8 12.6 12.3
# uniq. entity attributes (QE) 679 592 1251
# uniq. relationships (QR) 145 205 317
Avg. # relevant judgments 67.9 41.8 58.5

expected, natural language descriptions of 3-entity queries are longer (on average 83.8
characters) compared to 2-entity queries (56.5 characters).

We further analyze the structure of relational queries and their components, i.e.,
entity queries QE that specify the entity type and relationship queries QR that specify
the relationship type. Across 600 queries, there are 1251 unique entity types QE (out
of total 1419 occurrences). They are rather unique across queries: only 65 entity
types occur in more than one E-R query and 44 occur in exactly 2 queries. The most
commonly shared entity type is “country”, present in 9 E-R queries.

In the case of relationships, there are 317 unique relationship types QR (out of 817
occurrences) with a dominant type “located in” that occurs in 140 queries. This is not
surprising since in many domains the key entity is tied to a location that is included in
one of the columns. Nevertheless, there are only 44 relationship types QR occurring
more than once implying that RELink QC is a diverse set of queries, including 273
relationship types occurring only once.
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4.2 Experimental Setup
In this section we detail how we conducted our experiments in E-R retrieval. Since
we only have access to test collections comprising general purpose E-R queries we
decided to use a Web corpus as dataset, more precisely ClueWeb-09-B4.The ClueWeb09
dataset was created to support research on information retrieval and related human
language technologies and contains 1 billion web pages. The part B is a subset of
the most popular 50 million English web pages, including the Wikipedia. Part B was
created as a resource for research groups without processing power for processing the
all ClueWeb09 collection. We used the ClueWeb-09-B Web collection with FACC1 text
span annotations linked to Wikipedia entities to show how RELink can be used for
E-R retrieval over Web content. We developed our prototype using Apache Lucene for
indexing and search. We used a specific Python library (PyLucene) that allowed our
customized implementation tailored for E-R retrieval.

4.2.1 Data and Indexing

E1 E3 E4 E3

E2 E1E3 E3E4

E1   E2

D1 D2 D3 D4

E3E4

E3

E1

E2

E3

E4

E1   E2

E1E3

E3E4 E3E4E3 E3

Entity Index Relationship Index

Fig. 4.3 Illustration of E-R indexing from a web corpus.

As a text corpus, we use ClueWeb-09-B combined with FACC1 text span annotations
with links to Wikipedia entities (via Freebase). The entity linking precision and recall in
FACC1 is estimated to be 80-85% and 70-85%, respectively [174]. For our experiments
we created two main indexes: one for entity extractions and one for entity pairs

4https://lemurproject.org/clueweb09/

https://lemurproject.org/clueweb09/
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(relationships) extractions. We extract entity and pairs occurrences using an Open
Information Extraction method like OLLIE [57] over the annotated ClueWeb-09-B
corpus as follows. For each entity annotation, we extract the sentence where it occurred
as an entity context. For pairs of entities, we look for co-occurring entities in the
same sentence and we extract the separating string, i.e., the context of the relationship
connecting them. Figure 4.3 illustrates the indexing process adopted in this work.

We obtained 476 million entity extractions and 418 million entity pairs extractions,
as described in Table 4.3. In order to compute |DEi | and |DRi−1,i | we incrementally
updated two auxiliary indices, containing the number of terms per entity and per entity
pair, respectively. We ran our experiments using Apache Lucene and made use of
GroupingSearch for grouping extractions by entity and entity pair at query time. To
get the statistics for ordered and unordered bigrams we made use of SpanNearQuery.

Table 4.3 ClueWeb09-B extractions statistics.

Total Unique Avg. doc. len.
Entities 476,985,936 1,712,010 9977
Entity pairs 418,079,378 71,660,094 138

4.2.2 Retrieval Method and Parameter Tuning

For experiments using ERDM we adopted a three stage retrieval method. First, queries
QEi−1 ,QEi are submitted against the entity index and QRi−1,i is submitted against the
entity-pair index. Initial sets of top 20000 results grouped by entity or entity-pairs,
respectively, are retrieved using Lucene’s default search settings. Second, the feature
functions of the specific retrieval model are calculated for each set, using an in-house
implementation. This process is easily parallelized. The final ranking score for each
entity-pair is then computed using the learned λ weights. Evaluation scores are reported
on the top 100 entity-pair results.

Parameter tuning for ERDM and baselines was directly optimized with respect to
the Mean Average Precision (MAP). We make use of the RankLib’s implementation
of the coordinate ascent algorithm under the sum normalization and non-negativity
constraints with 3 random restarts. Coordinate ascent is a commonly used optimization
technique [65] that iteratively optimizes a single parameter while holding all other
parameters fixed.

Parameters are estimated using 5-fold cross validation for each of the 4 query sets
separately. To be able to use the same train and test folds throughout all experiments,
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we first randomly create fixed train and test folds from the initial result set, for each
query set. All reported evaluation metrics were macro-averaged over 5 folds.

We do not optimize the Dirichlet priors µE and µR in language models and set
them equal to the traditional average document length, i.e., the average entity and
entity pairs extractions length, respectively. The unordered window size N for fE

U and
fR

U is set to be 8, as suggested in [63].

4.2.3 Test Collections

We ran experiments with a total of 548 E-R queries. We decided to just perform
experiments using queries aiming 2-tuples of entities. We leave for future work the
evaluation of queries aiming at triples. Besides RELink QC we used other 3 relationship-
centric query sets, with pairs of Wikipedia entities as answers, i.e., relevance judgments.
The query sets cover a wide range of domains as described in Table 4.4. Query sets for
entity-relationship retrieval are scarce. Generally entity retrieval query sets are not
relationship-centric [10].

Table 4.4 Description of query sets used for evaluation.

Query Set Count Domains
QALD-2 79 Geography and places, Politics and so-

ciety, Culture and the Arts, Technology
and science

ERQ 28 Award, City, Club, Company, Film, Novel,
Person, Player, Song, University

COMPLEX 60 Cinema, Music, Books, Sports, Computing,
Military conflicts

RELink 381 General Reference, Culture and the Arts,
Geography and places, Mathematics and
logic, Natural and physical Sciences, Peo-
ple, Religion and belief systems, Society
and social sciences, Technology and ap-
plied science

Total 548

One exception is the QALD-2 query set used in the DBpedia-entity collection [175].
It contains a subset of relational queries, e.g.“Who designed the Brooklyn Bridge?”.
Most of relational queries in QALD-2 have a fixed relevant entity, e.g., “Brooklyn
Bridge” and can be easily transformed from single entity relevance judgments into pairs.
From the 79 relational queries in QALD-2, we identified 6 with no fixed relevant entity
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in the query (e.g. “Give me the capitals of all countries in Africa.”). In these cases,
for provided single entity relevance judgment we needed to annotate the missing entity
manually to create a pair. For instance, given a capital city in Africa we identified the
corresponding African country.

In addition, we used two benchmarks created in previous work using Semantic-
Web-based approaches: ERQ [56] and COMPLEX [10]. Neither ERQ nor COMPLEX
provide complete relevance judgments and consequently, we manually evaluated each
answer in our experiments. ERQ consists of 28 queries that were adapted from INEX17
and OWN28 [56]. However, 22 of the queries have a given fixed entity in the query
(e.g. “Find Eagles songs”). Only 6 queries are asking for pairs of unknown entities,
such as “Find films starring Robert De Niro and please tell directors of these films.”.

COMPLEX queries were created with a semi-automatic approach [10]. It contains
70 queries from which we removed 10 that expect 3-tuples of entities. This query
set consists of pure relationship-centric queries for unknown pairs of entities, such as
“Currency of the country whose president is James Mancham “Kings of the city which
led the Peloponnesian League.” and “Who starred in a movie directed by Hal Ashby?”.

We used four different retrieval metrics, Mean Average Precision at 100 results
(MAP), precision at 10 (P@10), mean reciprocal rank (MRR) and normalized discounted
cumulative gain at 20 (NDCG@20).

4.3 Results and Analysis
We start by performing a simple experiment for comparing Early Fusion and ERDM
using both Language Models (LM) and BM25 as retrieval functions. Since we are only
interested in comparing relative performance we opted to scale down our experimental
setup. Instead of computing the term frequency for every extraction for a given entity
or relationship we cap to 200 the number for each group of documents retrieved in
the first passage. We tried several different values and for values below 200 extraction
the performance reduced significantly. For 200, while the performance reduces it is
not dramatic. This setup reduces the experimental runtime and since we had limited
resources this proved to be useful.

Table 4.5 depicts the results for this comparative evaluation. We decided to only
use the three test collections specifically tailored for relationship retrieval. As we
can see the results are very similar between EF and ERDM for both LM and BM25
variants. In the three test collections ERDM presents slightly better performance
than the corresponding EF variant (e.g. BM25). However when performing statistical
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significance tests we obtained p-values above 0.05 when comparing EF and ERDM.
This is very interesting as it shows that for general purpose E-R evaluation the overhead
of computing sequential dependencies does not carry significant improvements.

Table 4.5 Early Fusion and ERDM comparison using LM and BM25.

ERQ
MAP P@10 MRR NDCG@20

EF-LM 0.251 0.15 0.3408 0.3508
EF-BM25 0.1939 0.1423 0.1783 0.2861
ERDM-LM 0.2611 0.1615 0.3151 0.3589
ERDM-BM25 0.2106 0.1462 0.2839 0.3257

COMPLEX
MAP P@10 MRR NDCG@20

EF-LM 0.1703 0.0596 0.1839 0.2141
EF-BM25 0.1855 0.0719 0.1907 0.2454
ERDM-LM 0.1719 0.0789 0.2466 0.2492
ERDM-BM25 0.1955 0.0772 0.2257 0.248

RELink(381 queries)
MAP P@10 MRR NDCG@20

EF-LM 0.0186 0.0063 0.0192 0.0249
EF-BM25 0.0203 0.0071 0.0227 0.0259
ERDM-LM 0.0213 0.0058 0.0273 0.0255
ERDM-BM25 0.0213 0.0061 0.0265 0.0275

On the other hand, we detect sensitivity to the retrieval function used. In ERQ, both
ERDM-LM and EF-LM outperform BM25 but the opposite happens for COMPLEX
and RELink. This sensitivity means that we cannot generalize the assumption that
one of the retrieval functions is more adequate for E-R retrieval.

Another important observation has to do with the overall lower results on the
RELink test collection in comparison with ERQ and COMPLEX. Contrary to our
expectations ClueWeb-09B has very low coverage of entity tuples relevant to the
RELink test collection.

We now present the results of comparing ERDM with three baselines using sequential
dependence to evaluate the impact of modeling dependencies between query terms.
The first baseline method, BaseEE, consists in submitting two queries against the entity
index: QEi−1 +QRi−1,i and QRi−1,i +QEi . Entity-pairs are created by cross product of
the two entity results set retrieved by each query. For each method we compute the
Sequential Dependence Model(SDM) [63] scores.
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The second baseline method, BaseE, consists in submitting again a single query
Q towards the entity index used in ERDM. Entity-pairs are created by cross product
of the entity results set with itself. The third baseline method, BaseR, consists in
submitting a single query Q towards an entity-pair index. This index is created using
the full sentence for each entity-pair co-occurrence in ClueWeb-09-B, instead of just
the separating string as in ERDM. This approach aims to capture any entity context
that might be present in a sentence. ERDM relies on the entity index for that purpose.

In this evaluation we decided to not cap the number of extractions to compute
term frequencies inside each group of results returned from the first passage with
Lucene GroupingSearch. Due to the low coverage of ClueWeb for the entire RELink
collection, we decided to just perform the evaluation using the top 100 queries with
highest number of relevance judgments in our indexes. We also include results for the
adapted QALD-2 test collection.

Table 4.6 Results of ERDM compared with three baselines.

QALD-2
MAP P@10 MRR NDCG@20

BaseEE 0.0087 0.0027 0.0093 0.0055
BaseE 0.0306 0.004684 0.0324 0.0363
BaseR 0.0872 0.01678 0.0922 0.0904
ERDM 0.1520 0.0405 0.1780 0.1661

ERQ
MAP P@10 MRR NDCG@20

BaseEE 0.0085 0.004 0.00730 0.0030
BaseE 0.0469 0.01086 0.0489 0.038
BaseR 0.1041 0.05086 0.1089 0.1104
ERDM 0.3107 0.1903 0.37613 0.3175

COMPLEX
MAP P@10 MRR NDCG@20

BaseEE 0.0035 0 0.00430 0
BaseE 0.0264 0.005 0.03182 0.1223
BaseR 0.0585 0.01836 0.0748 0.0778
ERDM 0.2879 0.1417 0.32959 0.3323

RELink(100 queries)
MAP P@10 MRR NDCG@20

BaseEE 0.03 0.01 0.0407 0.02946
BaseE 0.0395 0.019 0.0679 0.03948
BaseR 0.0451 0.021 0.0663 0.07258
ERDM 0.1249 0.048 0.1726 0.1426
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Table 4.6 presents the results of our experiments on each query set. We start by
comparing the three baselines among each other. As follows from Table 4.6, BaseR
baseline outperforms BaseEE and BaseE on all query sets, while BaseEE is the worst
performing baseline. The BaseR retrieval is the only relationship-centric approach from
the three baselines, as its document collection comprises entity-pairs that co-occurred
in ClueWeb-09-B corpus. BaseEE and BaseE retrieve entity pairs that are created in a
post-processing step which reduces the probability of retrieving relevant results. This
results shows the need for a relationship-centric document collection when aiming to
answer entity-relationship queries.

ERDM significantly outperform all baselines on all query sets. We performed
statistical significance testing of MAP using ERDM against each baseline obtaining
p-values below 0.05 on all the query sets. This results show that our Early Fusion
approach using two indexes (one for entities and other for relationships) is adequate
and promising. We believe this approach can become a reference for future research in
E-R retrieval from an IR-centric perspective.

Nevertheless, based on the absolute results obtained on each evaluation metric and
for each query set we can conclude that E-R retrieval is still very far from being a solved
problem. There is room to explore new feature functions and retrieval approaches.
This is a very difficult problem and the methods we proposed are still far from optimal
performance. Queries such as “Find world war II flying aces and their services” or
“Which mountain is the highest after Annnapurna?” are examples of queries with zero
relevant judgments returned.

On the other hand, ERDM exhibits interesting performance in some queries with
high complexity, such as “Computer scientists who are professors at the university
where Frederick Terman was a professor.” We speculate about some aspects that might
influence performance.

One aspect has to do with the lack of query relaxation in our experimental setup.
The relevant entity tuples might be in our indexes but if the query terms used to search
for entity tuples do not match the query terms harvested from ClueWeb-09B it is not
possible to retrieve those relevant judgments. Query relaxation approaches should be
tried in future work. More specifically, with the recent advances in word embeddings it
is possible to expand queries with alternative query terms that are in the indexes.

On the other hand, we adopted a very simple approach for extracting entities and
relationships. The use of dependency parsing and more complex methods of relation
extraction would allow to filter out noisy terms. We also leave this for future work.
Moreover, to further assess the influence of the extraction method we propose to use
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selective text passages containing the target entity pairs and the query terms associated
as well. Then different extraction methods could be tried and straightforward evaluation
of their impact.

(a) (b)

(c)

Fig. 4.4 Values of λ for ERDM: (a) all λ, (b) λE′ , (c) λR′ . (b) and (c) were obtained
using sum normalization.

To understand how much importance is attributed to the different types of clique
sets, we plot the values of the lambda parameters: λE parameters represent the feature
importance of the set of functions targeting the dependence between entity query terms
and the entity documents in overall ranking score for entity-pairs; λR represent the
importance of the feature functions of the relationship type queries and finally, the
value for λER which is assigned to the feature function that evaluates if each entity
retrieved from both entity type queries belongs to the entity-pair retrieved from the
relationship type query.
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We plot the feature weights learned on each query set, as depicted in Figure 4.4. We
see that λER and λE

T (weight for the unigram language model in the entity type queries)
dominate the ranking function. We further evaluated the relative weights for each one
of the three SDM-like functions using a sum normalization of the three weights for
both entity documents and entity-pair documents. We observe that λE

T dominates on
every query set, however the same does not happen with λR

T . For relationship type
queries the bigram features have higher values for COMPLEX and RELink.

4.4 Summary of the Contributions
In this chapter we presented the following contributions to the E-R retrieval research
area:

1. Indexing method that supports generalization of entity types and entity-relationships
to any attribute and predicate, respectively

2. A semi-automatic method for generating E-R test collections, which resulted in
the RELink Query Collection comprising 600 E-R queries.

3. Results of experiments at scale, with a comprehensive set of queries and corpora.





Chapter 5

Entity Filtering and Financial
Sentiment Analysis

In this chapter we present the work developed to tackle two fundamental Text Mining
problems in ORM: Entity Filtering and Sentiment Analysis. We start by describing
our participation at the Filtering task of RepLab 2013 [32]. We developed a supervised
method to classify tweets as relevant or non-relevant to given target entity. This
method obtained the first place at the competition. Entity Filtering can be seen as
target based Named Entity Disambiguation (NED). Given a target entity under study,
we need to develop a binary classifier to filter out tweets that are not talking about the
target entity. This task is fundamental in ORM as downstream tasks such as Sentiment
Analysis or entity-centric predictions would produce misleading results if noisy signals
were used.

Sentiment Analysis has been widely studied over the last decade. It is a research
area with several ramifications as it is dependent on the type of texts and the objective
of the analysis. We decided to focus our efforts in a not so well explored sub-area of
Sentiment Analysis. SemEval 2017 Task 5 focused on fine-grained sentiment analysis
of financial news and microblogs. As one of the use cases of ORM is to track the
online reputation of companies and try to assess its impact on the stock market we
decided it was a specific task within Sentiment Analysis in which we could make a
contribution. We obtained the fourth place in the Microblogs sub-task using one of
the evaluation metrics. The task consisted in predicting a real continuous variable
from -1.0 to +1.0 representing the polarity and intensity of sentiment concerning
companies/stocks mentioned in short texts. We modeled it as a regression analysis
problem.



80 Entity Filtering and Financial Sentiment Analysis

5.1 Entity Filtering1

The relationship between people and public entities has changed with the rise of social
media. Online users of social networks, blogs and micro-blogs are able to directly
express and spread opinions about public entities, such as politicians, artists, companies
or products. Online Reputation Monitoring (ORM) aims to automatically process
online information about public entities. Some of the common tasks within ORM
consist in collecting, processing and aggregating social network messages to extract
opinion trends about such entities.

Twitter, one of the most used online social networks, provides a search system that
allows users to query for tweets containing a set of keywords. ORM systems often use
Twitter as a source of information when monitoring a given entity. However, search
results are not necessarily relevant to that entity because keywords can be ambiguous.
For instance, a tweet containing the word “columbia” can be related with several
entities, such as a federal state, a city or a university. Furthermore, tweets are short
which results in a reduced context for entity disambiguation. When monitoring the
reputation of a given entity on Twitter, it is first necessary to guarantee that all tweets
are relevant to that entity. Consequently, other processing tasks, such as sentiment
analysis will benefit from filtering out noise in the data stream.

In this work, we tackle the aforementioned problem by applying a supervised
learning approach. Given a set of entities E = {e1, e2, ..., ei, ...}, a stream of texts
S = {s1, s2, ..., si, ...} (e.g. tweets), we are interested in monitoring the mentions of an
entity ei on the stream S, i.e. the discrete function fm(ei, S). We cast the prediction
of fm as a supervised learning classification problem, in which we want to infer the
target variable f̂m(ei, S) ∈ {0, 1}

We implemented a large set of features that can be generated to describe the
relationship between an entity representation and a text mention. We use metadata
(e.g. entity names, category) provided in the user configurations, text represented with
TF-IDF, similarity between texts and Wikipedia, Freebase entities disambiguation,
feature selection of terms based on frequency and feature matrix transformation using
SVD. The learning algorithms from scikit-learn Python library that were tested for
Entity Filtering include Naive Bayes, SVM, Random Forests, Logistic Regression and
MultiLayer Perceptron.

1Most of the material contained in this section was published in P.Saleiro, E. M. Rodrigues, C.
Soares, E. Oliveira, “TexRep: A Text Mining Framework for Online Reputation Monitoring” [14]
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5.1.1 Task Overview

RepLab 2013 [32] focused on monitoring the online reputation of entities on Twitter.
The Filtering task consisted in determining which tweets are relevant to each entity.
The corpus consists of a collection of tweets obtained by querying the Twitter Search
API with 61 entity names during the period from the June 2012 until the December
2012. The corpus contains tweets both in English and Spanish. The balance between
both languages varies for each entity. Tweets were manually annotated as “Related” or
“Unrelated” to the respective target entity.

The data provided to participants consists in tweets and a list of 61 entities. For
each tweet in the corpus we have the target entity id, the language of the tweet, the
timestamp and the tweet id. The content of each URL in the tweets is also provided.
Due to Twitter’s terms of service, the participants were responsible to download the
tweets using the respective id. The data related with entities contain the query used
to collect the tweets (e.g. “BMW”), the official name of the entity (e.g. “Bayerische
Motoren Werke AG”), the category of the entity (e.g. “automotive”), the content of
its homepage and both Wikipedia articles in English and Spanish.

5.1.2 Pre-processing

The Entity Filtering module includes methods to normalize texts by removing all
punctuation, converting text to lower case, removing accents and converting non-ASCII
characters to their ASCII equivalent. Lists of stop words for several languages are
also available, which are used to filter out non relevant words. We rely on the Natural
Language Toolkit (NLTK) to provide those lists.

Contrary to other types of online texts (e.g. news or blog posts) tweets contain
informal and non-standard language including emoticons, spelling errors, wrong letter
casing, unusual punctuation and abbreviations. Therefore, when dealing with tweets,
the Entity Filtering module uses a tokenizer [176] optimized for segmenting words in
tweets. After tokenization we extract user mentions and URLS and hashtags textual
content.

5.1.3 Features

Many different types of features can be used to optimize relevance classification,
including language models, keyword similarities between tweets and entities as well as
external resources projections. We implemented a large number of those. We assume
that future users of our framework for ORM will provide entity-specific data (e.g.
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homepage/Wikipedia content) prior to training and configuring the Entity Filtering
module.

Language Model: text is encapsulated in a single feature to avoid high dimensionality
issues when adding other features. A TF-IDF representation of unigrams, bigrams
and trigrams for training a text classifier which calculates the probability of a
text being related to the expected entity. The output probabilities of the classifier
are used as a feature.

Keyword similarity: similarity scores between metadata and the texts, obtained by
calculating the ratio of the number of common terms in the texts and the terms
of query and entity name. Similarities at character level are also available in
order to include possible spelling errors in the text.

Web similarity: similarity between the text and the normalized content of the entity’s
homepage and normalized Wikipedia articles are also available. The similarity
value is the number of common terms multiplied by logarithm of the number of
terms in tweet.

Freebase: For each keyword of the entity’s query that exists in the text, two bigrams
are created, containing the keyword and the previous/subsequent word. These
bi-grams are submitted to the Freebase Search API and the list of retrieved
entities are compared with the id of the target entity on Freebase. A Freebase
score is computed by using the inverse position of the target entity in the list of
results retrieved. If the target entity is the first result, the score is 1, if it is the
second, the score is 0.5, and so on. If the target entity is not in the results list,
the score is zero. The feature corresponds to the maximum score of the extracted
bigrams of each text.

Category classifier: a sentence category classifier is created using the Wikipedia
articles of each entity. Each sentence of the Wikipedia articles is annotated with
the category of the corresponding entity. TF-IDF for unigrams, bigrams and
trigrams are calculated and a multi-class classifier (SVM) is trained to classify
each text. The feature is the probability of the text being relevant to its target
class.

5.1.4 Experimental Setup

The dataset used for the competition consists of a collection of tweets both in English
and Spanish, possibly relevant to 61 entities from four domains: automotive, banking,
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Dataset Related Unrelated Total
Training 33,193 10,389 43,582
Development 26,534 8,307 34,841
Validation 6,659 2,082 8,741
Test 75,470 21,378 96,848

Table 5.1 RepLab 2013 Filtering Task dataset description.

universities and music.The dataset consists of a collection of tweets obtained by querying
the Twitter Search API with 61 entity names during the period from the June 2012
until the December 2012. The balance between both languages varies for each entity.
The complementary data about each target entity is the following:

• query used to collect the tweets (e.g. “BMW”)

• official name of the entity (e.g. “Bayerische Motoren Werke AG”)

• category of the entity (e.g. “automotive”)

• content of entity homepage

• Wikipedia article both in English and Spanish

Tweets were manually annotated as “Related” or “Unrelated” to the respective
target entity. The dataset is divided in training, test and development (Table 5.1). The
training set consists in a total of 45,671 tweets from which we were able to download
43,582. Approximately 75% of tweets in the training set are labeled as “Related”.
We split the training dataset into a development set and a validation set, containing
80% and 20% of the original, respectively. We adopted a randomly stratified split
approach per entity, i.e., we group tweets of each target entity and randomly split them
preserving the balance of “Related”/“Unrelated” tweets. The test dataset consists of
90,356 tweets from which we were able to download 88,934.

We used the development set for trying new features and test algorithms. We
divided the development set in 10 folds generated with the randomly stratified approach.
We used the validation set to validate the results obtained in the development set. The
purpose of this validation step is to evaluate how well the Entity Filtering classifier
generalizes from its training data to the validation data and thus estimate how well
it will generalize to the test set. It allows us to spot overfitting. After validation, we
trained the classifier using all of the data in the training dataset and evaluated in the
test set.
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5.1.5 Results

We created different classifier runs using different learners, features and we also created
entity specific models as explained in Table 5.2, [177]. We applied selection of features
based on frequency and transformation of content representation using SVD. The
learners tested include Naive Bayes (NB), SVM, Random Forests (RF), Logistic
Regression (LR) and MultiLayer Perceptron (MLP). The evaluation measures used are
accuracy and the official metric of the competition, F-measure which is the harmonic
mean of Reliability and Sensitivity [178]. We present results for the top 4 models
regarding the F-measure. We replicated the best system at RepLab 2013 in the run 1.

Run Learner Features No. of models
1 SVM All global
2 RF All global
3 RF All per entity

Table 5.2 Entity filtering versions description.

Table 5.3 shows the results of top performing runs and the official baseline of the
competition. This baseline classifies each tweet with the label of the most similar tweet
of target entity in the training set using Jaccard similarity coefficient. The baseline
results were obtained using 99.5% of the test set.

Run Acc. (Val. Set) Acc. R S F-measure
1 0.944 0.906 0.759 0.428 0.470
2 0.945 0.908 0.729 0.451 0.488
3 0.948 0.902 0.589 0.444 0.448
Official Baseline - 0.8714 0.4902 0.3199 0.3255
Best RepLab - 0.908 0.729 0.451 0.488

Table 5.3 Official results for each version plus our validation set accuracy.

Based on the results achieved we are able to conclude that the models of our
classifier are able to generalize successfully. Results obtained in the validation set
are similar to those obtained in the test set. During development, solutions based
on one model per entity were consistently outperformed by solutions based on global
models. We also noticed during development that language specific models (English
and Spanish) did not exhibit improvements in global accuracy, therefore we opted to
use language as a feature. Results show that the best model uses the Random Forests
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classifier with 500 estimators for training a global model. Though, the Language
Modeling feature encapsulates text by using a specific model trained just with TF-IDF
of n-grams of tweets.

We performed a “break down” analysis for each one of the four categories of RepLab
2013 using Run 2 model, as depicted in Figure 5.1. We observe that University,
Banking and Automotive categories exhibit similar average F-measure results, all above
0.50. In contrast, results for Music shows it is a rather difficult category of entities to
disambiguate (achieving F-measure of 0.39). In fact, some of the entity names of this
category contain very ambiguous tokens, such as “Alicia Keys”, “U2”, “The Wanted”
or “The Script”.

Fig. 5.1 Results grouped by entity’s category using Run 2.

The main goal of this task was to classify tweets as relevant or not to a given target
entity. We have explored several types of features, namely similarity between keywords,
language models and we have also explored external resources such as Freebase and
Wikipedia. Results show that it is possible to achieve an Accuracy over 0.90 and an
F-measure of 0.48 in a test set containing more than 90000 tweets of 61 entities. In
future work, we expect to include the possibility of using entity-specific embedding to
learn a joint embedding space of entities and words, similar to [91].
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5.2 Financial Sentiment Analysis2

Sentiment Analysis on financial texts has received increased attention in recent years [12].
Nevertheless, there are some challenges yet to overcome [13]. Financial texts, such as
microblogs or newswire, usually contain highly technical and specific vocabulary or
jargon, making the development of specific lexical and machine learning approaches
necessary. Most of the research in Sentiment Analysis in the financial domain has
focused in analyzing subjective text, labeled with explicitly expressed sentiment.

However, it is also common to express financial sentiment in an implicit way.
Business news stories often refer to events that might indicate a positive or negative
impact, such as in the news title “company X will cut 1000 jobs”. Economic indicators,
such as unemployment and change over time such as drop or increase can also provide
clues on the implicit sentiment [179]. Contrary to explicit expressions (subjective
utterances), factual text types often contain objective statements that convey a desirable
or undesirable fact [92].

Recent work proposes to consider all types of implicit sentiment expressions [180].
The authors created a fine grained sentiment annotation procedure to identify polar
expressions (implicit and explicit expressions of positive and negative sentiment). A
target (company of interest) is identified in each polar expression to identify the
sentiment expressions that are relevant. The annotation procedure also collected
information about the polarity and the intensity of the sentiment expressed towards the
target. However, there is still no automatic approach, either lexical-based or machine
learning based, that tries to model this annotation scheme.

In this work, we propose to tackle the aforementioned problem by taking advantage
of unsupervised learning of word embeddings in financial tweets and financial news
headlines to construct a domain-specific syntactic and semantic representation of words.
We combine bag-of-embeddings with traditional approaches, such as pre-processing
techniques, bag-of-words and financial lexical-based features to train a regressor for
sentiment polarity and intensity. We study how different regression algorithms perform
using all features in two different sub-tasks at SemEval-2017 Task 5: microblogs and
news headlines mentioning companies/stocks. Moreover, we compare how different
combinations of features perform in both sub-tasks. The system source code and word
embeddings developed for the competition are publicly available.3

2The material contained in this section was published in P. Saleiro, E. M. Rodrigues, C. Soares, E.
Oliveira, “FEUP at SemEval-2017 Task 5: Predicting Sentiment Polarity and Intensity with Financial
Word Embeddings” [18]

3https://github.com/saleiro/Financial-Sentiment-Analysis

https://github.com/saleiro/Financial-Sentiment-Analysis
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5.2.1 Task Overview

The task 5 of SemEval 2017 [181] consisted of fine-grained sentiment analysis of financial
short texts and it was divided in two sub-tasks based on the type of text. Sub-task
5.1 – Microblogs – consisted of stocktwits and tweets focusing on stock market events
and assessments from investors and traders. Companies/stocks were identified using
stock symbols, the so called cashtags, e.g.“$AMZN” for the company Amazon.com, Inc.
Sub-task 5.2 – News Headlines – consisted of sentences extracted from Yahoo Finance
and other financial news sources on the Internet. In this case, companies/stocks
were identified using their canonical name and were previously annotated by the task
organizers.

Sub-task Company Text Span Sentiment Score
5.1 - Microblogs JPMorgan “its time to sell banks" -0.763
5.2 - Headlines Glencore “Glencore’s annual results

beat forecasts"
+0.900

Table 5.4 Training set examples for both sub-tasks.

The goal of both sub-tasks was the following: predict the sentiment polarity and
intensity for each of the companies/stocks mentioned in a short text instance (microblog
message or news sentence). The sentiment score is a real continuous variable in the range
of -1.0 (very negative/bearish) to +1.0 (very positive/bullish), with 0.0 designating
neutral sentiment. Table 5.4 presents two examples from the training set. Task
organizers provided 1700 microblog messages for training and 800 messages for testing
in sub-task 5.1, while in sub-task 5.2, 1142 news sentences were provided for training
and 491 for testing. Submissions were evaluated using the cosine similarity [181].

5.2.2 Financial Word Embeddings

Mikolov et al. [182] created word2vec, a computationally efficient method to learn
distributed representation of words, where each word is represented by a distribution of
weights (embeddings) across a fixed set of dimensions. Furthermore, Mikolov et al. [100]
showed that this representation is able to encode syntactic and semantic similarities in
the embedding space.

The training objective of the skip-gram model, defined by Mikolov et al. [100], is
to learn the target word representation (embeddings) that maximize the prediction of
its surrounding words in a context window. Given the wt word in a vocabulary the
objective is to maximize the average log probability:
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1
T

T∑
t=1

∑
−c≤j≤c,j ̸=0

log P (wt+j|wt) (5.1)

where c is the size of the context window, T is the total number of words in the
vocabulary and wt+j is a word in the context window of wt. After training, a low
dimensionality embedding matrix E encapsulates information about each word in the
vocabulary and its use (surrounding contexts).

We used word2vec to learn word embeddings in the context of financial texts using
unlabeled tweets and news headlines mentioning companies/stocks from S&P 500.
Tweets were collected using the Twitter streaming API with cashtags of stocks titles
serving as request parameters. Yahoo Finance API was used for requesting financial
news feeds by querying the canonical name of companies/stocks. The datasets comprise
a total of 1.7M tweets and 626K news titles.

We learned separate word embeddings for tweets and news headlines using the
skip-gram model. We tried several configurations of word2vec hyperparameters. The
setup resulting in the best performance in both sub-tasks was skip-gram with 50
dimensions, removing words occurring less than 5 times, using a context window of 5
words and 25 negative samples per positive example.

Even though the text collections for training embeddings were relatively small, the
resulting embedding space exhibited the ability to capture semantic word similarities
in the financial context. We performed simple algebraic operations to capture semantic
relations between words, as described in Mikolov et al. [113]. For instance, the
skip-gram model trained on tweets shows that vector (“bearish”) - vector(“loss”) +
vector(“gain”) results in vector (“bullish”) as most similar word representation.

5.2.3 Approach

In this section we describe the implementation details of the proposed approach.

Pre-Processing

A set of pre-processing operations are applied to every microblog message and news
sentence in the training/test sets of sub-tasks 5.1 and 5.2, as well as in the external
collections for training word embeddings:

• Character encoding and stopwords: every message and headline was encoded
in UTF-8. Standard english stopword removal is also applied.
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• Company/stock and cash obfuscation: both cashtags and canonical com-
pany names strings were replaced by the string _company_. Dollar or Euro signs
followed by numbers were replaced by the string _cash_amount_.

• Mapping numbers and signs: numbers were mapped to strings using bins
(0-10, 10-20, 20-50, 50-100, >100). Minus and plus signs were coverted to minus
and plus, “B” and “M” to billions and millions, respectively. The % symbol was
converted to percent. Question and exclamation marks were also converted to
strings.

• Tokenization, punctuation, lowercasing: tokenization was performed using
Twokenizer [183], the remaining punctuation was removed and all characters were
converted to lowercase.

Features

We combined three different group of features: bag-of-words, lexical-based features and
bag-of-embeddings.

• Bag-of-words: we apply standard bag-of-words as features. We tried unigrams,
bi-grams and tri-grams with unigrams proving to obtain higher cosine similarity
in both sub-tasks.

• Sentiment lexicon features: we incorporate knowledge from manually curated
sentiment lexicons for generic Sentiment Analysis as well as lexicons tailored
for the financial domain. The Laughran-Mcdonald financial sentiment dictio-
nary [184] has several types of word classes: positive, negative, constraining,
litigious, uncertain and modal. For each word class we create a binary feature
for the match with a word in a microblog/headline and a polarity score feature
(positive - negative normalized by the text span length). As a general-purpose
sentiment lexicon we use MPQA [185] and created binary features for positive,
negative and neutral words, as well as, the polarity score feature.

• Bag-of-Embeddings: we create bag-of-embeddings by taking the average of
word vectors for each word in a text span. We used the corresponding embedding
matrix trained on external Twitter and Yahoo Finance collections for sub-task
5.1 and sub-task 5.2, respectively.
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5.2.4 Experimental Setup

In order to avoid overfitting we created a validation set from the original training
datasets provided by the organizers. We used a 80%-20% split and sampled the
validation set using the same distribution as the original training set. We sorted
the examples in the training set by the target variable values and skipped every 5
examples. Results are evaluated using Cosine similarity [181] and Mean Average Error
(MAE). The former gives more importance to differences in the polarity of the predicted
sentiment while the latter is concerned with how well the system predicts the intensity
of the sentiment.

We opted to model both sub-tasks as single regression problems. Three different
regressors were applied: Random Forests (RF), Support Vector Machines (SVM)
and MultiLayer Perceptron (MLP). Parameter tuning was carried using 10 fold cross
validation on the training sets.

5.2.5 Results and Analysis

In this section we present the experimental results obtained in both sub-tasks. We
provide comparison of different learning algorithms using all features, as well as, a
comparison of different subsets of features, to understand the information contained in
each of them and also how they complement each other.

Task 5.1 - Microblogs

Table 5.5 presents the results obtained using all features in both validation set and test
sets. Results in the test set are worse than in the validation set with the exception
of MLP. The official score obtained in sub-task 5.1 was 0.6948 using Random Forests
(RF), which is the regressor that achieves higher cosine similarity and lower MAE in
both training and validation set.

Regressor Set Cosine MAE
RF Val 0.7960 0.1483
RF Test 0.6948 0.1886
SVR Val 0.7147 0.1944
SVR Test 0.6227 0.2526
MLP Val 0.6720 0.2370
MLP Test 0.6789 0.2132

Table 5.5 Microblog results with all features on validation and test sets.
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We compared the results obtained with different subsets of features using the
best regressor, RF, as depicted in Table 5.6. Interestingly, bag-of-words (BoW) and
bag-of-embeddings (BoE) complement each other, obtaining better cosine similarity
than the system using all features. Financial word embeddings (BoE) capture relevant
information regarding the target variables. As a single group of features it achieves
a cosine similarity of 0.6118 and MAE of 0.2322. It is also able to boost the overall
performance of BoW with gains of more than 0.06 in cosine similarity and reducing
MAE more than 0.03.

The individual group of features with best performance is Bag-of-words while the
worst is a system trained using Lex (only lexical-based features). While Lex alone
exhibits poor performance, having some value but marginal, when combined with
another group of features, it improves the results of the latter, as in the case of BoE +
Lex and BoW + Lex.

Features Cosine MAE
Lex 0.3156 0.3712
BoE 0.6118 0.2322
BoW 0.6386 0.2175
BoE + Lex 0.6454 0.2210
Bow + Lex 0.6618 0.2019
Bow + BoE 0.7023 0.1902
All 0.6948 0.1886

Table 5.6 Features performance breakdown on test set using RF.

Task 5.2 - News Headlines

Results obtained in news headlines are very different from the ones of the previous
sub-task, proving that predicting sentiment polarity and intensity in news headlines is
a completely different problem compared to microblogs. Table 5.7 shows that MLP
obtains the best results in the test set using both metrics while SVR obtains the
best performance in the validation set. The best regressor of sub-task 5.1, RF is
outperformed by both SVR and MLP. The official result obtained at sub-task 5.2 was
a cosine similarity of 0.68 using MLP.

Table 5.8 shows the results of the different groups of features in sub-task 5.2 for
MLP regressor. The most evident observation is that word embeddings are not effective
in this scenario. On the other hand, lexical based features have significantly better
performance in news headlines than in microblogs. Despite this, the best results are
obtained using all features.
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Regressor Set Cosine MAE
RF Val 0.5316 0.2539
RF Test 0.6562 0.2258
SVR Val 0.6397 0.2422
SVR Test 0.6621 0.2424
MLP Val 0.6176 0.2398
MLP Test 0.6800 0.2271

Table 5.7 News Headlines results with all features on validation and test sets.

Features Cosine MAE
BoE 0.0383 0.3537
Lex 0.5538 0.2788
BoW 0.6420 0.2364
BoE + Lex 0.5495 0.2830
BoW + Lex 0.6733 0.2269
BoW + BoE 0.6417 0.2389
All 0.6800 0.2271

Table 5.8 Features performance breakdown on test set using MLP.

Analysis

Financial word embeddings were able to encapsulate valuable information in sub-task
5.1 - Microblogs but not so much in the case of sub-task 5.2 - News Headlines. We
hypothesize that as we had access to a much smaller dataset (∼ 600K) for training
financial word embeddings for news headlines, this resulted in reduced ability to capture
semantic similarities in the financial domain. Other related works in Sentiment Analysis
usually take advantage of a much larger dataset for training word embeddings [186].

On the other hand, lexical features showed poor performance in microblog texts
but seem to be very useful using news headlines. The fact that microblogs have poor
grammar, slang and informal language reveals that financial lexicons created using
well written and formal financial reports, result better in news headlines rather than
in microblog texts.

After inspecting microblog texts and headlines in which our models showed poor
performance we believe it would be important to also encapsulate syntactic and semantic
dependencies in our models. For instance, our model predicted a sentiment score of
-0.467 for the microblog message “was right to reject the offer” while the true value is
0.076. Similar examples include “Glencore shares in record crash as profit fears grow”
and “I would rather be a buyer at these levels then trying to sell”, in which our models
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has absolute errors around 0.5. Other type of errors have to do with intensity of the
sentiment in which our model correctly predicts the polarity but still has a large error.

5.2.6 Concluding Remarks

Work reported here reported is concerned with the problem of predicting sentiment
polarity and intensity of financial short texts. Previous work showed that sentiment
is often depicted in an implicit way in this domain. We created financial-specific
continuous word representations in order to obtain domain specific syntactic and
semantic relations between words. We combined traditional bag-of-words and lexical-
based features with bag-of-embeddings to train a regressor of both sentiment polarity
and intensity. Results show that different combination of features attained different
performances on each sub-task. Future work will consist on collecting larger external
datasets for training financial word embeddings of both microblogs and news headlines.
We also have planned to perform the regression analysis using Deep Neural Networks.

5.3 Summary of the Contributions
In this chapter we present some contributions to two fundamental Text Mining problems
in ORM.

• A supervised learning approach for Entity Filtering on tweets, achieving state-of-
the-art performance using a relatively small training set.

• Created and made available word embeddings trained from financial texts.

• A supervised learning approach for fine-grained sentiment analysis of financial
texts.





Chapter 6

Text-based Entity-centric
Prediction

In this chapter we explore the predictive power of entity-centric information in online
news and social media in the context of ORM. We address two different predictive tasks.
The first is concerned with predicting entity popularity on Twitter based on signals
extracted from the news cycle. We aim to study different sets of signals extracted from
online news mentioning specific entities that could influence or at least are correlated
with future popularity of those entities on Twitter. We know that entity popularity
on social media can be influenced by several factors but we are only interested in
exploring the interplay between online news and social media for entities that are
frequently mentioned on the news cycle such as politicians or footballers. This could be
particularly interesting for anticipating public relations damage control once a polemic
news article is published. Or even for editorial purposes to maximize buzz on social
media.

The second predictive task consists in using entity-centric sentiment polarity ex-
tracted from tweets to predict political polls. There has been several research work
trying to assess the predictive power of social media to predict the outcome of po-
litical opinion surveys or elections. However, each study proposes its own method
of aggregating polarity scores over time, however, there is not a consensus on which
sentiment aggregate function is the most adequate for this problem. We propose to
use and contrast several sentiment aggregate functions reported in the literature, by
assessing their predictive power on a specific case comprising data collected during the
Portuguese bailout (2011-2013).
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6.1 Exploring Online News for Reputation Moni-
toring on Twitter 1

Online publication of news articles has become a standard behavior of news outlets,
while the public joined the movement either using desktop or mobile terminals. The
resulting setup consists of a cooperative dialog between news outlets and the public
at large. Latest events are covered and commented by both parties in a continuous
basis through the social media, such as Twitter. When sharing or commenting news
on social media, users tend to mention the most predominant entities mentioned in
the news story. Therefore, entities, such as public figures, organizations, companies
or geographic locations, can act as latent connections between online news and social
media.

Online Reputation Monitoring (ORM) focuses on continuously tracking what is
being said about entities on social media and online news. Automatic collection and
processing of comments and opinions on social media is now crucial to understand
the reputation of individuals and organizations and therefore to manage their public
relations. However, ORM systems would be even more useful if they would be able to
know in advance if social media users will talk a lot about the target entities or not.

We hypothesize that for entities that are frequently mentioned on the news (e.g.
politicians) it is possible to establish a predictive link between online news and pop-
ularity on social media. We cast the problem as a supervised learning classification
approach: to decide whether popularity will be high or low based on features extracted
from the news cycle. We define four set of features: signal, textual, sentiment and
semantic. We aim to respond to the following research questions:

• Is online news a valuable source of information to effectively predict entity
popularity on Twitter?

• Do online news carry different predictive power based on the nature of the entity
under study?

• How do different thresholds for defining high and low popularity affect the
effectiveness of our approach?

• Does the performance remain stable for different prediction times?
• What is the most important feature set for predicting entity popularity on Twitter

based on the news cycle?
1The material contained in this section was published in P. Saleiro and C. Soares, “Learning from

the News: Predicting Entity Popularity on Twitter” [19]
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• Do individual sets of features exhibit different importance for different entities?

6.1.1 Approach

The starting point of our hypothesis is that for entities that are frequently mentioned
on the news (e.g. politicians) it is possible to predict popularity on social media using
signals extracted from the news cycle. The first step towards a solution requires the
definition of entity popularity on social media.

Entity Popularity

There are different ways of expressing the notion of popularity on social media. For
example, the classical way of defining it is through the number of followers of a Twitter
account or the number of likes in a Facebook page. Another notion of popularity,
associated with entities, consists on the number of retweets or replies on Twitter and
post likes and comments on Facebook. We define entity popularity based on named
entity mentions in social media messages. Mentions consist of specific surface forms of
an entity name. For example, “Cristiano Ronaldo” might be mentioned also using just
“Ronaldo” or “#CR7”.

Given an set of entities E = {e1, e2, ..., ei, ...}, a daily stream of social media messages
S = {s1, s2, ..., si, ...} and a daily stream of online news articles N = {n1, n2, ..., ni, ...}
we are interested in monitoring the mentions of an entity ei on the social media stream
St, i.e. the discrete function fm(ei, St). Let T be a daily time frame T = [tp, tp+h],
where the time tp is the time of prediction and tp+h is the prediction horizon time. We
want to learn a target popularity function fp on social media stream S as a function of
the given entity ei, the online news stream N and the time frame T :

fp(ei, N, T ) =
t=tp+h∑

t=tp

fm(ei, St)

which corresponds to integrating fm(ei, S) over T .
Given a day di, a time of prediction tp, we extract features from the news stream

N until tp and predict fp until the prediction horizon tp+ h. We measure popularity
on a daily basis, and consequently, we adopted tp+h as 23:59:59 everyday. For example,
if tp equals to 8 a.m, we extract features from N until 07:59:59 and predict fp in the
interval 08:00 - 23:59:59 on day di. In the case of tp equals to midnight, we extract
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features from N on the 24 hours of previous day di−1 to predict fp for the 24 hours of
di.

We cast the prediction of fp(ei, N, T ) as a supervised learning classification problem,
in which we want to infer the target variable f̂p(ei, N, T ) ∈ {0, 1} defined as:

f̂p =

0(low), if P (fp(ei, N, T ) ≤ δ) = k

1(high), if P (fp(ei, N, T ) > δ) = 1− k

where δ is the inverse of cumulative distribution function at k of fp(ei, N, T ) as measured
in the training set, a similar approach to Tsagkias et al. [119]. For instance, k = 0.5
corresponds to the median of fp(ei, N, T ) in the training set and higher values of k
mean that fp(ei, N, T ) has to be higher than k examples on the training set to consider
f̂p = 1, resulting in a reduced number of training examples of the positive class high.

News Features

Previous work has focused on the influence of characteristics of the social media stream
S in the adoption and popularity of memes and hashtags [126]. In contrast, the main
goal of this work is to investigate the predictive power of the online news stream N .
Therefore we extract four types of features from N which we label: (i) signal, (ii)
textual, (iii) sentiment and (iv) semantic, as depicted in Table 6.1. One important
issue is how can we filter relevant news items to ei. There is no consensus on how to
link a news stream N with a social media stream S. Some works use URLs from N ,
shared on S, to filter simultaneously relevant news articles and social media messages
[117]. As our work is entity oriented, we select news articles with mentions of ei as our
relevant N .

Signal Features - This type of features depict the “signal” of the news cycle
mentioning ei and we include a set of counting variables as features, focusing on the
total number of news mentioning ei in specific time intervals, mentions on news titles,
the average length of news articles, the different number of news outlets that published
news mentioning ei as well as, features specific to the day of the week to capture any
seasonal trend on the popularity. The idea is to capture the dynamics of news events,
for instance, if ei has a sudden peak of mentions on N , a relevant event might have
happened which may influence fp.

Textual features - To collect textual features we build a daily profile of the news cycle
by aggregating all titles of online news articles mentioning ei for the daily time frame
[0, tp] in di. We select the top 10,000 most frequent terms (unigrams and bi-grams) in
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the training set and create a document-term matrix R. Two distinct methods were
applied to capture textual features.

The first method is to apply TF-IDF weighting to R. We employ Singular Value
Decomposition (SVD) to capture similarity between terms and reduce dimensionality.
It computes a low-dimensional linear approximation σ. The final set of features for
training and testing is the TF-IDF weighted term-document matrix R combined with
σR which produces 10 real valued latent features. When testing, the system uses the
same 10,000 terms from the training data and calculates TF-IDF using the IDF from
the training data, as well as, σ for applying SVD on test data.

The second method consists in applying Latent Dirichlet allocation (LDA) to
generate a topic model of 10 topics (features). The system learns a topic-document
distribution θ and a word distribution over topics φ using the training data for a given
entity ei. When testing, the system extracts the word distribution of the news title
vector r on a test day d′

i. Then, by using φ learned on training data, it calculates
the probability of r belonging to one of the 10 topics learned before. The objective of
extracting this set of features is to create a characterization of the news stream that
mentions ei, namely, which are the most salient terms and phrases on each day di as
well as the latent topics associated with ei. By learning our classifier we hope to obtain
correlations between certain terms and topics and fp.

Sentiment features - We include several types of word level sentiment features. The
assumption here is that subjective words on the news will result in more reactions
on social media, as exposed in [187]. Once again we extract features from the titles
of news mentioning ei for the daily time frame [0, tp]. We use a sentiment lexicon as
SentiWordNet to extract subjective terms from the titles daily profile and label them
as positive, neutral or negative polarity. We compute count features for number of
positive, negative, neutral terms as well as difference and ratio of positive and negatives
terms. Similar to textual features we create a TFIDF weighted term-document matrix
R using the subjective terms from the title and apply SVD to compute 10 real valued
sentiment latent features.

Semantic features - We use the number of different named entities recognized in
N on day di until tp, as well as, the number of distinct news category tags extracted
from the news feeds metadata. These tags, common in news articles, consist of
author annotated terms and phrases that describe a sort of semantic hierarchy of news
categories, topics and news stories (e.g. “european debt crisis”). We create a TF-IDF
weighted entity-document and TF-IDF tag-document matrices and applied SVD to
each of them to reduce dimensionality to 10. The idea is to capture interesting entity
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Table 6.1 Summary of the four type of features we consider.

Number Feature Description
Signal
1 news number of news mentions of ei in [0, tp] in di

2 news di−1 number of news mentions of ei in [0, tp] in di−1
3 news total di−1 number of news mentions of ei in [0, 24[ in di−1
4 news titles number of title mentions in news of ei in [0, tp] in di

5 avg content average content length of news of ei in [0, tp] in di

6 sources number of different news sources of ei in [0, tp] in di

7 weekday day of week
8 is weekend true if weekend, false otherwise
Textual
9-18 tfidf titles TF-IDF of news titles [0, tp] in di

19-28 LDA titles LDA-10 of news titles [0, tp] in di

Sentiment
29 pos number of positive words in news titles [0, tp] in di

30 neg number of negative words in news titles [0, tp] in di

31 neu number of neutral words in news titles [0, tp] in di

32 ratio positive/negative
33 diff positive− negative
34 subjectivity (positive+ negative+ neutral)/∑

words
35-44 tfidf subj TF-IDF of subjective words (pos, neg and neu)
Semantic
45 entities number of entities in news [0, tp] in di

46 tags number of tags in news [0, tp] in di

47-56 tfidf entities TF-IDF of entities in news [0, tp] in di

57-66 tfidf tags TF-IDF of news tags [0, tp] in di

co-occurrences as well as, news stories that are less transient in time and might be able
to trigger popularity on Twitter.

Learning Framework

Let x be the feature vector extracted from the online news stream N on day di until
tp. We want to learn the probability P (f̂p = 1|X = x). This can be done using the
inner product between x and a weighting parameter vector w ∈ R, w⊤x.

Using logistic regression and for binary classification one can unify the definition of
p(f̂p = 1|x) and p(f̂p = 0|x) with
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p(f̂p|x) = 1
1 + e−f̂pw⊤x

Given a set of z instance-label pairs (xi,f̂pi), with i = 1, ..., z and f̂pi ∈ {0, 1} we
solve the binary class L2 penalized logistic regression optimization problem, where
C > 0

min
w

1
2w

⊤w + C
n∑

i=1
log(1 + e−f̂piw

⊤xi)

We apply this approach following an entity specific basis, i.e. we train an individual
model for each entity. Given a set of entities E to which we want to apply our approach
and a training set of example days D = {d1, d2, ..., di, ...}, we extract a feature vector
xi for each entity ei on each training day di. Therefore, we are able to learn a model of
w for each ei. The assumption is that popularity on social media fp is dependent of
the entity ei and consequently we extract entity specific features from the news stream
N . For instance, the top 10,000 words of the news titles mentioning ei are not the
same for ej.

6.1.2 Experimental Setup

This work uses Portuguese news feeds and tweets collected from January 1, 2013
to January 1, 2016, consisting of over 150 million tweets and 5 million online news
articles2. To collect and process raw Twitter data, we use a crawler, which recognizes
and disambiguates named entities on Twitter [188]. News data is provided by a
Portuguese online news aggregator3. This service handles online news from over 60
Portuguese news outlets and it is able to recognize entities mentioned on the news.

We choose the two most common news categories: politics and football and select
the 3 entities with highest number of mentions on the news for both categories. The
politicians are two former Prime-ministers, José Sócrates and Pedro Passos Coelho and
the incumbent, António Costa. The football entities are two coaches, Jorge Jesus and
José Mourinho, and the most famous Portuguese football player, Cristiano Ronaldo.

Figure 7.5 depicts the behavior of daily popularity of the six entities on the selected
community stream of Twitter users for each day from July 2014 until July 2015. As
expected, it is easily observable that in some days the popularity on Twitter exhibits

2Dataset is available for research purposes. Access requests via e-mail.
3http://www.sapo.pt
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Fig. 6.1 Daily popularity on Twitter of entities under study.
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Fig. 6.2 Training and testing sliding window - first 2 iterations.

bursty patterns. For instance, when José Sócrates was arrested in November 21st 2014
or when Cristiano Ronaldo won the FIFA Ballon d’Or in January 12th 2015.

We defined the years of 2013 and 2014 as training set and the whole year of 2015 as
test set. We applied a monthly sliding window setting in which we start by predicting
entity popularity for every day of January 2015 (i.e. the test set) using a model trained
on the previous 24 months, 730 days (i.e. the training set). Then, we use February
2015 as the test set, using a new model trained on the previous 24 months. Then
March and so on, as depicted in Figure 6.2. We perform this evaluation process, rolling
the training and test set until December 2015, resulting in 365 days under evaluation.
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The process is applied for each one of the six entities, for different time of predictions
tp and for different values of the decision boundary k. We test tp = 0, 4, 8, 12, 16, 20
and k = 0.5, 0.65, 0.8. Therefore, we report results in Section 6.2.4 for 18 different
experimental settings, for each one of the six entities. The goal is to understand how
useful the news cycle is for predicting entity popularity on Twitter for different entities,
at different hours of the 24 hours cycle and with different thresholds for considering
popularity as high or low.

6.1.3 Results and Discussion

Results are depicted in Table 6.2. We report F1 on positive class since in online
reputation monitoring is more valuable to be able to predict high popularity than
low. Nevertheless, we also calculated overall Accuracy results, which were better than
the F1 reported here. Consequently, this means that our system is fairly capable of
predicting low popularity. We organize this section based on the research questions we
presented in the beginning of this section.

Is online news valuable as source of information to effectively predict entity
popularity on Twitter?

Do online news carry different predictive power based on the nature of the entity
under study?

Results show that performance varies with each target entity ei. In general, results
are better in the case of predicting popularity of politicians. In the case of football
public figures, Jorge Jesus exhibits similar results with the three politicians but José
Mourinho and especially Cristiano Ronaldo represent the worst results in our setting.
For instance, when Cristiano Ronaldo scores three goals in a match, the burst on
popularity is almost immediate and not possible to predict in advance.

Further analysis showed that online news failed to be informative of popularity in
the case of live events covered by other media, such as TV. Interviews and debates on
one hand, and live football games on the other, consist of events with unpredictable
effects on popularity. Cristiano Ronaldo can be considered a special case in our
experiments. He is by far the most famous entity in our experiments and in addition,
he is also an active Twitter user with more than 40M followers. This work focus on
assessing the predictive power of online news and its limitations. We assume that for
Cristiano Ronaldo, endogenous features from the Twitter itself would be necessary to
obtain better results.
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Table 6.2 F1 score of popularity high as function of tp and k equal to 0.5, 0.65 and 0.8
respectively.

Entity \tp(hour) 0 4 8 12 16 20
k = 0.50
António Costa 0,76 0,67 0,74 0,77 0,75 0,72
José Sócrates 0,77 0,66 0,73 0,75 0,75 0,75
Pedro Passos Coelho 0,72 0,63 0,70 0,70 0,74 0,71
Cristiano Ronaldo 0,35 0,41 0,45 0,37 0,35 0,32
Jorge Jesus 0,73 0,68 0,69 0,68 0,69 0,70
José Mourinho 0,62 0,46 0,51 0,56 0,55 0,45
k = 0.65
António Costa 0,61 0,60 0,66 0,64 0,60 0,60
José Sócrates 0,63 0,57 0,62 0,66 0,64 0,62
Pedro Passos Coelho 0,58 0,57 0,65 0,67 0,67 0,65
Cristiano Ronaldo 0,29 0,35 0,42 0,41 0,36 0,30
Jorge Jesus 0,63 0,61 0,63 0,59 0,62 0,64
José Mourinho 0,56 0,39 0,48 0,56 0,47 0,38
k = 0.80
António Costa 0,48 0,51 0,55 0,53 0,44 0,49
José Sócrates 0,48 0,42 0,47 0,53 0,47 0,35
Pedro Passos Coelho 0,47 0,46 0,56 0,56 0,52 0,54
Cristiano Ronaldo 0,14 0,29 0,31 0,26 0,20 0,21
Jorge Jesus 0,50 0,48 0,51 0,48 0,57 0,56
José Mourinho 0,32 0,32 0,36 0,41 0,41 0,36

How do different thresholds for defining high and low popularity affect the
effectiveness of our approach?

Our system exhibits top performance with k = 0.5, which corresponds to balanced
training sets, with the same number of high and low popularity examples on each
training set. Political entities exhibit F1 scores above 0.70 with k = 0.5. On the other
hand, as we increase k, performance deteriorates. We observe that for k = 0.8, the
system predicts a very high number of false positives. It is very difficult to predict
extreme values of popularity on social media before they happen. We plan to tackle
this problem in the future by also including features about the target variable in the
current and previous hours, i.e., time-series auto-regressive components.

Does performance remain stable for different time of predictions?

Results show that time of prediction affects the performance of the system, specially
for the political entities. In their case, F1 is higher when time of prediction is noon
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Fig. 6.3 Individual feature type F1 score for tp = 12 at k = 0.5.

and 4 p.m. which is an evidence that in politics, most of the news events that trigger
popularity on social media are broadcast by news outlets in the morning. It is very
interesting to compare results for midnight and 4 a.m./8 a.m. The former use the
news articles from the previous day, as explained in Section 6.1.1, while the latter use
news articles from the first 4/8 hours of the day under prediction. In some examples,
Twitter popularity was triggered by events depicted on the news from the previous day
and not from the current day.

What is the most important feature set for predicting entity popularity on Twitter
based on the news cycle?

Do individual set of features exhibit different importance for different entities?

Figure 6.3 tries to answer these two questions. The first observation is that the
combination of all groups of features does not lead to substantial improvements.
Semantic features alone achieve almost the same F1 score as the combination of all
features. However in the case of Mourinho and Ronaldo, the combination of all features
lead to worse F1 results than the semantic set alone.
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Sentiment features are the second most important for all entities except José
Mourinho. Signal and Textual features are less important and this was somehow a
surprise. Signal features represent the surface behavior of news articles, such as the
volume of news mentions of ei before tp and we were expecting an higher importance.
Regarding Textual features, we believe that news articles often refer to terms and
phrases that explain past events in order to contextualize a news article.

In future work, we consider alternative approaches for predicting future popularity
of entities that do not occur everyday on the news, but do have social media public
accounts, such as musicians or actors. In opposition, entities that occur often on the
news, such as economics ministers and the like, but do not often occur in the social
media pose also a different problem.

6.2 Predicting Political Polls using Twitter
Sentiment4

Surveys and polls using the telephone are widely used to provide information of what
people think about parties or political entities [150]. Surveys randomly select the
electorate sample, avoiding selection bias, and are designed to collect the perception
of a population regarding some subject, such as in politics or marketing. However
this method is expensive and time consuming [150]. Furthermore, over the years it is
becoming more difficult to contact people and persuade them to participate in these
surveys [189].

On the other hand, the rise of social media, namely Twitter and Facebook, has
changed the way people interact with news. This way, people are able to react and
comment any news in real time [135]. One challenge that several research works have
been trying to solve is to understand how opinions expressed on social media, and
their sentiment, can be a leading indicator of public opinion. However, at the same
time there might exist simultaneously positive, negative and neutral opinions regarding
the same subject. Thus, we need to obtain a value that reflects the general image of
each political target in social media, for a given time period. To that end, we use
sentiment aggregate functions. In summary, a sentiment aggregate function calculates
a global value based on the number of positive, negative, and neutral mentions of each
political target, in a given period. We conducted an exhaustive study and collected and
implemented several sentiment aggregate functions from the state of the art [135–143].

4The material contained in this section was published in P. Saleiro, L. Gomes, C. Soares, “Sentiment
Aggregate Functions for Political Opinion Polling using Microblog Streams” [21]
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Thus, the main objective of our work is to study and define a methodology capable
of successfully estimating the poll results, based on opinions expressed on social media,
represented by sentiment aggregators. We applied this problem to the Portuguese
bailout case study, using Tweets from a sample of the Portuguese Tweetosphere and
Portuguese polls as gold standard. Given the monthly periodicity of polls, we needed to
aggregate the data by month. This approach allows each aggregate value to represent
the monthly sentiment for each political party. Due to the absence of a general
sentiment aggregate function suitable for different case studies, we decided to include
all aggregate functions as features of the regression model. Therefore the learning
algorithm is able to adapt to the most informative aggregate functions through time.

6.2.1 Methodology

To collect and process raw Twitter data, we use an online reputation monitoring
platform [36] which can be extended by researchers interested in tracking political
opinion on the web. It collects tweets from a predefined sample of users, applies named
entity disambiguation [177] and generates indicators of both frequency of mention
and polarity (positivity/negativity) [190] of mentions of entities over time. In our
case, tweets are collected from the stream of 100 thousand different users, representing
a sample of the Portuguese community on Twitter. This sample was obtained by
expanding a manually annotated seed set of 1000 users using heuristics such as, as
language of posts, language of followers posts or geo-location [188].

The platform automatically classifies each tweet according to its sentiment polarity.
If a message expresses a positive, negative or neutral opinion regarding an entity (e.g.
politicians), it is classified as positive, negative or neutral mention, respectively. The
sentiment classifier uses a corpus of 1500 annotated tweets as training set and it has
achieved an accuracy over 80% using 10-fold cross validation. These 1500 tweets were
manually annotated by 3 political science students.

Mentions of entities and respective polarity are aggregated by counting positive,
negative, neutral and total mentions for each entity in a given period. Sentiment
aggregate functions use these cumulative numbers as input to generate a new value
for each specific time period. Since we want to use sentiment aggregate functions
as features of a regression model to produce an estimate of the political opinion, we
decided to use traditional poll results as gold standard.
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Sentiment Aggregate Functions

Let Mei
be a mention on Twitter of an entity ei, then M+

ei
, M∗

ei
and M−

ei
are positive,

neutral and negative classified mentions of entity ei on Twitter. Therefore, given a
time frame T (e.g. a month), sentiment aggregate functions applied to the aggregated
data between polls are the following:

• entitybuzz: ∑
T Mei

, the sum of the number of mentions (buzz) of a given entity
in the time frame T .

• entitypositives: ∑
T M

+
ei

, sum of the positively classified mentions of a given
entity in the time frame T .
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T M

∗
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, the sum of the neutral classified mentions of a given
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−
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a time frame T .
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, where n is the number of political entities

in the poll

- normalized_positive:
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T
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- normalized_negative:
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T
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M−
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- normalized_neutral:
∑

T
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Mei

- normalized_bermingham: log10
normalized_positives+1
normalized_negatives+1

- normalized_connor: normalized_positives
normalized_negatives

- normalized_gayo:

normalized_positives+normalized_others_negatives
normalized_total_positives+normalized_total_negatives

- normalized_polarity:

normalized_positives− normalized_negatives

The sentiment aggregate functions are used as features in the regression models.
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Fig. 6.4 Negatives share (berminghamsovn) of political leaders in Twitter.

6.2.2 Data

The data used in this work consists of tweets mentioning Portuguese political party
leaders and polls from August 2011 to December 2013. This period corresponds to the
Portuguese bailout when several austerity measures were adopted by the incumbent
right wing governmental coalition of the PSD and CDS parties.

Twitter

Table 6.3 Distribution of positive, negative and neutral mentions per political party

Negative Positive Neutral Total Mentions
PSD 69 723 121 37 133 106 977
PS 28 660 225 15 326 44 211

CDS 41 935 51 17 554 59 540
CDU 2 445 79 5 604 8 128
BE 9 603 306 4 214 14 123

The Twitter data set contains 232,979 classified messages, collected from a network of
100 thousand different users classified as Portuguese. Table 6.3 presents the distribution
of positive, negative, and neutral mentions of the political leaders of the 5 most voted
political parties in Portugal (PSD, PS, CDS, PCP and BE). The negative mentions
represent the majority of the total mentions, except for CDU where the number of
negative mentions is smaller than the neutral ones. The positive mentions represent
less than 1% of the total mentions of each party, except for BE where they represent
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2% of the total mentions. The most mentioned parties are PS, PSD and CDS. The
total mentions of these three parties represent 90% of the data sample total mentions.
Figure 6.4 depicts the time series of the berminghamsovn (negatives share) sentiment
aggregate function. The higher the value of the function the higher is the percentage of
negative tweets mention a given political entity in comparison with the other entities.
As expected, Pedro Passos Coelho (PSD) as prime-minister is the leader with the
higher score throughout the whole time period under study. Paulo Portas (CDS) leader
of the other party of the coalition, and also member of the government is the second
most negatively mentioned in the period, while António José Seguro (PS) is in some
periods the second higher. PSD and CDS are the incumbent parties while PS is the
main opposition party in the time frame under study. PSD and CDS as government
parties were raising taxes and cutting salaries. PS was the incumbent government
during the years that led to the bailout and a fraction of the population considered
responsible for the financial crisis. The bailout and the consequent austerity measures
could explain the overwhelming percentage of negative mentions although we verified
that in other time periods the high percentage of negatives mentions remains. We can
say that Twitter users of this sample when mentioning political leaders on their tweets
tend to criticize them.

Political Opinion Polls

The polling was performed by Eurosondagem, a Portuguese private company which
collects public opinion. This data set contains the monthly polls results of the five
main Portuguese parties, from June 2011 to December 2013. Figure 6.5 represents the
evolution of Portuguese polls results. We can see two main party groups: The first
group, where both PSD and PS are included, has a higher value of vote intention (above
23%). PSD despite starting as the preferred party in vote intention, has a downtrend
along the time, losing the leadership for PS in September 2012. On the other hand, PS
has in general an uptrend. The second group, composed by CDS, PCP and BE, has a
vote intention range from 5% to 15%. While CDS has a downtrend in public opinion,
PCP has an ascendant one. Although the constant tendencies (up and down trends),
we noticed that the maximum variation observed between two consecutive months is
3%. In June 2013 there was political crises in the government when CDS threaten to
leave the government coalition due to the austerity measures being implemented and
corresponds to the moment when PS takes the lead in the polls.
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Fig. 6.5 Representation of the monthly poll results of each political candidate

6.2.3 Experimental Setup

We defined the period of 2011 to December 2012 as training set and the whole year
of 2013 as test set. We applied a sliding window setting in which we predict the poll
results of a given month using the previous 16 months as training set:

• Training set – containing the monthly values of the aggregators (both sentiment
and buzz aggregator) for 16 months prior the month intended to be predicted.

• Test set - containing the values of the aggregators (both sentiment and buzz
aggregator) of the month intended to be predicted.

We start by predicting the poll results of January 2013 using the previous 16 months
as training set:

1. We select the values of the aggregators of the 16 months prior January 2013
(September 2011 to December 2012).

2. We use that data to train our regression model.

3. Then we input the aggregators’ values of January 2013 - the first record of the
test set - in the the trained model, to obtain the poll results prediction.
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4. We select the next month of the test set and repeat the process until all months
are predicted.

The models are created using two regression algorithms: a linear regression algorithm
(Ordinary Least Squares - OLS) and a non-linear regression algorithm (Random Forests
- RF). We also run an experiment using the derivative of the polls time series as gold
standard, i.e., poll results variations from poll to poll. Thus, we also calculate the
variations of the aggregate functions from month to month as features. Furthermore,
we repeat each experiment including and excluding the lagged self of the polls, i.e.,
the last result of the poll for a given candidate (yt−1) or the last polls result variation
(∆yt−1) when predicting polls variations. We use Mean Absolute Error (MAE) as
evaluation measure, to determine the absolute error of each prediction. Then, we
calculate the average of the twelve MAE’s so we could know the global prediction error
of our model.

MAE =
∑n

i=1 |fi − yi|
n

(6.1)

n is the number of forecasts, fi is the model’s forecast and yi the real outcome.

6.2.4 Results and Discussion

In this section we explain in detail the experiments and their results. We perform two
different experiments: (1) using absolute values and (2) using monthly variations.

Predicting Polls Results

In this experiment, the sentiment aggregators take absolute values in order to predict
the absolute values of polls results. Mathematically speaking, this experiment can be
seen as: y ← {yt−1, buzzAggregators, sentimentAggregators}. In Figure 6.6 we see
the global errors we obtained.

The results show that we obtain a MAE for the 5 parties poll results over 12 months
of 6.55% using Ordinary Least Squares and 3.1% using Random Forests. The lagged
self of the polls, i.e., assuming the last known poll result as prediction results in a
MAE of 0.61 which was expectable since the polls exhibit slight changes from month
to month. This experiment shows that the inclusion of the lagged self (yt−1) produces
average errors similar to the lagged self.
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Fig. 6.6 Error predictions for polls results.

Fig. 6.7 Error predictions for polls results variation.

Predicting Polls Results Variation

According to our exploratory data analysis, the polls results have a small variation
between two consecutive months. Thus, instead of predicting the absolute value of
poll results, we tried to predict the variation, ∆y ← {∆(yt−1), ∆buzzAggregators,
∆sentimentAggregators}

In this particular experiment, the inclusion of the ∆yt−1 as feature in the regression
model has not a determinant role (Figure 6.7). Including that feature we could not
obtain lower MAE than excluding it. It means that the real monthly poll variation
is not constant over the year. In general, using a non-linear regression algorithm we
obtain lower MAE. The results show that when leading with polls results with slight
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Fig. 6.8 Mean absolute error buzz vs sentiment.

changes from poll to poll it makes sense to transform the dataset by taking differences
between consecutive time-steps.

Buzz and Sentiment Several studies state that the buzz has predictive power and
reflects correctly the public opinion on social media. Following that premise, we trained
our models with buzz and sentiment aggregators separately to predict polls variations:

• ∆y ← {∆(yt−1), ∆buzzAggregators}

• ∆y ← {∆(yt−1), ∆sentimentAggregators}

This experiment allowed us to compare the behavior of buzz and sentiment aggregators.
According to Figure 6.8, buzz and sentiment aggregators have similar results.

Although the OLS algorithm combined only with buzz aggregators has a slightly lower
error than the other models, it is not a significant improvement. These results also
show that Random Forests algorithm performs the best when combined only with
sentiment aggregators.

Feature Selection

One of the main goals of our work is to understand which aggregator (or group of
aggregators) better suits our case study. According to the previous experiments, we
can achieve lower prediction errors when training our model with buzz and sentiment
aggregators separately. However, when training our model with these two kinds of
aggregators separately, we are implicitly performing feature selection. We only have
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two buzz features (share and total_mentions). Due to that small amount of features,
it was not necessary to perform any feature selection technique within buzz features.
Thus, we decided to apply a feature selection technique to the sentiment aggregators, in
order to select the most informative ones to predict the monthly polls results variation.
We use univariate feature selection, selecting 10% of the sentiment features (total of 3
features). Using this technique, the Random Forests’ global error rose from 0.65 to
0.73. However, OLS presents an MAE drop from 0.72 to 0.67. Another important fact
to notice is that if we perform univariate feature selection to all aggregators (buzz and
sentiment), we will achieve the same MAE value that when applied only to sentiment
aggregators. It means that buzz aggregators are discarded by the feature selection
technique.

We try a different approach and perform a recursive feature elimination technique.
In this technique, features are eliminated recursively according to a initial score given
by the external estimator. This method allows us to determine the number of features
to select. Thus, also selecting 3 features, the OLS’ MAE drops to 0.63. Once again,
none of the buzz features were selected. Furthermore, both feature selection techniques
select different features for each monthly prediction.

6.2.5 Feature Importance

We select the Random Forest model of monthly variations to study the features
importance as depicted in Figure 6.9. The higher the score, the more important the
feature is. The importance of a feature is computed as the (normalized) total reduction
of the criterion brought by that feature. It is also known as the Gini importance. Values
correspond to the average of the Gini importance over the different models trained
in the experiments. The single most important feature is the bermingham aggregate
function, followed by neutrals. It is important to notice that when combining all the
aggregate functions as features in a single regression model, the buzz does not comprise
a high Gini importance, even though when used as a single feature it produces similar
results to the sentiment aggregate functions. In general, the standard deviation of the
Gini importance is relatively high. This has to do with our experimental setup, as the
values depicted in the bar chart correspond to the average of the Gini importance over
12 different models (12 months of testing set). Therefore, feature importances vary over
time while the MAE tends to remain unchanged. We can say that different features
have different informative value over time and consequently it is useful to combine all
the sentiment aggregation functions as features of the regression models over time.
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Fig. 6.9 Aggregate functions importance in the Random Forests models.

6.2.6 Outlook

We studied a large set of sentiment aggregate functions to use as features in a regression
model to predict political opinion poll results. The results show that we can estimate
the polls results with low prediction error, using sentiment and buzz aggregators
based on the opinions expressed on social media. We introduced a strong baseline
for comparison, the lagged self of the polls. In our study, we built a model where we
achieve the lowest MAE using the linear algorithm (OLS), combined only with buzz
aggregators, using monthly variations. The model has an MAE of 0.63%. We performed
two feature selection techniques: (1) univariate feature selection and (2) recursive
feature elimination. Applying the recursive technique to the sentiment features, we
can achieve an MAE of 0.63, matching our best model. Furthermore, the chosen
features are not the same in every prediction. Regarding feature importance analysis
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our experiments showed that bermingham aggregate function represents the highest
Gini importance in the Random Forests model.

6.3 Summary of the Contributions
In this chapter we presented research work about entity-centric text-based prediction
for ORM, making the following contributions:

• Analysis of the predictive power of online news regarding entity popularity on
Twitter for entities that are frequently mentioned on the news.

• Analysis of how to combine different sentiment aggregate functions to serve as
features for predicting political polls.



Chapter 7

A Framework for Online
Reputation Monitoring

In this chapter, we present a framework that puts together all the building blocks
required to perform ORM. The framework is divided in two distinct components, one
is dedicated to Entity Retrieval and the other to Text Mining. In practice these two
components can act as two separate frameworks. Both are adaptable and can be reused
in different application scenarios, from computational journalism to finance or politics.

We start with a framework overview description and then we focus specifically on
each of the two components. The first component is RELink, a research framework
for E-R retrieval. We carried the experiments on E-R retrieval, described in Chapter
4 using RELink. Furthermore, since we did not have access to training data based
on news articles, we describe a case study of using RELink for entity retrieval from a
large news collection. We then describe the TexRep framework which is responsible
for Text Mining related tasks for ORM, such as Entity Filtering, Sentiment Analysis
or Predictive tasks. The experiments described in both Chapter 5 and Chapter 6
were carried out using TexRep. We also provide further detail how TexRep was used
as backend of the POPSTAR project. Finally, we perform an independent study of
practical aspects of general purpose word embeddings from the Twitter stream to serve
as resource for future users of TexRep.

7.1 Framework Overview
The framework provides Entity Retrieval and Text Mining functionalities that enable
the collection, disambiguation, retrieval of entities and relationships, sentiment analy-
sis, data aggregation, prediction and visualization of entity-centric information from
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heterogeneous Web data sources. Furthermore, given that both components are built
using modular architectures providing abstraction layers and well defined interfaces,
new functionalities or methods can be easily integrated.

The framework is divided in two components: RELink and TexRep. Both can
work as independently dedicated frameworks using specific data sources or can be put
together in a unifying setup for ORM. As depicted in Figure 7.1, when working together,
RELink and TexRep are connected through the Entity Occurrences Warehouse. This
is the central module of our framework for ORM. The Entity Occurrences Warehouse
contains extractions from occurrences of the entities of interest across the Web data
sources.

ENTITY 
OCCURRENCES 

WAREHOUSE

RELink
(Entity Retrieval)

TexRep
(Text Mining)

Fig. 7.1 High-level overview on the ORM framework.

The data flow starts with TexRep collecting data from Web text data sources,
extraction of text passages containing entity mentions and disambiguation. Entity-
centric text passages are then stored in the Entity Occurrences Warehouse. This data
can then be used for E-R retrieval indexing using RELink or for downstream Text
Mining tasks (e.g. Sentiment Analysis) using other modules of TexRep. We now
describe RELink and TexRep architectures and internal data flow.

7.1.1 RELink

The RELink framework is designed to facilitate experiments with E-R Retrieval query
collections. The formulation of E-R queries in natural language and relational format
(QEi−1 , QRi−1,i , QEi) provide opportunities to define and explore a range of query
formulations and search algorithms. Although, RELink provides support for Late
Fusion design patterns, it is mostly tailored for Early Fusion approaches where it is
necessary to create entity and relationship representations at indexing time.

A typical Early Fusion E-R retrieval experimental setup would involve search over
a free-text collection to extract relevant instances of entity tuples and then verify their
correctness against the relevance judgments. The key enabling components therefore
are: (1) test collections of documents with annotated entity instances that could be
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extracted during E-R search, (2) an indexing facility, and (3) a retrieval module to
process queries and rank results.

Fig. 7.2 RELink Framework architecture overview.

Figure 7.2 depicts the architecture of RELink used in the experiments described
in Chapter 4. We include the modules responsible for deriving relevance judgments
from Wikipedia. The Table Parser module is described in Section 4.1.2 in Chapter 4.
Currently, the RELink Framework includes the ClueWeb-09-B1 collection combined
with FACC1[174] text span annotations with links to Wikipedia entities (via Freebase).
The entity linking precision and recall in FACC1 are estimated at 85% and 70-85%,
respectively [174]. The RELink Extractor, part of E-R Indexer, applies an Open
Information Extraction method [57] over the annotated ClueWeb-09-B corpus. The
two additional components are Corpus E-R Index and E-R Retrieval, both depicted
in Figure 7.2. The implementation of all modules in E-R Retrieval and the Indexer

1http://www.lemurproject.org/clueweb09/

http://www.lemurproject.org/clueweb09/


122 A Framework for Online Reputation Monitoring

module in Corpus E-R Index are based on Apache Lucene and the Letor module serves
as a wrapper for RankLib2.

Indexing and Retrieval

Based on the ClueWeb-09-B collection we create two essential resources: entity index
and entity pair relationship index for the entities that occur in the corpus. For a given
entity instance, the ER Indexer identifies co-occuring terms within the same sentence
and considers them as entity types for the observed entity instance. Similarly, for a
given pair of entities, the ER Indexer verifies whether they occur in the same sentence
and extracts the separating string. That string is considered a context term for the
entity pair that describes their relationship type. We obtain 476M entity and 418M
entity pair extractions with corresponding sentences that are processed by the Indexer.
Once the inverted index (ER Index) is created, any instance of an entity or entity pair
can be retrieved in response to the contextual terms, i.e., entity types and relationship
types, specified by the users.

Search Process

The E-R retrieval process is managed by the RELinker module (Figure 7.2). The
Query Analyzer module processes information requests and passes queries in the
structured format to the Retriever. Query search is performed in stages to allow for
experimentation with different methods and parameter settings. First, the Retriever
provides an initial set of results using Lucene’s default search settings and groups them
by entity or entity pairs on query time using the Lucene’s GroupingSearch. The Scorer
then generates and applies feature functions of specific retrieval models with required
statistics. Currently, the Scorer has implementations for Early Fusion variants EF-LM,
EF-BM25 and ERDM. The RELinker is responsible for re-ranking and providing final
results based on the scores provided by the Scorer and the parameter weights learned
by Letor.

7.1.2 TexRep

TexRep is a research framework that implements Text Mining techniques to perform
Online Reputation Monitoring (ORM) in various application domains, such as compu-
tational social sciences, political data science, computational journalism, computational
finance or online marketing.

2http://www.lemurproject.org/ranklib.php

http://www.lemurproject.org/ranklib.php
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TexRep was designed with two main challenges in mind: 1) it should be able to cope
with the Text Mining problems underlying ORM and 2) it should be flexible, adaptable
and reusable in order to support the specificities of different application scenarios. We
define that a Text Mining based system for Online Reputation Monitoring must follow
a set of technical and operational requirements:

• Batch and real-time operation: such a system must naturally be able to
operate in real-time, i.e. collecting data as it is generated, processing it and
updating indicators. However, it is also important to be able to operate in batch
mode, in which it collects specific data from a period indicated by the user, if
available, and then processes it. The system should use a distributed approach to
deal with great volumes of data, (e.g. Hadoop). It should also be able to operate
autonomously for long periods of time, measured in months.

• Adaptability: the system should be able to adapt its models (e.g. polarity
classification) through time as well as across different applications. Updating
models often requires manually annotated data (e.g. NED). Therefore the system
should provide a flexible annotation interface.

• Modularity: researchers should be able to plug in specific modules, such as a
new data source and respective crawler or a different visualization. The system
interfaces should use REST APIs and JSON data format, which allow users
to add new modules that interact with other data sources (e.g. Wikipedia or
Facebook).

• Reusability: the system should enable repeatability of all experiments to allow
the research community to obtain equal results. We will make the software package
of a prototype publicly available as well as the data sources and configuration
parameters used in experiments.

• Language independence: each component of the system should apply a sta-
tistical language modeling completely agnostic to the language of the texts.

We decompose the use of Text Mining for ORM into four distinct but interconnected
tasks: Data Collection, Entity Filtering, Sentiment Analysis and Analytics. Each task
is accomplished by one or more software modules. For instance, Analytics tasks usually
involves the use of the Aggregation, Prediction and Visualization modules. Figure 7.3
presents the TexRep architecture, including the data flow between modules.
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ENTITY 
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Fig. 7.3 Architecture and data flows of the TexRep framework.

Entity Filtering and Sentiment Analysis represent the most challenging Text Mining
problems tackled in the TexRep framework. When tracking what is being said online
about the target entities it is necessary to disambiguate mentions. When this is
done incorrectly, the knowledge obtained by the other modules is negatively affected.
Consequently, other Text Mining tasks, such as Sentiment Analysis, will benefit from
filtering non relevant texts.

The current implementation of the Entity Filtering module uses the scikit-learn
Python library as the Machine Learning library interface, providing access to TexRep
users to the most suitable learning algorithm and parameter tuning for their specific
needs. We studied a large set of features that describe the relationship between the
target entity representation and a given text and we tried several different supervised
learning algorithms that are available through the framework, such as Support Vector
Machines (SVM) and Random Forests (RF).

The Sentiment Analysis module also uses scikit-learn implementation of supervised
learning algorithms in order to predict sentiment polarity and intensity in short texts
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using regression analysis. We use unsupervised learning of word embeddings [182]
in short texts to construct syntactic and semantic representations of words. The
Sentiment Analysis module combines word embeddings with traditional approaches,
such as pre-processing techniques, bag-of-words and lexical-based features to train a
classifier for sentiment polarity and a regressor for sentiment intensity.

Analytics modules include Aggregation, Visualization and Prediction. These mod-
ules are application specific and depend on user configurations. For instance, in the
political domain it is common to create aggregate functions that represent relative
popularity indicators between political parties or candidates. These indicators are then
used to predict elections. On the other hand, if we consider the financial domain, due
to its high volatility, aggregation is usually performed with lower granularity (minutes
instead of days) and target prediction variables are individual stock prices or variations.
TexRep implements various aggregation functions and allows custom plug-in of tailored
prediction models based on each application.

Therefore, TexRep is able to adapt itself to the specificities of different application
scenarios by implementing a modular and flexible design through user configurations and
abstraction layers. Data Collection depends on the specified data sources, thus TexRep
decouples client-side implementations from the data collection process management
using a REST API. If a user needs a different Data Collection Client from the ones
provided by default, she is able to implement a specific client that is easily integrated
into the framework. The same applies to the Analytics modules which are extensible
by loading user-implemented methods through an abstraction layer. Furthermore, if
users wish to extend TexRep with Topic Modeling, they only need to plug-in the new
module and write topic assignments through the Entity Occurrences Warehouse. New
aggregation functions could be implemented that use the topic of each mention as
input in order to create entity-centric topic trends visualizations.

The framework can be fully configured using configuration files that are processed
in the Pipeline Manager, which is the module responsible for forwarding specific
parameterization to the other modules. It is possible to specify the entities of interest,
data sources, aggregate functions and prediction time windows. Module specific
configurations are also specified in this module, such as which training data should be
used by the modules that rely on machine learning.

As explained, TexRep addresses the two aforementioned challenges of developing a
Text Mining framework for ORM. The current version of the framework is implemented
in Python, uses MongoDB as NoSQL database and implements the MapReduce
paradigm for aggregations. The external and pluggable resources used are the scikit-
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learn library and the matplotlib for visualization, though users can replace these
two resources by others of their preference. We provide the implementations of each
module that we believe are the most generic as possible within the context of ORM.
Nevertheless, users are also able to extend each module with the methods they see
fit, such as, new features or data pre-processing steps. We now describe in detail how
the different modules interact with each other, as well as, a detailed explanation of
the current implementation of the Entity Filtering, Sentiment Analysis and Analytics
modules.

Data Flow

TexRep collects data continuously and performs mini-batch processing and analytics
tasks. The standard data flow is organized as follows. First the user defines the
entities of interest in the configurations files, including canonical and alternative names.
These configurations are processed by the Pipeline Manager and forwarded to the Data
Collection clients to search for texts (e.g. news articles and tweets) using entity names
as queries on each data source-specific API. The Data Collection Clients implement
source-specific API clients, such as the case of Twitter and Yahoo Finance, for instance.
If the user is interested in collecting RSS feeds of news outlets, then the Data Collection
Client can be adapted to subscribe to those feeds and process them accordingly.

Once collected, texts are stored in the Entity Occurrences Warehouse. Entity
Filtering classifies each text as relevant or not for each target entity using a supervised
learning approach. A knowledge base (e.g. Freebase) is used to extract target entity
representations and to compute similarity features with extracted mentions contexts.
Once the non-relevant texts are filtered, Sentiment Analysis takes place. The framework
implements both polarity classification and sentiment regression for sentiment intensity
detection. Then, Analytics modules are able to aggregate and create visualizations of
trends in data or predictions of application specific dependent variables.

Data Collection

The Data Collection Server communicates with each Data collection Client using a
REST API and therefore it allows modularity and a plugin approach for adapting
to specific data sources. The task of data collection is based on user-defined entity
configurations containing the list of entities under study. Each data source has specific
web interfaces (e.g. RSS feeds, Yahoo Finance API or Twitter API). The Data
Collection Server manages the Data Collection Clients through specific interfaces
(plugins) that are adequate for the corresponding source. For instance, collecting data
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from Twitter poses some challenges, namely due to the limits on the amount of data
collected. We opted to create by default a Data Collection Client for SocialBus [192],
a distributed Twitter client that enables researchers to continuously collect data from
particular user communities or topics, while respecting the established limits.

Some data sources allow query by topics (e.g. entity names) while others do not (e.g.
RSS feeds). Moreover, in the case of Twitter, we might be interested in continuously
monitoring a fixed group of Twitter users (e.g., the accounts of the entities of interest).
In such cases, when we cannot search directly by entity name in the specific data
source, we use the list of entity names to process collected texts that might be relevant.
The Data Collection Server applies a sequential classification approach using a prefix
tree to detect mentions. This method can be seen as first step of filtering but it is
still prone to noisy mentions. For instance, a tweet with the word “Cameron” can
be relative to several entities, such as a former UK prime minister, a filmmaker or a
company. Consequently, this problem is later tackled by the Entity Filtering module.

Collected texts (e.g. news or tweets) are stored in a centralized document-oriented
NoSQL database (e.g. MongoDB), the Entities Occurrence Warehouse. This setup
provides modularity and flexibility, allowing the possibility of developing specific data
collection components tailored to specific data sources and is completely agnostic to
the data format retrieved from each data source. The Data Collection Server annotates
each text with the target entity which will be used by the Entity Filtering module to
validate that annotation.

7.2 RELink Use Case
In this section we present a use case of the RELink framework in the context of
ORM applied to computational journalism. Never before has computation been so
tightly connected with the practice of journalism. In recent years, the computer
science community has researched [193–196, 36, 197–199] and developed3 new ways
of processing and exploring news archives to help journalists perceiving news content
with an enhanced perspective.

We created a demo the TimeMachine, that brings together a set of Natural Language
Processing, Text Mining and Information Retrieval technologies to automatically extract
and index entity related knowledge from the news articles [177, 200, 36, 201, 197–199].
It allows users to issue queries containing keywords and phrases about news stories or
events, and retrieves the most relevant entities mentioned in the news articles through

3NewsExplorer (IBM Watson): http://ibm.co/1OsBO1a
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time. TimeMachine provides readable and user-friendly insights and a temporal
perspective of news stories and mentioned entities. It visually represents relationships
among public figures co-mentioned in news articles as a social network graph, using a
force atlas algorithm layout [202] for the interactive and real-time clustering of entities.

7.2.1 News Processing Pipeline

The news processing pipeline, depicted in Figure 7.4, starts with a news cleaning
module which performs the boilerplate removal from the raw news files (HTML/XML).
Once the news content is processed we apply the NERD module which recognizes
entity mentions and disambiguates each mention to an entity using a set of heuristics
tailored for news, such as job descriptors (e.g. “Barack Obama, president of USA”)
and linguistic patterns well defined for the journalistic text style. We use a bootstrap
approach to train the NER system [201]. Our method starts by annotating entity
names on a dataset of 50,000 news items. This is performed using a simple dictionary-
based approach. Using such training set we build a classification model based on
Conditional Random Fields (CRF). We then use the inferred classification model to
perform additional annotations of the initial seed corpus, which is then used for training
a new classification model. This cycle is repeated until the NER model stabilizes. The

Fig. 7.4 News processing pipeline.

entity snippet extraction consists of collecting sentences containing mentions to a given
entity. All snippets are concatenated generating an entity document, which is then
indexed in the entity index. The entity index represents the frequency of co-occurrence
of each entity with each term that it occurs with in the news. Therefore, by relying on
the redundancy of news terms and phrases associated with an entity we are able to
retrieve the most relevant entity to a given input keyword or phrase query. As we also
index the snippet datetime it is possible to filter query results based on a time span.
For instance, the keyword “corruption” might retrieve a different entity list results in
different time periods. Quotations are typically short and very informative sentences,
which may directly or indirectly quote a given entity. Quotations are automatically



7.2 RELink Use Case 129

extracted (refer to "Quotations Extraction" module) using linguistic patterns, thus
enriching the information extracted for each entity. Finally, once we have all mentioned
entities in a given news articles we extract entity tuples representing co-occurrences
of entities in a given news article and update the entity graph by incrementing the
number of occurrences of a node (entity) and creating/incrementing the number of
occurrences of the edge (relation) between any two mentions.

7.2.2 Demonstration

The setup for demonstration uses a news archive of Portuguese news. It comprises two
different datasets: a repository from the main Portuguese news agency (1990-2010),
and a stream of online articles provided by the main web portal in Portugal (SAPO)
which aggregates news articles from 50 online newspapers. The total number of news
articles used in this demonstration comprises over 12 million news articles. The system
is working on a daily basis, processing articles as they are collected from the news
stream. TimeMachine allows users to explore its news archive through an entity search
box or by selecting a specific date. Both options are available on the website homepage
and in the top bar on every page. There are a set of “stories” recommendations on
the homepage suited for first time visitors. The entity search box is designed to be
the main entry point to the website as it is connected to the entity retrieval module of
TimeMachine.

Fig. 7.5 Cristiano Ronaldo egocentric network.

Users may search for surface names of entities (e.g. “Cristiano Ronaldo”) if they
know which entities they are interested to explore in the news, although the most
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powerful queries are the ones containing keywords or phrases describing topics or news
stories, such as “Eurozone crisis” or “Ballon d’Or nominees”. When selecting an entity
from the ranked list of results, users access the entity profile page which contains a
set of automatically extracted entity specific data: name, profession, a set of news
articles, quotations from the entity and related entities. An entity timeline is also
provided to allow users to navigate entity specific data through time. By selecting a
specific period, different news articles, quotations and related entities are retrieved.
Furthermore, users have the option of “view network” which consists in a interactive
network depicting connections among entities co-mentioned in news articles for the
selected time span. An example of such visualization is depicted in Figure 7.5, and
it is implemented using the graph drawing library Sigma JS, together with "Force
Atlas" algorithm for the clustered layout of entities. Nodes consist of entities and edges
represent a co-occurrence of mentioned entities in the same news articles. The size
of the nodes and the width of edges is proportional to the number of mentions and
co-occurrences, respectively. Different node colors represent specific news topics where
entities were mentioned. By selecting a date interval on the homepage, instead of
issuing a query, users get a global interactive network of mentions and co-occurrences
of the most frequent entities mentioned in the news articles for the selected period of
time.

7.3 TexRep Use Case
This section describes the design and implementation of the POPmine system, an use
case of the proposed framework, developed in the scope of the POPSTAR project. It is
an open source platform which can be used and extended by researchers interested in
tracking reputation of political entities on the Web. POPmine operates either in batch
or online mode and is able: to collect texts from web-based conventional media (news
items in mainstream media sites) and social media (blogs and Twitter); to process
those texts, recognizing topics and political entities; to analyze relevant linguistic units;
to generate indicators of both frequency of mention and polarity (positivity/negativity)
of mentions to political entities across sources, types of sources, and across time. As a
proof of concept we present these indicators in a web application tailored for tracking
political opinion in Portugal, the POPSTAR website. The system is available as an
open source software package that can be used by other researchers from social sciences
but also from any other area that is interested in tracking public opinion on the web.
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We opted to use data from news articles, tweets and blog posts and each of these
data sources requires its specific crawler. News articles and blog posts are collected
using RSS feeds which eases the implementations of a specific crawler. Collecting data
from Twitter poses some challenges. The need for large amounts of data, coupled with
Twitter’s imposed limits demand for a distributed system. We opted to use SocialBus4

which enables researchers to continuously collect data from particular user communities,
while respecting Twitter’s imposed limits.

The data collection components crawl data from specific data sources which im-
plement specific web interfaces (e.g. RSS feeds, Twitter API). Each data source must
have its own data collection module which in turn connects to the POPmine system
using REST services. POPmine stores data collected in a document oriented NoSQL
database (MongoDB). This configuration allows modularity and flexibility, allowing
the possibility of developing specific data collection components tailored to specific
data sources.

The default setting of data collection modules comprise the following components:

• News: Data from online news are provided by the service Verbetes e Notícias
from Labs Sapo. This service handles online news from over 60 Portuguese news
sources and is able to recognize entities mentioned in the news.

• Blogs: Blog posts are provided by the blogs’ monitoring system from Labs
Sapo, which includes all blogs with domain sapo.pt, blogspot.pt (Blogger) and
Wordpress (blogs written in Portuguese).

• Twitter: Tweets are collected using the platform SocialBus, responsible for
the compilation of messages from 100.000 Portuguese users of Twitter. Tweets
are collected in real time and submitted to a language classification. In our
experiments we opted to collect the tweets written in Portuguese.

The information extraction component comprises a knowledge base containing
metadata about entities, e.g., names or jobs. Using a knowledge base is crucial to
filter relevant data mentioning politicians, such as news, tweets and blog posts. In
our application scenario, we opted to use Verbetes, a knowledge base which comprises
names, alternative names, and professions of Portuguese people mentioned often in
news articles.

The Information Extraction components address two tasks: Named Entity Recogni-
tion and Named Entity Disambiguation. We envision an application scenario where we

4http://reaction.fe.up.pt/socialbus/

http://reaction.fe.up.pt/socialbus/
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need to track political entities. Usually this type of entities are well known therefore we
opted to use a knowledge base to provide metadata about the target entities, namely
the most common surface forms of their names. Once we had the list of surface forms
to search for we applied a sequential classification approach using a prefix tree to detect
mentions. This method is very effective on news articles and blog posts but can result
in noisy mentions when applied to Twitter. For instance, a tweet containing the word
“Cameron” can be related with several entities, such as the former UK prime minister,
a filmmaker or a company. Furthermore, tweets are short which results in a reduced
context for entity disambiguation. We then apply the Entity Filtering approach of
TexRep.

The opinions warehouse contains the messages filtered by the information extraction
component and applies polarity classification to those messages using an external
resource - the Opinionizer classifier [203]. One of the requirements of the Opinionizer is
to use manually labeled data to train the classifier. We developed an online annotation
tool for that effect.

We create opinion and polls indicators using the aggregator which is responsible to
apply aggregation functions and smoothing techniques. Once we obtain the aggregated
data we make available a set of web services that can be consumed by different
applications such as the POPSTAR website or other research experiences, such as polls
predictions using social media opinions.

7.3.1 Data Aggregation

Buzz is the daily frequency with which political leaders are mentioned by Twitter users,
bloggers and online media news. We use two types of indicators. The first type is the
relative frequency with which party leaders are mentioned by each medium (Twitter,
Blogs and News), on each day. This indicator is expressed, for each leader of each
party, as a percentage relative to the total number of mentions to all party leaders.
The second indicator is the absolute frequency of mentions, a simple count of citations
for each political leader.

To estimate trends in Buzz, we use the Kalman Filter. We allow users to choose the
smoothing degree for each estimated trend. Users can choose between three alternatives:
a fairly reactive one, where trend is highly volatile, allowing close monitoring of day-
by-day variations; a very smooth one, ideal to capture long term trends; and an
intermediate option, displayed by default.

After identifying the polarity in each of the tweets, there are several ways to quantify
the overall sentiment regarding political leaders. We can, for instance, look at each
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target independently or in relative terms, compare positive with negative references
or simply look at one side of the polarity, or look at daily, weekly or monthly data
records.

In this first prototype we opted to present two separate indicators and their evolution
across time, using in both cases the day as reference period. The fist indicator is the
logarithm of the ratio of positive and negative tweets by political leader (party leaders
and the president). In other words, a positive sign means that the political leader under
consideration received more positive than negative tweets that day, while a negative
result means that he received more negative than positive tweets. In mathematical
notation:

logsentimenti = log( positivesi + 1
negativesi + 1)

The second approach is to simply look at the negative tweets (the vast majority of
tweets in our base classifier) and calculate their relative frequency for each leader. In
this way it is possible to follow each day which party leaders were, in relative terms,
more or less subject to tweets with negative polarity. In mathematical notation:

negativesshare = negativesi,d∑
negativesd

Fig. 7.6 Twitter buzz share of political leaders.
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7.3.2 Visualization

We created a website5 to allow interactive visualization of the data collected and
processed in real time by the POPmine platform. The site was developed within the
scope of the POPSTAR project (Public Opinion and Sentiment Tracking, Analysis, and
Research) and presents the following data: a) mentions to Portuguese party leaders in
Twitter, in the blogosphere and in online news; b) sentiment conveyed through tweets
regarding party leaders, c) voting intentions for the main political parties, measured by
traditional polls; and d) evaluation of the performance of said party leaders, measured
by polls. An example chart is depicted in Figure 7.6.

Besides providing our indicators in the form of charts, the website also has a
dashboard offering a more compact view of trends across indicators for all politicians.

7.4 Learning Word Embeddings for ORM6

Word embeddings have great practical importance since they can be used as pre-
computed high-density features to ML models, significantly reducing the amount of
training data required in a variety of Text Mining tasks. We aim to provide general
purpose pre-trained word embeddings for the Text Mining tasks in ORM. We are
particularly interested in learning word embeddings from the Twitter stream due to
the specificities of user generated content. It is relatively easy to get access to word
embeddings trained from well formed texts such as Wikipedia or online news. However,
to the best of our knowledge there are no publicly available word embeddings learned
from the Portuguese Twitter stream.

There are several inter-related challenges with computing and consistently distribut-
ing word embeddings concerning the:

• intrinsic properties of the embeddings. How many dimensions do we ac-
tually need to store all the “useful" semantic information? How big should the
embedded vocabulary be to have practical value? How do these two factors
interplay?

• type of model used for generating the embeddings. There are multiple possible
models and it is not obvious which one is the “best", both in general or in the
context of a specific type of applications.

5http://www.popstar.pt
6The material contained in this section was published in P. Saleiro, L. Sarmento, E. M. Rodrigues,

C. Soares, E. Oliveira, “Learning Word Embeddings from the Portuguese Twitter Stream: A Study of
some Practical Aspects” [17].

http://www.popstar.pt
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• the size and properties of training data: What is the minimum amount of
training data needed? Should we include out of vocabulary words in the training?

• optimization techniques to be used, model hyperparameter and training
parameters.

Not only the space of possibilities for each of these aspects is large, there are also
challenges in performing a consistent large-scale evaluation of the resulting embed-
dings [204]. This makes systematic experimentation of alternative word-embedding
configurations extremely difficult.

In this work, we make progress in trying to find good combinations of some of the
previous parameters. We focus specifically in the task of computing word embeddings
for processing the Portuguese Twitter stream. User-generated content (such as twitter
messages) tends to be populated by words that are specific to the medium, and that
are constantly being added by users. These dynamics pose challenges to NLP systems,
which have difficulties in dealing with out of vocabulary words. Therefore, learning a
semantic representation for those words directly from the user-generated stream - and
as the words arise - would allow us to keep up with the dynamics of the medium and
reduce the cases for which we have no information about the words.

Starting from our own implementation of a neural word embedding model, which
should be seen as a flexible baseline model for further experimentation, our research
tries to answer the following practical questions:

• how large is the vocabulary the one can realistically embed given the level of
resources that most organizations can afford to buy and to manage (as opposed
to large clusters of GPU’s only available to a few organizations)?

• how much data, as a function of the size of the vocabulary we wish to embed, is
enough for training meaningful embeddings?

• how can we evaluate embeddings in automatic and consistent way so that a
reasonably detailed systematic exploration of the previously describe space of
possibilities can be performed?

By answering these questions based on a reasonably small sample of Twitter data
(5M), we hope to find the best way to proceed and train embeddings for Twitter
vocabulary using the much larger amount of Twitter data available (300M), but for
which parameter experimentation would be unfeasible. This work can thus be seen as
a preparatory study for a subsequent attempt to produce and distribute a large-scale
database of embeddings for processing Portuguese Twitter data.
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7.4.1 Neural Word Embedding Model

The neural word embedding model we use is the Continuous Bag-of-words (CBOW)
[182]. Given a sequence of 5 words - wi−2 wi−1 wi wi+1 wi+2, the task the model tries
to perform is that of predicting the middle word, wi, based on the two words on the left
- wi−2 wi−1 - and the two words on the right - wi+1 wi+2: P (wi|wi−2, wi−1, wi+1, wi+2).
This should produce embeddings that closely capture distributional similarity, so that
words that belong to the same semantic class, or which are synonyms and antonyms of
each other, will be embedded in “close” regions of the embedding hyper-space.

The neural model is composed of the following layers:

• a Input Word Embedding Layer, that maps each of the 4 input words
represented by a 1-hot vectors with |V | dimensions (e.g. 32k) into a low dimension
space (64 bits). The projections matrix - Winput - is shared across the 4 inputs.
This is not be the embedding matrix that we wish to produce.

• a Merge Layer that concatenates the 4 previous embeddings into a single vector
holding all the context information. The concatenation operation ensures that
the rest of the model has explicit information about the relative position of
the input words. Using an additive merge operation instead would preserve
information only about the presence of the words, not their sequence.

• a Intermediate Context Embedding Dense Layer that maps the preceding
representation of 4 words into a lower dimension space, still representing the
entire context. We have fixed this context representation to 64 dimensions.
This ultimately determines the dimension of the resulting embeddings. This
intermediate layer is important from the point of view of performance because it
isolates the still relatively high-dimensional input space (4 x 64 bits input word
embeddings) from the very high-dimensional output space.

• a final Output Dense Layer that maps the takes the previous 64-bit represen-
tation of the entire input context and produces a vector with the dimensionality
of the word output space (|V | dimensions). This matrix - Woutput - is the one
that stores the word embeddings we are interested in.

• A Softmax Activation Layer to produces the final prediction over the word
space, that is the P (wi|wi−2, wi−1, wi+1, wi+2) distribution
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All neural activations in the model are sigmoid functions. The model was implemented
using the Syntagma7 library which relies on Keras [205] for model development, and we
train the model using the built-in ADAM [206] optimizer with the default parameters.

7.4.2 Experimental Setup

We are interested in assessing two aspects of the word embedding process. On one
hand, we wish to evaluate the semantic quality of the produced embeddings. On the
other, we want to quantify how much computational power and training data are
required to train the embedding model as a function of the size of the vocabulary |V |
we try to embed. These aspects have fundamental practical importance for deciding
how we should attempt to produce the large-scale database of embeddings we will
provide in the future. All resources developed in this work are publicly available8.

Apart from the size of the vocabulary to be processed (|V |), the hyperparamaters of
the model that we could potentially explore are i) the dimensionality of the input word
embeddings and ii) the dimensionality of the output word embeddings. As mentioned
before, we set both to 64 bits after performing some quick manual experimentation.
Full hyperparameter exploration is left for future work.

Our experimental testbed comprises a desktop with a nvidia TITAN X (Pascal),
Intel Core Quad i7 3770K 3.5Ghz, 32 GB DDR3 RAM and a 180GB SSD drive.

Training Data

We randomly sampled 5M tweets from a corpus of 300M tweets collected from the
Portuguese Twitter community [192]. The 5M comprise a total of 61.4M words (approx.
12 words per tweets in average). From those 5M tweets we generated a database
containing 18.9M distinct 5-grams, along with their frequency counts. In this process,
all text was down-cased. To help anonymizing the n-gram information, we substituted
all the twitter handles by an artificial token “T_HANDLE". We also substituted all
HTTP links by the token “LINK". We prepended two special tokens to complete
the 5-grams generated from the first two words of the tweet, and we correspondingly
appended two other special tokens to complete 5-grams centered around the two last
tokens of the tweet.

Tokenization was perform by trivially separating tokens by blank space. No linguistic
pre-processing, such as for example separating punctuation from words, was made. We

7https://github.com/sarmento/syntagma
8https://github.com/saleiro/embedpt
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Table 7.1 Number of 5-grams available for training for different sizes of target vocabulary
|V |

|V | # 5-grams

2048 2,496,830

8192 6,114,640

32768 10,899,570

opted for not doing any pre-processing for not introducing any linguistic bias from
another tool (tokenization of user generated content is not a trivial problem). The most
direct consequence of not performing any linguistic pre-processing is that of increasing
the vocabulary size and diluting token counts. However, in principle, and given enough
data, the embedding model should be able to learn the correct embeddings for both
actual words (e.g. “ronaldo") and the words that have punctuation attached (e.g.
“ronaldo!"). In practice, we believe that this can actually be an advantage for the
downstream consumers of the embeddings, since they can also relax the requirements
of their own tokenization stage. Overall, the dictionary thus produced contains
approximately 1.3M distinct entries. Our dictionary was sorted by frequency, so the
words with lowest index correspond to the most common words in the corpus.

We used the information from the 5-gram database to generate all training data
used in the experiments. For a fixed size |V | of the target vocabulary to be embedded
(e.g. |V | = 2048), we scanned the database to obtain all possible 5-grams for which all
tokens were among the top |V | words of the dictionary (i.e. the top |V | most frequent
words in the corpus). Depending on |V |, different numbers of valid training 5-grams
were found in the database: the larger |V | the more valid 5-grams would pass the filter.
The number of examples collected for each of the values of |V | is shown in Table 7.1.

Since one of the goals of our experiments is to understand the impact of using
different amounts of training data, for each size of vocabulary to be embedded |V | we
will run experiments training the models using 25%, 50%, 75% and 100% of the data
available.

Metrics Related with the Learning Process

We tracked metrics related to the learning process itself, as a function of the vocabulary
size to be embedded |V | and of the fraction of training data used (25%, 50%, 75%
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and 100%). For all possible configurations, we recorded the values of the training and
validation loss (cross entropy) after each epoch. Tracking these metrics serves as a
minimalistic sanity check: if the model is not able to solve the word prediction task
with some degree of success (e.g. if we observe no substantial decay in the losses) then
one should not expect the embeddings to capture any of the distributional information
they are supposed to capture.

Tests and Gold-Standard Data for Intrinsic Evaluation

Using the gold standard data (described below), we performed three types of tests:

• Class Membership Tests: embeddings corresponding to members of the same
semantic class (e.g. “Months of the Year", “Portuguese Cities", “Smileys") should
be close, since they are supposed to be found in mostly the same contexts.

• Class Distinction Test: this is the reciprocal of the previous Class Membership
test. Embeddings of elements of different classes should be different, since words
of different classes ere expected to be found in significantly different contexts.

• Word Equivalence Test: embeddings corresponding to synonyms, antonyms,
abbreviations (e.g. “porque" abbreviated by “pq") and partial references (e.g. “slb
and benfica") should be almost equal, since both alternatives are supposed to
be used be interchangeable in all contexts (either maintaining or inverting the
meaning).

Therefore, in our tests, two words are considered:

• distinct if the cosine of the corresponding embeddings is lower than 0.70 (or
0.80).

• to belong to the same class if the cosine of their embeddings is higher than 0.70
(or 0.80).

• equivalent if the cosine of the embeddings is higher that 0.85 (or 0.95).

We report results using different thresholds of cosine similarity as we noticed that cosine
similarity is skewed to higher values in the embedding space, as observed in related
work [207, 208]. We used the following sources of data for testing Class Membership:

• AP+Battig data. This data was collected from the evaluation data provided by
[116]. These correspond to 29 semantic classes.
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• Twitter-Class - collected manually by the authors by checking top most frequent
words in the dictionary and then expanding the classes. These include the
following 6 sets (number of elements in brackets): smileys (13), months (12),
countries (6), names (19), surnames (14) Portuguese cities (9).

For the Class Distinction test, we pair each element of each of the gold standard
classes, with all the other elements from other classes (removing duplicate pairs since
ordering does not matter), and we generate pairs of words which are supposed belong
to different classes. For Word Equivalence test, we manually collected equivalente pairs,
focusing on abbreviations that are popular in Twitters (e.g. “qt" ≃ “quanto" or “lx" ≃
“lisboa" and on frequent acronyms (e.g. “slb" ≃ “benfica"). In total, we compiled 48
equivalence pairs.

For all these tests we computed a coverage metric. Our embeddings do not
necessarily contain information for all the words contained in each of these tests.
So, for all tests, we compute a coverage metric that measures the fraction of the gold-
standard pairs that could actually be tested using the different embeddings produced.
Then, for all the test pairs actually covered, we obtain the success metrics for each
of the 3 tests by computing the ratio of pairs we were able to correctly classified as i)
being distinct (cosine < 0.7 or 0.8), ii) belonging to the same class (cosine > 0.7 or
0.8), and iii) being equivalent (cosine > 0.85 or 0.95).

It is worth making a final comment about the gold standard data. Although we do
not expect this gold standard data to be sufficient for a wide-spectrum evaluation of
the resulting embeddings, it should be enough for providing us clues regarding areas
where the embedding process is capturing enough semantics, and where it is not. These
should still provide valuable indications for planning how to produce the much larger
database of word embeddings.

7.4.3 Results and Analysis

We run the training process and performed the corresponding evaluation for 12 combi-
nations of size of vocabulary to be embedded, and the volume of training data available
that has been used. Table 7.2 presents some overall statistics after training for 40
epochs.

The average time per epoch increases first with the size of the vocabulary to embed
|V | (because the model will have more parameters), and then, for each |V |, with the
volume of training data. Using our testbed (Section 7.4.2), the total time of learning
in our experiments varied from a minimum of 160 seconds, with |V | = 2048 and 25%
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Table 7.2 Overall statistics for 12 combinations of models learned varying |V | and
volume of training data. Results observed after 40 training epochs.

Embeddings # Training Data Tuples Avg secs/epoch Training loss Validation loss

|V | = 2048 561,786 (25% data) 4 3.2564 3.5932

|V | = 2048 1,123,573 (50% data) 9 3.2234 3.4474

|V | = 2048 1,685,359 (75% data) 13 3.2138 3.3657

|V | = 2048 2,496,830 (100% data) 18 3.2075 3.3074

|V | = 8192 1,375,794 (25% data) 63 3.6329 4.286

|V | = 8192 2,751,588 (50% data) 151 3.6917 4.0664

|V | = 8192 4,127,382 (75% data) 187 3.7019 3.9323

|V | = 8192 6,114,640 (100% data) 276 3.7072 3.8565

|V | = 32768 2,452,402 (25% data) 388 3.7417 5.2768

|V | = 32768 4,904,806 (50% data) 956 3.9885 4.8409

|V | = 32768 7,357,209 (75% data) 1418 4.0649 4.6

|V | = 32768 10,899,570 (100% data) 2028 4.107 4.4491

of data, to a maximum of 22.5 hours, with |V | = 32768 and using 100% of the training
data available (extracted from 5M tweets). These numbers give us an approximate
figure of how time consuming it would be to train embeddings from the complete
Twitter corpus we have, consisting of 300M tweets.

We now analyze the learning process itself. We plot the training set loss and
validation set loss for the different values of |V | (Figure 7.7 left) with 40 epochs and
using all the available data. As expected, the loss is reducing after each epoch, with
validation loss, although being slightly higher, following the same trend. When using
100% we see no model overfitting. We can also observe that the higher is |V | the higher
are the absolute values of the loss sets. This is not surprising because as the number
of words to predict becomes higher the problem will tend to become harder. Also,
because we keep the dimensionality of the embedding space constant (64 dimensions), it
becomes increasingly hard to represent and differentiate larger vocabularies in the same
hyper-volume. We believe this is a specially valuable indication for future experiments
and for deciding the dimensionality of the final embeddings to distribute.

On the right side of Figure 7.7 we show how the number of training (and validation)
examples affects the loss. For a fixed |V | = 32768 we varied the amount of data used
for training from 25% to 100%. Three trends are apparent. As we train with more
data, we obtain better validation losses. This was expected. The second trend is that
by using less than 50% of the data available the model tends to overfit the data, as
indicated by the consistent increase in the validation loss after about 15 epochs (check
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Fig. 7.7 Continuous line represents loss in the training data while dashed line represents
loss in the validation data. Left side: effect of increasing |V | using 100% of training
data. Right side: effect of varying the amount of training data used with |V | = 32768.

dashed lines in right side of Figure 7.7). This suggests that for the future we should not
try any drastic reduction of the training data to save training time. Finally, when not
overfitting, the validation loss seems to stabilize after around 20 epochs. We observed
no phase-transition effects (the model seems simple enough for not showing that type
of behavior). This indicates we have a practical way of safely deciding when to stop
training the model.

Intrinsic Evaluation

Table 7.3 presents results for the three different tests described in Section 7.4.2. The first
(expected) result is that the coverage metrics increase with the size of the vocabulary
being embedded, i.e., |V |. Because the Word Equivalence test set was specifically
created for evaluating Twitter-based embedding, when embedding |V | = 32768 words
we achieve almost 90% test coverage. On the other hand, for the Class Distinction test
set - which was created by taking the cross product of the test cases of each class in
Class Membership test set - we obtain very low coverage figures. This indicates that it
is not always possible to re-use previously compiled gold-standard data, and that it
will be important to compile gold-standard data directly from Twitter content if we
want to perform a more precise evaluation.

The effect of varying the cosine similarity decision threshold from 0.70 to 0.80 for
Class Membership test shows that the percentage of test cases that are classified as
correct drops significantly. However, the drop is more accentuated when training with
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only a portion of the available data. The differences of using two alternative thresholds
values is even higher in the Word Equivalence test.

The Word Equivalence test, in which we consider two words equivalent word if
the cosine of the embedding vectors is higher than 0.95, revealed to be an extremely
demanding test. Nevertheless, for |V | = 32768 the results are far superior, and for a
much larger coverage, than for lower |V |. The same happens with the Class Membership
test.

On the other hand, the Class Distinction test shows a different trend for larger
values of |V | = 32768 but the coverage for other values of |V | is so low that it would not
make sense to hypothesize about the reduced values of True Negatives (TN) percentage
obtained for the largest |V |. It would be necessary to confirm this behavior with even
larger values of |V |. One might hypothesize that the ability to distinguish between
classes requires larger thresholds when |V | is large. Also, we can speculate about
the need of increasing the number of dimensions to be able to encapsulate different
semantic information for so many words.

Table 7.3 Evaluation of resulting embeddings using Class Membership, Class Distinction
and Word Equivalence tests for different thresholds of cosine similarity.

Embeddings Class Membership Class Distinction Word Equivalence

|V |, %data coverage Acc.

@0.70

Acc.

@0.80
coverage TN

@0.70

TN

@0.80
coverage Acc.

@0.85

Acc.

@0.95

2048, 25%

12.32%

30.71% 4.94%

1.20%

100% 100%

31.25%

26.67% 2.94%

2048, 50% 29.13% 12.69% 100% 100% 26.67% 2.94%

2048, 75% 29.13% 18.12% 100% 100% 33.33% 2.94%

2048, 100% 32.28% 26.77% 100% 100% 33.33% 6.67%

8192, 25%

29.60%

14.17% 4.94%

6.54%

100% 100%

70.83%

14.71% 2.94%

8192, 50% 22.41% 12.69% 99% 100% 20.59% 2.94%

8192, 75% 27.51% 18.12% 99% 100% 20.59% 2.94%

8192, 100% 33.77% 21.91% 97% 100% 29.41% 5.88%

32768, 25%

47.79%

17.73% 5.13%

18.31%

98% 100%

89.58%

16.28% 2.33%

32768, 50% 52.30% 21.06% 83% 98% 34.88% 9.30%

32768, 75% 85.15% 49.41% 44% 88% 58.14% 23.26%

32768, 100% 95.59% 74.80% 13% 57% 72.09% 34.88%

Further Analysis regarding Evaluation Metrics

Despite already providing interesting practical clues for our goal of trying to embed a
larger vocabulary using more of the training data we have available, these results also
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revealed that the intrinsic evaluation metrics we are using are overly sensitive to their
corresponding cosine similarity thresholds. This sensitivity poses serious challenges for
further systematic exploration of word embedding architectures and their corresponding
hyper-parameters, which was also observed in other recent works [208].

By using these absolute thresholds as criteria for deciding the similarity of words, we
create a dependency between the evaluation metrics and the geometry of the embedded
data. If we see the embedding data as a graph, this means that metrics will change
if we apply scaling operations to certain parts of the graph, even if its structure (i.e.
relative position of the embedded words) does not change.

For most practical purposes (including training downstream ML models) absolute
distances have little meaning. What is fundamental is that the resulting embeddings
are able to capture topological information: similar words should be closer to each
other than they are to words that are dissimilar to them (under the various criteria of
similarity we care about), independently of the absolute distances involved.

It is now clear that a key aspect for future work will be developing additional
performance metrics based on topological properties. We are in line with recent
work [209], proposing to shift evaluation from absolute values to more exploratory
evaluations focusing on weaknesses and strengths of the embeddings and not so much
in generic scores. For example, one metric could consist in checking whether for any
given word, all words that are known to belong to the same class are closer than any
words belonging to different classes, independently of the actual cosine. Future work
will necessarily include developing this type of metrics.

7.4.4 Concluding Remarks

Producing word embeddings from tweets is challenging due to the specificities of the
vocabulary in the medium. We implemented a neural word embedding model that
embeds words based on n-gram information extracted from a sample of the Portuguese
Twitter stream, and which can be seen as a flexible baseline for further experiments
in the field. Work reported in this paper is a preliminary study of trying to find
parameters for training word embeddings from Twitter and adequate evaluation tests
and gold-standard data.

Results show that using less than 50% of the available training examples for each
vocabulary size might result in overfitting. The resulting embeddings obtain reasonable
performance on intrinsic evaluation tests when trained a vocabulary containing the
32768 most frequent words in a Twitter sample of relatively small size. Nevertheless,
results exhibit a skewness in the cosine similarity scores that should be further explored
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in future work. More specifically, the Class Distinction test set revealed to be challenging
and opens the door to evaluation of not only similarity between words but also
dissimilarities between words of different semantic classes without using absolute score
values.

Therefore, a key area of future exploration has to do with better evaluation resources
and metrics. We made some initial effort in this front. However, we believe that
developing new intrinsic tests, agnostic to absolute values of metrics and concerned
with topological aspects of the embedding space, and expanding gold-standard data
with cases tailored for user-generated content, is of fundamental importance for the
progress of this line of work.

Furthermore, we plan to make public available word embeddings trained from a
large sample of 300M tweets collected from the Portuguese Twitter stream. This will
require experimenting with and producing embeddings with higher dimensionality (to
avoid the cosine skewness effect) and training with even larger vocabularies. Also,
there is room for experimenting with some of the hyper-parameters of the model itself
(e.g. activation functions, dimensions of the layers), which we know have impact on
final results.

7.5 Summary of the Contributions
The work reported in this chapter makes the following contributions:

• A framework that supports research in Entity Retrieval and Text Mining tasks
in the context of Online Reputation Monitoring. This framework is composed by
two major components that can act as independent frameworks: RELink and
TexRep.

• The RELink framework that supports comprehensive research work in E-R
retrieval, supporting the semi-automatic creating of test queries, as well as, Early
Fusion based approaches for E-R retrieval.

• The TexRep framework that is able to collect texts from online media, such as
Twitter or online news, and identify entities of interest, classify sentiment polarity
and intensity. The framework supports multiple data aggregation methods, as
well as visualization and modeling techniques that can be used for both descriptive
analytics, such as analyze how political polls evolve over time, and predictive
analytics, such as predict elections.
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• A study of some practical aspects, namely vocabulary size, training data size and
intrinsic evaluation for the training and publishing word embeddings from the
Portuguese Twitter stream that can be later used for ORM related tasks.



Chapter 8

Conclusions

In this thesis we have addressed two computational problems in Online Reputation
Monitoring: Entity Retrieval and Text Mining. Entities are the gravitational force that
drives the ORM process and consequently the work reported in this thesis gravitates
around entities and their occurrences across the Web. We researched and developed
methods for text-based extraction, entity-relationship retrieval, analysis and prediction
of entity-centric information spread across the Web.

The main objectives of this thesis were achieved resulting in several contributions
to the problem of Online Reputation Monitoring. Several competitive baselines were
developed which we believe represent significant progress in a research area where
open source work is scarce. However, there are still many issues to be addressed in the
future. Recent developments in Deep Neural Networks create opportunities to improve
performance in several tasks we addressed in this thesis. Once we have access to larger
quantities of training data it will be possible to easily adapt our research framework to
include these techniques.

8.1 Summary and Main Contributions
Entity-Relationship Retrieval

We have established that ORM benefits from entity retrieval capabilities and should
not be constrained to classic data analytics reports. Users ought to be able to search for
entity-centric information from Social Media and online news. Furthermore, reputation
is not an isolated asset and depends also of the reputation of “neighboring” entities.
We studied the problem of Entity-Relationship Retrieval using a IR-centric perspective
and we made several contributions to this line of research:
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• Generalization of the problem of entity-relationship search to cover entity types
and relationships represented by any attribute and predicate, respectively, rather
than a predefined set.

• A general probabilistic model for E-R retrieval using Bayesian Networks.

• Proposal of two design patterns that support retrieval approaches using the E-R
model.

• Proposal of a Entity-Relationship Dependence model that builds on the basic
Sequential Dependence Model (SDM) to provide extensible entity-relationship
representations and dependencies, suitable for complex, multi-relations queries.

• Proposal of an indexing method that supports a retrieval approach to the above
problem.

• A semi-automatic method for generating E-R test collections, which resulted in
the RELink Query Collection comprising 600 E-R queries.

• Results of experiments at scale, with a comprehensive set of queries and corpora.

Entity-Relationship (E-R) Retrieval is a complex case of Entity Retrieval where
the goal is to search for multiple unknown entities and relationships connecting them.
Contrary to entity retrieval from structured knowledge graphs, IR-centric approaches
to E-R retrieval are more adequate in the context of ORM. This happens due to
the dynamic nature of the data sources which are much more transient than other
more stable sources of information (e.g Wikipedia) used in general Entity Retrieval.
Consequently, we developed E-R retrieval methods that do not rely on fixed and
predefined entity types and relationships, enabling a wider range of queries compared
to Semantic Web-based approaches.

We started by presenting a formal definition of E-R queries where we assume
that a E-R query can be decomposed as a sequence of sub-queries each containing
keywords related to a specific entity or relationship. Then we adopted a probabilistic
formulation of the E-R retrieval problem. When creating specific representations for
entities (e.g. context terms) and for pairs of entities (i.e. relationships) it is possible
to create a graph of probabilistic dependencies between sub-queries and entity plus
relationship representations. We use a Bayesian network to depict these dependencies
in a probabilistic graphical model. To the best of our knowledge this represents the
first probabilistic model of E-R retrieval.
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However, these conditional probabilities cannot be computed directly from raw
documents in a collection. In fact, this is a condition inherent to the problem of Entity
Retrieval. Documents serve as proxies to entities and relationship representations and
consequently, we need to fuse information spread across multiple documents to be able
to create those representations. We proposed two design patterns, Early Fusion and
Late Fusion, inspired from Model 1 and Model 2 of Balog et al. [46]. However, in the
context of ORM, we are only interested in Early Fusion.

Early Fusion aggregates context terms of entity and relationship occurrences to
create two dedicated indexes, the entity index and the relationship index. Once we
have the two indexes it is possible to apply any retrieval method to compute the
relevance scores of entity and relationship documents (i.e. representations) given the
E-R sub-queries. The joint probability to retrieve the final entity tuples is computed
using a factorization of the conditional probabilities, i.e., the individual relevance
scores.

On the other hand, Late Fusion consists in matching the E-R sub-queries directly on
a standard document index alongside a set of entity occurrence in each document. Once
we compute the individual relevance scores of each document given a E-R sub-query,
we then aggregate the entity occurrences of the top k results to compute the final
joint probability. When using traditional retrieval models, such as Language Models
or BM25, these design patterns can be used to create unsupervised baselines for E-R
retrieval.

Since our objective was to explore an Early Fusion approach to E-R retrieval we
developed a novel supervised Early Fusion-based model for E-R retrieval, the Entity-
Relationship Dependence Model (ERDM). It uses Markov Random Field to model
term dependencies of E-R sub-queries and entity/relationship documents. ERDM can
be seen as an extension of the Sequential Dependence Model (SDM) [63] for ad-hoc
document retrieval in a way that it relies on query term dependencies but creates
a more complex graph structure that connects terms of multiple (sub-)queries and
multiple documents to compute the probability mass function under the MRF.

One of the difficulties we faced while researching E-R retrieval was the lack of test
collections. We therefore decided to contribute to this research problem by creating
a semi-automatic method for creating test collections. We realized that web tabular
data often include implicit relationships between entities that belong to the same row
in a table. We developed a table parser that extracts tuples of related entities from
Wikipedia Lists-of-lists-of-lists tables. We then extract metadata, such as table title
or column name, and provide it to editors, together with the list of entity tuples. We
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asked editors to create E-R queries in which the list of entity tuples could serve as
relevance judgments. This process resulted in the creation and publication of the
RELink Query Collection comprising 600 E-R queries. We believe RELink QC will
foster research work in E-R retrieval.

We performed experiments at scale using the ClueWeb-09B Web corpus from which
we extracted and indexed more than 850 million entity and relationship occurrences.
We evaluated our methods using four different query sets comprising a total of 548 E-R
queries. As far as we know, this is the largest experiment in E-R retrieval, considering
the size of the query set and the data collection. Results show consistently better
performance of the ERDM model over three proposed baselines. When comparing Lan-
guage Models and BM25 as feature functions we observed variance on the performance
depending on the query set. Furthermore, using unsupervised Early Fusion proved to
be very competitive when compared to ERDM, suggesting that it can be used in some
application scenarios where the overhead of computing sequential dependencies might
be unfeasible.

Entity Filtering and Sentiment Analysis

Entity Filtering and Sentiment Analysis are two fundamental Text Mining problems in
ORM. We participated in two well known external benchmark competitions in both
tasks resulting in state-of-the-art performance. We made the following contributions
to these two problems:

• A supervised learning approach for Entity Filtering on tweets, achieving state-of-
the-art performance using a relatively small training set.

• Created and made available word embeddings trained from financial texts.

• A supervised learning approach for fine-grained sentiment analysis of financial
texts.

Entity Filtering can be seen as targeted named entity disambiguation. We developed
a supervised method that classifies tweets as relevant or non-relevant to a given target
entity. This task is fundamental in ORM as downstream tasks, such as prediction, can
be highly affected by noisy input data. We implemented a large set of features that
can be generated to describe the relationship between a tweet mentioning a entity and
a reference entity representation.
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We relied on metadata, such as entity categories, text represented with TF-IDF,
similarity between tweets and Wikipedia entity articles, Freebase entities disambigua-
tion, feature selection of terms based on frequency and feature matrix transformation
using SVD. Although our approach can be perceived as relatively simple and low cost,
we achieved first place with an Accuracy over 0.90 at the Filtering Task of RepLab
2013, in a test set containing more than 90 thousand tweets and 61 different target
entities.

Regarding Sentiment Analysis, we decided to focus our efforts in a not so well
explored sub-area, namely financial texts. We participated in SemEval 2017 Task 5
which focused on fine-grained sentiment analysis of financial news and microblogs. The
task consisted in predicting a real continuous variable from -1.0 to +1.0 representing
the polarity and intensity of sentiment concerning companies/stocks mentioned in short
texts. We modeled it as a regression analysis problem.

Previous work in this domain showed that financial sentiment is often depicted in an
implicit way. We created financial-specific word embeddings in order to obtain domain
specific syntactic and semantic relations between words in this context. We combined
traditional bag-of-words, lexical-based features and bag-of-embeddings to train a
regressor of both sentiment and intensity. Results showed that different combination
of features attained different performances on each sub-tasks. Nevertheless, we were
able to obtain cosine similarities above 0.65 in both sub-tasks and mean average errors
below 0.2 in a scale range of 2.0, representing less than 10% of the maximum possible
error.

Text-based Entity-centric Prediction

We explored two text-based prediction problems in the context of ORM, performing
analysis of the predictive power of entity-centric information on the news to predict
entity popularity on Twitter, as well, as a study of sentiment aggregate functions to
predict political opinion. We made the following contribution in this research area:

• Analysis of the predictive power of online news regarding entity popularity on
Twitter for entities that are frequently mentioned on the news.

• Analysis of how to combine different sentiment aggregate functions to serve as
features for predicting political polls.

We are aware that entity popularity on social media can be influenced by endogenous
and exogenous factors but we are only interested in exploring the interplay between
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online news and social media reactions. This could be useful for anticipating public
relations damage control or even for editorial purposes to maximize attention and
consequently revenue. We explored different sets of signal extracted from online news
mentioning entities that are frequently mentioned on the news such as politicians
of footballers. These signals could influence or at least are correlated with future
popularity of those entities on Twitter.

Results show that performance varies depending on the target entity. In general,
results are better in the case of predicting popularity of politicians, due to the high
unpredictability of live events associated with sports. This is a general conclusion
of this study as online news do not have predictive power for live events as Twitter
reactions happen quickly than the publication of the news for such cases. Results also
show that the time of prediction affects the performance of the models. For instance,
in the case of politicians F1 score is higher when time of prediction occurs after lunch
time, which is an evidence that in politics most of the news events that trigger social
media reactions are reported in the morning news.

The second predictive studied we carried out consisted in using entity-centric
sentiment polarity extracted from tweets to predict political polls. There is no consensus
on previous research work on what sentiment aggregate functions is more adequate to
predict political results. We explored several sentiment aggregate functions described in
the literature to assess which one or combination would be more effective on predicting
polls during the Portuguese bailout (2011-2013). In our study, we achieved the lowest
mean average error using a combination of buzz aggregation functions to predict
monthly poll variations instead of absolute values. On the other hand, the most
important individual feature was an aggregate function consisting on the logarithm of
the ration positive and negative classified tweets.

A Framework for ORM

We also created a framework specifically tailored for ORM that puts together the
sub-tasks we tackled throughout this thesis. We believe this framework represents a
significant contribution and paves the way to future research in the computational
problems inherent to the process of monitoring reputation online. More precisely we
make the following contributions:

• A framework that supports research in Entity Retrieval and Text Mining tasks
in the context of Online Reputation Monitoring. This framework is composed by
two major components that can act as independent frameworks: RELink and
TexRep.
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• The RELink framework that supports comprehensive research work in E-R
retrieval, supporting the semi-automatic creating of test queries, as well as, Early
Fusion based approaches for E-R retrieval.

• The TexRep framework that is able to collect texts from online media, such as
Twitter or online news, and identify entities of interest, classify sentiment polarity
and intensity. The framework supports multiple data aggregation methods, as
well as visualization and modeling techniques that can be used for both descriptive
analytics, such as analyze how political polls evolve over time, and predictive
analytics, such as predict elections.

• A study of some practical aspects, namely vocabulary size, training data size and
intrinsic evaluation for the training and publishing word embeddings from the
Portuguese Twitter stream that can be later used for ORM related tasks.

The framework is divided in two distinct components, one is dedicated to Entity
Retrieval and the other to Text Mining. In practice these two components can act as
two separate frameworks. Both are adaptable and can be reused in different application
scenarios, from computational journalism to finance or politics. RELink framework
is designed to facilitate experiments with E-R Retrieval query collections. TexRep
was designed with two main challenges in mind: 1) it should be able to cope with the
Text Mining problems underlying ORM and 2) it should be flexible, adaptable and
reusable in order to support the specificities of different application scenarios. We also
presented two use cases of our framework for ORM. In the first we use RELink in the
context of computational journalism while in the second we described the design and
the implementation of the POPmine system, an use case of the proposed framework in
the scope of the POPSTAR project.

Furthermore, we presented a study of the practical aspects of learning word em-
beddings from the Twitter stream. Our goal was to try to assess the feasibility of
producing and publishing general purpose word embeddings for ORM. Results showed
that using less than 50% of the available training examples for each vocabulary size
might result in over-fitting. We obtained interesting performance on intrinsic evalu-
ation when trained a vocabulary containing 32768 most frequent words in a Twitter
sample of relatively small size. We proposed a set of gold standard data for intrinsic
evaluation of word embeddings from user generated content. Nevertheless, we realized
that evaluation metrics using absolute values as thresholds might not be suitable due
to the cosine skewness effect on large dimensional embedding spaces. We propose to
develop topological intrinsic evaluation metrics in future work.
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8.2 Limitations and Future Work
One of the major obstacles we faced during the course of this thesis was the limited
availability of labeled data for training and evaluation of the different tasks we tackled.
This is a common limitation in the scope of Online Reputation Monitoring. Due to this
obstacle we did not have the chance to perform extensive experimentation using more
than one data source and language for each task. This aspect reduces the generalization
of the results obtained since they might be biased towards the available datasets we
had access to. Therefore, we leave for future work experimentation on each task with
multiple datasets using different data sources and languages to perform comparable
evaluations.

We also recognize that we tried to address many different tasks which reduced our
capability of addressing every task with the same level of depth. Nevertheless, we
believe that exploring several new tasks in the scope of ORM constitutes a strong
contribution to foster future research work in this area. During the course of this
thesis, we did not have the possibility of performing user studies to assess the global
usefulness of our framework for ORM. We would like to leave that as future work.

While we had the objective of applying E-R retrieval in online news and social media
which represent the natural data sources for ORM, it was not possible to evaluate
our approaches using these type of data sources. Research work in E-R retrieval is
still in its early stages and we believed it was necessary to first contribute to general
E-R retrieval and leave for future work specific evaluation in the context of ORM. We
implemented and created a demo of the Early Fusion approach since it is unsupervised.
However, it was not possible to apply ERDM to online news due to the lack of training
queries and relevance judgments for parameter tuning. In either cases, we aim to
conduct an user experience in a near future to collect queries and relevance judgments
in the context of ORM.

Recent work in Deep Neural Networks makes the opportunity to beat the baselines
we created in this thesis however, most of the tasks we addressed do not have enough
labeled data to use these techniques. One of the most interesting avenues we would like
to explore would be the use of neural networks as feature functions of the ERDM model.
Since we have a dataset of more than 850 million entity and relationship extractions
this represents an ideal scenario for Deep Learning. We propose to use a window based
prediction task similar to the CBOW model for training word embeddings. Given a
fixed window size, one would learn a neural network that would provide a ranked list
of entities/relationships given an input query. We believe this approach would reduce
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the computational costs of the current ERDM feature functions since we would not
need to keep two huge indexes at query time.

We would like also to explore different priors in entity and relationship documents
within ERDM. For instance, creating source and time sensitive rankings would be
useful when using transient information sources. Another promising avenue is transfer
learning, specially due to the lack of training resources in the context of ORM. The
possibility of bilingual training or cross-domain (e.g. politics to finance) transfer
knowledge would constitute a major progress in this area.
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