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Abstract—Electric vehicles (EVs) endow great potentials for 

future transportation systems, while efficient charge scheduling 
strategies are crucial for improving profits and mass adoption of 
EVs. Two critical and open issues concerning EV charging are 
how to minimize the total charging cost (Objective 1) and how to 
minimize the peak load (Objective 2). Although extensive efforts 
have been made to model EV charging problems, little 
information is available about model properties and efficient 
algorithms for dynamic charging problems. This paper aims to 
fill these gaps. For Objective 1, we demonstrate that the 
greedy-choice property applies, which means that a globally 
optimal solution can be achieved by making locally optimal 
greedy choices, whereas it does not apply to Objective 2. We 
propose a non-myopic charging strategy accounting for future 
demands to achieve global optimality for Objective 2. The 
problem is addressed by a heuristic algorithm combining a 
multi-commodity network flow model with customized bisection 
search algorithm in a rolling horizon framework. To expedite the 
solution efficiency, we derive the upper bound and lower bound 
in the bisection search based on the relationship between 
charging volume and parking time. We also explore the impact of 
demand levels and peak arrival ratios on the system performance. 
Results show that with prediction, the peak load can converge to 
a globally optimal solution, and that an optimal look-ahead time 
exists beyond which any prediction is ineffective. The proposed 
algorithm outperforms the state-of-the-art algorithm, and is 
robust to the variations of demand and peak arrival ratios.  

Index Terms—Electric vehicle; Online charging; Time-of-use 
pricing; Peak load; Prediction; Heuristic. 

I. INTRODUCTION 

ITH the increasing penetration of electric vehicles, the 
charging demand will dramatically increase at charging 
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stations [1]. Since the parking time of a vehicle usually 
accounts for more than 90% of a day [2], parking lots have 
played an important role for charging EVs, especially for 
workplaces, shopping centers and entertainment areas. The 
high penetration of EVs will have a significant impact on the 
electric grid. In particular, uncoordinated EV charging will 
result in an increase in charging costs and system peak loads. 

According to the time-of-use (TOU) electricity price, the 
pricing in peak hours is approximately two or three times that 
of in off-peak hours. In the context of TOU pricing, the 
charging schedule has a great impact on charging costs. 
Generally, the parking time (e.g., duration of working hours) is 
longer than the minimum required charging time. This 
provides opportunities for commercial aggregators or charging 
service providers to charge EVs flexibly to reduce the energy 
procurement costs and maximize their profit. Therefore, one of 
the problems is how to coordinate EV charging so as to 
minimize the total charging cost. On the other hand, 
uncoordinated EV charging would increase the peak-time 
demand and overload the grid, which imposes higher strains 
on the generation units and transmission and distribution 
systems. This may lead to unexpected voltage drops and poor 
power quality [3]-[5]. To ensure a level of operational security, 
more costly peaking generators are required to overcome the 
challenges of peaking power needs. Therefore, another critical 
issue for EV charging is how to reduce the peak load. The 
purpose of this paper is to address dynamic EV charging 
problems with two aforementioned objectives: (1) minimizing 
the total charging cost; and (2) minimizing the peak load. With 
regard to Objective 2, two schemes are studied depending on 
whether the anticipated future vehicle arrivals are taken into 
account.  

The successful large-scale implementation of dynamic EV 
charging largely depends on developing efficient solution 
algorithms. Tang et al (2016) [6] provided an overview of 
online EV charge scheduling algorithms under various 
conditions and highlighted the importance of future data. From 
the modeling perspective, the dynamic charging schedule 
problem has a more complex structure than the respective 
static versions. Unlike the static versions, in the dynamic 
counterpart, the arrival times and charging information of the 
vehicles are not known in advance. A common solution to 
handle the dynamic variant is to construct a sequence of 
instances in a rolling horizon framework, where each sequence 
is treated as a static problem. However, this would greatly 
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increase computational burden and hinder the implementation 
of a real-time optimal charging solution, especially when the 
number of instances is sufficiently large. Therefore, a critical 
challenge to address the dynamic charging problem is how to 
achieve globally optimal solution in a reasonable amount of 
time. Although a variety of intelligent algorithms have been 
proposed in the literature [7], little evidence is provided about 
the model properties and efficient algorithms for dynamic 
charging problems. It is well recognized that the greedy 
algorithm, though it will not necessarily achieve a global 
optimum, is more advantageous in terms of computational 
efficiency than other algorithms since it only makes a locally 
optimal choice at each stage. A problem is characterized by the 
greedy-choice property if a globally optimal solution can be 
achieved by making locally optimal choices. In other words, 
we can make whatever choice seems best at the moment and 
then solve the subproblems that arise later. In this way, the 
computational efficiency could be improved significantly.  

Previous studies on EV charge scheduling optimization 
have not investigated the greedy-choice property, which limits 
the improvement of algorithm’s efficiency and operational 
flexibility. Meanwhile, the collective effects of coordinated 
charging control are closely related to the traffic demand, 
while in practice the mobility patterns and traffic conditions 
are very complex. With an expectation that a variety of factors 
(e.g., charging demand, arrival patterns) may exert an 
influence on the charging system, there is an imminent need to 
comprehensively evaluate how these factors affect the system 
performance, such as algorithmic efficiency and energy 
savings. Such an understanding is important for the design 
optimization of human-energy-mobility systems. This paper 
aims to fill the aforementioned methodological gaps and 
assess the impacts. 

The remainder of the paper is organized as follows. In the 
next section, literature review is given. In Section III, the 
model formulations, model properties and solution algorithms 
are provided. Section IV performs experiments to verify the 
effectiveness of our models. Finally, Section V provides 
conclusions and future works. 

TABLE I  
PRIMARY NOTATIONS USED IN THIS ARTICLE 

Notation Description 継賃 Charging volume of vehicle 倦 系迎賃 Maximum power limit of vehicle 倦 建賃銚 Arrival time of vehicle 倦 建賃鎮  Departure time of vehicle 倦 鯨劇畦劇戟鯨珍沈  1 if vehicle 倹  is parking during time window 件; 
otherwise it is 0 ッ劇 Length of the time window 軽 Number of time windows 計 Number of vehicles 劇賃 Required charging time of vehicle 倦  建賃勅 Charging end time of vehicle 倦  系賃 Cost for vehicle 倦 潔沈 Electricity unit price in time window 件 経沈  The load in time window 件 without accounting for 
current vehicle (and future vehicles) 

詣沈 The load in time window 件  accounting for current 
vehicle (and future vehicles) 詣茅 Optimal result for the peak load 戟詣 Upper bound of  詣茅 詣詣 Lower bound of 詣茅 鶏賃沈  opt. variable, Charging power available in time 
window 件 for vehicle 倦 

II. LITERATURE REVIEW 

Generally, EV charging strategies can be divided into two 
categories: decentralized strategies and centralized strategies. 
In the former strategy, EV owners can determine the charging 
time and power. The network operator can impose certain 
price incentives to achieve peak shaving and valley infilling 
[8]-[10]. Although EV owners are provided with more 
flexibility under such a strategy, the solutions may not be 
optimal from a system perspective. For the centralized 
strategy, the aggregator or service provider determines the 
charging schedule for all EVs to achieve an optimal system.  

With respect to the objectives, some efforts were made to 
minimize the total cost and maximize the profit of operators, 
while the others focused on reducing the peak load and grid 
congestion by filling the valleys. He et al [11] proposed both 
globally and locally optimal scheduling schemes for EV 
charging and discharging, in an aim to minimize the total cost. 
Sundstrom and Binding [12] optimized the charging plan to 
avoid distribution grid congestion considering the imperatives 
of EV owners. Maigha and Crow [13] investigated the 
charging coordination for valley filling and charging cost 
reduction. Bandpey and Firouzjah [14] presented a two-stage 
charging strategy for plug-in electric vehicles to reduce the 
load peak considering the nonlinear dynamic behavior of 
batteries. Robu et al (2013) [15] developed an online resource 
allocation method and applied it to EV charging, where the 
agents need to report the marginal valuation function and 
maximum consumption rate upon arrival. Jian et al [16] 
developed an efficient valley-filling strategy for centralized 
coordinated charging for large-scale EVs. Alinia et al (2019) 
[17] developed a social welfare maximization problem for 
online EV charge scheduling with the charging station 
capacity and uncertain EV arrivals, considering the on-arrival 
commitment and group-strategy-proofness. Yang et al [18] 
investigated the charge scheduling optimization problem for a 
wirelessly charged electric bus system, with the objective to 
minimize the operating electricity cost. Zhang et al [19] 
investigated delay-optimal charge scheduling for a charging 
station under long-term cost constraint. Ammous et al [20] 
considered joint delay and cost optimization of on-demand EV 
charge scheduling. 

There is also some literature that investigates the use of 
multi-objective optimization to make the trade-offs between 
different interests. For example, Kang et al [21] presented an 
EV charging scheduling system with the objective of 
minimizing negative impacts to the power grid while meeting 
the users’ charging requirements. Zakariazadeh et al [22] 
considered both minimization of total operational costs and 
emissions in the charging scheduling problem. Zhan et al [23] 
proposed a decentralized method to schedule EV charging 
loads to fill load valleys. Hajforoosh et al [5] proposed 
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algorithms that minimize the costs with related to energy 
generation and grid losses while maximizing the power 
delivered to EVs. Wu et al [24] proposed a battery swapping 
station model to determine the optimal charging scheme for 
incoming batteries, with the objective of maximizing the 
battery stock level in the station and minimizing the average 
charging damage. In addition to charging scheduling problems 
from the supply side, there also exist a handful of works on the 
management of power systems through economic incentives 
(e.g., adaptive pricing) and charging behavior from the 
demand side. For example, Zhang et al [25] proposed a pricing 
scheme to minimize the service dropping rate of charging 
stations via queuing theory.  

The mass adoption of online EV charging largely depends 
on the efficiency of solution algorithms. However, a critical 
issue of previous studies on EV charge scheduling 
optimization is that the greedy-choice property has not been 
investigated, which hinders the improvement of the algorithm 
efficiency and operational flexibility. In addition, how traffic 
conditions (e.g., charging demand, arrival patterns) exert 
influence on the system performance remains unclear. 
Distinctly from prior research, we investigate the model 
properties for these two objectives in dynamic charging 
problems. Commendably, we further propose efficient 
algorithms based on the theoretical properties, enabling the 
models’ applicability in large-scale scenarios. We also 
investigate the impact of traffic conditions (e.g., charging 
demand, arrival patterns) on the system performance. This 
research is expected to provide managerial insights for 
efficient coordinated charging control. 

To summarize, the contributions of our study include, but 
are not limited to: 

 We prove that in the ordinary sense, the dynamic 
charging problem with Objective 1 has the greedy-choice 
property that a globally optimal solution can be assembled by 
making locally optimal greedy choices, whereas the problem 
with Objective 2 cannot achieve global optimality with greedy 
choices. 

 To achieve global optimality with Objective 2, we 
propose a non-myopic charging model accounting for 
anticipated future charging requests. The model is addressed 
by a heuristic algorithm that combines a multi-commodity 
network flow model with a customized bisection search 
algorithm in a rolling horizon framework. In particular, we 
derive a set of valid inequalities for the bisection search 
algorithm to expedite the solution speed. 

 We conduct extensive numerical experiments to test 
the performance of our solution approach and derive 
significant managerial insights. In particular, our results show 
the following: 

-The demand levels and peak arrival ratios considerably 
affect the system performance.  

-With the non-myopic prediction-based strategy, the peak 
load can converge to the global optimal solution, and there is 
an optimal look-ahead time beyond which the improvement of 
any prediction is trivial. 

-The algorithm efficiency is quite good and robust to the 
variations of demand and peak arrival ratios. 

-The prediction-based strategy is robust to prediction 
uncertainty particularly under a high peak arrival ratio, which 
is very applicable to workplace charging which features 
commuting demand. 

III. MODEL DEVELOPMENT 

A. Problem Description 

With the summary of notations in Table I, we present the 
system model. We consider a time-slotted system model where 
the time horizon is divided into a number of equidistant time 
windows of length ッ劇 . Each EV 倦  is characterized by 極建賃銚┸ 建賃鎮 ┸ 系迎賃┸ 継賃玉  indicating its arrival time, departure time, 
maximum power limit, and charging volume. This information 
is available once the vehicle plugged into the system. We 
assume that there are sufficient number of chargers for all 
arrival vehicles and sufficient energy for charging. This 
assumption makes sense since in practice vehicles will not be 
allowed to enter a full parking station, and the charging lots are 
usually opened according to the design power capacity. The 
charging system creates a schedule (i.e., the charging time and 
the corresponding power for each vehicle) to achieve certain 
goals. In this study, we address two different objectives: (1) 
minimizing total charging cost and (2) minimizing the peak 
load. In practice, EVs arrive at parking lots at different times, 
such that the arrival time and other information of the vehicles 
(e.g., the charging volume and power limit) are not known in 
advance. Thus, in essence, the problem should be addressed in 
a dynamic manner. 

A rolling-horizon optimization framework is proposed in 
this study for dynamic EV charging. The research paradigm is 
shown in Fig. 1. The framework consists of two major 
components: a time window model and an optimization model. 
The inputs to the model include the vehicle arrival time, 
expected departure time, charging volume and power limit. 
The time window model calculates the number of time 
windows and numbers them according to when a vehicle 
arrives. Then, the information of time windows is passed to the 
optimization model which outputs the charging schedule for 
the arriving vehicle. 

The rolling-horizon optimization framework is event-based, 
and is triggered every time a vehicle is plugged into the system. 
At each event, the number of time windows and their indexes 
are updated. For the objective of minimizing the total charging 
cost (Fig. 1a), the only input required is the information of 
current vehicle. This is enough to optimize the solution 
globally, as will be proven in Section III.C.2). Unlike the first 
objective, to minimize the peak load (Fig. 1b), an input of the 
system load state is needed in addition to the current vehicle 
information. The input may also include future vehicles’ 
information depending on whether a prediction is incorporated. 
Then, the system load state will be updated recursively with 
the charging schedule. In the following, we first introduce the 
uncoordinated model, followed by models for two objectives. 
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a) minimizing total charging cost                                                              b) minimizing the peak load 

Fig. 1 Research paradigm of the models

B. Uncoordinated Mode 

To demonstrate the benefit of optimal charging schedules, 
the uncoordinated mode is used as the benchmark for 
comparisons, which is also commonly used in 
state-of-the-practice [15]. In this mode, the vehicle will be 
fully charged with the maximum power once plugged into the 
system. The actual end time depends on whether the fully 
charged time is larger than the due time.  

The required charging time and the charging end time of 
vehicle 倦 are formulated as follows: 劇賃 噺 継賃系迎賃 (1) 建賃勅 噺 兼件券 岫建賃銚 髪 劇賃 ┸ 建賃鎮 岻 (2) 

C. Objective 1: Minimizing the total charging cost 

Under Objective 1: minimizing the total charging cost, the 
EVs are required to charge as much as possible during 
low-price periods in order to save charging costs. Here, we 
introduce the concept of a moving time window. 

Time

Vehicle 2

 

Interval 1

Vehicle index

Vehicle 1
Interval 2 Interval 3 Interval 4

Interval 1 Interval 2 Interval 3

.

.

.

Vehicle k

.

.

.

Interval 1 Interval 2

T  
Fig. 2 Illustration of moving time windows 

As shown in Fig. 2, the time horizon is divided into a 
number of identical time windows of length ッ劇. The charging 
power in an interval is kept constant. Therefore, the number of 
time windows within the range between the vehicle arrival 
time 建賃銚 and departure time 建賃鎮  is: 軽 噺 被建賃鎮 【ッ劇非 伐 暁建賃銚【ッ劇業 (3) 

where 暁 業 is the notation of the ceiling function. 
Since an EV will start being charged only at the start time of 

a time window, additional holding time may be induced. On 
the other hand, a vehicle might leave before the end time of the 
last time window, which leads to a waste of energy. Since the 
charging power in an interval remains constant, more 
flexibility could be provided when the length of the time 
window is relatively short. In this study, the length of the time 
window (ッ劇) was taken as 1 minute. 

1) Model Formulation 
Since the pricing and arrival time of each EV are 

independent, the charging schedule of the preceding vehicles 
would not affect that of vehicles that arrive in the future. As 
such, the greedy algorithm can be used to solve the problem. 
That is, the overall schedule can be optimized by optimizing 
the charging schedule for individual vehicle (see Section 
III.C.2) for detailed proof). The formulation is given as 
follows: 

 兼件券岫デ 系賃懲賃退怠 岻 噺 デ 兼件券 岫懲賃退怠 系賃岻  (4) 
where Eq. (4) specifies that the minimum total cost over all of 
the whole period equals the summation of the minimum 
charging cost for each vehicle. As a result, the optimization 
problem for vehicle 倦 can be formulated as follows: 

 兼件券 デ 鶏賃沈 抜 弘劇 抜 潔沈朝沈退怠   (5) 
s.t. ど 判 鶏賃沈 判 系迎賃┸ 褐件 樺 岷な┸ 軽峅 (6) 
 継賃 噺 デ 岫鶏賃沈 抜 ッ劇岻朝沈退怠   (7) 
The objective function (5) minimizes the charging cost for 

vehicle 倦, and is defined as the sum of the product of the 
energy demands in each time window and the corresponding 
prices. Eq. (6) ensures that the charging power does not exceed 
the upper limit. Eq. (7) expresses that the charging volume of 
vehicle 倦  is the sum of the energy demands in each time 
window.  

2) Model Properties 
The purpose of this section is to prove that the minimum 

charging cost problem has an optimal substructure and the 
greedy-choice property. This indicates that a globally optimal 
solution can be assembled by making locally optimal greedy 
choices. In other words, the charge schedule that minimizes 
the charging cost of each individual vehicle ensures the 
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minimization of total charging cost. 
Lemma 1. The minimum charging cost problem has an 

optimal substructure: Let  底庭 denote the minimum charging 
cost problem for vehicle 糠, vehicle 糠 髪 な, …, and vehicle 紅. 
The optimal solution is 版鶏屎王底 ┸ 鶏屎王底袋怠┸ ┼ 鶏屎王廷┸ 鶏屎王廷袋怠┸ ┼ ┸ 鶏屎王庭繁, and the 

corresponding objective function value is デ 系賃庭賃退底 . Then for 
the subproblems  底廷 and 鯨岫廷袋怠岻庭, their optimal solutions are 岶鶏屎王底 ┸ 鶏屎王底袋怠┸ ┼鶏屎王廷岼 and 版鶏屎王廷袋怠┸ 鶏屎王廷袋態┸ ┼ ┸ 鶏屎王庭繁, respectively, and the 

corresponding objective function values are デ 系賃庭賃退底  and デ 系賃庭賃退廷袋怠 , respectively. 
Lemma 2. The minimum charging cost problem has a 

greedy-choice property: for any nonempty subproblem  底庭 , 

let { 鶏屎王碇 } denote the charging schedule of vehicle 紅  in 
chronological order, then 鶏屎王碇 belongs to one of the solution sets. 

Proposition 1. The minimum charging cost problem has the 
greedy-choice property which means that a globally optimal 
solution can be assembled by making locally optimal greedy 
choices. 

D. Objective 2: Minimizing the peak load 

As discussed above, uncoordinated EV charging would 
increase the peak-time demand and overload the grid, which 
imposes higher strains on the generation units, and 
transmission and distribution systems. As such, another 
objective, which is very relevant to EV charging, is to 
minimize the peak load. The principle is to transfer the 
charging load from the peak hours to off-peak hours to achieve 
load valley-filling and reduce the peak demand load. 

In line with Section III.C, the studied period is divided into 
a number of time windows with a length of ッ劇. Let 経屎屎王 denote 
the system load vector across time windows, in which the 
value of each component is set to 0 initially. Given a newly 
arriving vehicle and the corresponding charging schedule 鶏屎王賃, 
the system load state will be updated as follows. 
 経屎屎王 柑噺 経屎屎王 髪 鶏屎王賃 (8) 
1) Model Formulation 

Similar to Section III.C, we develop an optimization model 
for vehicle 倦 with the objective of minimum peak load, which 
can be formulated as follows: 

 兼件券 兼欠捲沈樺岷怠┸朝峅 詣沈  (9) 

s.t. 経沈 髪 鶏賃沈 噺 詣沈 ┸ 褐件 樺 岷な┸ 軽峅 (10) 
 継賃 噺 デ 岫鶏賃沈 抜 つ劇岻朝沈退怠   (11) 
 ど 判 鶏賃沈 判 系迎賃┸ 褐件 樺 岷な┸ 軽峅 (12) 

Eq. (9) is the objective function for minimizing the peak 
load. Eq. (10) calculates the load of each time window. Eq. (11) 
specifies that the total charging volume of vehicle 倦 equals the 
summation of the charging volumes of each time window. Eq. 
(12) ensures that the charging power 鶏賃沈  does not exceed the 
power limit of vehicle 倦 . 詣沈  represents the load in time 
window 件 accounting for vehicle 倦. 経沈  denotes the load in time 
window 件 without accounting for vehicle 倦, which is also a 
component of the system load vector 経屎屎王. 鶏賃沈  is a component of 
the charging vector 鶏屎王賃.  
2) Model properties 
Proposition 2. The minimum peak load problem does not 
have the greedy-choice property. 

E. A non-myopic prediction-based charging strategy for 
Objective 2 

Proposition 2 indicates that the problem cannot be 
optimized globally by making greedy-choices for each vehicle. 
Taking Fig. 18 as an example, if the information of vehicle 2 
can be known in advance or predicted, and vehicle 1 is charged 
with a relatively larger power as shown in Fig. 18(b) before 
vehicle 2 arrives, more idle power capacity could be available 
for later arriving vehicles. In this way, global optimality could 
be achieved. The commuting patterns, particularly on 
workdays, are quite regular and can be reproduced to a certain 
extent. This opens up more opportunities for optimal charging 
via prediction. Motivated by this observation, we propose a 
non-myopic charging strategy, which accounts for anticipated 
future requests, to achieve a globally optimal solution with 
Objective 2. 

Time

Vehicle 
k+1

Interval 1

Vehicle index

Vehicle
k

Interval 2 Interval 4 Interval 5 Interval 6

.

.

.

Vehicle 
k+m

Interval 3

Future 
vehicle

Current 
vehicle

Look-ahead time

 
Fig. 3 Illustration of time windows and look-ahead time 

To illustrate the prediction-based strategy, as shown in Fig. 
3, once vehicle 倦  arrives, the system will first predict the 
relevant information for future vehicles 倦 髪 な┸ 倦 髪 に┸┼ ┸ 倦 髪兼  within the look-ahead time, such as the arrival time, 
charging volume and power limits. Subsequently, the charging 
schedule for vehicle 倦  will be made accounting for the 
predicted information of future vehicles. 

The time windows are numbered from the arrival time of 
current vehicle 倦 to the departure time of all vehicles predicted 
to arrive within the look-ahead time. At the instant when 
vehicle 倦 arrives, the number of time windows is given as 
follows: 
 軽 噺 被兼欠捲 岫建賃鎮 ┸ 建賃袋怠鎮 ┸ ┼ ┸ 建賃袋陳鎮 岻【ッ劇非 伐 暁建賃銚【ッ劇業 (13) 

To track the parking state of each vehicle, we introduce a 
new variable 鯨劇畦劇戟鯨珍沈  to indicate whether vehicle  倹 岫倹 樺岷倦┸ 倦 髪 兼峅岻 is parking during time window 件 岫件 樺 岷な┸ 軽峅岻. If 
the vehicle is parking, 鯨劇畦劇戟鯨珍沈 噺 な; otherwise, 鯨劇畦劇戟鯨珍沈 噺ど. For example, if vehicle 倦  is parking in interval 2, then 鯨劇畦劇戟鯨賃態 噺 な; if vehicle 倦 髪 兼 is not parking in interval 2, 
then 鯨劇畦劇戟鯨岫賃袋陳岻態 噺 ど. 

Naturally, when the look-ahead time is long, more future 
vehicles can be included, and the outcome will be closer to the 
globally optimal solution. However, a longer look-ahead time 
increases the computational burden. Therefore, it is necessary 
to find the optimal look-ahead time by balancing the algorithm 
effectiveness and efficiency. 
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1) Model formulation 
For a newly arriving vehicle 倦 and the corresponding 兼 

vehicles within the look-ahead time, the minimum peak load 
problem can be formulated as follows: 
 兼件券 兼欠捲沈樺岷怠┸朝峅 詣沈 (14) 

s.t. 経沈 髪 デ 鶏珍沈賃袋陳珍退賃 噺 詣沈 ┸ 褐件 樺 岷な┸軽峅  (15) 
 継珍 噺 デ 盤鶏珍沈 抜 つ劇匪┸朝沈退怠 褐倹 樺 岷倦┸ 倦 髪 兼峅  (16) 
 犯 ど 判 鶏珍沈 判 系迎珍 ┸ 件血 鯨劇畦劇戟鯨珍沈 噺 な鶏珍沈 噺 ど               ┸ 件血 鯨劇畦劇戟鯨珍沈 噺 ど  褐件 樺 岷な┸ 軽峅┸ 褐倹 樺 岷倦┸ 倦 髪 兼峅 (17) 

Eq. (14) is the objective function that minimizes the peak 
load. Eq. (15) calculates the load of each time window. Eq. 
(16) specifies that the total charging volume of each vehicle 倹 樺 岷倦┸ 倦 髪 兼峅 equals the summation of the charging volume 
in each time window. Eq. (17) ensures that if vehicle 倹  is 
parking in time window 件, the decision variable 鶏珍沈  should not 
exceed the power limit of vehicle 倦 ; otherwise, it is 0.  詣沈  
represents the load in time window 件 accounting for vehicles 倦ｂ倦 髪 兼 . 経沈  denotes the load in time window 件  without 
accounting for vehicles 倦ｂ倦 髪 兼.  

2) Solution method 
To solve this conundrum, we propose a heuristic algorithm 

that combines multi-commodity network flow model with a 
customized bisection search in a rolling horizon framework. 
The heuristic algorithm can be divided into two processes: (a) 
determination of system’s optimal load and (b) assignment of 
the charging power 鶏珍沈  to different time windows. In this 
heuristic algorithm, 詣  and 鶏珍沈  are decision variables, where 詣┺噺 兼欠捲沈樺朝 詣沈  is the objective function in maximum flow 
problem and the decision variable in the bisection search 
algorithm. Let us consider 詣茅 be the optimal result for the peak 
load, then there are two possible outcomes. When 詣 隼 詣茅, then 
the charging demand of at least one vehicle cannot be satisfied; 
when 詣 伴 詣茅, 詣 is not an optional solution, although it satisfies 
the constraints. Hence, we adopt a bisection search algorithm 
to determine the optimal load 詣茅 within the upper limit 戟詣 and 
lower limit 詣詣. Given the load 詣, the charging events across 
time windows can be represented by the multi-commodity 
network flow model. The question is how to distribute the 
charging power 鶏珍沈  while satisfying the charging demands. 
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Fig. 4 Representation of the network flow model 

 Representation of network flow 
The problem can be abstracted as a maximum flow 

problem, which involves finding a maximum flow through a 
single-source, single-sink flow network. The objective is to 
determine the charging power 鶏珍沈  given a predefined system 
load 詣, while satisfying the charging demands. For a newly 
arriving vehicle 倦 and the future predicted vehicles 倦 髪 な┸ 倦 髪に┸┼ ┸ 倦 髪兼, the following notations are used to represent the 
flow network  罫 噺 岫撃┸ 畦岻: 

 The set of nodes 撃  consists of (i) the origin of the 
network, 頚, (ii) the destination of the network, 経 , (iii) the 
vehicle nodes 倦┸ 倦 髪 な┸ 倦 髪 に┸┼倦 髪 兼, with 兼 髪 な nodes in 
total, (iv) the time window nodes な┸に┸ぬ┸ ┼ ┸ 軽, with 軽 nodes in 
total. 

 The set of edges 畦 consists of (i) the edges between the 
origin of network, 頚, and the vehicle nodes, which is 兼 髪 な 
edges in total, (ii) the edges between the vehicle nodes and the 
time window nodes, with no more than 軽岫兼 髪 な岻 edges in 

total, (iii) the edges between the time window nodes and the 
destination of network 経, with 軽 edges in total. 

Fig. 4 shows the problem representation characterized by 
the network flow model. The value on each link represents the 
flow capacity. The number of links originating from the origin 
equals the number of vehicles, and the link flow 継賃 represents 
the charging volume required by vehicle 倦. The time window 
nodes connected by vehicle 倦  represent the corresponding 
charging time. The charging volume in each time window 
should not exceed the product of the maximum power limit 
and length of the time window. The link capacity from a time 
window node to the destination node specifies that in this time 
window, the total charging volume should not exceed a critical 
value, which equals the product of the time window length ッ劇 
and the deviation between the maximum load and the current 
system load 詣 伐 経沈 . 

Obviously, the maximum flow will not exceed デ 継珍賃袋陳珍退賃 . If 

the network maximum flow is equal to デ 継珍賃袋陳珍退賃 , then the 
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charging demand is satisfied. On the other hand, if the 
maximum flow is less than デ 継珍賃袋陳珍退賃 , then there is unmet 
charging demand. Typically, there is no closed-form solution 
for the exact 詣茅  value. We can use the following bisection 
search approach to find an approximation of 詣茅, which can be 
arbitrarily close to the true optimal value. 
 Bisection search 

Given the upper and lower bound 戟詣 and 詣詣 (see Upper 
bound and lower bound of 詣茅 in Section III.E.2)), we can use 
the following bisection method in Algorithm 1 to find the 
optimal load 詣茅. More specifically, develop a network flow 
model  罫 噺 岫撃┸ 畦岻 given 詣 噺 岫戟詣 髪 詣詣岻【に, and solve it using 
typical maximum flow algorithm, such as the Ford-Fulkerson 
algorithm. If the charging demand is satisfied, then 戟詣 噺 詣; 
otherwise, 詣詣 噺 詣. Through a number of iterations, there will 
exist an approximation of 詣  close to 詣茅  within a certain 
accuracy threshold. Based on this, the charging schedule for 
vehicle 倦 can be obtained. 

Algorithm 1 The bisection method to approximate 詣茅 
INPUT: upper limits 戟詣, lower limits 詣詣, accuracy 

threshold 
1:  while 戟詣 伐 詣詣 隼 accuracy threshold 
2:    詣┺噺 岫戟詣 髪 詣詣岻【に; 
3:    Develop a network flow model  罫 噺 岫撃┸ 畦岻 given 詣, 
and solve it using solve it using typical maximum flow 
algorithm, such as the Ford-Fulkerson algorithm; 
4:    if the charging demand is satisfied then  
5:      戟詣 噺 詣; 
6:    else 
7:      詣詣 噺 詣; 
8:    end if 
9:  end while 
  RETURN: charging schedule for vehicle 倦 

 Upper bound and lower bound of 鯖茅 
In this section, we derive the upper bound and lower bound 

on the peak load. We rely on these bounds in the bisection 
search algorithm to restrict the solution space. When the 
optimal load peak 詣茅 is found, the charging demand is satisfied 
exactly with a maximum flow of デ 継珍賃袋陳珍退賃 . In Fig. 4, the 
destination and other nodes apart from the destination can be 
treated as a cut set with a capacity of 岫軽 ゲ 詣茅 伐 デ 経沈朝沈退怠 岻 ゲ ッ劇. 
According to the max-flow min-cut theorem, the volume of 
any feasible flow should not exceed the capacity of any cut set. 
This is equivalent to the relaxation of constraints, see detailed 
proof in Proposition 4. Therefore, we have the following 
inequalities: 
 岫軽 ゲ 詣茅 伐 デ 経沈朝沈退怠 岻 ゲ ッ劇 半 デ 継珍賃袋陳珍退賃   (18) 

To avoid the nonnegative link, the optimal peak load 詣茅 
should not be less than the system load 経沈  in each time 
window. 
 詣茅 半 経沈 ┸ 褐件 樺 岷な┸ 軽峅 (19) 

To further reduce the computational complexity, the lower 
bound can be the greater of Eqs. (18) and (19), that is, 詣詣 噺兼欠捲盤岫デ 継珍【ッ劇賃袋陳珍退賃 髪 デ 経沈朝沈退怠 岻【軽┸兼欠捲沈樺岷怠┸朝峅経沈匪   (20) 

 For the minimization problem, the upper bound 
corresponds to the value of objective function given any 
feasible solution satisfying the constraints. If all vehicles start 

being charged at the arrival time with “minimum power” so 
that they are fully charged immediately before the departure 
time, then the charging power of vehicle 倹 is: 崔鶏珍沈 噺 継珍建珍銚 伐 建珍鎮 ┸ 件血 鯨劇畦劇戟鯨珍沈 噺 な鶏珍沈 噺 ど           ┸ 件血 鯨劇畦劇戟鯨珍沈 噺 ど  褐件 樺 岷な┸ 軽峅┸ 褐倹 樺 岷倦┸ 倦 髪 兼峅 

(21) 

Evidently, such a solution satisfies all constraints. 
Substituting Eq. (21) into Eq. (15) yields the upper bound of 
the objective function as follows: 
 戟詣 噺 兼欠捲沈樺岷怠┸朝峅岫経沈 髪 デ 鶏珍沈賃袋陳珍退賃 岻  (22) 

3) Model properties 
In the previous sections, we have shown that the 

prediction-based charging strategy can be abstracted as a 
network flow model that can be solved by the maximum flow 
and the bisection search method. We now investigate the 
complexity of the heuristic algorithm. 
Proposition 3. Assume that the number of bisection searches 
is 血 times, such a prediction-based charging strategy can be 
solved in polynomial time with complexity of 頚岫撃畦態血岻. 
Proposition 4. For the peak load minimization problem, the 
lower bound is the results under the relaxation of 
constraints. 経沈 髪 デ 鶏珍沈賃袋陳珍退賃 判 詣┸ 褐件 樺 岷な┸ 軽峅 
4) Prediction of vehicle information 

For the prediction-based charging strategy, the information 
of future arriving vehicles within the look-ahead time should 
be provided. The charging station can have full knowledge of 
future demand. This can be realized for instance, by requiring 
that EV owners book a parking lot along with their arrival time 
and charging demand through parking reservation systems 
[17][26][27]. Before the parking reservation systems are fully 
enforced, the charging station may also gain partial knowledge 
on future demand by prediction [6]. In practice, the commuting 
patterns, particularly on workdays, are quite regular and can be 
estimated to a certain extent. Thus, the statistics of EV arrival 
process often exhibit periodicity. For example, the arrival rate 
of residential EV charging demand could have a periodicity 
where the period is one day. Given this fact, the vehicle state 
information can be estimated based on historical data.  

In this section, we propose a potential prediction approach 
for future arriving vehicles based on historic data (though 
being not the research focus of this paper). In principle, it can 
be substituted by any other methods or empirical rules, which 
would not affect the generalization of the framework. A 
prediction is triggered each time a vehicle arrives. In this study, 
the kernel density estimation model is adopted to establish a 
curve representing the historic accumulative vehicle arrivals 
versus arrival time. With the fitted curve, the arrival time and 
the number of future vehicle 兼 within a rolling horizon can be 
estimated. This is done by moving horizontally on the diagram 
for each arriving vehicle until intersecting the cumulative 
curve and then vertically; this results in the predicted arrival 
time. Other various machine learning-based algorithms in the 
literature can also be adopted to predict vehicle arrival time, 
which is out of the scope of this study. We now discuss the 
prediction of other vehicle state information (i.e., the parking 
time, charging volume, and power limit), given that the 
predicted future vehicle arrival time.  
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Since the charging volume and parking time are continuous 
variables, it is reasonable to take the average of the historical 
data as the predicted values. In contrast, the charging power 
limit is a discrete variable. According to the principle of 
maximum likelihood, it is more reasonable to take the mode of 
the historical data as an estimate, where the mode represents 
the value that is repeated most often in the dataset. Given the 
arrival time 建賃銚 for vehicle 倦 and the corresponding look-ahead 
time, the solution framework for prediction is provided in 
Algorithm 2. The validation of prediction accuracy will be 
provided in Section IV.E. 

Algorithm 2 Solution framework for predicting state 
information of future arriving vehicles 

INPUT: vehicle information 岫建賃銚┸ 建賃鎮 ┸ 継賃 ┸ 系迎賃) 
1: Obtain the arrival time for 兼  vehicles during the 
look-ahead time, 建賃袋怠銚 ┸ 建賃袋態銚 ┸ ┼ ┸ 建賃袋陳銚 ┻ 
2:  For the predicted vehicle 倹岫倹 樺 岷倦 髪 な┸ 倦 髪 兼峅岻 arriving 
at time 建珍銚, estimate the charging volume, parking time, and 
charging power limit using historical data within a duration 
of 15 minutes. More specifically, take the average of 
charging volume and parking time, and the mode of the 
charging power limit of vehicles arriving from 備建珍銚【なの毘 抜なの to 磐尾痛乳尼怠泰琵 髪 な卑 抜 なの as the estimate. 

3:  Repeat the above processes until the prediction for 兼 
vehicles is completed. 

RETURN: prediction for 兼 vehicles, arriving within the 
look-ahead time, of (系迎珍, 継珍, 建珍銚, 建珍鎮(倹 樺 岷倦 髪 な┸ 倦 髪 兼峅)) 

IV. SIMULATION EXAMPLE 

A. Case Description 

The study case is the Citic Plaza, a multi-story car park in 
Guangzhou, with a total of 900 parking spaces. The historical 
vehicle arrival information is utilized to mimic the workplace 
charging, and it is found that the arrival time of commuting 
vehicles follows a normal distribution 軽岫ひ┸ ど┻の態岻 with a mean 
of 9 (h) and a standard deviation of 0.5 (h), while the arrival 
time of other vehicles follows a uniform distribution 戟岫ど┸にね岻. 
In addition, the parking time for overall vehicles follows a 
normal distribution 軽岫ぱ┸ ど┻の態岻 with a mean of 8 (h) and a 
standard deviation of 0.5 (h). The corresponding number of 
parking spaces is assumed to be the maximum number of 
charging lots.  

 
Fig. 5 Time of use charging price 

Fig. 5 shows the commercial time-of-use electricity price 
for the parking lot. The price is the lowest from 24:00 to 08:00, 
while it is the highest in the period of 14:00 to 17:00 and 19:00 
to 22:00. Generally, an EV consumes 15 to 20 kw per 100 
kilometers. According to our survey, the average daily travel 
distance in Guangzhou is 36-40 kilometers. Then, the 
minimum and maximum power consumption can be calculated 
as ぬは 抜 なの などどエ 噺 の┻ね    and ねど 抜 にど などどエ 噺 ぱ   , 
respectively. Therefore, the required charging volume is 
approximated as a uniform distribution 戟岫の┻ね┸ぱ岻. Since there 
are a total of 900 parking spaces in the Citic Plaza, the 
numbers of arriving vehicles are taken as 900, 600, 300 under 
high, moderate, and low demand circumstances, respectively. 

B. Optimization of look-ahead time 

The look-ahead time, during which a number of future 
charging requests are taken into account, is a new feature in the 
prediction-based coordinated charging strategy (Section III, E). 
In this section, we analyze the impact of the length of the 
look-ahead time on system performance. Generally, a longer 
look-ahead time indicates that the charging decision is made 
coordinately with more information of historical vehicles is 
utilized for prediction, which may improve the prediction 
accuracy. However, a longer look-ahead time will also 
increase the computational burden. Therefore, it is imperative 
to optimize the look-ahead time by balancing the algorithm’s 
effectiveness and efficiency. 

 
Fig. 6 The peak load under different look-ahead times 

To illustrate, let us consider a case where the peak arrival 
ratio is 50%, and the demand level is low. The peak arrival 
ratio is defined as the ratio of the number of commuting 
vehicles (numerator) to the total number of vehicles 
(denominator). Generally, a higher peak arrival ratio indicates 
a more regular commuting pattern. The myopic charging 
strategy without prediction can be regarded as a special case of 
a non-myopic strategy without any look-ahead time. We 
generated 30-day datasets according to the aforementioned 
distributions. Fig. 6 shows the peak load under different 
look-ahead times using a box and whisker plot. The peak load 
decreases in an exponential manner with increases in the 
look-ahead time. This indicates that an increase in the number 
of anticipated arriving vehicles contributes to reducing the 
peak load. However, there is a cut-off point (3 h in this case) 
beyond which the reduction of peak load becomes trivial. In 
other words, there is a non-effect region for prediction. 
Therefore, to ensure algorithm effectiveness and efficiency, 
the optimal look-ahead time can be set as 3 h. 

We further investigate the optimal look-ahead time under 
various combinations of peak arrival ratios and demand levels, 
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and the results are shown in Fig. 7. The vertical lines in the 
figures represent the optimal look-ahead time. As we can see, 
the optimal look-ahead time decreases as the peak arrival ratio 
increases. This is because a higher peak arrival ratio indicates a 
more concentrated arrival time distribution for commuting 
vehicles and a weakened influence of vehicles arriving during 
off-peak hours, such that the system performance will rely 
more on the vehicles arriving in peak hours. As a result, a 
shorter look-ahead time is required to forecast the vehicle 
arrivals when the peak arrival ratio is higher. We also observe 
that the optimal look-ahead time is longer when the demand 
level is higher. One potential reason is that with a higher 
demand, the effect of future arriving vehicles becomes more 
significant. Consequently, more predicted vehicles (and thus 
longer look-ahead time) are needed to achieve a better 
performance. 

 
Fig. 7 The peak load under different look-ahead time, peak arrival ratios, and 
demand levels 

C. Computation performances of the proposed algorithm 

In this section, we analyze the computational efficiency of 
the proposed algorithm. The search times of the bisection 
search algorithm is determined by the initial upper and lower 
bounds. To reduce the accumulated errors while improving the 
computation efficiency, in this study the convergence 
threshold is set as 0.01 kW. 

 
Fig. 8 The performance of the algorithm with dynamic arriving vehicles 

Fig. 8 shows the change of initial upper bound, lower 
bound and the corresponding optimal value, as well as the 

search times with dynamic arriving vehicles over time, where 
the demand is high and the peak arrival ratio is 90%. As we can 
see, the optimal value is closer to the lower bound, and the 
optimal value begins to be identical to the lower bound after 
100-th vehicle arrives, which corresponds to the rush hour 
when the peak load happens. With the increase of arriving 
vehicles, the search times (the number of iterations) first 
increases before hitting the threshold, followed by a long 
plateau, and then decreases drastically to 0. This is because the 
heavy charging demand during the peak hours enlarges the 
difference between the upper bound and lower bound, which 
leads to more search times. During the off-peak hours, the 
(historic) peak load remains the same, and the gap between the 
upper bound and lower bound narrows down, which leads to 
the reduction of search times. The search times drops to 0 
immediately after the last vehicle arrives. Overall, the 
computational efficiency is quite good, with an average search 
times of 14. 

 
(a) with optimal look-ahead time  

 
(b) with various look-ahead time 

Fig. 9 Search times under various demand levels and peak arrival ratios  
We analyze the algorithm performance under different 

traffic conditions using the 30-day datasets. Fig. 9(a) shows 
the search times under various demand levels and peak arrival 
ratios using a box and whisker plot, given the optimal 
look-ahead time. One can see that the algorithm requires a 
larger number of iterations to reach the optimal solution as the 
demand level increases, which is expected since higher 
charging demand enlarges the difference between the upper 
bound and lower bound. On the other hand, the search times 
changes slightly with the increase of peak arrival ratio. This 
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indicates that peak arrival ratio has little influence on the 
difference between the upper bound and lower bound. 

Fig. 9(b) presents the search times under various demand 
levels and peak arrival ratios with various look-ahead time. We 
observe that the search times increases with the increase of 
look-ahead time, which is due to the increasing number of 
variables (vehicles) that are added to the calculation at each 
iteration. In addition, when the peak arrival ratio is higher, the 
impact of look-ahead time on the search times becomes less 
significant. This is because the number of vehicles involved in 
calculation is already large under high peak arrival ratio, such 
that any increase of look-ahead time contributes less to the 
search times. 

 
Fig. 10 Comparison of computational time 

In the literature, a variety of intelligent algorithms have 
been proposed to deal with EV charge scheduling problems [5]. 
To validate the advantage of algorithmic computation 
efficiency, it is imperative to compare the computational time 
of our proposed algorithm with those of the state-of-the-art 
algorithms. To be representative, we select the genetic 
algorithm (GA) as the benchmark, which is a typical type of 
intelligent algorithms with random search. The programs are 
implemented in Matlab 2018b on an Intel(R) 
Core(TM) i5-5200U CPU @ 2.20 GHz with 8.0GB DDR3. To 
illustrate, let us consider a case where the peak arrival ratio is 
10%, and the demand level is low. Fig. 10 shows the average 
CPU time for five instances (the first five arriving vehicles) 
under different look-ahead time. As we can see, the solution 
time of GA is significantly higher than that of our algorithm, 
and the gap becomes larger when the look-ahead time 
increases. More specifically, the solution time of our algorithm 
only needs less than 0.5 second in all scenarios, whereas that 
of GA increases rapidly as the look-ahead time increases, and 
consumes approximately 10 min with only a prediction 
horizon of one hour. This suggests that the proposed algorithm 
can be efficiently applicable for online charge scheduling. On 
the contrary, GA cannot be used for online scheduling since it 
is nearly impossible to obtain the optimal results in a 
reasonable time, particularly when the demand is heavy and 
the look-ahead time is long. Better still, from the error bars we 
observed that the stability of our algorithm is much stronger 
than that of GA. 

D. Model comparisons 

In this section, we compare the system performance for 
different charging strategies. Our optimization models can be 
retrofitted to include multiple objectives by using a 
lexicographic method. The principle is that after the first 

objective is optimized, the result is added to the model of the 
second objective as a constraint in the second stage. This 
ensures that the total cost is not worse than the result of the 
first stage. Since the peak load minimization is associated with 
the power capacity design, here the first objective is to 
minimize the peak load while the second objective is to 
minimize the charging cost. Taking the base case as an 
example (peak arrival ratio of 50% and a low demand level), 
we conduct simulations for the following models: 
Uncoordinated, Objective 1, Objective 2 without prediction, 
Objective 2 with prediction (under optimal look-ahead time), 
and Bi-objective. The system load and charging cost are 
selected as the evaluation indicators. 

 
Fig. 11 The charging power profile under different strategies 

Fig. 11 shows the aggregated charging power under 
different strategies. As presented, the charging power first 
increases and then drops during the period from 08:00-10:00 
under the uncoordinated strategy. The charging power is 
distributed in the low-price period under Objective 1. In 
comparison, the peak load is the lowest and appears as a 
smooth hump under Objective 2 with prediction. In particular, 
compared to Objective 2 without prediction, the charging 
power reaches its peak earlier and is spread over a wider range. 
This is because with prediction, the system is able to charge 
the vehicles with a relatively larger power demand in advance, 
which reduces the future peak load. Under the bi-objective 
strategy, the peak load is identical to that of Objective 2 with 
prediction, while the charging power during evening peak 
spreads over a wider range of low tariff period. 

TABLE II  
SYSTEM PERFORMANCE UNDER DIFFERENT STRATEGIES 

Performance Uncoordinated 
Objective 

1 
Objective 

2 

Objective 
2 with 

prediction 

Bi- 
objective 

Peak load 
power (kw) 

663.90 301.76 152.10 123.14 123.10 

Total 
charging cost 

(RMB) 
1261.02 1089.70 1445.79 1424.36 1307.24 

Average 
charging cost 
(RMB/veh) 

4.20 3.63 4.82 4.75 4.36 

Solving the optimization problems for the collected 
datasets under the different strategies yields the system 
performance shown in Table II compared to the uncoordinated 
strategy, the peak load and charging cost are considerably 
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lower under Objective 1. The total cost savings for 300 
vehicles is 171.32 RMB with an average savings rate of 
13.57%. The peak load reductions under Objective 2 with and 
without prediction are 81.45% and 77.09%, respectively, at the 
expense of an increase in charging costs of 14.65% (0.62 RMB 
per vehicle) and 12.95% (0.55 RMB per vehicle), respectively. 
Compared with Objective 1, the peak load reductions under 
Objective 2 with and without prediction are 59.19%and 49.6%, 
respectively. Compared to Objective 2 with prediction, the 
total charging cost under bi-objective strategy is reduced by 
8.22% (0.39 RMB per vehicle), while maintaining the same 
peak load.  

 
Fig. 12 Charging cost savings under Objective 1 relative to the uncoordinated 
strategy 

To further verify the effectiveness of the models, a 
sensitivity analysis is conducted under various demand levels 
and peak arrival ratios. Again, the 30-day datasets are used for 
each experiment. Fig. 12 shows the cost savings under 
Objective 1 relative to the uncoordinated strategy. One can see 
that the cost savings decrease with the increases in the peak 
arrival ratio. This is because a number of vehicles arriving 
during peak hours would still be charged during the high-price 
period due to their expected departure time, such that the cost 
savings during off-peak hours is larger than that during peak 
hours. As a result, less cost savings can be expected when the 
peak arrival ratio is higher. 

Fig. 13(a) presents the peak load savings by Objective 2 
with prediction relative to the uncoordinated strategy. As we 
can see, the savings increase with the increase in peak arrival 
ratio at a decreasing rate. When the peak arrival ratio reaches 
0.4, the improvements become trivial. This is because as 
vehicles arrival become denser, the system will assign more 
vehicles to charge during off-peak hours, which contributes to 
load leveling. However, due to parking and departure time 
constraints, load leveling could become more difficult with an 
increase of the peak arrival ratio. 

Fig. 13(b) presents the peak load savings under Objective 2 
with prediction. The prediction could lead to load reduction of 
13.4%-28.8%. The savings are reduced as the peak arrival 
ratio increases, and the savings increase as the demand level 
increases. As concluded in Section IV.B, a higher peak arrival 
ratio contributes to reducing the optimal look-ahead time, 
while a higher demand level leads to a longer optimal 
look-ahead time. In other words, when the peak arrival ratio is 
higher and the demand level is lower, the effect of the 

look-ahead time is weakened such that the performance 
difference of strategies with and without prediction will 
decrease. 

 
(a) 

 
(b) 

Fig. 13 Peak load savings under Objective 2 with prediction relative to: (a) the 
uncoordinated strategy; (b) Objective 2 without prediction 

Moreover, we observe from Fig. 12 and Fig. 13(a) that the 
impact of demand levels is insignificant, particularly at high 
demand levels. For Objective 1, minimizing the total charging 
cost is effectively equivalent to minimizing the charging cost 
for each vehicle individually (Proposition 1). Since the cost 
savings for each vehicle is independent of the demand level, 
the impact of the demand level on the total cost savings would 
be limited. In contrast, the charging demand can be 
coordinated under Objective 2 with prediction, which 
mitigates the effect of the demand level to a large extent. 

In addition, according to the error bars in Fig. 12 and Fig. 
13, the savings variability generally decreases with increases 
in the peak arrival ratio or the demand level. This is because 
the vehicle arrival is a stochastic event; when the demand level 
is higher, the saving would be closer to an expected value. On 
the other hand, the commuting vehicles will account for a 
larger proportion as the peak arrival ratio increases. Since the 
arrival pattern of commuting vehicles is more regular and 
predictable, a lower variability of savings can be expected. 

E. Stability analysis of the prediction-based strategy 

While it is shown that the non-myopic charging strategy 
with prediction could reduce the peak load, it is not uncommon 
for an operator to face prediction uncertainties in practice. 
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Thus, it is imperative to verify the stability of such a strategy 
under various scenarios. In this section, using the prediction 
method proposed in Section III.E.4) (Algorithm 2) and a 
cross-validation method, the impact of the prediction error on 
the system performance is explored under different peak 
arrival ratios and demand levels. To this end, the entire 30-day 
data are divided into training data (80%, 1st-24th day) and 
testing samples (20%, 25th-30th day). 

 
Fig. 14 Prediction performance of Algorithm 1 for parking time, power limit 
and charge volume 

Fig. 14 shows the prediction performance of Algorithm 2 
for parking time, power limit (CR) and charge volume (E) 
under different scenarios. As we can see, the mean absolute 
percentage errors (MAPEs) of power limit and charge volume 
do not vary across different scenarios, whereas that of parking 
time is reduced as the peak arrival ratio increases. This is 
because the commuting demand is in the majority during rush 
hours, such that the parking time is quite regular. 

 
Fig. 15 System load profile under Objective 2 

As an illustration, let us consider a case where the peak 
arrival ratio is 50% and under low demand. The vehicle state 
information of the 25th day is forecasted using the historical 
data (1st-24th day). With the predicted information, the 
charging schedule and the corresponding power profile are 
generated. The results are compared with those of without 
prediction and perfect prediction. As shown in Fig. 15, the 
profile under prediction-based strategy reveals oscillation at 
approximately 10:00 am. The peak load with prediction error 

is higher than that with perfect prediction but lower than that 
without prediction, with a relative error of 12.8%.  

 
Fig. 16 Distributions of relative errors under different look-ahead time and 
traffic conditions 

We further analyze how the traffic conditions (i.e., demand 
level and peak arrival ratio) will affect the accuracy (the gap of 
peak load between that with perfect prediction and prediction 
error). The look-ahead time is set as varying from 0.25 times to 
1 times of the optimal look-ahead time. Fig. 16 presents the 
MAPEs using a box and whisker plot. As we can see, under the 
same demand level and look-ahead time, the relative errors 
decrease as the peak arrival ratio increases. The possible 
reason is that the arrival pattern of commuting vehicles 
arriving in peak hours is more regular, such that more accurate 
prediction could be achieved. In particular, when the peak 
arrival ratio is larger than 0.7, the accuracy could be quite 
acceptable with a relative error as low as approximately 10%. 
This reveals promising application potentials for workplace 
charging where peak arrival ratio is usually high due to the 
characteristic of commuting demand. 

V. CONCLUDING REMARKS 
Efficient charge scheduling management is crucial for 

profitability and mass adoption of EVs. How to charge EVs in 
a cost-effective manner and how to mitigate overloading are 
two critical and open issues in the realm of EV charge 
scheduling. This paper investigates the model properties and 
efficient algorithm for the two objectives. For Objective 1, we 
demonstrate that the greedy-choice property applies in that a 
globally optimal solution can be assembled by making locally 
optimal greedy choices, whereas it does not apply to Objective 
2. To solve to global optimality for Objective 2, we proposed a 
prediction-based charging strategy which accounts for 
anticipated future demand within a look-ahead time. This is 
addressed by a heuristic algorithm combining a 
multi-commodity network flow model with bisection search 
algorithm in a rolling horizon framework. In particular, to 
expedite the solution speed of the bisection search algorithm, 
the upper bound and lower bound are derived based on the 
relationship between charging volume and parking time. 

The proposed strategies were tested and compared under 
different operational settings by simulations. The impact of 
demand levels and peak arrival ratios on the system 
performance were investigated. The results showed that under 
the prediction-based strategy, the peak load can converge to 
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global optimality within the effective look-ahead time. The 
prediction could lead to load reduction of 13.4%-28.8%. In 
particular, there exists an optimal look-ahead time beyond 
which any predicted information has little effect. The optimal 
look-ahead time decreases when the peak arrival ratio is higher 
or when the demand level is lower. The proposed algorithm is 
much more efficient than the state-of-the-art algorithm, and 
robust to the variations of demand and peak arrival ratios. We 
also conducted sensitivity analysis to explore the relative 
savings in charging cost and peak load by the proposed 
strategies under different peak arrival ratios and demand levels. 
In addition, we also proved experimentally through 
cross-validation that the prediction-based strategy is robust 
particularly under a high peak arrival ratio. This suggest a 
promising application potential for workplace charging, which 
is gaining increasing attention with the capability of 
overcoming the range-anxiety problem and other drawbacks of 
EVs [28]. 

This paper opens up new research directions. For example, 
future research may continue to incorporate an extended list of 
constraints under various operational settings. In addition, it 
would be interesting to refine the prediction approach to 
further improve the robustness of the prediction-based 
charging strategy. 

APPENDIX 

A. Proof of Lemma 1 

According to the principle of “cut-and-paste”: As a 
component of optimal solution for the master problem, the 
solution of each subproblem is optimal. This can be 
estabilished by proof by contradiction. Assume that there is a 
solution set 岶鶏屎王底嫗 ┸ 鶏屎王底袋怠嫗 ┸ ┼ ┸ 鶏屎王廷嫗岼 that satisfies デ 系賃嫗廷賃退底 隼 デ 系賃廷賃退底 , 

then a solution set 岶鶏屎王底嫗 ┸ 鶏屎王底袋怠嫗 ┸ ┼ ┸ 鶏屎王廷嫗┸ 鶏屎王廷袋怠┸ 鶏屎王廷袋態┸ ┼ ┸ 鶏屎王庭岼 can be 
constructed that satisfies the constraints for  底庭. The objective 

function value for such a solution set is デ 系賃嫗廷賃退底 髪 デ 系賃庭賃退廷袋怠 , 

which is less than the optimal value of 鯨底庭, i.e., デ 系賃廷賃退底 . This 
contradicts the assumption that 岶鶏屎王底 ┸ 鶏屎王底袋怠┸ ┼鶏屎王廷┸ 鶏屎王廷袋怠┸ 鶏屎王廷袋態┸ ┼ ┸ 鶏屎王庭岼  is the optimal solution. 
Therefore, for the subproblem 鯨底廷, the optimal solution and 

the corresponding objective function value are 岶鶏屎王底 ┸ 鶏屎王底袋怠┸ ┼ 鶏屎王廷岼 
and デ 系賃廷賃退底 , respectively. Similarly, it can be proven that for 
the subproblem 鯨岫廷袋怠岻庭 , the optimal solution and the 

corresponding objective function value are 版鶏屎王廷袋怠┸ 鶏屎王廷袋態┸ ┼ ┸ 鶏屎王庭繁, 
and デ 系賃庭賃退廷袋怠 , respectively. 

B. Proof of Lemma 2 

Let 岶鶏屎王底 ┸ 鶏屎王底袋怠┸ ┼鶏屎王庭岼 denote one of the optimal solution sets 

of  底庭, of which 版鶏屎王庭繁 is the charging schedule of vehicle 紅 in 

chronological order. If 版鶏屎王庭繁 噺 版鶏屎王碇繁, then 鶏屎王碇 belongs to one of 

the solution sets of  底庭. If 版鶏屎王庭繁 塙 版鶏屎王碇繁, then 岶鶏屎王底 ┸ 鶏屎王底袋怠┸ ┼ 鶏屎王碇岼 
can meet the constraints of  底庭, and the optimal value is equal 

to 岶鶏屎王底 ┸ 鶏屎王底袋怠┸ ┼ 鶏屎王庭岼 . Therefore, 岶鶏屎王底 ┸ 鶏屎王底袋怠┸ ┼鶏屎王碇岼  is also an 

optimal solution set of  底庭 which contains {鶏屎王碇}. 

C. Proof of Proposition 1 

In Lemma 1, we have proven that the optimal solution of the 
minimum charging cost problem contains the optimal solution 
of its subproblem. In Lemma 2, we have proven that the 
overall optimal solution can be obtained by making a greedy 
choice in each step. Combining Lemma 1 with Lemma 2, it 
can be concluded that the optimal solutions of the subproblems 
obtained by greedy choice can be used to generate the optimal 
solution of the master problem. In other words, the optimal 
solution can be obtained by the greedy algorithm. 

D. Proof of Proposition 2 

To demonstrate this proposition, it is only required to prove 
that the statement “For minimum peak load problem, the 
globally optimal solution can be achieved by greedy algorithm” 
is not true. To this end, we use proof by contradiction. Assume 
that two vehicles arrive at different time in the period. Fig. 17 
shows the respective arrival and departure times. Their 
maximum charging power limits are both 2, and the charging 
volume is ぬッ劇. 

Time

Vehicle 2

Interval 1

Vehicle index

Vehicle 1

Interval 2 Interval 3 Interval 4  
Fig. 17 Arrival time and departure time 
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(a) Greedy 

Time

2

Interval 1

Charging power

1

Interval 2 Interval 3 Interval 4

Vehicle 1

3

Vehicle 2

 
(b) Global optimal 

Fig. 18 Charging schedules of an example 

Solving the minimum peak load problem yields the 
possible solution as shown in Fig. 18(a). In this case, the 
system peak load is 2.5. However, there is a better solution that 
meets the constraints where the system peak load is 2, as 
shown in Fig. 18(b). 
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Therefore, “For the minimum peak load problem, the 
globally optimal solution can be achieved by greedy algorithm” 
is false. In other words, the proposition is true. 

E. Proof of Proposition 3 

For the network flow model, the complexity of the 
maximum flow algorithm is 頚岫撃畦態岻岷にひ峅.Since solving the 
network flow model requires a 血 bisection search, the max 
flow calculation is performed 血  times. Obviously, the 
complexity of the algorithm is 頚岫撃畦態血岻. This means that such 
a strategy can be solved in polynomial time. 

F. Proof of Proposition 4 

By summing up Eq. (15) we have: 
 デ 経沈朝沈退怠 髪 デ デ 鶏珍沈賃袋陳珍退賃朝沈退怠 判 軽 ゲ 詣  (23) 

    Summing up Eq. (16) yields: デ 継珍賃袋陳珍退賃 噺 つ劇 抜 デ デ 鶏珍沈賃袋陳珍退賃 ┸朝沈退怠 褐倹 樺 岷倦┸ 倦 髪 兼峅  (24) 
In essence, Eqs. (23) and (24) are the relaxation of 

constrains. For the minimization problem, the lower bound of 
the objective function can be achieved by the relaxation of 
constrains. Substituting Eq.(24) into Eq. (23), and eliminating 
the common item デ デ 鶏珍沈賃袋陳珍退賃朝沈退怠  yields: 
 デ 経沈朝沈退怠 ゲ つ劇 髪 デ 継珍賃袋陳珍退賃 判 軽 ゲ 詣 ゲ つ劇  (25) 

    As a result, Eq. (25) can be transformed into Eq. (18). 
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