402 research outputs found

    An online colour naming experiment in Russian using Munsell colour samples

    Get PDF
    Russian colour naming was explored in a web-based psycholinguistic experiment. The purpose was threefold: to examine (i) CIELAB coordinates of centroids for 12 Russian basic colour terms (BCTs), including two Russian terms for ‘blue’, sinij ‘dark blue’ and goluboj ‘light blue’, and compare these with coordinates for the 11 English BCTs obtained in earlier studies; (ii) frequent non-BCTs and (iii) gender differences in colour naming. Native Russian speakers participated in the experiment using an unconstrained colour-naming method. Each participant named 20 colours, selected from 600 colours densely sampling the Munsell Color Solid. Colour names and response times of typing onset were registered. Several deviations between centroids of the Russian and English BCTs were found. The two Russian ‘blues’, as expected, divided the BLUE area along the lightness dimension; their centroids deviated from a centroid of English blue. Further minor departures were found between centroids of Russian and English counterparts of ‘brown’ and ‘red’. The Russian colour inventory confirmed the linguistic refinement of the PURPLE area, with high frequencies of non-BCTs. In addition, Russian speakers revealed elaborated naming strategies and use of a rich inventory of non-BCTs. Elicitation frequencies of the 12 BCTs were comparable for both genders; however, linguistic segmentation of colour space, employing a synthetic observer, revealed gender differences in naming colours, with more refined naming of the “warm” colours from females. We conclude that, along with universal perceptual factors, that govern categorical partition of colour space, Russian speakers’ colour naming reflects language-specific factors, supporting the weak relativity hypothesis

    Gender Differences in Russian Colour Naming

    Get PDF
    In the present study we explored Russian colour naming in a web-based psycholinguistic experiment (http://www.colournaming.com). Colour singletons representing the Munsell Color Solid (N=600 in total) were presented on a computer monitor and named using an unconstrained colour-naming method. Respondents were Russian speakers (N=713). For gender-split equal-size samples (NF=333, NM=333) we estimated and compared (i) location of centroids of 12 Russian basic colour terms (BCTs); (ii) the number of words in colour descriptors; (iii) occurrences of BCTs most frequent non-BCTs. We found a close correspondence between females’ and males’ BCT centroids. Among individual BCTs, the highest inter-gender agreement was for seryj ‘grey’ and goluboj ‘light blue’, while the lowest was for sinij ‘dark blue’ and krasnyj ‘red’. Females revealed a significantly richer repertory of distinct colour descriptors, with great variety of monolexemic non-BCTs and “fancy” colour names; in comparison, males offered relatively more BCTs or their compounds. Along with these measures, we gauged denotata of most frequent CTs, reflected by linguistic segmentation of colour space, by employing a synthetic observer trained by gender-specific responses. This psycholinguistic representation revealed females’ more refined linguistic segmentation, compared to males, with higher linguistic density predominantly along the redgreen axis of colour space

    Delving deeper into color space

    Get PDF
    So far, color-naming studies have relied on a rather limited set of color stimuli. Most importantly, stimuli have been largely limited to highly saturated colors. Because of this, little is known about how people categorize less saturated colors and, more generally, about the structure of color categories as they extend across all dimensions of color space. This article presents the results from a large Internet-based color-naming study that involved color stimuli ranging across all available chroma levels in Munsell space. These results help answer such questions as how English speakers name a more complex color set, whether English speakers use so-called basic color terms (BCTs) more frequently for more saturated colors, how they use non-BCTs in comparison with BCTs, whether non-BCTs are highly consensual in less saturated parts of the solid, how deep inside color space basic color categories extend, or how they behave on the chroma dimension

    Enlightened Romanticism: Mary Gartside’s colour theory in the age of Moses Harris, Goethe and George Field

    Get PDF
    The aim of this paper is to evaluate the work of Mary Gartside, a British female colour theorist, active in London between 1781 and 1808. She published three books between 1805 and 1808. In chronological and intellectual terms Gartside can cautiously be regarded an exemplary link between Moses Harris, who published a short but important theory of colour in the second half of the eighteenth century, and J.W. von Goethe’s highly influential Zur Farbenlehre, published in Germany in 1810. Gartside’s colour theory was published privately under the disguise of a traditional water colouring manual, illustrated with stunning abstract colour blots (see example above). Until well into the twentieth century, she remained the only woman known to have published a theory of colour. In contrast to Goethe and other colour theorists in the late 18th and early 19th century Gartside was less inclined to follow the anti-Newtonian attitudes of the Romantic movement

    A Colour Sorting Task Reveals the Limits of the Universalist/Relativist Dichotomy: Colour Categories Can Be Both Language Specific and Perceptual

    Get PDF
    We designed a new protocol requiring French adult participants to group a large number of Munsell colour chips into three or four groups. On one, relativist, view, participants would be expected to rely on their colour lexicon in such a task. In this framework, the resulting groups should be more similar to French colour categories than to other languages categories. On another, universalist, view, participants would be expected to rely on universal features of perception. In this second framework, the resulting groups should match colour categories of three and four basic terms languages. In this work, we first collected data to build an accurate map of French colour terms categories. We went on testing how native French speakers spontaneously sorted a set of randomly presented coloured chips and, in line with the relativist prediction, we found that the resulting colour groups were more similar to French colour categories than to three and four basic terms languages. However, the same results were obtained in a verbal interference condition, suggesting that participants rely on language specific and nevertheless perceptual, colour categories. Collectively, these results suggest that the universalist/relativist dichotomy is a too narrow one

    Colour Communication Within Different Languages

    Get PDF
    For computational methods aiming to reproduce colour names that are meaningful to speakers of different languages, the mapping between perceptual and linguistic aspects of colour is a problem of central information processing. This thesis advances the field of computational colour communication within different languages in five main directions. First, we show that web-based experimental methodologies offer considerable advantages in obtaining a large number of colour naming responses in British and American English, Greek, Russian, Thai and Turkish. We continue with the application of machine learning methods to discover criteria in linguistic, behavioural and geometric features of colour names that distinguish classes of colours. We show that primary colour terms do not form a coherent class, whilst achromatic and basic classes do. We then propose and evaluate a computational model trained by human responses in the online experiment to automate the assignment of colour names in different languages across the full three-dimensional colour gamut. Fourth, we determine for the first time the location of colour names within a physiologically-based cone excitation space through an unconstrained colour naming experiment using a calibrated monitor under controlled viewing conditions. We show a good correspondence between online and offline datasets; and confirm the validity of both experimental methodologies for estimating colour naming functions in laboratory and real-world monitor settings. Finally, we present a novel information theoretic measure, called dispensability, for colour categories that predicts a gradual scale of basicness across languages from both web- and laboratory- based unconstrained colour naming datasets. As a result, this thesis contributes experimental and computational methodologies towards the development of multilingual colour communication schemes

    Augmenting basic colour terms in english

    Get PDF
    In an unconstrained colour naming experiment conducted over the web, 330 participants named 600 colour samples in English. The 30 most frequent monolexemic colour terms were analyzed with regards to frequency, consensus among genders, response times, consistency of use, denotative volume in the Munsell and OSA colour spaces and inter-experimental agreement. Each of these measures served for ranking colour term salience; rankings were then combined to give a composite index of basicness. The results support the extension of English inventory from the 11 basic colour terms of Berlin and Kay to 13 terms by the addition of lilac and turquoise

    The Use of English Colour Terms in Big Data

    Get PDF
    This study explores the use of English colour names in large datasets from informal Twitter messages and the well-structured corpus of Google Books. Because colour names in text have no directly associated chromatic stimuli, the corresponding colour categories of colour words was assessed from responses in an online colour naming experiment. A comparison of the frequency in the three datasets revealed that the mapping of colour names to perceptually uniform colour spaces does not reflect natural language colour distributions

    Cultural transmission results in convergence towards colour term universals.

    Get PDF
    As in biological evolution, multiple forces are involved in cultural evolution. One force is analogous to selection, and acts on differences in the fitness of aspects of culture by influencing who people choose to learn from. Another force is analogous to mutation, and influences how culture changes over time owing to errors in learning and the effects of cognitive biases. Which of these forces need to be appealed to in explaining any particular aspect of human cultures is an open question. We present a study that explores this question empirically, examining the role that the cognitive biases that influence cultural transmission might play in universals of colour naming. In a large-scale laboratory experiment, participants were shown labelled examples from novel artificial systems of colour terms and were asked to classify other colours on the basis of those examples. The responses of each participant were used to generate the examples seen by subsequent participants. By simulating cultural transmission in the laboratory, we were able to isolate a single evolutionary force-the effects of cognitive biases, analogous to mutation-and examine its consequences. Our results show that this process produces convergence towards systems of colour terms similar to those seen across human languages, providing support for the conclusion that the effects of cognitive biases, brought out through cultural transmission, can account for universals in colour naming

    Gender differences in colour naming

    Get PDF
    Gender differences in colour naming were explored using a web-based experiment in English. Each participant named twenty colours selected from 600 Munsell samples, presented one at a time against a neutral background. Colour names and typing onset response times were registered. For the eleven basic colour terms, elicitation frequency was comparable for both genders. Females demonstrated more elaborated colour vocabulary, with more descriptors in general and more non-basic monolexemic terms; they also named colours faster than males. The two genders differ in the repertoire of frequent colour terms: a Bayesian synthetic observer revealed that women segment colour space linguistically more densely in the “warm” area whereas men do so in the “cool” area. Current “nurture” and “nature” explanations of why females excel in colour naming behaviour are considered
    • …
    corecore