15,088 research outputs found

    Autonomous Mobility and Energy Service Management in Future Smart Cities: An Overview

    Full text link
    With the rise of transportation electrification, autonomous driving and shared mobility in urban mobility systems, and increasing penetrations of distributed energy resources and autonomous demand-side management techniques in energy systems, tremendous opportunities, as well as challenges, are emerging in the forging of a sustainable and converged urban mobility and energy future. This paper is motivated by these disruptive transformations and gives an overview of managing autonomous mobility and energy services in future smart cities. First, we propose a three-layer architecture for the convergence of future mobility and energy systems. For each layer, we give a brief overview of the disruptive transformations that directly contribute to the rise of autonomous mobility-on-demand (AMoD) systems. Second, we propose the concept of autonomous flexibility-on-demand (AFoD), as an energy service platform built directly on existing infrastructures of AMoD systems. In the vision of AFoD, autonomous electric vehicles provide charging flexibilities as a service on demand in energy systems. Third, we analyze and compare AMoD and AFoD, and we identify four key decisions that, if appropriately coordinated, will create a synergy between AMoD and AFoD. Finally, we discuss key challenges towards the success of AMoD and AFoD in future smart cities and present some key research directions regarding the system-wide coordination between AMoD and AFoD.Comment: 19 pages, 4 figure

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity networkā€”the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio

    An Energy Sharing Game with Generalized Demand Bidding: Model and Properties

    Get PDF
    This paper proposes a novel energy sharing mechanism for prosumers who can produce and consume. Different from most existing works, the role of individual prosumer as a seller or buyer in our model is endogenously determined. Several desirable properties of the proposed mechanism are proved based on a generalized game-theoretic model. We show that the Nash equilibrium exists and is the unique solution of an equivalent convex optimization problem. The sharing price at the Nash equilibrium equals to the average marginal disutility of all prosumers. We also prove that every prosumer has the incentive to participate in the sharing market, and prosumers' total cost decreases with increasing absolute value of price sensitivity. Furthermore, the Nash equilibrium approaches the social optimal as the number of prosumers grows, and competition can improve social welfare.Comment: 16 pages, 7 figure

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    Emission-aware Energy Storage Scheduling for a Greener Grid

    Full text link
    Reducing our reliance on carbon-intensive energy sources is vital for reducing the carbon footprint of the electric grid. Although the grid is seeing increasing deployments of clean, renewable sources of energy, a significant portion of the grid demand is still met using traditional carbon-intensive energy sources. In this paper, we study the problem of using energy storage deployed in the grid to reduce the grid's carbon emissions. While energy storage has previously been used for grid optimizations such as peak shaving and smoothing intermittent sources, our insight is to use distributed storage to enable utilities to reduce their reliance on their less efficient and most carbon-intensive power plants and thereby reduce their overall emission footprint. We formulate the problem of emission-aware scheduling of distributed energy storage as an optimization problem, and use a robust optimization approach that is well-suited for handling the uncertainty in load predictions, especially in the presence of intermittent renewables such as solar and wind. We evaluate our approach using a state of the art neural network load forecasting technique and real load traces from a distribution grid with 1,341 homes. Our results show a reduction of >0.5 million kg in annual carbon emissions -- equivalent to a drop of 23.3% in our electric grid emissions.Comment: 11 pages, 7 figure, This paper will appear in the Proceedings of the ACM International Conference on Future Energy Systems (e-Energy 20) June 2020, Australi
    • ā€¦
    corecore