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We introduce and study a general version of the fractional online knapsack problemwith multiple knapsacks, heterogeneous constraints

on which items can be assigned to which knapsack, and rate-limiting constraints on the assignment of items to knapsacks. This

problem generalizes variations of the knapsack problem and of the one-way trading problem that have previously been treated

separately, and additionally finds application to the real-time control of electric vehicle (EV) charging. We introduce a new algorithm

that achieves a competitive ratio within an additive factor of one of the best achievable competitive ratios for the general problem

and matches or improves upon the best-known competitive ratio for special cases in the knapsack and one-way trading literatures.

Moreover, our analysis provides a novel approach to online algorithm design based on an instance-dependent primal-dual analysis

that connects the identification of worst-case instances to the design of algorithms. Finally, we illustrate the proposed algorithm via

trace-based experiments of EV charging.

1 INTRODUCTION

Online optimization has become a foundational piece of the design of networked and distributed systems that is used to

capture the challenges of decision-making in uncertain environments. Theoretical results have had impact for data center

optimization [3, 26, 29, 43], video streaming [37, 42], energy systems [6, 7, 18, 35, 45], cloud management [27, 39, 45, 47],

and beyond.

Two classical problems within the online optimization literature that have received considerable attention in recent

years are the online knapsack problem and the one-way trading problem. In the online knapsack problem, an agent must

make irrevocable decisions about which items to pack into a knapsack without knowing which items will arrive in the

future. In the one-way trading problem, an investor must trade a limited amount of one asset to another asset without

knowing the future conversion rates. These problems have seen broad application in recent years, e.g., to auction-based

resource provisioning in cloud/edge clusters [39, 45], admission control and routing of virtual circuits [9, 32], and

transactive control of distributed energy resources [5–7, 38].

These two problems are seemingly very different, and the papers on each tend to use very different algorithmic

approaches and analytic techniques, e.g., threat-based algorithms [15, 16], threshold-based algorithms [40, 45, 48],

online primal-dual algorithms [9, 10, 38], online linear programming [4, 44], model predictive control [18, 24], and

more. Moreover, within each problem, a wide range of variations have been considered, each motivated by features of

different applications. For example, versions of online 0/1 knapsack [45], online multiple knapsacks, where items can be

divided across multiple knapsacks [48], and online fractional knapsack, where each item can be partially admitted [31].

Similarly, a wide set of variants of one-way trading have emerged, e.g., with [15] or without [44] leftover assets, and
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concave returns [25]. The disconnected nature of these literatures begs the question: Is it possible for a unified algorithmic

approach to be developed or does each variant truly require a carefully crafted approach?

Contributions of This Paper. Despite the differences in approaches and techniques, there are also similarities

between these problems that lead one to hope that unification is possible. In this paper, we provide such an algorithmic

unification via a generalization of the online knapsack and one-way trading problems, i.e., we show that a single

algorithmic approach can be used to provide near optimal algorithms across nearly all previously considered variants

of these two problems.

More specifically, we take motivation from the electric vehicle (EV) charging problem, which is a prominent problem

in energy systems [5–7, 18, 24, 38, 46]. In this problem, an operator of an EV charging facility must charge a set of EVs

that arrive over time without knowing details of future arrivals. Each EV has a charging demand, a charging rate limit,

and a departure time before which it must receive charge. The operator then seeks to maximize the aggregate utility of

the EVs. Because of the rate constraint, the EV charging problem cannot fit into either the one-way trading or the online

multiple knapsack problem (OMKP) directly. However, it can be modeled as a form of a fractional OMKP (FOMKP)

with rate constraints that generalizes existing problems in both online knapsack and one-way trading. Additionally,

the resulting problem also captures other applications, such as classical formulations of cloud scheduling [27, 47] and

geographical load balancing [3, 26, 29, 35] (see Section 2.2).

Focusing on this new FOMKP, the goal of the paper is to design algorithms that can achieve nearly the optimal cost

as the optimal algorithm. Specifically, we aim to develop algorithms that maintain a minimal competitive ratio, which is

the worst-case ratio of the cost of the online algorithm to the cost of the optimal offline algorithm.

To that end, we focus on a form of algorithms introduced by [48] in the context of OMKP called online threshold-

based algorithms (OTA). The design of this class of algorithms is based on a threshold function 𝜙 that estimates

the dual variables of the problem based on the knapsack utilization. See Section 3.1 for a formal introduction to

OTA. While OTA has proven effective in some contexts, the application of the approach is limited due to the fact

that designing the threshold function 𝜙 is more art than science, similarly to the difficulties in designing Lyapunov

functions for Lyapunov-based control [12, 34] and designing potential functions for the analysis of online scheduling

algorithms [1, 17].

In this paper, we present a new systematic approach for designing the threshold functions in OTA. The approach,

described in Section 3.2, uses a novel instance-dependent online primal dual-analysis to design the threshold function

directly from a characterization of worst-case instances of the problem. Thus, the task of identifying instances in order

to prove a lower bound is unified with the task of designing an algorithm that can (nearly) achieve that bound.

This new approach yields the design of a threshold function for OTA that provides the first algorithm with a

competitive ratio within an additive factor of one of the best achievable competitive ratio for the general problem and

matches or improves on the best-known competitive bounds for a wide variety of special cases in the knapsack and

one-way trading literatures (see Section 3.3). Specifically, we illustrate the approach for classical one-way trading and

two of its recent variants. In all cases the approach yields either the optimal competitive ratio or a competitive ratio

that improves upon the state-of-the-art.

Finally, to illustrate the performance of the algorithm in a specific application, we end the paper with a brief discussion

in Section 6 of the problem that motivated our study: EV charging with on-arrival commitment to drivers and rate

constraints. Note that the on-arrival commitment of a charging level to drivers is a distinctive feature of this case study

that adds significant additional challenges compared to typical papers on online EV charging. Additionally, it is rare for

algorithms for online EV charging to have theoretical guarantees when rate constraints are considered. We present a



Competitive Algorithms for the Online Multiple Knapsack Problem with Application to Electric Vehicle Charging 3

case study using the Adaptive Charging Network Dataset, ACN-Data, which includes 50,000 EV charging sessions [23].

Here, we show that our algorithm, which uses an adaptive utilization-based threshold, improves over the most common

prior approaches for related online knapsack problems such as [15], which use a fixed threshold policy. Our design

targets the worst-case performance, and we see a 44.4% decrease (nearly a factor of 2 improvement) in the worst-case

when utilization is high, while also achieving a 15% decrease on average.

In summary, in this paper we make the following contributions.

• We introduce and study a generalization of the fractional online multiple knapsack problem (FOMKP) that is

motivated by the EV charging problem and unifies the online knapsack and one-way trading literatures.

• We develop an approach for designing online threshold-based (OTA) algorithms based on a novel instance-

dependent online primal-dual analysis that connects the characterization of worst-case instances to the design of

online algorithms.

• We design an algorithm for the general FOMKP problem with rate constraints that has a competitive ratio within

an additive factor of one from the optimal competitive ratio. The algorithm also matches or improves upon

best-known results in specific cases covered by recent papers, e.g., [25, 44, 45, 48].

• We illustrate the performance of the algorithm in the context of EV scheduling using a trace-based case study,

showing a decrease in the worst case by up to 44% and of the average case by up to 15% as compared to fixed

threshold policies, the most common approach in prior work on online knapsack problems.

RelatedWork. The online optimization problem considered in this work is related to, and unifies, problems that have

originated from a wide range of applications. In the following, we briefly overview the problems that can be considered

as variants or special cases of the FOMKP that we study. Details of these problems are discussed in Section 2.2, where

the relationship to the FOMKP we study is shown formally.

The Online Knapsack Problem. Our work generalizes a class of problems known as the online knapsack problems

(OKPs) [11, 40, 45, 48], which are online variants of the well-studied knapsack problem [33]. Since there is no competitive

online algorithm for general OKPs, studies typically assume that the weight of each item is small and the value-to-weight

ratio is bounded from both below and above. Under this infinitesimal assumption competitive algorithms can be derived.

For example, (1+ ln𝜃 )-competitive online algorithms have been designed for the classical online 0/1 knapsacks [45, 48],

where 𝜃 is the ratio of the upper and lower bounds of the value-to-weight ratio.

An important generalization of the classical problem is to the case of multiple knapsacks. In an online multiple

knapsack problem (OMKP), an operator has a set of knapsacks with heterogeneous capacities. Items arrive sequentially,

each with an associated weight and value, and an operator decides whether to accept each item and where to pack it if

it is accepted. Here, [48] presents an algorithm that can achieve a competitive ratio of 1 + ln𝜃 under the infinitesimal

assumption.

Amore general version of OMKP is the onlinemultiple knapsack problemwith assignment restrictions (OMKPAR) [22].

In this problem, each item is associated with a subset of knapsacks and is restricted to be packed in this subset. Here

progress has not been made, even under the infinitesimal assumption. In the current paper we study a generalization of

a fractional online multiple knapsack problem (FOMKP), where fractional refers to the fact that items can be assigned

such that a fraction goes to each of multiple knapsacks. Fractional assignment is an important feature of many appli-

cations, e.g., EV charging [6, 46], cloud scheduling [27, 47], geographical load balancing [26, 35]. Further, there is a

strong connection between the fractional version of knapsack problems and the integral version with an infinitesimal

assumption. In particular, algorithms for fractional versions of the problem also can be used for the integral case



4 Bo Sun, Ali Zeynali, Tongxin Li, Mohammad Hajiesmaili, Adam Wierman, and Danny H.K. Tsang

under the infinitesimal assumption (see Section 3.1). Prior work on fractional knapsack problems includes [20, 28, 31].

However, none of this work includes rate constraints, which are core to EV scheduling.

There are also other variants of generalized OKPs that have been considered in the literature, such as the online

fractional packing problem [10] and the online multi-dimensional knapsack problem [45]. In these settings, the best

known competitive ratios depend on the number of knapsacks𝑀 . For example, [10] gives a competitive ratio 𝑂 (ln𝑀)
for the online fractional packing problem and the state-of-the-art competitive ratio for the online multi-dimensional

knapsack problem is 𝑂 (𝑀), shown in [45]. The problem we consider relaxes the above problems by allowing the

number of items allocated to each knapsack to be a variable in R+. This allows us to achieve competitive ratios that are

independent of the dimension of knapsacks.

The One-Way Trading Problem. This problem was first introduced and studied by EI-Yaniv et al. [15] under the

assumption that the price is bounded from above and below, where it is shown that a threat-based algorithm can

achieve a competitive ratio of 𝑂 (ln𝜃 ), where 𝜃 is the ratio of upper and lower bounds on the prices (or conversion

rates). Follow-up works mainly focus on variants with different assumptions on the prices, e.g., known distribution of

prices [16], unbounded prices [13], and interrelated prices [36], or with different performance metrics, e.g., competitive

difference [42]. Recently, Yang et al. [44] consider a bounded price but a different problem setting, in which the investor

is unaware of whether a price is the last one and may have leftover assets due to the sudden termination of trading

process. This work designs a threshold-based algorithm that is shown to be (1 + ln𝜃 )-competitive. A further extension

was given by Lin et al. [25], which generalizes the linear objective function to a concave one. In this current paper, we

consider a problem that generalizes all these variants, and we present a single algorithm that matches or improves

upon the competitive ratio in each case.

Online EV Charging. The task of managing the charging of EVs is a prominent algorithm challenge for smart energy

systems [6, 18, 24]. A number of variants of online EV charging have been tackled in prior work [5–7, 38, 46]. Despite

the fact that many algorithms achieve good performance (on average) in practice, analyzing algorithms to provide

worst-case guarantees for online EV charging is notoriously difficult and existing algorithms, such as model predictive

control (MPC), are known to be vulnerable to adversarial examples. For example, in [18], the EV charging problem is

modeled as an online linear program and the authors showed that MPC is equivalent to an offline solver when the

costs are uniformly monotone and has a competitive ratio 𝑂 (𝜃 ) otherwise. Most commonly, online EV algorithms

have been allowed to adaptively determine the EV charging schedule over time, thus providing no guarantees to a

driver at arrival about the total charge they will receive, e.g., [6, 18, 24]. This approach simplifies the analysis; however,

charging with on-arrival commitment [5, 38] is what is desired by drivers. In this paper, we consider charging with

on-arrival commitment, in which the charging schedule is determined upon EVs’ arrivals and will be kept unchanged.

Competitive analysis of this setting is known to be challenging, e.g., [5] has shown that no bounded competitive ratio

can be achieved in general. However, in this paper, we give an online algorithm with a nearly optimal competitive ratio

under a set of regularity conditions that are standard in the online knapsack literature (Assumption 2.3). Further, our

algorithm achieves its competitive ratio when charging rate constraints are included, which adds additional challenges

and is typically not considered in online EV charging formulations.

2 THE ONLINE FRACTIONAL MULTIPLE KNAPSACK PROBLEM

This paper focuses on a novel generalization of the fractional Online Multiple Knapsack Problem (FOMKP). In a classical

OMKP, each arriving item can only be packed into one of the knapsacks. In contrast, in the FOMKP each knapsack

𝑚 ∈ M is allowed to accept a fraction of the entire size of each item 𝑛 ∈ N , i.e., the accepted item can be packed into
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multiple knapsacks, each of which accommodates a portion of the total accepted item. Additionally, the formulation we

consider incorporates heterogeneous rate-limiting constraints depending on the knapsack and the item to be packed.

This generalization is motivated by issues in practical problems such as online EV charging and enables the unification

of a wide range of classical online algorithms problems, many of which are traditionally approached with contrasting

algorithmic techniques.

2.1 Problem Statement

We consider a setting where items in a setN need to be packed into knapsacks in a setM. For each item 𝑛, the operator

decides an assignment vector denoted by 𝒚𝑛 := (𝑦𝑛1, . . . , 𝑦𝑛𝑀 ), where each entry 𝑦𝑛𝑚 is the fraction of item 𝑛 packed

into the knapsack𝑚. The assignment vector 𝒚𝑛 must satisfy the following constraints. The set of assignment vectors

𝒚𝑛 satisfying (1)-(3) is Y𝑛 : ∑︁
𝑚∈M 𝑦𝑛𝑚 ≤ 𝐷𝑛, ∀𝑛 ∈ N , (1)∑︁
𝑛∈N 𝑦𝑛𝑚 ≤ 𝐶𝑚, ∀𝑚 ∈ M . (2)

0 ≤ 𝑦𝑛𝑚 ≤ 𝑌𝑛𝑚, ∀𝑛 ∈ N ,𝑚 ∈ M . (3)

The first constraint (1) is a demand constraint, which bounds the total accepted fractions of the item 𝑛 by the item size

𝐷𝑛 . The second constraint (2) ensures the assigned fractions 𝒚𝑛 satisfy the capacity constraints, of the heterogeneous

knapsacks, where 𝐶𝑚 is the maximum capacity of the knapsack𝑚. The third constraint (3) is a rate constraint, which

ensures that at most 𝑌𝑛𝑚 fraction of the item 𝑛 can be packed into the knapsack𝑚. This constraint also allows imposing

heterogeneous restrictions on which items can be packed into which knapsacks, e.g., by setting 𝑌𝑛𝑚 = 0 for knapsacks

that are not available to the item 𝑛. Due to the algorithmic difficulties it creates, the rate constraint (3) is rarely studied

in the literature of OMKP. Note that all three of these constraints are crucial to capturing applications such as EV

scheduling. We highlight this in Section 2.2.

2.1.1 Objective Function. The objective of an FOMKP is to optimize the value of packed items subject to the constraints

(1)-(3). More formally, let 𝑔𝑛 (𝒚𝑛) : Y𝑛 → R+ denote the value function of the item 𝑛. This function models the value of

the item 𝑛 with an assignment vector 𝒚𝑛 . Optimizing over assignment vectors that satisfy (1)-(3), the offline version of

FOMKP can be summarized as

(Offline FOMKP) max

𝒚𝑛

∑︁
𝑛∈N 𝑔𝑛 (𝒚𝑛), subject to (1) − (3). (4)

In this paper, we follow standard practice in the literature and focus on value functions that are separable or aggregate

functions, e.g., [2, 6, 35]. These definitions are useful in order to prove competitive bounds.

Definition 2.1 (Aggregate Function). The aggregation of allocations contributes to the value function, i.e.,

𝑔𝑛 (𝒚𝑛) = 𝑔𝑛 (
∑
𝑚∈M 𝑦𝑛𝑚).

Definition 2.2 (Separable Function). The value function is separable over allocations, i.e.,𝑔𝑛 (𝒚𝑛) =
∑
𝑚∈M 𝑔𝑛𝑚 (𝑦𝑛𝑚),

where 𝑔𝑛𝑚 (𝑦𝑛𝑚) is the value of allocating 𝑦𝑛𝑚 of item 𝑛 to knapsack𝑚.

Both definitions capture a broad range of applications. For example, interpreting different knapsacks as different time

slots allows us to model the EV charging application (described in detail in Section 2.2) using an aggregate function.

Additionally, the notion of separable value functions captures the phenomenon of different values for allocating items
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to different knapsacks, which is of interest to applications such as geographical load balancing (described in detail in

Section 2.2). Note that when the value function is linear, an aggregate function is by definition a separable function.

Additionally, when there is only one knapsack, both definitions are equivalent.

In addition, we assume that the value functions satisfy the following regularity conditions.

Assumption 2.3. The value functions {𝑔𝑛 : 𝑛 ∈ N} satisfy:
(i) for any 𝑛 ∈ N , 𝑔𝑛 (·) is differentiable and concave in Y𝑛 ;

(ii) for any 𝑛 ∈ N , 𝑔𝑛 (0) = 0;

(iii) the partial derivative of 𝑔𝑛 (·) is bounded, i.e., there exist constants 𝐿,𝑈 > 0 such that for any 𝑛 ∈ N and𝑚 ∈ M,

𝐿 ≤ 𝜕𝑔𝑛
𝜕𝑦𝑛𝑚

≤ 𝑈 .

These are again classical assumptions in the online knapsack literature [25, 40, 45, 48]. The first condition ensures

that the value function is smooth and has diminishing returns. The second condition indicates that packing no item

earns no value. The third condition requires that the partial derivatives of the value function are lower and upper

bounded by 𝐿 and𝑈 , respectively. 𝐿 and𝑈 are assumed to be known and let 𝜃 := 𝑈 /𝐿 denote the fluctuation ratio.

2.1.2 Online Formulation. The parameters described to this point can be encapsulated in two sets, S and I. The set
S := {{𝐶𝑚}𝑚∈M , 𝐿,𝑈 } includes the capacity information, and the partial derivative bounds of value functions. We

call S the setup information since it is known from the start and can be used for design of online algorithms. The set

I := {𝐷𝑛, {𝑌𝑛𝑚}𝑚∈M , 𝑔𝑛 (·)}𝑛∈N contains the information corresponding to each item, including the item size, rate

limits, and value functions. I is also called arrival information. The focus of this paper is an online formulation where

the arrival information of each item is revealed upon its arrival. Thus, the algorithm only knows the causal information

{𝐷𝑘 , {𝑌𝑘𝑚}𝑚∈M , 𝑔𝑘 (·)}𝑘=1,...,𝑛 for the decision-making of item 𝑛.

Our goal is to design an online algorithm that makes an irrevocable assignment decision based only on causal

information and still performs nearly as well as the offline optimum. Particularly, we evaluate the performance of an

online algorithm under the competitive analysis framework. Given setup information S, let OPT(I) and ALG(I,A)
denote the offline optimum of the FOMKP and the value achieved by an online algorithm A under an arrival instance

I, respectively. The competitive ratio of the online algorithm A is defined as CR(A) = maxI∈Ω
OPT(I)

ALG(I,A) , where Ω

denotes the set of all instances that satisfy Assumption 2.3. An algorithm A is 𝛼-competitive if CR(A) ≤ 𝛼 .

2.2 Examples

The generalization of FOMKP introduced above is novel and serves to unify a wide variety of classical online problems.

On one hand, it is a generalization of two classical online optimization problems: the one-way trading and the online

knapsack problems, bringing together two streams of research that were previously treated separately in the literature.

On the other hand, it is the core model of many practical online decision-making applications such as the EV charging

and online geographical load balancing problems. We highlight these connections explicitly in the following. Previous

studies on those problems are summarized at the end of Section 1

The One-Way Trading Problem. One-way trading [15] is a classical online problem where an investor aims to

trade a limited amount of one asset (e.g., dollar) to another asset (e.g., yen). The sequence of the trading prices is not

known to the investor ahead of time and the investor must decide the amount of traded assets for each price except the

last one, and trade remaining assets at the last price. The objective is to maximize the total profits of the entire trading

process.
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To see that one-way trading is a special case of FOMKP, observe that FOMKP reduces to the following generalized

one-way trading (GOT) problem when the number of knapsacks is𝑀 = 1 and the rate limit is equal to the item size, i.e.,

𝑌𝑛1 = 𝐷𝑛 ,

(Offline GOT) max

𝑦𝑛

∑︁
𝑛∈N 𝑔𝑛 (𝑦𝑛), s.t.

∑︁
𝑛∈N 𝑦𝑛 ≤ 𝐶, 0 ≤ 𝑦𝑛 ≤ 𝐷𝑛, ∀𝑛 ∈ N , (5)

where we omit the knapsack index for simplicity. Notice that GOT includes all previous variations of the one-way trading

problem in the literature, e.g., [15, 44], and additionally extends the most general one-way trading model in [25] by

including the rate limit constraint 𝑦𝑛 ≤ 𝐷𝑛 .

The Online Multiple Knapsack Problem with Small Weights. While our focus is on the fractional multiple

knapsack problem, there are strong connections between the fractional and integral versions. In the integral version,

items must be assigned to a single knapsack and cannot be split between multiple knapsacks. Thus, OMKP [48] is an

online integer linear program with multiple capacity constraints.

To see the connection between FOMKP and OMKP, note that, when the assignment set Y𝑛 is restricted to the

following discrete set

˜Y𝑛 :=

{
𝒚𝑛 :

∑︁
𝑚∈M 𝑦𝑛𝑚 ≤ 𝐷𝑛, 𝑦𝑛𝑚 ∈ {0, 𝑌𝑛𝑚},∀𝑚 ∈ M

}
, (6)

where𝑌𝑛𝑚 ∈ {0, 𝐷𝑛}, FOMKP becomes anOMKPwith assignment restrictions (OMKPAR) [22], which is a generalization

of OMKP. Under the assumptions that (i) each item can be packed into any one of all knapsacks, i.e.,𝑌𝑛𝑚 = 𝐷𝑛,∀𝑚 ∈ M,

and (ii) the value of each item is independent of knapsacks, e.g., 𝑔𝑛 (𝒚𝑛) is aggregate, OMKPAR reduces to OMKP.

Under an infinitesimal assumption that is standard in the literature (i.e., the weights/sizes of items are much smaller

than the knapsack capacities) [40, 48], the online algorithms designed for the FOMKP can be converted to an integral

version to solve the OMKPAR with the same competitiveness. This is formally highlighted in Remark 3.2. Thus, the

FOMKP can be considered as a generalization of OMKPAR under the infinitesimal assumption. Note that this assumption

is typically satisfied in applications. For example, the energy demand required by a single EV is much smaller than the

capacity of the garage and the resources required by a single job or VM is much smaller than the capacity of servers.

Additionally, such an infinitesimal assumption is typically required for online (non-fractional) knapsack problems, e.g.,

[40, 45, 48], since no non-trivial competitive results are known without assumptions [48].

Online EV Charging with On-Arrival Commitment. In an online EV charging problem, an operator of an EV

charging facility charges a set N of EVs that arrive sequentially in a setM of time slots. The available total charging

power at time𝑚 is𝐶𝑚 . Each EV 𝑛 is characterized by parameters {M𝑛, 𝐷𝑛, 𝑌𝑛, 𝑔𝑛 (·)}, whereM𝑛 := {𝑡𝑎𝑛 , . . . , 𝑡𝑑𝑛 } denotes
the available window of EV 𝑛 with 𝑡𝑎𝑛 and 𝑡𝑑𝑛 as the arrival and departure times, 𝐷𝑛 denotes the energy demand, and 𝑌𝑛

is the charging rate limit. By letting 𝑌𝑛𝑚 = 𝑌𝑛,∀𝑚 ∈ M𝑛 , and 𝑌𝑛𝑚 = 0,∀𝑚 ∈ M \M𝑛 , the online EV charging problem

is precisely problem (4). Crucially, we consider a version of the problem where, upon the arrival of each EV 𝑛, the

operator commits to a charging schedule 𝒚𝑛 = (𝑦𝑛1, . . . , 𝑦𝑛𝑀 ), where 𝑦𝑛𝑚 is the charging rate of EV 𝑛 at time𝑚, and

obtains a utility 𝑔𝑛 (𝒚𝑛) from charging EV 𝑛 by the schedule 𝒚𝑛 . The online EV charging problem aims to maximize the

total utilities of all EVs.

Our problem formulation presented includes features of many EV charging models in previous studies, such as [5–

7, 18, 24, 38, 46], but generalizes them to allow the consideration of heterogeneous rate limits, which capture different

EV types and heterogeneous charging power capacities over time, something that has not been accounted for previously.

Additionally, our formulation commits to the scheduling of an EV at arrival, i.e., 𝒚𝑛 = (𝑦𝑛1, . . . , 𝑦𝑛𝑀 ) will be set on
arrival of EV 𝑛, which allows the provider to guarantee how much energy each EV will be provided when first plugging
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in the car. This adds additional algorithmic challenges given the uncertainty about future arrivals, especially when

considering worst-case analysis.

Cloud Scheduling and Geographical Load Balancing. FOMKP with separable value functions can be viewed as

an extension of the classical task of job scheduling in a cloud, e.g., [27, 47], which includes the so-called geographical load

balancing problem, e.g., [3, 26, 29, 35]. More concretely, consider a service provider, e.g., Netflix or YouTube, with a set

of geographically distributed infrastructure for performing video processing jobs, e.g., encoding video files into multiple

quality levels [41] to be used in ABR streaming algorithms [37]. These video processing jobs are heterogeneous and

typically have flexibility in execution across different locations without violating quality of service (QoS) requirements.

While the problems of job scheduling and geographical load balancing have been mainly studied separately, with

FOMKP, the joint problem could be tackled. Formally, in this model a knapsack𝑚 ∈ M denotes a pair of time and

location, i.e., with 𝑇 time slots and 𝐿 locations, we have 𝑇 × 𝐿 = 𝑀 knapsacks. There is a set of N (e.g., video) jobs,

each characterized by {M𝑛, 𝐷𝑛, 𝑌𝑛, {𝑔𝑛𝑚 (·)}𝑚∈M𝑛
}, whereM𝑛 is the set of slot/locations available for job 𝑛, 𝐷𝑛 is the

computation demand, and 𝑌𝑛 is the job parallelism bound [27] that captures the maximum number of processing units

(or servers) that can be allocated to a single job at any given time/location. Lastly, 𝑔𝑛𝑚 (·) captures the value (or cost,
e.g., energy [35] or bandwidth [2]) of executing job 𝑛 at slot/location𝑚. In this model, the deadline constraints and

QoS constraints, e.g., infeasibility of running jobs in far locations [19] could be captured using the rate constraints. In

particular, by letting 𝑌𝑛𝑚 = 𝑌𝑛,∀𝑚 ∈ M𝑛 , and 𝑌𝑛𝑚 = 0,∀𝑚 ∈ M \M𝑛 , the deadline and QoS constraints of job 𝑛 could

be enforced.

3 ALGORITHMS & RESULTS

The key challenge when designing online algorithms for FOMKP results from the capacity constraints that couple the

knapsack decisions of all items. Formally, one can understand the difficulty created by this via the dual variables. In

particular, if the optimal dual variables associated with the capacity constraints were to be given, the FOMKP could

be decoupled across items and the optimal knapsack decision for each item could be determined by maximizing a

pseudo-utility that is defined as the value of the item minus a linear cost using the optimal dual variables as the price.

However, in the online setting, the optimal dual variables cannot be known since the future items’ information is

unavailable. Thus, we can only use an adaptive estimation of the dual variables to solve the online problem based on

causal information.

This intuition leads to an important algorithmic idea at the core of literature focusing on the OMKP, e.g., [45, 48]:

estimate the dual variable as a function of the knapsack utilization, i.e., the fraction of the consumed knapsack capacity.

We refer to this estimation function as a threshold function defined below.

Definition 3.1 (Threshold Function). A threshold function 𝜙𝑚 (𝑤) of a knapsack𝑚 is a non-decreasing function

that evaluates the price (or marginal cost) of packing items to the knapsack𝑚 when its utilization 𝑤 is within capacity

𝑤 ∈ [0,𝐶𝑚] and 𝜙𝑚 (𝑤) = +∞ when𝑤 ∈ (𝐶𝑚, +∞).

The approach we follow in this paper is to design a class of online threshold-based algorithms (OTA) for FOMKP. In

the following, we first formally introduce the OTA class of algorithms, followed by key ideas for competitive analysis,

and finally we present our main competitive results. Proofs are deferred to the next sections.
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Algorithm 1 Online Threshold-Based Algorithm with Threshold Function 𝜙 (OTA𝜙 )

1: input: threshold function 𝜙 := {𝜙𝑚 (·)}𝑚∈M , and initial knapsack utilization𝑤
(1)
𝑚 = 0,∀𝑚 ∈ M;

2: while item 𝑛 arrives do
3: observe item size 𝐷𝑛 , rate limits {𝑌𝑛𝑚}𝑚∈M , and value function 𝑔𝑛 (·);
4: determine knapsack assignment 𝒚∗𝑛 by solving the pseudo-utility maximization problem

𝒚∗𝑛 = arg max

𝒚𝑛 ∈Y𝑛

𝑔𝑛 (𝒚𝑛) −
∑︁

𝑚∈M

∫ 𝑤
(𝑛)
𝑚 +𝑦𝑛𝑚

𝑤
(𝑛)
𝑚

𝜙𝑚 (𝑢)𝑑𝑢; (7)

5: update the utilization𝑤
(𝑛+1)
𝑚 = 𝑤

(𝑛)
𝑚 + 𝑦∗𝑛𝑚,∀𝑚 ∈ M.

6: end while

3.1 Online Threshold-Based Algorithms (OTA)

TheOTA framework has been developed in the context of OMKP by Zhou et al. [48] and Zhang et al. [45]. The basic idea

of OTA is to use threshold functions to estimate the cost of a (non-fractional) knapsack assignment under infinitesimal

assumptions and determine the online solution by solving a pseudo-utility maximization problem, i.e., the value from

the item minus the cost of packing it. We extend this idea to FOMKP, where the estimated cost of assignment decisions

is estimated by an integral of the threshold function.

More formally, given a set of threshold functions 𝜙 := {𝜙𝑚 (·)}𝑚∈M , the details of the OTA algorithm are provided in

Algorithm 1. Let 𝒚∗𝑛 be the online assignment decision produced by OTA𝜙 . Let𝑤
(𝑛)
𝑚 =

∑𝑛−1

𝑘=1
𝑦∗
𝑘𝑚

denote the utilization

of a knapsack𝑚 observed upon the arrival of item 𝑛, which is the total fraction of occupied knapsack capacity by the

previous 𝑛 − 1 items. OTA𝜙 uses the utilization as the state for decision-making. Since 𝜙𝑚 (𝑢)𝑑𝑢 can be considered

as the cost of assigning a small bit of the item to knapsack𝑚 when its current utilization is 𝑢, we can estimate the

total cost of assigning 𝑦𝑛𝑚 fraction of the item 𝑛 to the knapsack𝑚 by an integral

∫ 𝑤
(𝑛)
𝑚 +𝑦𝑛𝑚

𝑤
(𝑛)
𝑚

𝜙𝑚 (𝑢)𝑑𝑢. Therefore, the
second term of the pseudo-utility in the problem (7) is the total estimated cost of a knapsack assignment 𝒚𝑛 . Since

𝜙 is a non-decreasing function, the estimated cost is a convex function in 𝒚𝑛 and this pseudo-utility maximization

problem (7) can be efficiently solved. By definition, the threshold function becomes infinite when the utilization exceeds

the capacity, which avoids violating the knapsack capacities.

The above highlights that OTA𝜙 is fully parameterized by the threshold function 𝜙 . Thus, the key design question is

how to determine the threshold function 𝜙 such that OTA𝜙 is competitive with the offline optimum. Interestingly, prior

works, e.g., [44, 45, 48], use the same threshold function for the classical one-way trading and online 0/1 knapsack

problems. However, this threshold function is obtained through trial and error, and it is unclear how to design threshold

functions for more complicated variations or other settings. The crucial bottleneck for progress of these algorithms is

understanding how to design the threshold function, and the key idea in our work is a systematic approach for the

design of such threshold functions, which we describe in the next section.

Remark 3.2. Our focus is on fractional knapsack problems, but OTA𝜙 can be easily converted into an integral version for

solving the non-fractional problem OMKPAR, which restricts the schedule to a discrete set ˜Y𝑛 defined in equation (6) [22]. To

do so, the estimated cost of packing item 𝑛 to knapsack𝑚 is approximated by
∫ 𝑤

(𝑛)
𝑚 +𝑦𝑛𝑚

𝑤
(𝑛)
𝑚

𝜙𝑚 (𝑢)𝑑𝑢 ≈ 𝜙𝑚 (𝑤 (𝑛)
𝑚 +𝑦𝑛𝑚)𝑦𝑛𝑚 .

Under the infinitesimal assumption, this approximation is accurate enough and the integral OTA can achieve the same

competitive ratio for OMKPAR as that of OTA for FOMKP.
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3.2 Key Idea: Designing the Threshold Function via Instance-dependent Online Primal-dual Analysis

The fundamental challenge when developing an OTA𝜙 algorithm is the design of the threshold function 𝜙 . The key idea

of the approach proposed in this paper is to design 𝜙 using an instance-dependent primal-dual analysis that extracts

the design of the threshold function from the identification of a worst-case instance.

The use of online primal-dual (OPD) analysis for OTA stems from the work of [9]. The key idea of the OPD approach

is to construct a feasible dual solution based on the online solution produced by the online algorithm to be analyzed,

and then build the upper bound of the offline optimum using the feasible dual objective based on weak duality [8]. More

concretely, since OTA𝜙 is only parameterized by the threshold function 𝜙 , the performance of OTA𝜙 can be denoted

by ALG(I, 𝜙). Let Dual(I, 𝜙) denote the objective of the dual problem of FOMKP evaluated at the constructed dual

solution. Therefore, Dual(I, 𝜙) is also a function of 𝜙 . This means that the OPD technique allows the design of 𝜙 to be

viewed as a search for 𝜙 such that:

𝛼ALG(I, 𝜙) ≥ Dual(I, 𝜙) ≥ OPT(I),∀I ∈ Ω. (8)

The second inequality comes from weak duality and holds if the constructed dual solution is feasible. The first inequality

holds only under certain sufficient conditions, i.e., 𝜙 must satisfy a set of differential equations parameterized by 𝛼 , see

[14, 40] for examples.

The classical approach for designing such a 𝜙 in the literature (e.g., [9, 10, 14, 40]) uses the primal-dual relationship

(e.g., weak duality, KKT conditions) between an offline primal problem and its dual. This viewpoint does not rely on

understanding instances of particular online optimization problems. However, the gap between OPT(I) and Dual(I, 𝜙)
not only depends on the constructed dual solution, but also the constraint coefficients of the primal problem. Thus,

under different instances, the dual objective based on the primal constraints in the same offline formulation may lead to

a loose upper bound.

The novelty of our approach is the construction of instance-dependent offline formulations by adding constraints to

the primal problem that are constructed based on online solutions, and then utilizing the corresponding dual objectives

to bound the offline optimum. In this way, we actually perform an instance-dependent OPD analysis. Moreover, by

focusing on the worst-case instances, this approach yields threshold functions that are tuned to the challenges of the

online problem, and are tight for the worst-case.

While the application of this approach is complex for the general case of FOMKP, it can be illustrated concretely

in the specific case of generalized one-way trading (GOT) described in the problem (5). In that setting, the following

lemmas (see details in Section 4) provide a simple, concrete illustration of the approach. First, Lemma 3.3 provides a

sufficient condition on 𝜙 that can ensure OTA𝜙 is 𝛼-competitive.

Lemma 3.3. Under Assumption 2.3, OTA𝜙 for GOT is 𝛼-competitive if the threshold function 𝜙 is

𝜙 (𝑤) =

𝐿 𝑤 ∈ [0, 𝛽)

𝜑 (𝑤) 𝑤 ∈ [𝛽,𝐶]
,

where 𝛽 ∈ [0,𝐶] is a utilization threshold and 𝜑 is a non-decreasing function, and 𝜙 satisfies
𝜑 (𝑤)𝐶 ≤ 𝛼

∫ 𝑤

0
𝜙 (𝑢)𝑑𝑢,𝑤 ∈ [𝛽,𝐶],

𝜑 (𝛽) = 𝐿, 𝜑 (𝐶) ≥ 𝑈 .
(9)
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The form of the threshold function specified by the lemma consists of two segments, a flat segment in [0, 𝛽) and a

non-decreasing segment in [𝛽,𝐶]. This two-segment function results from two families of instances as shown in Case I

and Case II of Section 4.1, in which different offline formulations are needed to construct the dual objective Dual(I, 𝜙)
such that the gap between Dual(I, 𝜙) and OPT(I) is minimized. The differential equations and boundary conditions

in (9) are designed to guarantee the first inequality of the OPD relationship (8) holds. By binding all inequalities and

solving equations (9), the resulting threshold function 𝜙∗ achieves the minimal competitive ratio among the threshold

functions that satisfy this sufficient condition. This competitive ratio is an upper bound of the optimal competitive ratio

and its tightness depends on the instances.

Conversely, the next key lemma shows necessary conditions that need to be satisfied in order to achieve 𝛼-

competitiveness. It is phrased in terms of a utilization function, which is an abstracted model of an online algorithm,

mapping an instance to the final utilization level of the knapsack. See Definition 4.3 for a formal definition.

Lemma 3.4. If there exists an 𝛼-competitive online algorithm for GOT, there must exist a utilization function 𝜓 (𝑝) :

[𝐿,𝑈 ] → [0,𝐶] such that𝜓 is a non-decreasing function and satisfies
𝐿𝜓 (𝐿) +

∫ 𝑝

𝐿
𝑢𝑑𝜓 (𝑢) ≥ 𝑝𝐶/𝛼, 𝑝 ∈ [𝐿,𝑈 ],

𝜓 (𝐿) ≥ 𝐶/𝛼,𝜓 (𝑈 ) ≤ 𝐶.
(10)

This lemma provides an interpretation of an online algorithm for GOT as a black box, with an instance as an input

and a sequence of changes in the knapsack utilization as an output. Given a family of instances, each online algorithm

corresponds to a utilization function, and Lemma 3.4 specifically designs the family of instances in a way that allows

them to be indexed by a continuous marginal value within [𝐿,𝑈 ] (see Definition 4.3), making it a simple single variable

function. This means that the existence of an 𝛼-competitive online algorithm can be understood by examining the

existence of a set of differential equations about utilization functions𝜓 . An important observation is that the two sets of

differential equations (9) and (10) are essentially the same when all inequalities are binding. In particular, the threshold

function 𝜙∗ is an inverse function of the utilization function𝜓∗
. This implies that OTA𝜙∗ achieves not only an upper

bound but also a lower bound, and hence exactly the optimal competitive ratio of GOT. Conversely, it also means the

special instance used for constructing the necessary condition is actually the worst-case instance of GOT. Thus, the

OTA𝜙∗ algorithm and the worst-case instances are connected via the differential equations, implying the design of

OTA𝜙∗ is equivalent to finding the worst-case instance for GOT.

Returning to the general FOMKP, the instance-dependent OPD approach can still be leveraged to design competitive

OTA algorithms via an understanding of the worst-case instance, though the application is more complex (see Section 5).

The optimal OTA and the worst-case instance can be derived simultaneously when the upper and lower bounds match.

3.3 Summary of Results

Using the instance-dependent online primal-dual analysis described in the previous section, the main results of the

paper present the design of threshold functions for FOMKP and the special case of GOT, which has received considerable

attention in the literature.

For simplicity, we start by discussing the special case of GOT, where we design a threshold function that achieves the

optimal competitive ratio 1 + ln𝜃 .
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Theorem 3.5. Under Assumption 2.3, when the threshold function of OTA𝜙 for GOT is

𝜙∗ (𝑤) =

𝐿 𝑤 ∈ [0, 𝛽∗)

𝐿𝑒 (1+ln𝜃 )𝑤/𝐶−1 𝑤 ∈ [𝛽∗,𝐶]
, (11)

where 𝛽∗ = 𝐶
𝛼𝜙∗ is the utilization threshold, the competitive ratio of OTA𝜙∗ is 𝛼𝜙∗ = 1 + ln𝜃 .

Theorem 3.6. The optimal competitive ratio of GOT is 𝛼∗ = 1 + ln𝜃 .

This is the best-known result for GOT (under Assumption 2.3), improving upon the results summarized in the one-way

trading problem [44] and the online 0/1 knapsack problem [45, 48]. Importantly, the threshold function 𝜙∗ in (11)

coincides with optimal threshold function of OTA used in [44, 45, 48], and OTA𝜙∗ achieves the same competitive ratio.

Thus, Theorem 3.5 highlights that generalizing the objective of the one-way trading problem from linear to concave

objective functions does not degrade the competitive performance of OTA.

In addition, our approach can be extended to solve two previously studied variants of GOT. First, [15] considers a

setting that the investor can trade all its remaining assets at the last (lowest) price. We consider a variant of the GOT

defined in (5) that also allows to fill the remaining knapsack capacity with items of the lowest marginal value 𝐿. In

this context our approach yields a threshold function for OTA that achieves the same optimal competitive ratio as the

special case in [15]. Second, [25] considers a relaxed assumption on the value function, which restricts the average

value of each item to be lower bounded by 𝐿/𝑐 , instead of the marginal value in GOT, with a given parameter 𝑐 ≥ 1 (see

Assumption 4.7 for detail). In this context our approach yields a threshold function for OTA that improves the upper

bound on the competitive ratio from 𝑂 (𝑐 (1 + ln𝜃 )) in [25] to 𝑂 (ln(𝑐𝜃 )). Beyond these cases, our result also applies to

GOT problems for which no previous bounds on the competitive ratio were known.

Obtaining results for the general FOMKP problem is more challenging than in the GOT setting; however, the same

approach we introduce in the GOT setting can be generalized. For the general case, using the instance-dependent online

primal-dual approach, we design a threshold function that nearly achieves the optimal competitive ratio – it differs by an

additive factor of one. In this case, we have two results, one for the case of aggregate value functions (see Definition 2.1)

and one for the case of separable value functions (see Definition 2.2).

Theorem 3.7. Under Assumptions 2.3, when the threshold function of OTA𝜙 for the FOMKP with an aggregate value

function is

𝜙∗𝑚 (𝑤) =


𝐿 𝑤 ∈ [0, 𝛽∗𝑚)

𝐿𝑒

𝛼𝜙∗
𝐶𝑚

𝑤−
𝛼𝜙∗

𝛼𝜙∗ −1

𝑤 ∈ [𝛽∗𝑚,𝐶𝑚]
, (12)

where 𝛽∗𝑚 =
𝐶𝑚

𝛼𝜙∗−1
, the competitive ratio of OTA𝜙∗ is the solution of 𝛼𝜙∗ − 1 − 1

𝛼𝜙∗−1
= ln𝜃 .

Theorem 3.8. Under Assumption 2.3, when the threshold function of OTA𝜙 for the FOMKP with a separable value

function is

𝜙∗𝑚 (𝑤) =

𝐿 𝑤 ∈ [0, 𝛽∗𝑚)

𝑈−𝐿
𝑒
𝛼𝜙∗ −𝑒𝛼𝜙∗ /(𝛼𝜙∗ −1) 𝑒

𝛼𝜙∗
𝐶𝑚

𝑤 + 𝐿
𝛼𝜙∗ 𝑤 ∈ [𝛽∗𝑚,𝐶𝑚]

, (13)

where 𝛽∗𝑚 =
𝐶𝑚

𝛼𝜙∗−1
, the competitive ratio of OTA𝜙∗ is the solution of 𝛼𝜙∗ − 1 − 1

𝛼𝜙∗−1
= ln

𝛼𝜙∗𝜃−1

𝛼𝜙∗−1
.
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Fig. 1. Competitive ratios of OTA𝜙 for FOMKP with aggregate and separable functions.

The competitive ratios of both cases are illustrated in Figure 1. In both cases, the competitive ratio is bounded

between 1+ ln𝜃 and 2+ ln𝜃 , where 1+ ln𝜃 is a lower bound of the optimal competitive ratio. It is also worth contrasting

the threshold function with those used in prior work on OMKP. Compared to [48], which uses the same threshold

function (11) for all knapsacks, the threshold functions (12) and (13) for FOMKP are lower, and consequently estimate a

lower marginal cost at the same utilization level, encouraging a more aggressive assignment of items.

4 OPTIMAL ONLINE ALGORITHMS FOR GENERALIZED ONE-WAY TRADING

In the next two sections we present the analysis that leads to the main results discussed in the previous section. We begin

by focusing on an important special case of FOMKP, the generalized one-way trading problem (GOT). This problem

has garnered considerable interest, e.g., [13, 15, 16, 25, 36, 42, 44], and serves as a way to introduce the key ideas of

our approach without the additional complexity of the full FOMKP formulation. Then, in Section 5 we show how to

generalize the ideas presented here to the full FOMKP formulation.

The key novelty of the main result in this section (Theorem 3.5) lies in our approach to derive the threshold

function (11), which we outline in Section 3.2. Then, we provide a new proof of the lower bound in Section 4.2. Finally,

we discuss extensions to variants of one-way trading in Section 4.3

4.1 Proof of Theorem 3.5: Designing the Threshold Function

In the GOT problem, formulated in (5), an operator maintains one knapsack with a total capacity𝐶 . Upon the arrival of a

new item 𝑛 ∈ N , OTA𝜙 immediately decides the fraction of the item to be accepted, 𝑦∗𝑛 , and obtains a value 𝑔𝑛 (𝑦∗𝑛).
In this special case of FOMKP, the core pseudo-utility maximization problem (7) in OTA𝜙 reduces to the following

problem

max

0≤𝑦𝑛≤𝐷𝑛

𝑔𝑛 (𝑦𝑛) −
∫ 𝑤 (𝑛)+𝑦𝑛
𝑤 (𝑛) 𝜙 (𝑢)𝑑𝑢. (14)

Our approach here relies on the sufficient conditions on 𝜙 in Lemma 3.3, so we first prove the lemma and then

continue with the proof of the theorem.

Proof of Lemma 3.3. The dual problem of the offline GOT (5) can be stated as

min

𝜆≥0

∑︁
𝑛∈N ℎ𝑛 (𝜆) + 𝜆𝐶, (15)
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where 𝜆 is the dual variable associated with the capacity constraint and

ℎ𝑛 (𝜆) = max

0≤𝑦𝑛≤𝐷𝑛

𝑔𝑛 (𝑦𝑛) − 𝜆𝑦𝑛 (16)

is the conjugate function of 𝑔𝑛 (·). Note that ℎ𝑛 (𝜆) can be interpreted as the maximal pseudo-utility when a linear price

𝜆 is used to estimate the cost of using knapsack capacity. Thus, the maximization problem (16) has a similar physical

meaning to the pseudo-utility maximization problem (14) in OTA𝜙 . This connection is formalized in the following

proposition.

Proposition 4.1. The conjugate function ℎ𝑛 (𝜆) has the following properties:
(i) ℎ𝑛 (𝜆) is a non-increasing function;
(ii) when 𝜙 (𝐶) ≥ 𝑈 , ℎ𝑛 (𝜙 (𝑤 (𝑛+1) )) = 𝑔𝑛 (𝑦∗𝑛) −𝜙 (𝑤 (𝑛+1) )𝑦∗𝑛,∀𝑛 ∈ N , where𝑤 (𝑛+1) = 𝑤 (𝑛) +𝑦∗𝑛 and 𝑦∗𝑛 is the optimal

solution to the problem (14).

The proof of Proposition 4.1 is shown in Appendix A.1. Property (ii) in Proposition 4.1 implies that when the linear

price 𝜆 is set to the marginal cost 𝜙 (𝑤 (𝑛+1) ), the online solution 𝑦∗𝑛 of the problem (14) also maximizes the problem (16)

in the conjugate function. This relationship connects the online solution and the dual objective, and is important in the

OPD analysis.

Let𝑤 (𝑁+1)
:= 𝑤 (𝑁+1) (I) denote the final utilization of the knapsack after executing the instance I by OTA𝜙 . We

divide the set Ω of all instances into two families Ω1
:= {I : 0 ≤ 𝑤 (𝑁+1) < 𝛽} and Ω2

:= {I : 𝛽 ≤ 𝑤 (𝑁+1) ≤ 𝐶}, which
contain the instances whose final utilizations fall into the flat segment and the non-decreasing segment, respectively. Ω1

and Ω2
represent two different types of worst-case instances for GOT. Ω1

contains under-demand instances, in which

the knapsack capacity is not used up even when all items are accepted to their weights. Thus, the offline solution is to

accept all items. Ω2
includes over-demand instances, in which the capacity can be fully occupied by the offline solution

in the worst case. This leads to different offline formulations for OPD analysis.

Case I: I ∈ Ω1. The threshold function 𝜙 estimates the marginal cost of using the knapsack as 𝐿, the lower bound of

the marginal value. Thus, all items in I are accepted to their weights by OTA𝜙 and we have ALG(I, 𝜙) = ∑
𝑛∈N 𝑔𝑛 (𝐷𝑛).

We can build an upper bound Dual(I, 𝜙) of the offline optimum OPT(I) by constructing a feasible dual solution
ˆ𝜆.

A natural choice of the feasible dual solution is
ˆ𝜆 = 𝜙 (𝑤 (𝑁+1) ) = 𝐿, which is the marginal cost of the knapsack

for packing one more unit of item. Substituting this dual solution to the dual objective in (15) gives Dual(I, 𝜙) =∑
𝑛∈N ℎ𝑛 (𝐿) + 𝐿𝐶 =

∑
𝑛∈N 𝑔𝑛 (𝐷𝑛) + 𝐿(𝐶 −𝑤 (𝑁+1) ). However, Dual(I, 𝜙) cannot be further bounded by 𝛼ALG(I, 𝜙),

which can be observed when𝑤 (𝑁+1) → 0. This is because the capacity parameter 𝐶 in the dual objective (15) is not

appropriate for the under-demand instances whose capacity constraint will not be binding in the offline problem.

Instead of using 𝐶 as the capacity parameter in the offline problem (5), we can change it by adding

∑
𝑛∈N 𝑦𝑛 ≤

𝑤 (𝑁+1)
to the offline formulation. This change will not affect the offline solution for I ∈ Ω1

since the total accepted

demand by offline problem cannot exceed the total weights of all items. In this way, the dual objective is changed to∑
𝑛∈N ℎ𝑛 ( ˆ𝜆) + ˆ𝜆𝑤 (𝑁+1)

and we have

OPT(I) ≤
∑︁

𝑛∈N ℎ𝑛 (𝐿) + 𝐿𝑤 (𝑁+1) =
∑︁

𝑛∈N 𝑔𝑛 (𝐷𝑛) = ALG(I, 𝜙) . (17)

Thus, we have OPT(I)/ALG(I, 𝜙) ≤ 1,∀I ∈ Ω1
.

Case II: I ∈ Ω2. An adversary can always add one more item with weight 𝐶 and marginal value 𝜙 (𝑤 (𝑁+1) ). This
new item will be rejected by OTA𝜙 while the offline optimum will accept this item making the knapsack fully occupied.

In this case, we can keep using the dual objective (15) and set the feasible dual solution to
ˆ𝜆 = 𝜙 (𝑤 (𝑁+1) ). Based on
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weak duality, we have

OPT(I) ≤
∑︁

𝑛∈N ℎ𝑛 (𝜙 (𝑤 (𝑁+1) )) + 𝜙 (𝑤 (𝑁+1) )𝐶

≤
∑︁

𝑛∈N ℎ𝑛 (𝜙 (𝑤 (𝑛+1) )) + 𝜙 (𝑤 (𝑁+1) )𝐶 (18a)

=
∑︁

𝑛∈N [𝑔𝑛 (𝑦∗𝑛) − 𝜙 (𝑤 (𝑛+1) )𝑦∗𝑛] + 𝜙 (𝑤 (𝑁+1) )𝐶 (18b)

≤
∑︁

𝑛∈N 𝑔𝑛 (𝑦∗𝑛) + 𝜙 (𝑤 (𝑁+1) )𝐶 −
∫ 𝑤 (𝑁 +1)

0
𝜙 (𝑢)𝑑𝑢 (18c)

≤
∑︁

𝑛∈N 𝑔𝑛 (𝑦∗𝑛) + (𝛼 − 1)
∫ 𝑤 (𝑁 +1)

0
𝜙 (𝑢)𝑑𝑢 (18d)

≤
∑︁

𝑛∈N 𝑔𝑛 (𝑦∗𝑛) + (𝛼 − 1)
∑︁

𝑛∈N 𝑔𝑛 (𝑦∗𝑛) = 𝛼ALG(I). (18e)

Based on the properties of the conjugate function in Proposition 4.1, we can have equations (18a) and (18b) when

𝜙 (𝐶) ≥ 𝑈 . Since 𝜙 is a non-decreasing function, we have 𝜙 (𝑤 (𝑛+1) )𝑦∗𝑛 ≥
∫ 𝑤 (𝑛+1)

𝑤 (𝑛) 𝜙 (𝑢)𝑑𝑢 and

∑
𝑛∈N 𝜙 (𝑤 (𝑛+1) )𝑦∗𝑛 ≥∑

𝑛∈N
∫ 𝑤 (𝑛+1)

𝑤 (𝑛) 𝜙 (𝑢)𝑑𝑢 =
∫ 𝑤 (𝑁 +1)

0
𝜙 (𝑢)𝑑𝑢. Inequality (18c) holds. If the threshold function 𝜙 satisfies the differential

equation (9) in Lemma 3.3, we can have inequality (18d). Based on the pseudo-utility maximization problem (14),

non-negative utility is achieved for each 𝑛 ∈ N , i.e., 𝑔𝑛 (𝑦∗𝑛) ≥
∫ 𝑤 (𝑛+1)

𝑤 (𝑛) 𝜙 (𝑢)𝑑𝑢,∀𝑛 ∈ N . Thus, we have

∑
𝑛∈N 𝑔𝑛 (𝑦∗𝑛) ≥∫ 𝑤 (𝑁 +1)

0
𝜙 (𝑢)𝑑𝑢, and this gives inequality (18e). Thus, we have OPT(I)/ALG(I) ≤ 𝛼,∀I ∈ Ω2

if the sufficient conditions

in Lemma 3.3 are satisfied.

Finally, combining the two cases completes the proof. □

Continuing with the proof of Theorem 3.5, we next prove that 𝜙∗ in (11) achieves the smallest competitive ratio

among all threshold functions that satisfy the sufficient conditions in Lemma 3.3. To do so, we make use of Gronwall’s

Inequality, summarized below.

Lemma 4.2 (Gronwall’s Ineqality, Theorem 1, p.356, [30], and Lemma 4, [21]). Let 𝑓 (𝑥) be a function defined on

[𝑥, 𝑥] either continuous or of bounded variation. Let 𝑎(𝑥) and 𝑏 (𝑥) be integrable functions, and 𝑏 (𝑥) ≥ 0 for 𝑥 ∈ [𝑥, 𝑥].
We can claim the following statements.

(i) If 𝑓 (𝑥) ≥ 𝑎(𝑥) + 𝑏 (𝑥)
∫ 𝑥

𝑥
𝑓 (𝑢)𝑑𝑢, 𝑥 ∈ [𝑥, 𝑥], then we have

𝑓 (𝑥) ≥ 𝑎(𝑥) + 𝑏 (𝑥)
∫ 𝑥

𝑥
𝑎(𝑢) exp(

∫ 𝑥

𝑢
𝑏 (𝑠)𝑑𝑠)𝑑𝑢, 𝑥 ∈ [𝑥, 𝑥] . (19)

(ii) The result remains valid if ≥ is replaced by ≤ in both conditions and results of statement (i).

(iii) Equation (19) holds in equality for 𝑥 ∈ [𝑥, 𝑥] if the condition holds in equality for 𝑥 ∈ [𝑥, 𝑥].

Applying Gronwall’s Inequality to the differential equation in (9) gives

𝜑 (𝑤) ≤ 𝛼𝐿𝛽

𝐶
+ 𝛼

𝐶

∫ 𝑤

𝛽

𝛼𝐿𝛽

𝐶
𝑒 (𝑤−𝑢)𝛼/𝐶𝑑𝑢 =

𝛼𝐿𝛽

𝐶
𝑒 (𝑤−𝛽)𝛼/𝐶 ,𝑤 ∈ [𝛽,𝐶] . (20)

Since 𝜑 (𝐶) ≥ 𝑈 , we have 𝑈 ≤ 𝜑 (𝐶) ≤ 𝛼𝐿𝛽

𝐶
𝑒 (𝐶−𝛽)𝛼/𝐶 . Combining with the sufficient condition (9), we can conclude

that the smallest 𝛼 is achieved when all above inequalities hold in equality. It is equivalent that all inequalities in the

sufficient condition hold in equality based on statement (iii) in Lemma 4.2. Solving those equality equations gives the

threshold function 𝜙∗ in (11) and the resulting competitive ratio is 𝛼𝜙∗ = 1 + ln𝜃 .



16 Bo Sun, Ali Zeynali, Tongxin Li, Mohammad Hajiesmaili, Adam Wierman, and Danny H.K. Tsang

4.2 Proof of Theorem 3.6: Bounding the Optimal Competitive Ratio

Note that the optimal competitive ratio achievable for the one-way trading problem has been shown to be 1 + ln𝜃 [44].

Since one-way trading is a special case of GOT, the competitive ratio of GOT is also lower bounded by 1 + ln𝜃 . Thus,

Theorem 3.5 equivalently shows that OTA𝜙∗ achieves the optimal competitive ratio. However, our goal in this section is

to provide a new proof of the optimal competitive ratio based on understanding special instances. This, in turn, builds a

connection between the online algorithm and the worst-cast instance.

Our approach is to first characterize a necessary condition that any 𝛼-competitive online algorithm must satisfy,

and then derive the lower bound as the minimal 𝛼 ensuring that there exist online algorithms satisfying the necessary

condition. The necessary condition is constructed based on a subset of instances Ω𝐶𝑁 ⊆ Ω called continuously

non-decreasing instances.

Definition 4.3. An instance is called 𝑝-continuously non-decreasing, 𝑝 ∈ [𝐿,𝑈 ], if

• the instance is composed of a sequence of items indexed by𝑛 ∈ N . Each item has a linear value function𝑔𝑛 (𝑦𝑛) = 𝑣𝑛𝑦𝑛

and its weight is 𝐷𝑛 = 𝐶 .

• the marginal value of the first item is 𝐿, i.e., 𝑣1 = 𝐿

• the increment of the marginal values between successive items is non-negative and arbitrarily small, i.e., 0 ≤
𝑣𝑛+1 − 𝑣𝑛 ≤ 𝜖 , where ∀𝜖 > 0.

• the marginal value of the last item is 𝑝 , i.e., 𝑣𝑁 = 𝑝 .

Let I𝑝 denote the 𝑝-continuously non-decreasing instance and let Ω𝐶𝑁 := {I𝑝 }𝑝∈[𝐿,𝑈 ] .

Definition 4.4 (Utilization Function). A utilization function 𝜓 (𝑝) : [𝐿,𝑈 ] → [0,𝐶] is defined as the final

utilization of the knapsack after executing the instance I𝑝 by an online algorithm.

Note that every online algorithm can be mapped to a utilization function via Ω𝐶𝑁 . The key to our approach here

is Lemma 3.4 and we next show that the utilization function of any 𝛼-competitive online algorithm must satisfy the

necessary condition in Lemma 3.4.

Proof of Lemma 3.4. Since online algorithms make real-time irrevocable decisions only based on causal information,

𝜓 (𝑝) is a non-decreasing function in [𝐿,𝑈 ]. Since the maximum utilization is 𝐶 , the utilization function must satisfy

the boundary condition 𝜓 (𝑈 ) ≤ 𝐶 . Additionally, by definition, the total value achieved by an 𝛼-competitive online

algorithm is at least 1/𝛼 of the offline optimum for any arrival instances. Thus, under the instance I𝐿 , we have

OPT(I𝐿) = 𝐿𝐶 and ALG(I𝐿) = 𝐿𝜓 (𝐿),

and an 𝛼-competitive algorithm must ensure ALG(I𝐿) ≥ OPT(I𝐿)/𝛼 , which gives the boundary condition𝜓 (𝐿) ≥ 𝐶/𝛼 .
More specifically, under the instance I𝑝 , 𝑝 ∈ (𝐿,𝑈 ], we have

OPT(I𝑝 ) = 𝑝𝐶, and ALG(I𝑝 ) = 𝐿𝜓 (𝐿) +
∫ 𝑝

𝐿
𝑢𝑑𝜓 (𝑢),

where 𝑢𝑑𝜓 (𝑢) denotes the value achieved by the item with marginal value 𝑢. An 𝛼-competitive algorithm must ensure

ALG(I𝑝 ) ≥ OPT(I𝑝 )/𝛼 which gives the differential equation in (10). Combining all above conditions gives the necessary

condition (10). □

Finally, to complete the proof of the theorem we derive the minimal 𝛼 that can ensure there exists a non-decreasing

utilization function𝜓 satisfying the necessary condition (10). Using integration by parts, we have 𝐿𝜓 (𝐿) +
∫ 𝑝

𝐿
𝑢𝑑𝜓 (𝑢) =
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𝐿𝜓 (𝐿)+[𝜓 (𝑢)𝑢] |𝑝
𝐿
−
∫ 𝑝

𝐿
𝜓 (𝑢)𝑑𝑢 = 𝜓 (𝑝)𝑝−

∫ 𝑝

𝐿
𝜓 (𝑢)𝑑𝑢. Combining above equation and the necessary condition (10), we see

that the utilization function𝜓 corresponding to any 𝛼-competitive online algorithms must satisfy𝜓 (𝑝)𝑝 −
∫ 𝑝

𝐿
𝜓 (𝑢)𝑑𝑢 ≥

𝑝𝐶/𝛼, 𝑝 ∈ [𝐿,𝑈 ]. Applying Gronwall’s Inequality in Lemma 4.2, we obtain

𝜓 (𝑝) ≥ 𝐶

𝛼
+ 1

𝑝

∫ 𝑝

𝐿

𝐶

𝛼
exp(

∫ 𝑝

𝑢
1

𝑠 𝑑𝑠)𝑑𝑢 =
𝐶

𝛼
·
[
1 +

∫ 𝑝

𝐿

1

𝑢
𝑑𝑢

]
=
𝐶

𝛼
·
[
1 + ln

(𝑝
𝐿

)]
.

Since 𝜓 (𝑈 ) ≤ 𝐶 , we have 𝐶
𝛼 [1 + ln𝜃 ] = 𝜓 (𝑈 ) ≤ 𝐶 , which gives 𝛼 ≥ 1 + ln𝜃 . And the minimal 𝛼 = 1 + ln𝜃 can be

achieved when inequalities in (10) all hold in equality. Thus, 1 + ln𝜃 is a lower bound of the competitive ratio.

4.3 Two Variants of GOT

In order to show the generality of our approach for GOT, we further devise OTA𝜙 for two variants of GOT using the

approach. In both cases we obtain results that match or improve the state-of-the-art.

Variant 1: GOT without leftover capacity. This variant considers the classical setting of the one-way trading problem in

which after the last item, the remaining capacity of the knapsack, if any, can be used to pack items with the lowest

marginal value 𝐿. When the value function is linear, this variant is studied by [15]. It is solved using a threat-based online

algorithm, and the optimal competitive ratio that is achieved is the solution of the equation 𝛼 = ln
𝑈−𝐿
𝛼𝐿−𝐿 . Concretely,

the offline formulation of this variant can be stated as

max

𝑦𝑛

∑︁
𝑛∈N 𝑔𝑛 (𝑦𝑛) +

(
𝐶 −

∑︁
𝑛∈N 𝑦𝑛

)
𝐿 s.t.

∑︁
𝑛∈N 𝑦𝑛 ≤ 𝐶, 0 ≤ 𝑦𝑛 ≤ 𝐷𝑛,∀𝑛 ∈ N . (21)

Note that this variant cannot be considered as a GOT with a value function 𝑔𝑛 (𝑦𝑛) − 𝐿𝑦𝑛 since (i) its marginal value is

lower bounded by 0, which does not satisfy Assumption 2.3, and (ii) the total value is lower bounded by 𝐶𝐿 even when

no item is accepted by an online algorithm. The following Corollary 4.5 (see proof in Appendix A.2) shows that we can

design OTA𝜙 to achieve the optimal competitive ratio of this variant.

Corollary 4.5. Under Assumption 2.3, if the threshold function of OTA𝜙 for Variant 1 of GOT is

𝜙∗ (𝑤) = 𝐿 + (𝑈 − 𝐿)𝑒
𝛼𝜙∗
𝐶

𝑤−𝛼𝜙∗ ,𝑤 ∈ [0,𝐶], (22)

the competitive ratio 𝛼𝜙∗ of OTA𝜙∗ is the solution of the equation 𝛼𝜙∗ = ln
𝑈−𝐿

𝛼𝜙∗𝐿−𝐿 .

Corollary 4.6. The optimal competitive ratio for Variant 1 of GOT is the solution of 𝛼∗ = ln
𝑈−𝐿
𝛼∗𝐿−𝐿 .

We can prove Corollary 4.6 using the same approach in Section 4.2 and the worst-case instance is still the continuously

non-decreasing instance Ω𝐶𝑁 . The detail is presented in Appendix A.3.

Variant 2: Relaxed GOT. In this variant, condition (iii) in Assumption 2.3 is relaxed to the following:

Assumption 4.7. The derivative of the value function satisfies 𝐿 ≤ 𝑔′𝑛 (0) ≤ 𝑈 and 𝑔𝑛 (𝐷𝑛)/𝐷𝑛 ≥ 𝐿/𝑐,∀𝑛 ∈ N , where

𝑐 ≥ 1 is a given parameter.

Assumption 4.7 bounds the marginal value of the value function at origin between 𝐿 and 𝑈 , and the average value is

lower bounded by 𝐿/𝑐 . This new assumption allows a broader class of value functions whose marginal values may reach

0 (e.g., quadratic functions that can reach their maximums). The assumption has also been introduced by [25], in which

a CR-Pursuit online algorithm is proposed to solve GOT (without rate limits) and is shown to achieve a competitive ratio

upper bounded by 𝑂 (𝑐 (ln(𝜃 ) + 1)). Our approach yields the following result.
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Corollary 4.8. Under the conditions (i) and (ii) in Assumption 2.3 and Assumption 4.7, when the threshold function of

OTA𝜙 for Variant 2 of GOT is given by

𝜙∗ (𝑤) =


𝐿
𝑐 · 𝑒𝑤/𝐶−1

𝑒𝛽
∗/𝐶−1

𝑤 ∈ [0, 𝛽∗)
𝐿
𝑐 · 𝑒 (𝑤−𝛽∗) ln(𝑐𝜃 )/(𝐶−𝛽∗) 𝑤 ∈ [𝛽∗,𝐶]

, (23)

where 𝛽∗ = (𝑊 (𝑐𝜃 ln(𝑐𝜃 )/𝑒) − ln(𝑐𝜃 ) + 1)𝐶 , the competitive ratio of OTA𝜙∗ is ln(𝑐𝜃 )
ln(𝑐𝜃 )−𝑊 (𝑐𝜃 ln(𝑐𝜃 )/𝑒) .

In the corollary above,𝑊 (·) is the Lambert-𝑊 function, which is the inverse function of 𝑓 (𝑥) = 𝑥𝑒𝑥 . Since𝑊 (𝑥) ≤
ln(𝑥) − ln ln(𝑥) + 𝑂 (1), we have ln(𝑐𝜃 ) −𝑊 (𝑐𝜃 ln(𝑐𝜃 )/𝑒) ≥ 𝑂 (1). Consequently, the competitive ratio achieved by

OTA𝜙∗ in Corollary 4.8 is 𝑂 (ln(𝑐𝜃 )), improving the upper bound in [25] from linear order 𝑂 (𝑐 (ln(𝜃 ) + 1)) in 𝑐 to

logarithmic order.

5 COMPETITIVE ALGORITHMS FOR FOMKP

In this section, we prove our main results, which bound the competitive ratio for the general form of FOMKP. To

do this, we use the same general approach as illustrated in the previous section for GOT. However, the generality of

FOMKP adds considerable complexity to this case. We primarily focus on the proof of Theorem 3.7 for the FOMKP

with aggregate value functions. The proof of Theorem 3.8 for the separable functions proceeds much the same. Thus,

we highlight the key differences here and defer the full proof to Appendix A.6.

Proof of Theorem 3.7: Aggregate Functions. First, we construct a counterpart to Lemma 3.3 for GOT, providing

sufficient conditions for designing the threshold function. The sufficient condition on the threshold function of each

knapsack is not a trivial extension of the single knapsack case.

Lemma 5.1. Under Assumption 2.3, OTA𝜙 for FOMKP with aggregate value functions is 𝛼-competitive if the threshold

function 𝜙 = {𝜙𝑚}𝑚∈M is in the form of, ∀𝑚 ∈ M,

𝜙𝑚 (𝑤) =

𝐿 𝑤 ∈ [0, 𝛽𝑚)

𝜑𝑚 (𝑤) 𝑤 ∈ [𝛽𝑚,𝐶𝑚]
,

where 𝛽𝑚 ∈ [0,𝐶𝑚] is a utilization threshold and 𝜑𝑚 is a non-decreasing function, and 𝜙𝑚 satisfies
𝜑𝑚 (𝑤)𝐶𝑚 ≤ 𝛼

∫ 𝑤

0
𝜙𝑚 (𝑢)𝑑𝑢 − 𝐿𝛽𝑚, 𝑤 ∈ [𝛽𝑚,𝐶𝑚],

𝜑𝑚 (𝛽𝑚) = 𝐿, 𝜑𝑚 (𝐶𝑚) ≥ 𝑈 .
(24)

To prove Lemma 5.1, we divide the set of instances Ω into three subsets Ω1
, Ω2

, and Ω3
. The instances in those

subsets result in different worst cases. Thus, we construct instance-dependent dual objectives to bound the offline

optimum in each case, leading to the sufficient conditions in Lemma 5.1. Due to space constraints, we sketch the proof

of Lemma 5.1 here and include the full version in Appendix A.5.

Proof Sketch of Lemma 5.1. Let 𝑤
(𝑁+1)
𝑚 := 𝑤

(𝑁+1)
𝑚 (I) denote the final utilization of the knapsack𝑚 after exe-

cuting instance I by OTA𝜙 . Ω
1

:= {I : 0 ≤ 𝑤
(𝑁+1)
𝑚 < 𝛽𝑚,∀𝑚 ∈ M} and Ω2

:= {I : 𝛽𝑚 ≤ 𝑤
(𝑁+1)
𝑚 ≤ 𝐶𝑚,∀𝑚 ∈ M}

contain the instances whose final utilizations of all knapsacks are below and above their utilization thresholds 𝛽𝑚 ,

respectively. Excluding these two subsets, the remaining instances form Ω3
:= Ω \ (Ω1 ∪ Ω2), in which some knap-

sacks M1
:= {𝑚 ∈ M : 0 ≤ 𝑤

(𝑁+1)
𝑚 < 𝛽𝑚} have final utilizations below the utilization thresholds and the others

M2
:= {𝑚 ∈ M : 𝛽𝑚 ≤ 𝑤

(𝑁+1)
𝑚 < 𝐶𝑚} have final utilizations above the thresholds.
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The cases when I ∈ Ω1
and I ∈ Ω2

correspond to general versions of Case I and Case II in the proof of Lemma 3.3

for GOT. The idea is to use the optimal primal and dual variables of the pseudo-utility maximization problem to construct

the feasible dual solution in the OPD analysis, and decompose the dual objective into a summation of equations

corresponding to individual knapsacks, making these cases similar to those in GOT.

The main new challenge comes from Case III, in which the knapsacks are coupled in a non-trivial way. The key

difference between Case II and Case III is that the knapsacks in M1
may not be fully occupied by the offline solution

under the worst-case instance in Ω3
. This is because the total amount of items, which can be packed intoM1

, is limited

by

∑
𝑚∈M1 𝑤

(𝑁+1)
𝑚 +∑𝑚∈M2 𝛽𝑚 . Compared to the online solution, the additional amount of items that can be assigned

to the knapsacks inM1
in the offline solution is upper bounded by the total amount of items that is assigned toM2

before reaching the utilization threshold. The marginal cost of the assigned items above the utilization threshold inM2

is larger than 𝐿. Therefore, the reason why such items are not assigned toM1
is that the items are not feasible for such

assignment due to the rate limits. Thus, those items cannot be assigned to M1
in the offline solution as well. Based on

this understanding of the worst-case instance, we add the following constraint to the offline formulation∑︁
𝑛∈N

∑︁
𝑚∈M1

𝑦𝑛𝑚 ≤
∑︁

𝑚∈M1
𝑤

(𝑁+1)
𝑚 +

∑︁
𝑚∈M2

𝛽𝑚 .

Applying OPD analysis to the new offline problem gives the sufficient condition in Lemma 5.1. □

Now, to complete the proof of Theorem 3.7, we apply Gronwall’s Inequality to the differential equation (24) and

obtain

𝜑𝑚 (𝑤) ≤ 𝛼 − 1

𝐶𝑚
𝐿𝛽𝑚 + 𝛼

𝐶𝑚

∫ 𝑤

𝛽𝑚

𝛼 − 1

𝐶𝑚
𝐿𝛽𝑚𝑒𝛼 (𝑤−𝑢)/𝐶𝑚𝑑𝑢 =

𝛼 − 1

𝐶𝑚
𝐿𝛽𝑚𝑒𝛼 (𝑤−𝛽𝑚)/𝐶𝑚 ,𝑤 ∈ [𝛽𝑚,𝐶𝑚] .

Since 𝜑𝑚 (𝐶𝑚) ≥ 𝑈 , we have 𝑈 ≤ 𝜑 (𝐶𝑚) ≤ 𝛼−1

𝐶𝑚
𝐿𝛽𝑚𝑒𝛼 (𝐶𝑚−𝛽𝑚)/𝐶𝑚

. The minimum 𝛼 is achieved when all inequalities

in the sufficient condition (24) hold in equality. This gives 𝑈 = 𝛼−1

𝐶𝑚
𝐿𝛽𝑚𝑒𝛼 (𝐶𝑚−𝛽𝑚)/𝐶𝑚

and 𝛽𝑚 =
𝐶𝑚

𝛼−1
. Thus, the

resulting competitive ratio 𝛼𝜙∗ is the solution of the equation 𝛼𝜙∗ − 1− 1

𝛼𝜙∗−1
= ln𝜃 and the threshold function is given

by (12).

Proof Sketch of Theorem 3.8: Separable Functions. Compared to Theorem 3.7, the key difference in proving

Theorem 3.8 occurs in Case III. Cases I and II proceed similarly in both cases but, for separable value functions, the total

amount of items that can be reassigned from knapsacks inM2
to knapsacks inM1

is upper bounded by

∑
𝑚∈M2 𝑤

(𝑁+1)
𝑚

instead of

∑
𝑚∈M2 𝛽𝑚 . This is because each knapsack is associated with an independent value function, and thus the

marginal utility, which determines the assignment of a small bit of item, depends on both the marginal value of the

item and the marginal cost of the knapsack. So, the reason that the items are assigned to knapsacks in M2
may not be

due to the rate limits restricting the assignment from knapsacks in M1
. Instead, this may happen because assigning to

the knapsacks in M2
can result in higher marginal utility. In this case, we add a new constraint to the offline problem

and the resulting dual objective finally leads to a different threshold function and competitive ratio in Theorem 3.8.

6 CASE STUDY

This section presents a brief demonstration of our proposed algorithm in the context of the EV charging problem. The

experiments are not meant to be exhaustive, rather they are intended to validate the theoretical results and illustrate

the potential of the approach. We consider a system consisting of multiple stations working parallel where EVs can

charge. The power capacity is limited, and is much smaller than the total power demanded by the vehicles. Therefore,



20 Bo Sun, Ali Zeynali, Tongxin Li, Mohammad Hajiesmaili, Adam Wierman, and Danny H.K. Tsang

the station cannot admit the total demands of all vehicles and must decide the amount of power to allocate to the new

vehicle upon its arrival.

Experimental Setup.We use the Adaptive Charging Network Dataset, ACN-Data, which includes over 50,000 EV

charging sessions, and 54 charging stations [23]. We use a sequence of more than 2,000 charging sessions. The dataset

includes information about the arrival and departure time, and the power demand. In our experiments, we consider

one-hour time slots within a time horizon of one day, hence, the total number of time slots,𝑀 , is chosen as 24.

We compare our online algorithm with a fixed threshold algorithm, FTA, which admits an item if its value is above a

fixed threshold of

√
𝑈 × 𝐿, and then it delivers the maximum possible supply power up to the vehicle’s demand or the

station’s capacity. While no prior work exists on the problem studied in this paper, FTA is the most common approach

for online knapsack problems, and provides a contrast to the utilization-based threshold in our proposed OTA algorithm.

The threshold value

√
𝑈 × 𝐿 is selected because our focus is on improving the worst-case performance and this value

achieves the best possible competitive ratio among the fixed threshold policies [15].

We use a linear value function, following the assumption of previous work such as [46]. In our experiments, we set

the value fluctuation ratio 𝜃 = 36. The results are not too sensitive to this choice. We evaluate the performance of our

algorithm in three different congestion levels: low, medium, and high, where the system is able to cover roughly 55%,

10%, and 2.7% of the demand, respectively. For each instance, we randomly generate 20 trials for each day, each with

different values, and report the average results for 90 × 20 = 1800 trials. Last, we report the empirical profit ratio of

different algorithms, which is the ratio between the profit obtained by the offline optimal solution and that of an online

algorithm in experiments.

Experimental Results. Our focus is on the competitive ratio and so to illustrate the improvement in the worst-case

performance, Figure 2 demonstrates the cumulative distribution function (CDF) of the empirical profit ratios of OTA,

our proposed algorithm, and FTA in low, medium, and high congestion levels. The results show that the profit ratio of

our algorithm in the low, medium, and high congestion levels is bounded by 1.7, 2.0, and 2.5 while the maximum profit

ratio of FTA is 1.9, 3.0, and 4.5. This represents a decrease of 10.0%, 33.3%, and 44.4%, respectively, thus we see nearly a

factor of 2 improvement in the worst case when congestion is high. While the adaptive threshold was designed with

the worst-case in mind, we also see an improvement in the average profit of 6.7%, 11.8%, and 15.8% in low, medium, and

high congestion levels, respectively. In Figure 2(d), we report the percentage of improvement in the average profit ratio

as the congestion level increases. The result shows that, as the system becomes more congested, the improvement of

OTA grows since the value of scheduling increases with congestion.

Finally, we performed experiments to understand the impact of heterogeneity in the values of drivers. We considered

9 classes of arrivals, with non-i.i.d. value distributions. The mean of the classes differ by 20. Heterogeneity leads to an

increase in the improvement of our algorithm over FTA. The resulting improvements are 27.4%, 68.9%, and 56.8% for the

worst case and 10.7%, 17.9%, and 20.7% for the average case in low, medium, and high congestion settings, respectively.

7 CONCLUDING REMARKS

Motivated by EV charging, we have introduced a general form of a fractional online multiple knapsack problem that

includes heterogeneous rate constraints and provides a unification of a range of variants of both online knapsack

and one-way trading. Our main result provides a near-optimal algorithm for the general problem, as well as results

for special cases corresponding to a number of variants that have received attention in recent years. In all cases, we

either match or improve on state-of-the-art results while also including features, such as rate-constraints, that were not

included in prior work.
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Fig. 2. The CDF of empirical profit ratios of OTA and FTA for (a) low, (b) medium, and (c) high congestion settings. The results show
that OTA improves the worst-case profit ratio over FTA by 10.0%, 33.3%, and 44.4% for low, medium, and high congestion settings,
respectively. Fig. (d) shows the average % improvement of OTA as compared to FTA as the load factor varies, highlighting a nearly
20% improvement for high load.

The key to our results is a new analytic technique called instance-dependent online primal-dual analysis, which

provides a systematic way to design threshold functions for OTA, something that was previously more art than science.

The approach exposes a novel and powerful connection between the design of algorithms and the identification of

worst-case instances. We expect this technique to be applicable beyond the online knapsack and one-way trading

problems, and an important line of future work is to understand the breadth of online algorithms problems where the

identification of worst-case instances can systematically guide the design of algorithms.

Beyond exploring the impact of the analytic approach, another important line of future work is to explore the

application of the new algorithm proposed here. We briefly highlight an application in EV charging, but more work is

needed before real-world deployment. Moreover, applications to cloud scheduling and geographical load balancing will

be exciting to pursue.
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A PROOFS

A.1 Proof of Proposition 4.1

We begin by proving property (i) in Proposition 4.1. Let 𝜆 ≥ 𝜆′ ≥ 0 and denote by𝑦𝑛 the optimal solution that maximizes

the conjugate problem (16) given 𝜆. We then have

ℎ𝑛 (𝜆) = 𝑔𝑛 (𝑦𝑛) − 𝜆𝑦𝑛 ≤ 𝑔𝑛 (𝑦𝑛) − 𝜆′𝑦𝑛 ≤ max

0≤𝑦𝑛≤𝐷𝑛

𝑔𝑛 (𝑦𝑛) − 𝜆′𝑦𝑛 = ℎ𝑛 (𝜆′).

Thus, ℎ𝑛 (𝜆) is a non-increasing function.
Note that the threshold function 𝜙 is discontinuous at 𝐶 since 𝜙 (𝑤) = +∞,𝑤 ∈ (𝐶, +∞) by definition. When

𝜙 (𝐶) ≥ 𝑈 , there must exist a utilization level �̄� ≤ 𝐶 and 𝜙 (�̄�) = 𝑈 . Since 𝑔′𝑛 ≤ 𝑈 , we can have 𝑤 (𝑛) + 𝑦𝑛 ≤ �̄� .

Consequently, the derivative of the integral function

Φ(𝑦𝑛) :=
∫ 𝑤 (𝑛)+𝑦𝑛
𝑤 (𝑛) 𝜙 (𝑢)𝑑𝑢

is continuous and non-decreasing, and hence this integral function is convex when 𝑦𝑛 ≤ �̄� − 𝑤 (𝑛)
. Thus, when

𝜙 (𝐶) ≥ 𝑈 , the pseudo-utility maximization problem (14) is a convex optimization problem, and its optimal solution can

be determined by the KKT conditions. Part of the KKT conditions is given by

𝑔′𝑛 (𝑦∗𝑛) − 𝜙 (𝑤 (𝑛+1) ) − 𝜅∗𝑛 + 𝜈∗𝑛 = 0, 𝜅∗𝑛 (𝐷𝑛 − 𝑦∗𝑛) = 0, 𝜈∗𝑛𝑦
∗
𝑛 = 0,

where 𝑦∗𝑛 and {𝜅∗𝑛, 𝜈∗𝑛} are the optimal primal and dual variables, and 𝜅∗𝑛 and 𝜈∗𝑛 correspond to the constraints 𝑦𝑛 ≤ 𝐷𝑛

and 𝑦𝑛 ≥ 0, respectively. We next can verify the property (ii) in Proposition 4.1 by showing that 𝑦∗𝑛 maximizes the

conjugate problem (16) given 𝜆 = 𝜙 (𝑤 (𝑛+1) ).
(i) When 𝑔′𝑛 (𝑦∗𝑛) − 𝜙 (𝑤 (𝑛+1) ) > 0, we have 𝑦∗𝑛 = 𝐷𝑛 , i.e., 𝑔

′
𝑛 (𝐷𝑛) > 𝜙 (𝑤 (𝑛+1) ). In this case, we have 𝑦∗𝑛 = 𝐷𝑛 =

arg max
0≤𝑦𝑛≤𝐷𝑛

𝑔𝑛 (𝑦𝑛) − 𝜙 (𝑤 (𝑛+1) )𝑦𝑛 .
(ii) When 𝑔′𝑛 (𝑦∗𝑛) − 𝜙 (𝑤 (𝑛+1) ) < 0, we have 𝑦∗𝑛 = 0, i.e., 𝑔′𝑛 (0) < 𝜙 (𝑤 (𝑛+1) ) = 𝜙 (𝑤 (𝑛) ). In this case, we have

𝑦∗𝑛 = 0 = arg max
0≤𝑦𝑛≤𝐷𝑛

𝑔𝑛 (𝑦𝑛) − 𝜙 (𝑤 (𝑛+1) )𝑦𝑛 .
(iii) When 𝑔′𝑛 (𝑦∗𝑛) = 𝜙 (𝑤 (𝑛+1) ), 𝑦∗𝑛 satisfies the KKT conditions of the conjugate optimization problem (16), given

𝜆 = 𝜙 (𝑤 (𝑛+1) ), i.e.,

𝑔′𝑛 (𝑦∗𝑛) − 𝜙 (𝑤 (𝑛+1) ) − �̃�𝑛 + 𝜈𝑛 = 0, �̃�𝑛 (𝐷𝑛 − 𝑦∗𝑛) = 0, 𝜈𝑛𝑦
∗
𝑛 = 0,

in which 𝜈𝑛 = �̃�𝑛 = 0 since 𝑔′𝑛 (𝑦∗𝑛) − 𝜙 (𝑤 (𝑛+1) ) = 0. Therefore, 𝑦∗𝑛 ∈ arg max
0≤𝑦𝑛≤𝐷𝑛

𝑔𝑛 (𝑦𝑛) − 𝜙 (𝑤 (𝑛+1) )𝑦𝑛 .
Thus, we have ℎ𝑛 (𝜙 (𝑤 (𝑛+1) )) = 𝑔𝑛 (𝑦∗𝑛) − 𝜙 (𝑤 (𝑛+1) )𝑦∗𝑛,∀𝑛 ∈ N .

A.2 Proof of Corollary 4.5

The dual of the offline problem (21) is

min

𝜆≥0

∑︁
𝑛∈N ℎ𝑛 (𝜆) + (𝜆 + 𝐿)𝐶,
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where ℎ𝑛 (𝜆) = max0≤𝑦𝑛≤𝐷𝑛
𝑔𝑛 (𝑦𝑛) − (𝜆 + 𝐿)𝑦𝑛 . The pseudo-utility maximization problem of this variant is the same

as GOT, which is given by (14). We set the feasible dual solution as
ˆ𝜆 = 𝜙 (𝑤 (𝑁+1) ) − 𝐿. Based on weak duality, we have

OPT(I) ≤
∑︁

𝑛∈N ℎ𝑛 (𝜙 (𝑤 (𝑁+1) ) − 𝐿) + 𝜙 (𝑤 (𝑁+1) )𝐶

≤
∑︁

𝑛∈N

[
𝑔𝑛 (𝑦∗𝑛) − 𝜙 (𝑤 (𝑛+1) )𝑦∗𝑛

]
+ 𝜙 (𝑤 (𝑁+1) )𝐶

≤
∑︁

𝑛∈N 𝑔𝑛 (𝑦∗𝑛) + (𝐶 −𝑤 (𝑁+1) )𝐿 + 𝜙 (𝑤 (𝑁+1) )𝐶 −
∫ 𝑤 (𝑁 +1)

0
𝜙 (𝑢)𝑑𝑢 − (𝐶 −𝑤 (𝑁+1) )𝐿

≤ 𝛼

[∑︁
𝑛∈N 𝑔𝑛 (𝑦∗𝑛) + (𝐶 −𝑤 (𝑁+1) )𝐿

]
= 𝛼ALG(I).

When 𝜙 (𝐶) ≥ 𝑈 , applying Proposition 4.1 gives the second inequality. The last inequality holds if the threshold function

further satisfies the following differential equation

𝜙 (𝑤)𝐶 ≤ 𝛼
∫ 𝑤

0
𝜙 (𝑢)𝑑𝑢 + 𝛼 (𝐶 −𝑤)𝐿,𝑤 ∈ [0,𝐶] .

Applying Gronwall’s Inequality to above equation, we obtain

𝜙 (𝑤) ≤ 𝛼𝐿 − 𝛼𝐿𝑤

𝐶
+ 𝛼

𝐶

∫ 𝑤

0
𝜙 (𝑢)𝑑𝑢 ≤ 𝐿 + (𝛼𝐿 − 𝐿)𝑒𝛼𝑤/𝐶 .

Note that 𝜙 (𝐶) ≥ 𝑈 gives 𝑈 ≤ 𝜙 (𝐶) ≤ 𝐿 + (𝛼𝐿 − 𝐿)𝑒𝛼 . When all inequalities hold with equality, the competitive ratio

𝛼 is minimized and is given by the solution of the equation 𝛼 = ln
𝑈−𝐿
𝛼𝐿−𝐿 , and the threshold function 𝜙 is given by (22).

A.3 Proof of Corollary 4.6

In this variant of GOT, we can have the following necessary condition for the existence of an 𝛼-competitive online

algorithm based on the continuously non-decreasing instance (see Definition 4.3).

Claim A.1. If there exists an 𝛼-competitive online algorithm for Variant 1 of GOT, there must exist a utilization function

𝜓 (𝑝) : [𝐿,𝑈 ] → [0,𝐶] that is non-decreasing and satisfies
𝜓 (𝑝)𝑝 −

∫ 𝑝

𝐿
𝜓 (𝑢)𝑑𝑢 + [𝐶 −𝜓 (𝑝)]𝐿 ≥ 𝑝𝐶/𝛼, 𝑝 ∈ [𝐿,𝑈 ]

𝜓 (𝑈 ) ≤ 𝐶
. (26)

To prove this, note that under instance I𝑝 , we have

OPT(I𝑝 ) = 𝑝𝐶,

ALG(I𝑝 ) = 𝜓 (𝐿)𝐿 +
∫ 𝑝

𝐿
𝑢𝑑𝜓 (𝑢) + (𝐶 −𝜓 (𝑝))𝐿 = 𝜓 (𝑝)𝑝 −

∫ 𝑝

𝐿
𝜓 (𝑢)𝑑𝑢 + [𝐶 −𝜓 (𝑝)]𝐿.

Since any 𝛼-competitive online algorithm must satisfy ALG(I𝑝 ) ≥ OPT(I𝑝 )/𝛼 , this gives the differential equation in (26).

The utilization function cannot exceed the capacity so we have the boundary condition𝜓 (𝑈 ) ≤ 𝐶 .

The differential equation in (26) holds when𝜓 (𝑝) = 0, 𝑝 ∈ [𝐿, 𝛼𝐿]. We can then apply Gronwall’s Inequality to (26)

and obtain

𝜓 (𝑝) ≥ 𝐶

𝛼

𝑝

𝑝 − 𝐿
− 𝐶𝐿

𝑝 − 𝐿
+ 1

𝑝 − 𝐿

∫ 𝑝

𝛼𝐿

[
𝐶

𝛼

𝑢

𝑢 − 𝐿
− 𝐶𝐿

𝑢 − 𝐿

]
𝑝 − 𝐿

𝑢 − 𝐿
𝑑𝑢 =

𝐶

𝛼
ln

𝑝 − 𝐿

𝛼𝐿 − 𝐿
.

Since𝜓 (𝑈 ) ≤ 𝐶 , we have 𝐶 ≥ 𝜓 (𝑈 ) ≥ 𝐶
𝛼 ln

𝑈−𝐿
𝛼𝐿−𝐿 , and those inequalities hold when all inequalities in (26) are binding.

Thus, a lower bound of the optimal competitive ratio is the solution of the equation 𝛼 = ln
𝑈−𝐿
𝛼𝐿−𝐿 and the corresponding
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utilization function is given by

𝜓∗ (𝑝) =


0 𝑝 ∈ [𝐿, 𝛼𝐿]
𝐶
𝛼 ln

𝑝−𝐿
𝛼𝐿−𝐿 𝑝 ∈ [𝛼𝐿,𝑈 ]

.

Since this lower bound can be achieved by OTA𝜙 with the threshold function given in Corollary 4.5, the optimal

competitive ratio 𝛼∗ for Variant 1 of GOT is the solution of the equation 𝛼∗ = ln
𝑈−𝐿
𝛼∗𝐿−𝐿 .

A.4 Proof of Corollary 4.8

We begin by proving a sufficient condition for ensuring an 𝛼-competitive OTA for Variant 2 of GOT.

Claim A.2. Under the conditions (i) and (ii) in Assumption 2.3 and Assumption 4.7, the OTA𝜙 for Variant 2 of GOT is

𝛼-competitive if the threshold function is in the form of

𝜙 (𝑤) =

𝜑1 (𝑤) 𝑤 ∈ [0, 𝛽)

𝜑2 (𝑤) 𝑤 ∈ [𝛽,𝐶]
,

where 𝛽 ∈ [0,𝐶] is a utilization threshold and 𝜙 (𝑤) satisfies the following conditions:
(i) 𝜑1 (𝑤) is a non-decreasing differentiable function that satisfies

𝜑1 (𝑤)𝐶 ≤
∫ 𝑤

0
𝜑1 (𝑢)𝑑𝑢 + (𝛼 − 1) 𝐿𝑐𝑤,𝑤 ∈ [0, 𝛽),

𝜑1 (0) = 0, 𝜑1 (𝛽) = 𝐿/𝑐.
(27)

(ii) 𝜑2 (𝑤) is a non-decreasing differentiable function that satisfies
𝜑2 (𝑤)𝐶 ≤ 𝛼

∫ 𝑤

0
𝜙 (𝑢)𝑑𝑢,𝑤 ∈ [𝛽,𝐶],

𝜑2 (𝛽) = 𝐿/𝑐, 𝜑2 (𝐶) ≥ 𝑈 .
(28)

The derivation of the above sufficient condition for𝑤 ∈ [𝛽,𝐶] is the same as that of Case II in GOT by changing 𝐿 to

𝐿/𝑐 . Different from Case I of GOT, the marginal value function of this case is not strictly lower bounded. Thus, setting

the threshold function in [0, 𝛽) to a flat segment cannot ensure all items are accepted to their sizes and the argument

in Case I fails. To handle this relaxed assumption, we can design the threshold function as a non-decreasing function

𝜑1 (𝑤). Following the OPD approach in Case II of GOT, we can build the upper bound of OPT(I) until the equation (18c).

Instead of (18d), a smaller competitive ratio can be achieved by enforcing a stringent sufficient condition (27) since

𝜑1 (𝑤) ≤ 𝐿/𝑐 . Then we have

OPT(I) ≤
∑︁

𝑛∈N 𝑔𝑛 (𝑦∗𝑛) + (𝛼 − 1) 𝐿
𝑐
𝑤 (𝑁+1) ≤

∑︁
𝑛∈N 𝑔𝑛 (𝑦∗𝑛) + (𝛼 − 1)

∑︁
𝑛∈N 𝑔𝑛 (𝑦∗𝑛) = 𝛼ALG(I).

Based on Assumption 4.7 and the concavity of 𝑔𝑛 (·), we have 𝐿/𝑐 ≤ 𝑔𝑛 (𝐷𝑛)/𝐷𝑛 ≤ 𝑔𝑛 (𝑦∗𝑛)/𝑦∗𝑛 . Then the second

inequality is given by𝑤 (𝑁+1)𝐿/𝑐 = ∑
𝑛∈N 𝑦∗𝑛𝐿/𝑐 ≤ ∑

𝑛∈N 𝑔𝑛 (𝑦∗𝑛).
Solving 𝜑1 and 𝜑2 by binding all inequalities in the sufficient conditions (i) and (ii), we can obtain the threshold

function (23) and the corresponding competitive ratio in Corollary 4.8.
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A.5 Proof of Lemma 5.1

To begin, we rewrite the offline formulation of the FOMKP with aggregate value functions as follows:

max

0≤𝑥𝑛≤𝐷𝑛,𝑦𝑛𝑚≥0

∑︁
𝑛∈N 𝑔𝑛 (𝑥𝑛), (29a)

s.t.
∑︁

𝑚∈M 𝑦𝑛𝑚 ≥ 𝑥𝑛,∀𝑛 ∈ N , (𝜇𝑛) (29b)∑︁
𝑛∈N 𝑦𝑛𝑚 ≤ 𝐶𝑚,∀𝑚 ∈ M, (𝜆𝑚) (29c)

𝑦𝑛𝑚 ≤ 𝑌𝑛𝑚,∀𝑛 ∈ N ,𝑚 ∈ M, (𝛾𝑛𝑚) (29d)

where 𝑥𝑛 is the assigned aggregate fraction of item 𝑛. Similarly, the pseudo-utility maximization problem (7) in OTA𝜙
can be rewritten as

max

0≤𝑥𝑛≤𝐷𝑛,𝑦𝑛𝑚
𝑔𝑛 (𝑥𝑛) −

∑︁
𝑚∈M

∫ 𝑤
(𝑛)
𝑚 +𝑦𝑛𝑚

𝑤
(𝑛)
𝑚

𝜙𝑚 (𝑢)𝑑𝑢 (30a)

s.t.
∑︁

𝑚∈M 𝑦𝑛𝑚 ≥ 𝑥𝑛, (𝜇𝑛) (30b)

0 ≤ 𝑦𝑛𝑚 ≤ 𝑌𝑛𝑚,∀𝑛 ∈ N ,𝑚 ∈ M . (𝜉𝑛𝑚, 𝛾𝑛𝑚) (30c)

The dual of the offline problem (29) can be derived as

min

𝜆𝑚≥0,𝜇𝑛≥0,𝛾𝑛𝑚≥0

∑︁
𝑛∈N ℎ𝑛 (𝜇𝑛) +

∑︁
𝑚∈M 𝜆𝑚𝐶𝑚 +

∑︁
𝑛∈N

∑︁
𝑚∈M 𝛾𝑛𝑚𝑌𝑛𝑚 (31a)

s.t. 𝜆𝑚 ≥ 𝜇𝑛 − 𝛾𝑛𝑚, ∀𝑛 ∈ N ,𝑚 ∈ M, (31b)

where ℎ𝑛 (𝜇𝑛) = max0≤𝑥𝑛≤𝐷𝑛
𝑔𝑛 (𝑥𝑛) − 𝜇𝑛𝑥𝑛 is the conjugate function of 𝑔𝑛 (·), and 𝝁 := {𝜇𝑛}𝑛∈N , 𝝀 := {𝜆𝑚}𝑚∈M ,

and 𝜸 := {𝛾𝑛𝑚}𝑛∈N,𝑚∈M are the dual variables associated with constraints (29b), (29c), and (29d), respectively. Let

Dual(𝝁,𝝀,𝜸 ) denote the dual objective (31a).
To build the connection between the online solution and the dual objective in theOPD analysis, we need the following

proposition, which is a general version of Proposition 4.1.

Proposition A.3. When 𝜙𝑚 (𝐶𝑚) ≥ 𝑈 ,∀𝑚 ∈ M, the conjugate function ℎ𝑛 (𝜇𝑛) satisfies ℎ𝑛 (𝜇∗𝑛) = 𝑔𝑛 (𝑥∗𝑛) − 𝜇∗𝑛𝑥
∗
𝑛 ,

where 𝑥∗𝑛 and 𝜇∗𝑛 are the optimal primal and dual solutions of the problem (30).

Proof. When 𝜙𝑚 (𝐶𝑚) ≥ 𝑈 ,∀𝑚 ∈ M, the pseudo-utility maximization problem (30) is a convex optimization

problem. Part of its KKT conditions is given by

𝑔′𝑛 (𝑥∗𝑛) − 𝜇∗𝑛 − 𝜅∗𝑛 + 𝜈∗𝑛 = 0, 𝜅∗𝑛 (𝐷𝑛 − 𝑥∗𝑛) = 0, 𝜈∗𝑛𝑥
∗
𝑛 = 0,

where 𝜇∗𝑛 , 𝜅
∗
𝑛 , and 𝜈∗𝑛 are the optimal dual variables associated with the constraint (30b), 𝑥𝑛 ≤ 𝐷𝑛 , and 𝑥𝑛 ≥ 0. We

can then follow the same arguments as those (i)-(iii) in the proof of Proposition 4.1 in Appendix A.1 by just replacing

𝜙 (𝑤 (𝑛+1) ) with 𝜇∗𝑛 . □

Let𝑤
(𝑁+1)
𝑚 := 𝑤

(𝑁+1)
𝑚 (I) denote the final utilization of the knapsack𝑚 after executing instanceI byOTA𝜙 . The set of

all instances Ω can be divided into three families Ω1
, Ω2

, and Ω3
. In particular, Ω1

:= {I : 0 ≤ 𝑤
(𝑁+1)
𝑚 < 𝛽𝑚,∀𝑚 ∈ M}

and Ω2
:= {I : 𝛽𝑚 ≤ 𝑤

(𝑁+1)
𝑚 ≤ 𝐶𝑚,∀𝑚 ∈ M} contain the instances whose final utilizations of all knapsacks are

below and above their utilization thresholds, respectively. Excluding these two families, the remaining instances form

Ω3
:= Ω \ (Ω1 ∪ Ω2), in which some knapsacks have final utilizations below the utilization thresholds and the others’

final utilizations are above the thresholds. We now treat these three cases separately.
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Case I: I ∈ Ω1. The threshold functions of all knapsacks are on the flat segment, which implies that the marginal

cost of packing items into all knapsacks are at lowest price 𝐿. Thus, in this case all items are packed up to their sizes by

maximizing the pseudo-utility in OTA𝜙 . The offline optimal solution also accepts all items and hence is the same as the

online solution. So, we have OPT(I)/ALG(I) = 1 ≤ 𝛼,∀I ∈ Ω1
.

Case II: I ∈ Ω2. The adversary can add one more item for each knapsack. The new item for knapsack𝑚 is with size

𝐶 and marginal value 𝜙𝑚 (𝑤 (𝑁+1)
𝑚 ). Under this created worst-case instance, all knapsack capacities are occupied in the

offline solution while the online solution keeps the same. In this case, we can reply on the dual objective Dual(𝝁,𝝀,𝜸 )
in (31a). A feasible dual solution can be constructed as

ˆ𝜆𝑚 = 𝜙𝑚 (𝑤 (𝑁+1)
𝑚 ), 𝜇𝑛 = 𝜇∗𝑛, 𝛾𝑛𝑚 = 𝛾∗𝑛𝑚 =


𝜇∗𝑛 − 𝜙𝑚 (𝑤 (𝑛+1)

𝑚 ) 𝑦∗𝑛𝑚 > 0

0 𝑦∗𝑛𝑚 = 0

,

where 𝜇∗𝑛 and 𝛾∗𝑛𝑚 are the optimal dual variables of the pseudo-utility maximization problem (30) associated with

constraints (30b) and (30c). We first show that the dual variables are feasible.
ˆ𝜆𝑚, 𝜇𝑛, 𝛾𝑛𝑚 ≥ 0 can be immediately

observed. The dual constraint can be checked by

𝜇𝑛 − 𝛾𝑛𝑚 = 𝜙𝑚 (𝑤 (𝑛+1)
𝑚 ) − 𝜉∗𝑛𝑚 ≤ 𝜙𝑚 (𝑤 (𝑛+1)

𝑚 ) ≤ 𝜙𝑚 (𝑤 (𝑁+1)
𝑚 ) = ˆ𝜆𝑚,∀𝑛 ∈ N ,𝑚 ∈ M, (32)

where the first equality is the KKT condition of the problem (30) and 𝜉∗𝑛𝑚 ≥ 0 is the optimal dual variable associated

with the constraint 𝑦𝑛𝑚 ≥ 0. The third inequality holds since𝑤
(𝑛+1)
𝑚 ≤ 𝑤

(𝑁+1)
𝑚 and 𝜙𝑚 is a non-decreasing function.

Then we can have

OPT(I) ≤
∑︁

𝑛∈N
[
𝑔𝑛 (𝑥∗𝑛) − 𝜇∗𝑛𝑥

∗
𝑛

]
+
∑︁

𝑚∈M 𝜙𝑚 (𝑤 (𝑁+1)
𝑚 )𝐶𝑚 +

∑︁
𝑛∈N

∑︁
𝑚∈M 𝛾∗𝑛𝑚𝑌𝑛𝑚 (33a)

≤
∑︁

𝑛∈N 𝑔𝑛 (𝑥∗𝑛) +
∑︁

𝑚∈M

[
𝜙𝑚 (𝑤 (𝑁+1)

𝑚 )𝐶𝑚 −
∫ 𝑤

(𝑁 +1)
𝑚

0
𝜙𝑚 (𝑢)𝑑𝑢

]
(33b)

≤
∑︁

𝑛∈N 𝑔𝑛 (𝑥∗𝑛) + (𝛼 − 1)
∑︁

𝑚∈M

∫ 𝑤
(𝑁 +1)
𝑚

0
𝜙𝑚 (𝑢)𝑑𝑢 (33c)

≤
∑︁

𝑛∈N 𝑔𝑛 (𝑥∗𝑛) + (𝛼 − 1)
∑︁

𝑛∈N 𝑔𝑛 (𝑥∗𝑛) = 𝛼ALG(I). (33d)

Applying weak duality and Proposition A.3 gives inequality (33a). Based on the KKT conditions of the problem (30),

𝜇∗𝑛 (
∑
𝑚∈M 𝑦∗𝑛𝑚 − 𝑥∗𝑛) = 0 and 𝛾∗𝑛𝑚 (𝑌𝑛𝑚 − 𝑦∗𝑛𝑚) = 0, we have

−
∑︁

𝑛∈N 𝜇∗𝑛𝑥
∗
𝑛 +

∑︁
𝑛∈N

∑︁
𝑚∈M 𝛾∗𝑛𝑚𝑌𝑛𝑚 = −

∑︁
𝑛∈N

∑︁
𝑚∈M [𝜇∗𝑛 − 𝛾∗𝑛𝑚]𝑦∗𝑛𝑚

= −
∑︁

𝑛∈N

∑︁
𝑚∈M 𝜙𝑚 (𝑤 (𝑛+1)

𝑚 )𝑦∗𝑛𝑚 .

Combining with 𝜙𝑚 (𝑤 (𝑛+1)
𝑚 )𝑦∗𝑛𝑚 ≥

∫ 𝑤
(𝑛+1)
𝑚

𝑤
(𝑛)
𝑚

𝜙𝑚 (𝑢)𝑑𝑢, the inequality (33b) holds. If the differential equation (24) in

Lemma 5.1 holds, the inequality (33c) holds. Finally, we can have the inequality (33d) by observing that 𝑔𝑛 (𝑥∗𝑛) ≥∑
𝑚∈M

∫ 𝑤
(𝑛+1)
𝑚

𝑤
(𝑛)
𝑚

𝜙𝑚 (𝑢)𝑑𝑢 for𝑛 ∈ N based on the problem (30). Thus, in this case, we have OPT(I)/ALG(I) ≤ 𝛼,∀I ∈ Ω2

if the sufficient conditions in Lemma 5.1 are satisfied.

Case III: I ∈ Ω3. LetM1
:= {𝑚 ∈ M : 0 ≤ 𝑤

(𝑁+1)
𝑚 < 𝛽𝑚} andM2

:= {𝑚 ∈ M : 𝛽𝑚 ≤ 𝑤
(𝑁+1)
𝑚 < 𝐶𝑚} denote the

subsets of knapsacks, whose final utilizations are below and above the utilization thresholds, respectively. The key

difference between Case II and Case III is that the knapsacks inM1
may not be fully occupied in the offline solution

under the worst-case instance in Ω3
. This is because the total amount of items, which can be packed intoM1

, is limited

by

∑
𝑚∈M1 𝑤

(𝑁+1)
𝑚 +∑

𝑚∈M2 𝛽𝑚 .
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Based on this understanding of the worst-case instance, we can add the following constraint to the offline formula-

tion (29) ∑︁
𝑛∈N

∑︁
𝑚∈M1

𝑦𝑛𝑚 ≤
∑︁

𝑚∈M1
𝑤

(𝑁+1)
𝑚 +

∑︁
𝑚∈M2

𝛽𝑚 . (34)

The dual problem of the new offline problem can be stated as

min

𝜆𝑚≥0,𝜇𝑛≥0,𝛾𝑛𝑚≥0,𝜂≥0

Dual(𝝁,𝝀,𝜸 ) + 𝜂 (
∑︁

𝑚∈M1
𝑤

(𝑁+1)
𝑚 +

∑︁
𝑚∈M2

𝛽𝑚) (35a)

s.t. 𝜆𝑚 ≥ 𝜇𝑛 − 𝛾𝑛𝑚, ∀𝑛 ∈ N ,𝑚 ∈ M2, (35b)

𝜆𝑚 ≥ 𝜇𝑛 − 𝛾𝑛𝑚 − 𝜂, ∀𝑛 ∈ N ,𝑚 ∈ M1, (35c)

where 𝜂 is the dual variable of the new constraint (34). We can construct a feasible dual solution as

ˆ𝜆𝑚 =


𝜙𝑚 (𝑤 (𝑁+1)

𝑚 ) 𝑚 ∈ M2

0 𝑚 ∈ M1

, 𝜇𝑛 = 𝜇∗𝑛, 𝛾𝑛𝑚 = 𝛾∗𝑛𝑚, 𝜂 = 𝐿.

Based on equation (32) in Case II, the constructed dual solution satisfies the constraint (35b). Furthermore, the

constraint (35c) can be checked by observing

𝜇𝑛 − 𝛾𝑛𝑚 ≤ 𝜙𝑚 (𝑤 (𝑁+1)
𝑚 ) = 𝐿 = ˆ𝜆𝑚 + 𝜂, 𝑛 ∈ N ,𝑚 ∈ M1 . (36)

Applying the dual objective in (35a) and KKT conditions of the problem (30), we can have

OPT(I) ≤
∑︁

𝑛∈N 𝑔𝑛 (𝑥∗𝑛) +
∑︁

𝑚∈M2
[𝜙𝑚 (𝑤 (𝑁+1)

𝑚 )𝐶𝑚 −
∫ 𝑤

(𝑁 +1)
𝑚

0
𝜙𝑚 (𝑢)𝑑𝑢 + 𝐿𝛽𝑚]

≤
∑︁

𝑛∈N 𝑔𝑛 (𝑥∗𝑛) + (𝛼 − 1)
∑︁

𝑚∈M2

∫ 𝑤
(𝑁 +1)
𝑚

0
𝜙𝑚 (𝑢)𝑑𝑢 ≤ 𝛼ALG(I), (37)

where the inequality (37) holds if𝜙 satisfies the differential equation (24) in Lemma 5.1. Thus, we have OPT(I)/ALG(I) ≤
𝛼,∀I ∈ Ω3

.

In summary, the competitive ratio is 𝛼 if 𝜙 satisfies the sufficient condition in Lemma 5.1.

A.6 Proof of Theorem 3.8

This proof proceeds much the same as that of Theorem 3.7, but we now use the following counterpart to the sufficient

conditions on the threshold functions of OTA𝜙 .

Lemma A.4. Under Assumption 2.3, OTA𝜙 for the FOMKP with separable value functions is 𝛼-competitive if the threshold

function 𝜙 = {𝜙𝑚}𝑚∈M is in the form of, ∀𝑚 ∈ M,

𝜙𝑚 (𝑤) =

𝐿 𝑤 ∈ [0, 𝛽𝑚)

𝜑𝑚 (𝑤) 𝑤 ∈ [𝛽𝑚,𝐶𝑚]
,

where 𝛽𝑚 ∈ [0,𝐶𝑚] is a utilization threshold and 𝜑𝑚 is a non-decreasing function, and 𝜙𝑚 satisfies
𝜑𝑚 (𝑤)𝐶𝑚 ≤ 𝛼

∫ 𝑤

0
𝜙𝑚 (𝑢)𝑑𝑢 − 𝐿𝑤, 𝑤 ∈ [𝛽𝑚,𝐶𝑚],

𝜑𝑚 (𝛽𝑚) = 𝐿, 𝜑𝑚 (𝐶𝑚) ≥ 𝑈 .
(38)
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Proof of Lemma A.4. The offline formulation of the FOMKP with separable value functions can be stated as

max

0≤𝑦𝑛𝑚≤𝑌𝑛𝑚

∑︁
𝑛∈N

∑︁
𝑚∈M 𝑔𝑛𝑚 (𝑦𝑛𝑚), (39a)

s.t.
∑︁

𝑚∈M 𝑦𝑛𝑚 ≤ 𝐷𝑛,∀𝑛 ∈ N , (39b)∑︁
𝑛∈N 𝑦𝑛𝑚 ≤ 𝐶𝑚,∀𝑚 ∈ M . (39c)

The dual problem of this offline formulation can be derived as

min

𝜆𝑚≥0,𝜇𝑛≥0

∑︁
𝑛∈N

∑︁
𝑚∈M ℎ𝑛𝑚 (𝜇𝑛 + 𝜆𝑚) +

∑︁
𝑚∈M 𝜆𝑚𝐶𝑚 +

∑︁
𝑛∈N 𝜇𝑛𝐷𝑛, (40)

where ℎ𝑛𝑚 (𝜌𝑛𝑚) = max0≤𝑦𝑛𝑚≤𝑌𝑛𝑚 𝑔𝑛𝑚 (𝑦𝑛𝑚) − 𝜌𝑛𝑚𝑦𝑛𝑚 is the conjugate function of 𝑔𝑛𝑚 (·), and 𝜇𝑛 and 𝜆𝑚 are the

dual variables that correspond to constraints (39b) and (39c), respectively.

With separable value functions, the pseudo-utility maximization problem (7) can be rewritten as

max

0≤𝑦𝑛𝑚≤𝑌𝑛𝑚

∑︁
𝑚∈M 𝑔𝑛𝑚 (𝑦𝑛𝑚) −

∑︁
𝑚∈M

∫ 𝑤
(𝑛)
𝑚 +𝑦𝑛𝑚

𝑤
(𝑛)
𝑚

𝜙𝑚 (𝑢)𝑑𝑢 (41a)

s.t.
∑︁

𝑚∈M 𝑦𝑛𝑚 ≤ 𝐷𝑛 . (41b)

We first connect the online solution and the dual objective through the following proposition.

Proposition A.5. The conjugate function ℎ𝑛𝑚 (𝜌𝑛𝑚) satisfies
(i) ℎ𝑛𝑚 (𝜌𝑛𝑚) is a non-increasing function;
(ii) when 𝜙𝑚 (𝐶𝑚) ≥ 𝑈 ,∀𝑚 ∈ M, ℎ𝑛𝑚 (𝜙𝑚 (𝑤 (𝑛+1)

𝑚 ) + 𝜇∗𝑛) = 𝑔𝑛𝑚 (𝑦∗𝑛𝑚) − (𝑤 (𝑛+1)
𝑚 + 𝜇∗𝑛)𝑦∗𝑛𝑚, where 𝑦∗𝑛𝑚 and 𝜇∗𝑛 are

the optimal primal and dual solutions of the problem (41), and𝑤 (𝑛+1)
𝑚 = 𝑤

(𝑛)
𝑚 + 𝑦∗𝑛𝑚 .

Proof of Proposition A.5. The property (i) of the conjugate function can be shown in the same way as the proof

of Proposition 4.1.

When 𝜙𝑚 (𝐶𝑚) ≥ 𝑈 ,∀𝑚 ∈ M, the pseudo-utility maximization problem (41) is a convex optimization problem and

part of its KKT conditions is given by

𝑔′𝑛𝑚 (𝑦∗𝑛𝑚) − 𝜙𝑚 (𝑤 (𝑛+1)
𝑚 ) − 𝜇∗𝑛 − 𝛾∗𝑛𝑚 + 𝜉∗𝑛𝑚 = 0, 𝛾∗𝑛𝑚 (𝑌𝑛𝑚 − 𝑦∗𝑛𝑚) = 0, 𝜉∗𝑛𝑚𝑦

∗
𝑛𝑚 = 0,

where 𝑦∗𝑛𝑚 , and {𝜇∗𝑛, 𝛾∗𝑛𝑚, 𝜉∗𝑛𝑚} are the optimal primal and dual solutions. Based on this structure of KKT conditions,

we can follow the same arguments in the proof of Proposition 4.1 in Appendix A.1 to show that 𝑦∗𝑛𝑚 maximizes the

conjugate optimization problem given 𝜌𝑛𝑚 = 𝜙𝑚 (𝑤 (𝑛+1)
𝑚 ) + 𝜇∗𝑛 . □

We proceed to derive the sufficient condition on the threshold function for the FOMKPwith separable functions using

the instance-dependent OPD analysis. The set of instances Ω is divided into three families Ω1
, Ω2

, and Ω3
following

the same definitions as those in the proof of Lemma 5.1.

Case I: I ∈ Ω1. This case is the same as Case I in the proof of Lemma 5.1. We can have OPT(I)/ALG(I) = 1,∀I ∈ Ω1
.

Case II: I ∈ Ω2. In this case, all knapsacks can be fully occupied in the offline solution under the worst-case instance.

Thus, we can use the dual objective (40) in the OPD analysis. Particularly, we construct a feasible dual solution as
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ˆ𝜆𝑚 = 𝜙𝑚 (𝑤 (𝑁+1)
𝑚 ) and 𝜇𝑛 = 𝜇∗𝑛 . Based on weak duality, we have

OPT(I) ≤
∑︁

𝑛∈N

∑︁
𝑚∈M ℎ𝑛𝑚 (𝜇∗𝑛 + 𝜙𝑚 (𝑤 (𝑁+1)

𝑚 )) +
∑︁

𝑚∈M 𝜙𝑚 (𝑤 (𝑁+1)
𝑚 )𝐶𝑚 +

∑︁
𝑛∈N 𝜇∗𝑛𝐷𝑛

≤
∑︁

𝑛∈N

∑︁
𝑚∈M 𝑔𝑛𝑚 (𝑦∗𝑛𝑚) +

∑︁
𝑚∈M [𝜙𝑚 (𝑤 (𝑁+1)

𝑚 )𝐶𝑚 −
∑︁

𝑛∈N 𝜙𝑚 (𝑤 (𝑛+1)
𝑚 )𝑦∗𝑛𝑚] (42a)

≤
∑︁

𝑛∈N

∑︁
𝑚∈M 𝑔𝑛𝑚 (𝑦∗𝑛𝑚) +

∑︁
𝑚∈M [𝜙𝑚 (𝑤 (𝑁+1)

𝑚 )𝐶𝑚 −
∫ 𝑤

(𝑁 +1)
𝑚

0
𝜙𝑚 (𝑢)𝑑𝑢] (42b)

≤
∑︁

𝑛∈N

∑︁
𝑚∈M 𝑔𝑛𝑚 (𝑦∗𝑛𝑚) + (𝛼 − 1)

∑︁
𝑚∈M

∫ 𝑤
(𝑁 +1)
𝑚

0
𝜙𝑚 (𝑢)𝑑𝑢

≤ 𝛼
∑︁

𝑛∈N

∑︁
𝑚∈M 𝑔𝑛𝑚 (𝑦∗𝑛𝑚) = 𝛼ALG(I).

By applying Proposition A.5 and KKT conditions of the problem (41), we have the inequality (42a). If the threshold

function 𝜙 satisfies the differential equation in (38), the inequality (42b) holds. The following inequalities can be easily

verified based on arguments used in previous proofs. Thus, if the differential equation in (33c) is satisfied, we have

OPT(I)/ALG(I) ≤ 𝛼,∀I ∈ Ω2
.

Case III: I ∈ Ω3. The total amount of items assigned to knapsacks inM1
is still limited in the offline solution under

the worst-case instance. However, the additional items that can be reassigned from knapsacks inM2
to those inM1

are up to

∑
𝑚∈M2 𝑤

(𝑁+1)
𝑚 . This is because in this case, each knapsack corresponds to an individual value function and

thus the marginal utility (i.e., the marginal value of items minus the marginal cost of using knapsack when assigning a

small bit of items) of assigning items to knapsacks in M2
can be larger than to those in M1

even through the marginal

cost of knapsacks in M1
is the lowest value 𝐿. To construct a tighter upper bound of the offline optimum, we add one

more constraint to the offline formulation (39).∑︁
𝑛∈N

∑︁
𝑚∈M1

𝑦𝑛𝑚 ≤
∑︁

𝑚∈M 𝑤
(𝑁+1)
𝑚 . (43)

The dual problem of the new offline formulation is

min

𝜆𝑚≥0,𝜇𝑛≥0,𝜂≥0

∑︁
𝑛∈N

[∑︁
𝑚∈M1

ℎ𝑛𝑚 (𝜇𝑛 + 𝜆𝑚 + 𝜂) +
∑︁

𝑚∈M2
ℎ𝑛𝑚 (𝜇𝑛 + 𝜆𝑚)

]
(44)

+
∑︁

𝑚∈M 𝜆𝑚𝐶𝑚 +
∑︁

𝑛∈N 𝜇𝑛𝐷𝑛 + 𝜂
∑︁

𝑚∈M 𝑤
(𝑁+1)
𝑚 ,

where 𝜂 is the dual variable corresponding to the new constraint (43). In this case, the feasible dual variable is chosen as

ˆ𝜆𝑚 =


𝜙𝑚 (𝑤 (𝑁+1)

𝑚 ) 𝑚 ∈ M2

0 𝑚 ∈ M1

, 𝜇𝑛 = 𝜇∗𝑛, 𝜂 = 𝐿.

Then we can have

OPT(I) ≤
∑︁

𝑛∈N

∑︁
𝑚∈M [𝑔𝑛𝑚 (𝑦∗𝑛𝑚) − (𝜙𝑚 (𝑤 (𝑛+1)

𝑚 ) + 𝜇∗𝑛)𝑦∗𝑛𝑚]

+
∑︁

𝑚∈M2
𝜙𝑚 (𝑤 (𝑁+1)

𝑚 )𝐶𝑚 +
∑︁

𝑛∈N 𝜇∗𝑛𝐷𝑛 + 𝐿
∑︁

𝑚∈M 𝑤
(𝑁+1)
𝑚

≤
∑︁

𝑛∈N

∑︁
𝑚∈M 𝑔𝑛𝑚 (𝑦∗𝑛𝑚) +

∑︁
𝑚∈M2

[𝜙𝑚 (𝑤 (𝑁+1)
𝑚 )𝐶𝑚 −

∫ 𝑤
(𝑁 +1)
𝑚

0
𝜙𝑚 (𝑢)𝑑𝑢 + 𝐿𝑤

(𝑁+1)
𝑚 ]

≤
∑︁

𝑛∈N

∑︁
𝑚∈M 𝑔𝑛𝑚 (𝑦∗𝑛𝑚) + (𝛼 − 1)

∑︁
𝑚∈M2

∫ 𝑤
(𝑁 +1)
𝑚

0
𝜙𝑚 (𝑢)𝑑𝑢 (45)

≤ 𝛼
∑︁

𝑛∈N

∑︁
𝑚∈M 𝑔𝑛𝑚 (𝑦∗𝑛𝑚) = 𝛼ALG(I).
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The key step in the OPD analysis above is to ensure the inequality (45). If the threshold function 𝜙 satisfies the

differential equation (38), the inequality (45) holds and we have OPT(I)/ALG(I) ≤ 𝛼,∀I ∈ Ω3
.

In summary, the competitive ratio of OTA𝜙 for the FOMKP with separable value functions is 𝛼 if the threshold

function 𝜙 satisfies the sufficient condition in Lemma A.4. □

Using Lemma A.4 to complete the proof, is similar to the case of aggregate functions. we determine the threshold

function that satisfies the differential equation (38) and can minimize 𝛼 . Applying Gronwall’s Inequality to (38) gives

𝜑𝑚 (𝑤) ≤ 𝛼𝐿𝛽𝑚

𝐶𝑚
− 𝐿

𝐶𝑚
𝑤 + 𝛼

𝐶𝑚

∫ 𝑤

𝛽𝑚
𝜑𝑚 (𝑢)𝑑𝑢 =

𝐿

𝛼
+ [ (𝛼 − 1)𝐿𝛽𝑚

𝐶𝑚
− 𝐿

𝛼
]𝑒𝛼 (𝑤−𝛽𝑚)/𝐶𝑚 ,𝑤 ∈ [𝛽𝑚,𝐶𝑚]

Since 𝜑𝑚 (𝐶𝑚) ≥ 𝑈 , we have 𝑈 ≤ 𝜑𝑚 (𝐶𝑚) ≤ 𝐿
𝛼 + [ (𝛼−1)𝐿𝛽𝑚

𝐶𝑚
− 𝐿

𝛼 ]𝑒
𝛼 (𝐶𝑚−𝛽𝑚)/𝐶𝑚

. The minimal 𝛼 is achieved when

all inequalities in (38) are binding. We then have 𝑈 = 𝐿
𝛼 + [ (𝛼−1)𝐿𝛽𝑚

𝐶𝑚
− 𝐿

𝛼 ]𝑒
𝛼 (𝐶𝑚−𝛽𝑚)/𝐶𝑚

and 𝛽𝑚 =
𝐶𝑚

𝛼−1
. Thus, the

minimal competitive ratio is the solution of the equation 𝛼𝜙∗ − 1 − 1

𝛼𝜙∗−1
= ln

𝛼𝜙∗𝜃−1

𝛼𝜙∗−1
and the threshold function is

given by (13).
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