40 research outputs found

    Relatedness Measures to Aid the Transfer of Building Blocks among Multiple Tasks

    Full text link
    Multitask Learning is a learning paradigm that deals with multiple different tasks in parallel and transfers knowledge among them. XOF, a Learning Classifier System using tree-based programs to encode building blocks (meta-features), constructs and collects features with rich discriminative information for classification tasks in an observed list. This paper seeks to facilitate the automation of feature transferring in between tasks by utilising the observed list. We hypothesise that the best discriminative features of a classification task carry its characteristics. Therefore, the relatedness between any two tasks can be estimated by comparing their most appropriate patterns. We propose a multiple-XOF system, called mXOF, that can dynamically adapt feature transfer among XOFs. This system utilises the observed list to estimate the task relatedness. This method enables the automation of transferring features. In terms of knowledge discovery, the resemblance estimation provides insightful relations among multiple data. We experimented mXOF on various scenarios, e.g. representative Hierarchical Boolean problems, classification of distinct classes in the UCI Zoo dataset, and unrelated tasks, to validate its abilities of automatic knowledge-transfer and estimating task relatedness. Results show that mXOF can estimate the relatedness reasonably between multiple tasks to aid the learning performance with the dynamic feature transferring.Comment: accepted by The Genetic and Evolutionary Computation Conference (GECCO 2020

    Constructing Complexity-efficient Features in XCS with Tree-based Rule Conditions

    Full text link
    A major goal of machine learning is to create techniques that abstract away irrelevant information. The generalisation property of standard Learning Classifier System (LCS) removes such information at the feature level but not at the feature interaction level. Code Fragments (CFs), a form of tree-based programs, introduced feature manipulation to discover important interactions, but they often contain irrelevant information, which causes structural inefficiency. XOF is a recently introduced LCS that uses CFs to encode building blocks of knowledge about feature interaction. This paper aims to optimise the structural efficiency of CFs in XOF. We propose two measures to improve constructing CFs to achieve this goal. Firstly, a new CF-fitness update estimates the applicability of CFs that also considers the structural complexity. The second measure we can use is a niche-based method of generating CFs. These approaches were tested on Even-parity and Hierarchical problems, which require highly complex combinations of input features to capture the data patterns. The results show that the proposed methods significantly increase the structural efficiency of CFs, which is estimated by the rule "generality rate". This results in faster learning performance in the Hierarchical Majority-on problem. Furthermore, a user-set depth limit for CF generation is not needed as the learning agent will not adopt higher-level CFs once optimal CFs are constructed

    Improving the Scalability of XCS-Based Learning Classifier Systems

    No full text
    Using evolutionary intelligence and machine learning techniques, a broad range of intelligent machines have been designed to perform different tasks. An intelligent machine learns by perceiving its environmental status and taking an action that maximizes its chances of success. Human beings have the ability to apply knowledge learned from a smaller problem to more complex, large-scale problems of the same or a related domain, but currently the vast majority of evolutionary machine learning techniques lack this ability. This lack of ability to apply the already learned knowledge of a domain results in consuming more than the necessary resources and time to solve complex, large-scale problems of the domain. As the problem increases in size, it becomes difficult and even sometimes impractical (if not impossible) to solve due to the needed resources and time. Therefore, in order to scale in a problem domain, a systemis needed that has the ability to reuse the learned knowledge of the domain and/or encapsulate the underlying patterns in the domain. To extract and reuse building blocks of knowledge or to encapsulate the underlying patterns in a problem domain, a rich encoding is needed, but the search space could then expand undesirably and cause bloat, e.g. as in some forms of genetic programming (GP). Learning classifier systems (LCSs) are a well-structured evolutionary computation based learning technique that have pressures to implicitly avoid bloat, such as fitness sharing through niche based reproduction. The proposed thesis is that an LCS can scale to complex problems in a domain by reusing the learnt knowledge from simpler problems of the domain and/or encapsulating the underlying patterns in the domain. Wilson’s XCS is used to implement and test the proposed systems, which is a well-tested, online learning and accuracy based LCS model. To extract the reusable building blocks of knowledge, GP-tree like, code-fragments are introduced, which are more than simply another representation (e.g. ternary or real-valued alphabets). This thesis is extended to capture the underlying patterns in a problemusing a cyclic representation. Hard problems are experimented to test the newly developed scalable systems and compare them with benchmark techniques. Specifically, this work develops four systems to improve the scalability of XCS-based classifier systems. (1) Building blocks of knowledge are extracted fromsmaller problems of a Boolean domain and reused in learning more complex, large-scale problems in the domain, for the first time. By utilizing the learnt knowledge from small-scale problems, the developed XCSCFC (i.e. XCS with Code-Fragment Conditions) system readily solves problems of a scale that existing LCS and GP approaches cannot, e.g. the 135-bitMUX problem. (2) The introduction of the code fragments in classifier actions in XCSCFA (i.e. XCS with Code-Fragment Actions) enables the rich representation of GP, which when couples with the divide and conquer approach of LCS, to successfully solve various complex, overlapping and niche imbalance Boolean problems that are difficult to solve using numeric action based XCS. (3) The underlying patterns in a problem domain are encapsulated in classifier rules encoded by a cyclic representation. The developed XCSSMA system produces general solutions of any scale n for a number of important Boolean problems, for the first time in the field of LCS, e.g. parity problems. (4) Optimal solutions for various real-valued problems are evolved by extending the existing real-valued XCSR system with code-fragment actions to XCSRCFA. Exploiting the combined power of GP and LCS techniques, XCSRCFA successfully learns various continuous action and function approximation problems that are difficult to learn using the base techniques. This research work has shown that LCSs can scale to complex, largescale problems through reusing learnt knowledge. The messy nature, disassociation of message to condition order, masking, feature construction, and reuse of extracted knowledge add additional abilities to the XCS family of LCSs. The ability to use rich encoding in antecedent GP-like codefragments or consequent cyclic representation leads to the evolution of accurate, maximally general and compact solutions in learning various complex Boolean as well as real-valued problems. Effectively exploiting the combined power of GP and LCS techniques, various continuous action and function approximation problems are solved in a simple and straight forward manner. The analysis of the evolved rules reveals, for the first time in XCS, that no matter how specific or general the initial classifiers are, all the optimal classifiers are converged through the mechanism ‘be specific then generalize’ near the final stages of evolution. Also that standard XCS does not use all available information or all available genetic operators to evolve optimal rules, whereas the developed code-fragment action based systems effectively use figure and ground information during the training process. Thiswork has created a platformto explore the reuse of learnt functionality, not just terminal knowledge as present, which is needed to replicate human capabilities

    GIMO : A multi-objective anytime rule mining system to ease iterative feedback from domain experts

    Get PDF
    Data extracted from software repositories is used intensively in Software Engineering research, for example, to predict defects in source code. In our research in this area, with data from open source projects as well as an industrial partner, we noticed several shortcomings of conventional data mining approaches for classification problems: (1) Domain experts’ acceptance is of critical importance, and domain experts can provide valuable input, but it is hard to use this feedback. (2) Evaluating the quality of the model is not a matter of calculating AUC or accuracy. Instead, there are multiple objectives of varying importance with hard to quantify trade-offs. Furthermore, the performance of the model cannot be evaluated on a per-instance level in our case, because it shares aspects with the set cover problem. To overcome these problems, we take a holistic approach and develop a rule mining system that simplifies iterative feedback from domain experts and can incorporate the domain-specific evaluation needs. A central part of the system is a novel multi-objective anytime rule mining algorithm. The algorithm is based on the GRASP-PR meta-heuristic but extends it with ideas from several other approaches. We successfully applied the system in the industrial context. In the current article, we focus on the description of the algorithm and the concepts of the system. We make an implementation of the system available. © 2020 The Author

    Intelligent network intrusion detection using an evolutionary computation approach

    Get PDF
    With the enormous growth of users\u27 reliance on the Internet, the need for secure and reliable computer networks also increases. Availability of effective automatic tools for carrying out different types of network attacks raises the need for effective intrusion detection systems. Generally, a comprehensive defence mechanism consists of three phases, namely, preparation, detection and reaction. In the preparation phase, network administrators aim to find and fix security vulnerabilities (e.g., insecure protocol and vulnerable computer systems or firewalls), that can be exploited to launch attacks. Although the preparation phase increases the level of security in a network, this will never completely remove the threat of network attacks. A good security mechanism requires an Intrusion Detection System (IDS) in order to monitor security breaches when the prevention schemes in the preparation phase are bypassed. To be able to react to network attacks as fast as possible, an automatic detection system is of paramount importance. The later an attack is detected, the less time network administrators have to update their signatures and reconfigure their detection and remediation systems. An IDS is a tool for monitoring the system with the aim of detecting and alerting intrusive activities in networks. These tools are classified into two major categories of signature-based and anomaly-based. A signature-based IDS stores the signature of known attacks in a database and discovers occurrences of attacks by monitoring and comparing each communication in the network against the database of signatures. On the other hand, mechanisms that deploy anomaly detection have a model of normal behaviour of system and any significant deviation from this model is reported as anomaly. This thesis aims at addressing the major issues in the process of developing signature based IDSs. These are: i) their dependency on experts to create signatures, ii) the complexity of their models, iii) the inflexibility of their models, and iv) their inability to adapt to the changes in the real environment and detect new attacks. To meet the requirements of a good IDS, computational intelligence methods have attracted considerable interest from the research community. This thesis explores a solution to automatically generate compact rulesets for network intrusion detection utilising evolutionary computation techniques. The proposed framework is called ESR-NID (Evolving Statistical Rulesets for Network Intrusion Detection). Using an interval-based structure, this method can be deployed for any continuous-valued input data. Therefore, by choosing appropriate statistical measures (i.e. continuous-valued features) of network trafc as the input to ESRNID, it can effectively detect varied types of attacks since it is not dependent on the signatures of network packets. In ESR-NID, several innovations in the genetic algorithm were developed to keep the ruleset small. A two-stage evaluation component in the evolutionary process takes the cooperation of rules into consideration and results into very compact, easily understood rulesets. The effectiveness of this approach is evaluated against several sources of data for both detection of normal and abnormal behaviour. The results are found to be comparable to those achieved using other machine learning methods from both categories of GA-based and non-GA-based methods. One of the significant advantages of ESR-NIS is that it can be tailored to specific problem domains and the characteristics of the dataset by the use of different fitness and performance functions. This makes the system a more flexible model compared to other learning techniques. Additionally, an IDS must adapt itself to the changing environment with the least amount of configurations. ESR-NID uses an incremental learning approach as new flow of traffic become available. The incremental learning approach benefits from less required storage because it only keeps the generated rules in its database. This is in contrast to the infinitely growing size of repository of raw training data required for traditional learning

    Human inspired robotic path planning and heterogeneous robotic mapping

    No full text
    One of the biggest challenges facing robotics is the ability for a robot to autonomously navigate real-world unknown environments and is considered by many to be a key prerequisite of truly autonomous robots. Autonomous navigation is a complex problem that requires a robot to solve the three problems of navigation: localisation, goal recognition, and path-planning. Conventional approaches to these problems rely on computational techniques that are inherently rigid and brittle. That is, the underlying models cannot adapt to novel input, nor can they account for all potential external conditions, which could result in erroneous or misleading decision making. In contrast, humans are capable of learning from their prior experiences and adapting to novel situations. Humans are also capable of sharing their experiences and knowledge with other humans to bootstrap their learning. This is widely thought to underlie the success of humanity by allowing high-fidelity transmission of information and skills between individuals, facilitating cumulative knowledge gain. Furthermore, human cognition is influenced by internal emotion states. Historically considered to be a detriment to a person's cognitive process, recent research is regarding emotions as a beneficial mechanism in the decision making process by facilitating the communication of simple, but high-impact information. Human created control approaches are inherently rigid and cannot account for the complexity of behaviours required for autonomous navigation. The proposed thesis is that cognitive inspired mechanisms can address limitations in current robotic navigation techniques by allowing robots to autonomously learn beneficial behaviours from interacting with its environment. The first objective is to enable the sharing of navigation information between heterogeneous robotic platforms. The second objective is to add flexibility to rigid path-planning approaches by utilising emotions as low-level but high-impact behavioural responses. Inspired by cognitive sciences, a novel cognitive mapping approach is presented that functions in conjunction with current localisation techniques. The cognitive mapping stage utilises an Anticipatory Classifier System (ACS) to learn the novel Cognitive Action Map (CAM) of decision points, areas in which a robot must determine its next action (direction of travel). These physical actions provide a shared means of understanding the environment to allow for communicating learned navigation information. The presented cognitive mapping approach has been trained and evaluated on real-world robotic platforms. The results show the successful sharing of navigation information between two heterogeneous robotic platforms with different sensing capabilities. The results have also demonstrated the novel contribution of autonomously sharing navigation information between a range-based (GMapping) and vision-based (RatSLAM) localisation approach for the first time. The advantage of sharing information between localisation techniques allows an individual robotic platform to utilise the best fit localisation approach for its sensors while still being able to provide useful navigation information for robots with different sensor types. Inspired by theories on natural emotions, this work presents a novel emotion model designed to improve a robot's navigation performance through learning to adapt a rigid path-planning approach. The model is based on the concept of a bow-tie structure, linking emotional reinforcers and behavioural modifiers through intermediary emotion states. An important function of the emotions in the model is to provide a compact set of high-impact behaviour adaptations, reducing an otherwise tangled web of stimulus-response patterns. Crucially, the system learns these emotional responses with no human pre-specifying the behaviour of the robot, hence avoiding human bias. The results of training the emotion model demonstrate that it is capable of learning up to three emotion states for robotic navigation without human bias: fear, apprehension, and happiness. The fear and apprehension responses slow the robot's speed and drive the robot away from obstacles when the robot experiences pain, or is uncertain of its current position. The happiness response increases the speed of the robot and reduces the safety margins around obstacles when pain is absent, allowing the robot to drive closer to obstacles. These learned emotion responses have improved the navigation performance of the robot by reducing collisions and navigation times, in both simulated and real-world experiments. The two emotion model (fear and happiness) improved performance the most, indicating that a robot may only require two emotion states (fear and happiness) for navigation in common, static domains

    Function of TALE1Xam in cassava bacterial blight: a transcriptomic approach

    Get PDF
    Abstract. Xanthomonas axonopodis pv. manihotis (Xam) is a gram negative bacteria causing the Cassava Bacterial Blight (CBB) in Manihot esculenta Crantz. Cassava represents one of the most important sources of carbohydrates for around one billion people around the world as well as a source of energy due to its high starch levels content. The CBB disease represents an important limitation for cassava massive production and little is known about this pathosystem. Bacterial pathogenicity often relies on the injection in eucaryotic host cells of effector proteins via a type III secretion system (TTSS). Between all the type III effectors described up to now, Transcription Activator-Like Type III effectors (TALE) appear as particularly interesting. Once injected into the plant cell, TALEs go into the nucleus cell and modulate the expression of target host genes to the benefit of the invading bacteria by interacting directly with plant DNA. In Xam, only one gene belonging to this family has been functionally studied so far. It consists on TALE1Xam. This work aim to identify cassava genes whose expression will be modified upon the presence of TALE1Xam. By means of a microarray containing 5700 cassava genes, the TALE code and two Hi-RNAseq lanes, we seek out direct TALE1Xam target genes. Hence, through functional qRT validation, specific artificial TALEs design and statistical analyses between cassava plants challenged with Xam Δ TALE1Xam vs. Xam + TALE1Xam, we proposed that TALE1Xam is potentially interacting with a Heat Shock Transcription Factor B3. Moreover we argue that this gene is responsible of the susceptibility during Xam infection. Furthermore this work represents the first complete transcriptomic approach done in the cassava/Xam interaction and open huge possibilities to understand and study CBB.Xanthomonas axonopodis pv. manihotis (Xam) en una bacteria gram negativa responsable del añublo bacteriano de la yuca. La yuca (Manihot esculenta Crantz) es una de las fuentes más importantes de carbohidratos para más de 1000 millones de personas alrededor del mundo y representa igualmente una fuente importante de energía por las altas concentraciones de almidón en sus raíces. El añublo bacteriano de la yuca representa una limitación importante para el cultivo masivo de este alimento, sin embargo este patosistema ha sido muy poco estudiado. La patogenicidad bacteriana, depende frecuentemente de la capacidad de la bacteria de inyectar efectores a través del Sistema de Secreción Tipo III (SSTIII). Entre todos los tipos de efectores descritos hasta hoy, los efectores tipo TAL (TALEs, del inglés Transcription Activator Like Effectors) son particularmente interesantes. Una vez inyectados en la célula vegetal, los TALEs son capaces posicionarse en el núcleo celular en donde tienen la capacidad de interactuar directamente con el ADN de la planta modulando la expresión de genes. Los genes modulados mediante esta interacción benefician, en la mayoría de los casos, el progreso de la infección. En Xam sólo uno de estos efectores ha sido funcionalmente estudiado hasta ahora, se trata de TALE1Xam. Este trabajo tiene como objetivo identificar los genes de yuca cuya expresión sea modificada en presencia de TALE1Xam. Con este fin, utilizando un microarreglo con 5700 genes de yuca, el código de los efectores tipo TAL y dos lanes de RNAseq, obtuvimos targets directos de TALE1Xam. Porteriormente, a través de validación por qRT PCR, la construcción de TALEs artificiales y análisis estadísticos entre plantas inoculadas con Xam Δ TALE1Xam vs. plantas inoculadas con Xam + TALE1Xam proponemos una lista de genes candidatos regulados por TALE1Xam . Dentro de esta lista de genes, se destaca el Heat shock transcription factor B3. Finalmente, este trabajo representa la primera aproximación transcriptómica de la interacción yuca/Xam y abre por lo tanto enormes posibilidades para el estudio de este patosistema.Doctorad

    Proceedings of The Multi-Agent Logics, Languages, and Organisations Federated Workshops (MALLOW 2010)

    Get PDF
    http://ceur-ws.org/Vol-627/allproceedings.pdfInternational audienceMALLOW-2010 is a third edition of a series initiated in 2007 in Durham, and pursued in 2009 in Turin. The objective, as initially stated, is to "provide a venue where: the cost of participation was minimum; participants were able to attend various workshops, so fostering collaboration and cross-fertilization; there was a friendly atmosphere and plenty of time for networking, by maximizing the time participants spent together"

    From cluster databases to cloud storage: Providing transactional support on the cloud

    Get PDF
    Durant les últimes tres dècades, les limitacions tecnològiques (com per exemple la capacitat dels dispositius d'emmagatzematge o l'ample de banda de les xarxes de comunicació) i les creixents demandes dels usuaris (estructures d'informació, volums de dades) han conduït l'evolució de les bases de dades distribuïdes. Des dels primers repositoris de dades per arxius plans que es van desenvolupar en la dècada dels vuitanta, s'han produït importants avenços en els algoritmes de control de concurrència, protocols de replicació i en la gestió de transaccions. No obstant això, els reptes moderns d'emmagatzematge de dades que plantegen el Big Data i el cloud computing—orientats a millorar la limitacions pel que fa a escalabilitat i elasticitat de les bases de dades estàtiques—estan empenyent als professionals a relaxar algunes propietats importants dels sistemes transaccionals clàssics, cosa que exclou a diverses aplicacions les quals no poden encaixar en aquesta estratègia degut a la seva alta dependència transaccional. El propòsit d'aquesta tesi és abordar dos reptes importants encara latents en el camp de les bases de dades distribuïdes: (1) les limitacions pel que fa a escalabilitat dels sistemes transaccionals i (2) el suport transaccional en repositoris d'emmagatzematge en el núvol. Analitzar les tècniques tradicionals de control de concurrència i de replicació, utilitzades per les bases de dades clàssiques per suportar transaccions, és fonamental per identificar les raons que fan que aquests sistemes degradin el seu rendiment quan el nombre de nodes i / o quantitat de dades creix. A més, aquest anàlisi està orientat a justificar el disseny dels repositoris en el núvol que deliberadament han deixat de banda el suport transaccional. Efectivament, apropar el paradigma de l'emmagatzematge en el núvol a les aplicacions que tenen una forta dependència en les transaccions és fonamental per a la seva adaptació als requeriments actuals pel que fa a volums de dades i models de negoci. Aquesta tesi comença amb la proposta d'un simulador de protocols per a bases de dades distribuïdes estàtiques, el qual serveix com a base per a la revisió i comparativa de rendiment dels protocols de control de concurrència i les tècniques de replicació existents. Pel que fa a la escalabilitat de les bases de dades i les transaccions, s'estudien els efectes que té executar diferents perfils de transacció sota diferents condicions. Aquesta anàlisi contínua amb una revisió dels repositoris d'emmagatzematge de dades en el núvol existents—que prometen encaixar en entorns dinàmics que requereixen alta escalabilitat i disponibilitat—, el qual permet avaluar els paràmetres i característiques que aquests sistemes han sacrificat per tal de complir les necessitats actuals pel que fa a emmagatzematge de dades a gran escala. Per explorar les possibilitats que ofereix el paradigma del cloud computing en un escenari real, es presenta el desenvolupament d'una arquitectura d'emmagatzematge de dades inspirada en el cloud computing la qual s’utilitza per emmagatzemar la informació generada en les Smart Grids. Concretament, es combinen les tècniques de replicació en bases de dades transaccionals i la propagació epidèmica amb els principis de disseny usats per construir els repositoris de dades en el núvol. Les lliçons recollides en l'estudi dels protocols de replicació i control de concurrència en el simulador de base de dades, juntament amb les experiències derivades del desenvolupament del repositori de dades per a les Smart Grids, desemboquen en el que hem batejat com Epidemia: una infraestructura d'emmagatzematge per Big Data concebuda per proporcionar suport transaccional en el núvol. A més d'heretar els beneficis dels repositoris en el núvol en quant a escalabilitat, Epidemia inclou una capa de gestió de transaccions que reenvia les transaccions dels clients a un conjunt jeràrquic de particions de dades, cosa que permet al sistema oferir diferents nivells de consistència i adaptar elàsticament la seva configuració a noves demandes de càrrega de treball. Finalment, els resultats experimentals posen de manifest la viabilitat de la nostra contribució i encoratgen als professionals a continuar treballant en aquesta àrea.Durante las últimas tres décadas, las limitaciones tecnológicas (por ejemplo la capacidad de los dispositivos de almacenamiento o el ancho de banda de las redes de comunicación) y las crecientes demandas de los usuarios (estructuras de información, volúmenes de datos) han conducido la evolución de las bases de datos distribuidas. Desde los primeros repositorios de datos para archivos planos que se desarrollaron en la década de los ochenta, se han producido importantes avances en los algoritmos de control de concurrencia, protocolos de replicación y en la gestión de transacciones. Sin embargo, los retos modernos de almacenamiento de datos que plantean el Big Data y el cloud computing—orientados a mejorar la limitaciones en cuanto a escalabilidad y elasticidad de las bases de datos estáticas—están empujando a los profesionales a relajar algunas propiedades importantes de los sistemas transaccionales clásicos, lo que excluye a varias aplicaciones las cuales no pueden encajar en esta estrategia debido a su alta dependencia transaccional. El propósito de esta tesis es abordar dos retos importantes todavía latentes en el campo de las bases de datos distribuidas: (1) las limitaciones en cuanto a escalabilidad de los sistemas transaccionales y (2) el soporte transaccional en repositorios de almacenamiento en la nube. Analizar las técnicas tradicionales de control de concurrencia y de replicación, utilizadas por las bases de datos clásicas para soportar transacciones, es fundamental para identificar las razones que hacen que estos sistemas degraden su rendimiento cuando el número de nodos y/o cantidad de datos crece. Además, este análisis está orientado a justificar el diseño de los repositorios en la nube que deliberadamente han dejado de lado el soporte transaccional. Efectivamente, acercar el paradigma del almacenamiento en la nube a las aplicaciones que tienen una fuerte dependencia en las transacciones es crucial para su adaptación a los requerimientos actuales en cuanto a volúmenes de datos y modelos de negocio. Esta tesis empieza con la propuesta de un simulador de protocolos para bases de datos distribuidas estáticas, el cual sirve como base para la revisión y comparativa de rendimiento de los protocolos de control de concurrencia y las técnicas de replicación existentes. En cuanto a la escalabilidad de las bases de datos y las transacciones, se estudian los efectos que tiene ejecutar distintos perfiles de transacción bajo diferentes condiciones. Este análisis continua con una revisión de los repositorios de almacenamiento en la nube existentes—que prometen encajar en entornos dinámicos que requieren alta escalabilidad y disponibilidad—, el cual permite evaluar los parámetros y características que estos sistemas han sacrificado con el fin de cumplir las necesidades actuales en cuanto a almacenamiento de datos a gran escala. Para explorar las posibilidades que ofrece el paradigma del cloud computing en un escenario real, se presenta el desarrollo de una arquitectura de almacenamiento de datos inspirada en el cloud computing para almacenar la información generada en las Smart Grids. Concretamente, se combinan las técnicas de replicación en bases de datos transaccionales y la propagación epidémica con los principios de diseño usados para construir los repositorios de datos en la nube. Las lecciones recogidas en el estudio de los protocolos de replicación y control de concurrencia en el simulador de base de datos, junto con las experiencias derivadas del desarrollo del repositorio de datos para las Smart Grids, desembocan en lo que hemos acuñado como Epidemia: una infraestructura de almacenamiento para Big Data concebida para proporcionar soporte transaccional en la nube. Además de heredar los beneficios de los repositorios en la nube altamente en cuanto a escalabilidad, Epidemia incluye una capa de gestión de transacciones que reenvía las transacciones de los clientes a un conjunto jerárquico de particiones de datos, lo que permite al sistema ofrecer distintos niveles de consistencia y adaptar elásticamente su configuración a nuevas demandas cargas de trabajo. Por último, los resultados experimentales ponen de manifiesto la viabilidad de nuestra contribución y alientan a los profesionales a continuar trabajando en esta área.Over the past three decades, technology constraints (e.g., capacity of storage devices, communication networks bandwidth) and an ever-increasing set of user demands (e.g., information structures, data volumes) have driven the evolution of distributed databases. Since flat-file data repositories developed in the early eighties, there have been important advances in concurrency control algorithms, replication protocols, and transactions management. However, modern concerns in data storage posed by Big Data and cloud computing—related to overcome the scalability and elasticity limitations of classic databases—are pushing practitioners to relax some important properties featured by transactions, which excludes several applications that are unable to fit in this strategy due to their intrinsic transactional nature. The purpose of this thesis is to address two important challenges still latent in distributed databases: (1) the scalability limitations of transactional databases and (2) providing transactional support on cloud-based storage repositories. Analyzing the traditional concurrency control and replication techniques, used by classic databases to support transactions, is critical to identify the reasons that make these systems degrade their throughput when the number of nodes and/or amount of data rockets. Besides, this analysis is devoted to justify the design rationale behind cloud repositories in which transactions have been generally neglected. Furthermore, enabling applications which are strongly dependent on transactions to take advantage of the cloud storage paradigm is crucial for their adaptation to current data demands and business models. This dissertation starts by proposing a custom protocol simulator for static distributed databases, which serves as a basis for revising and comparing the performance of existing concurrency control protocols and replication techniques. As this thesis is especially concerned with transactions, the effects on the database scalability of different transaction profiles under different conditions are studied. This analysis is followed by a review of existing cloud storage repositories—that claim to be highly dynamic, scalable, and available—, which leads to an evaluation of the parameters and features that these systems have sacrificed in order to meet current large-scale data storage demands. To further explore the possibilities of the cloud computing paradigm in a real-world scenario, a cloud-inspired approach to store data from Smart Grids is presented. More specifically, the proposed architecture combines classic database replication techniques and epidemic updates propagation with the design principles of cloud-based storage. The key insights collected when prototyping the replication and concurrency control protocols at the database simulator, together with the experiences derived from building a large-scale storage repository for Smart Grids, are wrapped up into what we have coined as Epidemia: a storage infrastructure conceived to provide transactional support on the cloud. In addition to inheriting the benefits of highly-scalable cloud repositories, Epidemia includes a transaction management layer that forwards client transactions to a hierarchical set of data partitions, which allows the system to offer different consistency levels and elastically adapt its configuration to incoming workloads. Finally, experimental results highlight the feasibility of our contribution and encourage practitioners to further research in this area

    Online Feature-Generation of Code Fragments for XCS to Guide Feature Construction

    No full text
    Code Fragments (CFs) are a new representation for classifier conditions in Learning Classifier Systems (LCSs). CFs are Genetic Programming-like trees that use functions as internal nodes, and data input or previously learned CFs as leaf nodes for feature construction. The XCSCFC system used CFs in rule conditions of XCS, an accuracy-based Michigan-style LCS, to transfer knowledge and thus solve large-scale problems. However, the trade-off for the richness and flexibility that allows CFs to compactly describe decision boundaries results in an undesired increase in the search space of solutions. Therefore, this paper proposes a novel model extension for Online Feature-generation (OF), which enables evolving features (CFs) through an online observed list of CFs. This extension enables a method of estimating the worth of CFs to identifying the patterns in the problem in order to construct applicable high-level features. The experiments show that the XCS with OF (XOF) can solve the benchmark problems in fewer generations compared with XCSCFC in non-transfer learning scenarios. The novel search of CFs successfully built high-level features, which show the rules produced by XOF to be more generalised than previously possible. Consequently, the final solutions contain fewer rules to solve problems as they encode more compact and comprehensive decision boundaries.</p
    corecore