5,378 research outputs found

    VerdictDB: Universalizing Approximate Query Processing

    Full text link
    Despite 25 years of research in academia, approximate query processing (AQP) has had little industrial adoption. One of the major causes of this slow adoption is the reluctance of traditional vendors to make radical changes to their legacy codebases, and the preoccupation of newer vendors (e.g., SQL-on-Hadoop products) with implementing standard features. Additionally, the few AQP engines that are available are each tied to a specific platform and require users to completely abandon their existing databases---an unrealistic expectation given the infancy of the AQP technology. Therefore, we argue that a universal solution is needed: a database-agnostic approximation engine that will widen the reach of this emerging technology across various platforms. Our proposal, called VerdictDB, uses a middleware architecture that requires no changes to the backend database, and thus, can work with all off-the-shelf engines. Operating at the driver-level, VerdictDB intercepts analytical queries issued to the database and rewrites them into another query that, if executed by any standard relational engine, will yield sufficient information for computing an approximate answer. VerdictDB uses the returned result set to compute an approximate answer and error estimates, which are then passed on to the user or application. However, lack of access to the query execution layer introduces significant challenges in terms of generality, correctness, and efficiency. This paper shows how VerdictDB overcomes these challenges and delivers up to 171×\times speedup (18.45×\times on average) for a variety of existing engines, such as Impala, Spark SQL, and Amazon Redshift, while incurring less than 2.6% relative error. VerdictDB is open-sourced under Apache License.Comment: Extended technical report of the paper that appeared in Proceedings of the 2018 International Conference on Management of Data, pp. 1461-1476. ACM, 201

    PF-OLA: A High-Performance Framework for Parallel On-Line Aggregation

    Full text link
    Online aggregation provides estimates to the final result of a computation during the actual processing. The user can stop the computation as soon as the estimate is accurate enough, typically early in the execution. This allows for the interactive data exploration of the largest datasets. In this paper we introduce the first framework for parallel online aggregation in which the estimation virtually does not incur any overhead on top of the actual execution. We define a generic interface to express any estimation model that abstracts completely the execution details. We design a novel estimator specifically targeted at parallel online aggregation. When executed by the framework over a massive 8TB8\text{TB} TPC-H instance, the estimator provides accurate confidence bounds early in the execution even when the cardinality of the final result is seven orders of magnitude smaller than the dataset size and without incurring overhead.Comment: 36 page

    Database Learning: Toward a Database that Becomes Smarter Every Time

    Full text link
    In today's databases, previous query answers rarely benefit answering future queries. For the first time, to the best of our knowledge, we change this paradigm in an approximate query processing (AQP) context. We make the following observation: the answer to each query reveals some degree of knowledge about the answer to another query because their answers stem from the same underlying distribution that has produced the entire dataset. Exploiting and refining this knowledge should allow us to answer queries more analytically, rather than by reading enormous amounts of raw data. Also, processing more queries should continuously enhance our knowledge of the underlying distribution, and hence lead to increasingly faster response times for future queries. We call this novel idea---learning from past query answers---Database Learning. We exploit the principle of maximum entropy to produce answers, which are in expectation guaranteed to be more accurate than existing sample-based approximations. Empowered by this idea, we build a query engine on top of Spark SQL, called Verdict. We conduct extensive experiments on real-world query traces from a large customer of a major database vendor. Our results demonstrate that Verdict supports 73.7% of these queries, speeding them up by up to 23.0x for the same accuracy level compared to existing AQP systems.Comment: This manuscript is an extended report of the work published in ACM SIGMOD conference 201

    Speculative Approximations for Terascale Analytics

    Full text link
    Model calibration is a major challenge faced by the plethora of statistical analytics packages that are increasingly used in Big Data applications. Identifying the optimal model parameters is a time-consuming process that has to be executed from scratch for every dataset/model combination even by experienced data scientists. We argue that the incapacity to evaluate multiple parameter configurations simultaneously and the lack of support to quickly identify sub-optimal configurations are the principal causes. In this paper, we develop two database-inspired techniques for efficient model calibration. Speculative parameter testing applies advanced parallel multi-query processing methods to evaluate several configurations concurrently. The number of configurations is determined adaptively at runtime, while the configurations themselves are extracted from a distribution that is continuously learned following a Bayesian process. Online aggregation is applied to identify sub-optimal configurations early in the processing by incrementally sampling the training dataset and estimating the objective function corresponding to each configuration. We design concurrent online aggregation estimators and define halting conditions to accurately and timely stop the execution. We apply the proposed techniques to distributed gradient descent optimization -- batch and incremental -- for support vector machines and logistic regression models. We implement the resulting solutions in GLADE PF-OLA -- a state-of-the-art Big Data analytics system -- and evaluate their performance over terascale-size synthetic and real datasets. The results confirm that as many as 32 configurations can be evaluated concurrently almost as fast as one, while sub-optimal configurations are detected accurately in as little as a 1/20th1/20^{\text{th}} fraction of the time
    • …
    corecore