4 research outputs found

    Online EV Charge Scheduling Based on Time-of-Use Pricing and Peak Load Minimization: Properties and Efficient Algorithms

    Get PDF
    Electric vehicles (EVs) endow great potentials for future transportation systems, while efficient charge scheduling strategies are crucial for improving profits and mass adoption of EVs. Two critical and open issues concerning EV charging are how to minimize the total charging cost (Objective 1) and how to minimize the peak load (Objective 2). Although extensive efforts have been made to model EV charging problems, little information is available about model properties and efficient algorithms for dynamic charging problems. This paper aims to fill these gaps. For Objective 1, we demonstrate that the greedy-choice property applies, which means that a globally optimal solution can be achieved by making locally optimal greedy choices, whereas it does not apply to Objective 2. We propose a non-myopic charging strategy accounting for future demands to achieve global optimality for Objective 2. The problem is addressed by a heuristic algorithm combining a multi-commodity network flow model with customized bisection search algorithm in a rolling horizon framework. To expedite the solution efficiency, we derive the upper bound and lower bound in the bisection search based on the relationship between charging volume and parking time. We also explore the impact of demand levels and peak arrival ratios on the system performance. Results show that with prediction, the peak load can converge to a globally optimal solution, and that an optimal look-ahead time exists beyond which any prediction is ineffective. The proposed algorithm outperforms the state-of-the-art algorithms, and is robust to the variations of demand and peak arrival ratios

    Competitive Algorithms for the Online Multiple Knapsack Problem with Application to Electric Vehicle Charging

    Get PDF
    We introduce and study a general version of the fractional online knapsack problem with multiple knapsacks, heterogeneous constraints on which items can be assigned to which knapsack, and rate-limiting constraints on the assignment of items to knapsacks. This problem generalizes variations of the knapsack problem and of the one-way trading problem that have previously been treated separately, and additionally finds application to the real-time control of electric vehicle (EV) charging. We introduce a new algorithm that achieves a competitive ratio within an additive factor of one of the best achievable competitive ratios for the general problem and matches or improves upon the best-known competitive ratio for special cases in the knapsack and one-way trading literatures. Moreover, our analysis provides a novel approach to online algorithm design based on an instance-dependent primal-dual analysis that connects the identification of worst-case instances to the design of algorithms. Finally, we illustrate the proposed algorithm via trace-based experiments of EV charging

    Competitive Algorithms for the Online Multiple Knapsack Problem with Application to Electric Vehicle Charging

    Get PDF
    We introduce and study a general version of the fractional online knapsack problem with multiple knapsacks, heterogeneous constraints on which items can be assigned to which knapsack, and rate-limiting constraints on the assignment of items to knapsacks. This problem generalizes variations of the knapsack problem and of the one-way trading problem that have previously been treated separately, and additionally finds application to the real-time control of electric vehicle (EV) charging. We introduce a new algorithm that achieves a competitive ratio within an additive factor of one of the best achievable competitive ratios for the general problem and matches or improves upon the best-known competitive ratio for special cases in the knapsack and one-way trading literatures. Moreover, our analysis provides a novel approach to online algorithm design based on an instance-dependent primal-dual analysis that connects the identification of worst-case instances to the design of algorithms. Finally, we illustrate the proposed algorithm via trace-based experiments of EV charging

    Research on economic planning and operation of electric vehicle charging stations

    Get PDF
    Appropriately planning and scheduling strategies can improve the enthusiasm of Electric vehicles (EVs), reduce charging losses, and support the power grid system. Thus, this dissertation studies the planning and operating of the EV charging station. First, an EV charging station planning strategy considering the overall social cost is proposed. Then, to reduce the charging cost and guarantee the charging demand, an optimal charging scheduling method is proposed. Additionally, by considering the uncertainty of charging demand, a data-driven intelligent EV charging scheduling algorithm is proposed. Finally, a collaborative optimal routing and scheduling method is proposed
    corecore