18 research outputs found

    Learning Deep Representations of Appearance and Motion for Anomalous Event Detection

    Full text link
    We present a novel unsupervised deep learning framework for anomalous event detection in complex video scenes. While most existing works merely use hand-crafted appearance and motion features, we propose Appearance and Motion DeepNet (AMDN) which utilizes deep neural networks to automatically learn feature representations. To exploit the complementary information of both appearance and motion patterns, we introduce a novel double fusion framework, combining both the benefits of traditional early fusion and late fusion strategies. Specifically, stacked denoising autoencoders are proposed to separately learn both appearance and motion features as well as a joint representation (early fusion). Based on the learned representations, multiple one-class SVM models are used to predict the anomaly scores of each input, which are then integrated with a late fusion strategy for final anomaly detection. We evaluate the proposed method on two publicly available video surveillance datasets, showing competitive performance with respect to state of the art approaches.Comment: Oral paper in BMVC 201

    Online video-based abnormal detection using highly motion techniques and statistical measures

    Get PDF
    At the essence of video surveillance, there are abnormal detection approaches, which have been proven to be substantially effective in detecting abnormal incidents without prior knowledge about these incidents. Based on the state-of-the-art research, it is evident that there is a trade-off between frame processing time and detection accuracy in abnormal detection approaches. Therefore, the primary challenge is to balance this trade-off suitably by utilizing few, but very descriptive features to fulfill online performance while maintaining a high accuracy rate. In this study, we propose a new framework, which achieves the balancing between detection accuracy and video processing time by employing two efficient motion techniques, specifically, foreground and optical flow energy. Moreover, we use different statistical analysis measures of motion features to get robust inference method to distinguish abnormal behavior incident from normal ones. The performance of this framework has been extensively evaluated in terms of the detection accuracy, the area under the curve (AUC) and frame processing time. Simulation results and comparisons with ten relevant online and non-online frameworks demonstrate that our framework efficiently achieves superior performance to those frameworks, in which it presents high values for he accuracy while attaining simultaneously low values for the processing time

    Enhancing camera surveillance using computer vision: a research note

    Full text link
    Purpose\mathbf{Purpose} - The growth of police operated surveillance cameras has out-paced the ability of humans to monitor them effectively. Computer vision is a possible solution. An ongoing research project on the application of computer vision within a municipal police department is described. The paper aims to discuss these issues. Design/methodology/approach\mathbf{Design/methodology/approach} - Following the demystification of computer vision technology, its potential for police agencies is developed within a focus on computer vision as a solution for two common surveillance camera tasks (live monitoring of multiple surveillance cameras and summarizing archived video files). Three unaddressed research questions (can specialized computer vision applications for law enforcement be developed at this time, how will computer vision be utilized within existing public safety camera monitoring rooms, and what are the system-wide impacts of a computer vision capability on local criminal justice systems) are considered. Findings\mathbf{Findings} - Despite computer vision becoming accessible to law enforcement agencies the impact of computer vision has not been discussed or adequately researched. There is little knowledge of computer vision or its potential in the field. Originality/value\mathbf{Originality/value} - This paper introduces and discusses computer vision from a law enforcement perspective and will be valuable to police personnel tasked with monitoring large camera networks and considering computer vision as a system upgrade

    MoWLD: a robust motion image descriptor for violence detection

    Full text link
    © 2015, Springer Science+Business Media New York. Automatic violence detection from video is a hot topic for many video surveillance applications. However, there has been little success in designing an algorithm that can detect violence in surveillance videos with high performance. Existing methods typically apply the Bag-of-Words (BoW) model on local spatiotemporal descriptors. However, traditional spatiotemporal features are not discriminative enough, and also the BoW model roughly assigns each feature vector to only one visual word and therefore ignores the spatial relationships among the features. To tackle these problems, in this paper we propose a novel Motion Weber Local Descriptor (MoWLD) in the spirit of the well-known WLD and make it a powerful and robust descriptor for motion images. We extend the WLD spatial descriptions by adding a temporal component to the appearance descriptor, which implicitly captures local motion information as well as low-level image appear information. To eliminate redundant and irrelevant features, the non-parametric Kernel Density Estimation (KDE) is employed on the MoWLD descriptor. In order to obtain more discriminative features, we adopt the sparse coding and max pooling scheme to further process the selected MoWLDs. Experimental results on three benchmark datasets have demonstrated the superiority of the proposed approach over the state-of-the-arts
    corecore