152 research outputs found

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Locomotion Control of Hexapod Walking Robot with Four Degrees of Freedom per Leg

    Get PDF
    V této práci představujeme nového šestinohého robota jménem HAntR, kterého jsme vytvořili dle potřeb Laboratoře výpočetní robotiky Centra umělé inteligence fakulty Elektrotechnické Českého vysokého učení technického v Praze. Jeho hlavním účelem jest vylepšit schopnosti pohybu v těžkém terénu původního robotu přidáním čtvrtého stupně volnosti každé noze. Na základě nově navržené nohy jsme také přepracovali celé tělo robotu tak, aby splnilo i další požadavky, jako například menší rozměry, či možnost osazení alespoň šesti Lithium-Iontovými monočlánky. V práci pečlivě popisujeme motivace a úvahy, které nás k výslednému návrhu vedly. Uvádíme řešení přímé i inverzní kinematické úlohy řešené pomocí podmínky na ideální orientaci konce nohy a uvažující i důležité kinematické singularity. Navržený robot byl vyzkoušen v několika experimentech, při kterých byl použit námi navržený řídicí systém napsaný v jazyce C++. Ukázalo se, že HAntR vydrží díky zvýšené energetické hustotě a lepšímu rozkladu sil v končetinách autonomně fungovat přes hodinu. Robot je také schopen jít rychlostí až 0.42m/s, což předčí mnohé srovnatelné roboty. Při experimentu, kdy robot stál na nakloněné rovině, bylo prokázáno zlepšení oproti předchozímu robotu. A také jsme dle pokynů této práce potvrdili, že i HAntR je schopen adaptivní chůze spoléhající pouze na poziční zpětnou vazbu.In this thesis a novel six-legged robot called HAntR is presented. The robot was developed according to needs of the Robotics Laboratory, at the Artificial Intelligent Center, Faculty of Electrical Engineering, Czech Technical University in Prague. Its main purpose is enhancing rough-terrain movement capabilities by upgrading a former design by adding fourth degree of freedom to each leg. We also revised robot torso to fit new leg design and incorporate other requirements such as smaller dimensions with space for at least six Lithium-Ion cells. We thoroughly describe motivations and considerations that led us to the presented particular solution. Further, the solutions of forward and inverse kinematic tasks with partial orientation constraint and important singularities avoidance are presented. The proposed design has been evaluated in several experimental deployments, which utilised developed software controller written in C++. Endurance tests showed, that HAntR is able to remotely operate for over an hour thanks to increased energy density. Maximal speed test resulted to 0.42m/s during tripod gait, which outpaces most of the comparable robotic platforms. Experiment where HAntR stood on platform with varying inclination showed qualitative improvement against former robot. Finally, in accord with the thesis assignment, we proved that HAntR is able to perform walking with adaptive gait using positional feedback only

    Energy Regeneration and Environment Sensing for Robotic Leg Prostheses and Exoskeletons

    Get PDF
    Robotic leg prostheses and exoskeletons can provide powered locomotor assistance to older adults and/or persons with physical disabilities. However, limitations in automated control and energy-efficient actuation have impeded their transition from research laboratories to real-world environments. With regards to control, the current automated locomotion mode recognition systems being developed rely on mechanical, inertial, and/or neuromuscular sensors, which inherently have limited prediction horizons (i.e., analogous to walking blindfolded). Inspired by the human vision-locomotor control system, here a multi-generation environment sensing and classification system powered by computer vision and deep learning was developed to predict the oncoming walking environments prior to physical interaction, therein allowing for more accurate and robust high-level control decisions. To support this initiative, the “ExoNet” database was developed – the largest and most diverse open-source dataset of wearable camera images of indoor and outdoor real-world walking environments, which were annotated using a novel hierarchical labelling architecture. Over a dozen state-of-the-art deep convolutional neural networks were trained and tested on ExoNet for large-scale image classification and automatic feature engineering. The benchmarked CNN architectures and their environment classification predictions were then quantitatively evaluated and compared using an operational metric called “NetScore”, which balances the classification accuracy with the architectural and computational complexities (i.e., important for onboard real-time inference with mobile computing devices). Of the benchmarked CNN architectures, the EfficientNetB0 network achieved the highest test accuracy; VGG16 the fastest inference time; and MobileNetV2 the best NetScore. These comparative results can inform the optimal architecture design or selection depending on the desired performance of an environment classification system. With regards to energetics, backdriveable actuators with energy regeneration can improve the energy efficiency and extend the battery-powered operating durations by converting some of the otherwise dissipated energy during negative mechanical work into electrical energy. However, the evaluation and control of these regenerative actuators has focused on steady-state level-ground walking. To encompass real-world community mobility more broadly, here an energy regeneration system, featuring mathematical and computational models of human and wearable robotic systems, was developed to simulate energy regeneration and storage during other locomotor activities of daily living, specifically stand-to-sit movements. Parameter identification and inverse dynamic simulations of subject-specific optimized biomechanical models were used to calculate the negative joint mechanical work and power while sitting down (i.e., the mechanical energy theoretically available for electrical energy regeneration). These joint mechanical energetics were then used to simulate a robotic exoskeleton being backdriven and regenerating energy. An empirical characterization of an exoskeleton was carried out using a joint dynamometer system and an electromechanical motor model to calculate the actuator efficiency and to simulate energy regeneration and storage with the exoskeleton parameters. The performance calculations showed that regenerating electrical energy during stand-to-sit movements provide small improvements in energy efficiency and battery-powered operating durations. In summary, this research involved the development and evaluation of environment classification and energy regeneration systems to improve the automated control and energy-efficient actuation of next-generation robotic leg prostheses and exoskeletons for real-world locomotor assistance

    System Identification of Bipedal Locomotion in Robots and Humans

    Get PDF
    The ability to perform a healthy walking gait can be altered in numerous cases due to gait disorder related pathologies. The latter could lead to partial or complete mobility loss, which affects the patients’ quality of life. Wearable exoskeletons and active prosthetics have been considered as a key component to remedy this mobility loss. The control of such devices knows numerous challenges that are yet to be addressed. As opposed to fixed trajectories control, real-time adaptive reference generation control is likely to provide the wearer with more intent control over the powered device. We propose a novel gait pattern generator for the control of such devices, taking advantage of the inter-joint coordination in the human gait. Our proposed method puts the user in the control loop as it maps the motion of healthy limbs to that of the affected one. To design such control strategy, it is critical to understand the dynamics behind bipedal walking. We begin by studying the simple compass gait walker. We examine the well-known Virtual Constraints method of controlling bipedal robots in the image of the compass gait. In addition, we provide both the mechanical and control design of an affordable research platform for bipedal dynamic walking. We then extend the concept of virtual constraints to human locomotion, where we investigate the accuracy of predicting lower limb joints angular position and velocity from the motion of the other limbs. Data from nine healthy subjects performing specific locomotion tasks were collected and are made available online. A successful prediction of the hip, knee, and ankle joints was achieved in different scenarios. It was also found that the motion of the cane alone has sufficient information to help predict good trajectories for the lower limb in stairs ascent. Better estimates were obtained using additional information from arm joints. We also explored the prediction of knee and ankle trajectories from the motion of the hip joints

    Impact-Aware Task-Space Quadratic-Programming Control

    Full text link
    Generating on-purpose impacts with rigid robots is challenging as they may lead to severe hardware failures due to abrupt changes in the velocities and torques. Without dedicated hardware and controllers, robots typically operate at a near-zero velocity in the vicinity of contacts. We assume knowing how much of impact the hardware can absorb and focus solely on the controller aspects. The novelty of our approach is twofold: (i) it uses the task-space inverse dynamics formalism that we extend by seamlessly integrating impact tasks; (ii) it does not require separate models with switches or a reset map to operate the robot undergoing impact tasks. Our main idea lies in integrating post-impact states prediction and impact-aware inequality constraints as part of our existing general-purpose whole-body controller. To achieve such prediction, we formulate task-space impacts and its spreading along the kinematic tree of a floating-base robot with subsequent joint velocity and torque jumps. As a result, the feasible solution set accounts for various constraints due to expected impacts. In a multi-contact situation of under-actuated legged robots subject to multiple impacts, we also enforce standing stability margins. By design, our controller does not require precise knowledge of impact location and timing. We assessed our formalism with the humanoid robot HRP-4, generating maximum contact velocities, neither breaking established contacts nor damaging the hardware

    Robust localization with wearable sensors

    Get PDF
    Measuring physical movements of humans and understanding human behaviour is useful in a variety of areas and disciplines. Human inertial tracking is a method that can be leveraged for monitoring complex actions that emerge from interactions between human actors and their environment. An accurate estimation of motion trajectories can support new approaches to pedestrian navigation, emergency rescue, athlete management, and medicine. However, tracking with wearable inertial sensors has several problems that need to be overcome, such as the low accuracy of consumer-grade inertial measurement units (IMUs), the error accumulation problem in long-term tracking, and the artefacts generated by movements that are less common. This thesis focusses on measuring human movements with wearable head-mounted sensors to accurately estimate the physical location of a person over time. The research consisted of (i) providing an overview of the current state of research for inertial tracking with wearable sensors, (ii) investigating the performance of new tracking algorithms that combine sensor fusion and data-driven machine learning, (iii) eliminating the effect of random head motion during tracking, (iv) creating robust long-term tracking systems with a Bayesian neural network and sequential Monte Carlo method, and (v) verifying that the system can be applied with changing modes of behaviour, defined as natural transitions from walking to running and vice versa. This research introduces a new system for inertial tracking with head-mounted sensors (which can be placed in, e.g. helmets, caps, or glasses). This technology can be used for long-term positional tracking to explore complex behaviours

    Humanoid Robot Soccer Locomotion and Kick Dynamics: Open Loop Walking, Kicking and Morphing into Special Motions on the Nao Robot

    Get PDF
    Striker speed and accuracy in the RoboCup (SPL) international robot soccer league is becoming increasingly important as the level of play rises. Competition around the ball is now decided in a matter of seconds. Therefore, eliminating any wasted actions or motions is crucial when attempting to kick the ball. It is common to see a discontinuity between walking and kicking where a robot will return to an initial pose in preparation for the kick action. In this thesis we explore the removal of this behaviour by developing a transition gait that morphs the walk directly into the kick back swing pose. The solution presented here is targeted towards the use of the Aldebaran walk for the Nao robot. The solution we develop involves the design of a central pattern generator to allow for controlled steps with realtime accuracy, and a phase locked loop method to synchronise with the Aldebaran walk so that precise step length control can be activated when required. An open loop trajectory mapping approach is taken to the walk that is stabilized statically through the use of a phase varying joint holding torque technique. We also examine the basic princples of open loop walking, focussing on the commonly overlooked frontal plane motion. The act of kicking itself is explored both analytically and empirically, and solutions are provided that are versatile and powerful. Included as an appendix, the broader matter of striker behaviour (process of goal scoring) is reviewed and we present a velocity control algorithm that is very accurate and efficient in terms of speed of execution
    corecore