6,256 research outputs found

    A Survey on Behavioral Pattern Mining from Sensor Data in Internet of Things

    Get PDF
    The deployment of large-scale wireless sensor networks (WSNs) for the Internet of Things (IoT) applications is increasing day-by-day, especially with the emergence of smart city services. The sensor data streams generated from these applications are largely dynamic, heterogeneous, and often geographically distributed over large areas. For high-value use in business, industry and services, these data streams must be mined to extract insightful knowledge, such as about monitoring (e.g., discovering certain behaviors over a deployed area) or network diagnostics (e.g., predicting faulty sensor nodes). However, due to the inherent constraints of sensor networks and application requirements, traditional data mining techniques cannot be directly used to mine IoT data streams efficiently and accurately in real-time. In the last decade, a number of works have been reported in the literature proposing behavioral pattern mining algorithms for sensor networks. This paper presents the technical challenges that need to be considered for mining sensor data. It then provides a thorough review of the mining techniques proposed in the recent literature to mine behavioral patterns from sensor data in IoT, and their characteristics and differences are highlighted and compared. We also propose a behavioral pattern mining framework for IoT and discuss possible future research directions in this area. © 2013 IEEE

    T-Patterns Revisited: Mining for Temporal Patterns in Sensor Data

    Get PDF
    The trend to use large amounts of simple sensors as opposed to a few complex sensors to monitor places and systems creates a need for temporal pattern mining algorithms to work on such data. The methods that try to discover re-usable and interpretable patterns in temporal event data have several shortcomings. We contrast several recent approaches to the problem, and extend the T-Pattern algorithm, which was previously applied for detection of sequential patterns in behavioural sciences. The temporal complexity of the T-pattern approach is prohibitive in the scenarios we consider. We remedy this with a statistical model to obtain a fast and robust algorithm to find patterns in temporal data. We test our algorithm on a recent database collected with passive infrared sensors with millions of events

    The EDAM Project: Mining Atmospheric Aerosol Datasets

    Get PDF
    Data mining has been a very active area of research in the database, machine learning, and mathematical programming communities in recent years. EDAM (Exploratory Data Analysis and Management) is a joint project between researchers in Atmospheric Chemistry and Computer Science at Carleton College and the University of Wisconsin-Madison that aims to develop data mining techniques for advancing the state of the art in analyzing atmospheric aerosol datasets. There is a great need to better understand the sources, dynamics, and compositions of atmospheric aerosols. The traditional approach for particle measurement, which is the collection of bulk samples of particulates on filters, is not adequate for studying particle dynamics and real-time correlations. This has led to the development of a new generation of real-time instruments that provide continuous or semi-continuous streams of data about certain aerosol properties. However, these instruments have added a significant level of complexity to atmospheric aerosol data, and dramatically increased the amounts of data to be collected, managed, and analyzed. Our abilit y to integrate the data from all of these new and complex instruments now lags far behind our data-collection capabilities, and severely limits our ability to understand the data and act upon it in a timely manner. In this paper, we present an overview of the EDAM project. The goal of the project, which is in its early stages, is to develop novel data mining algorithms and approaches to managing and monitoring multiple complex data streams. An important objective is data quality assurance, and real-time data mining offers great potential. The approach that we take should also provide good techniques to deal with gas-phase and semi-volatile data. While atmospheric aerosol analysis is an important and challenging domain that motivates us with real problems and serves as a concrete test of our results, our objective is to develop techniques that have broader applicability, and to explore some fundamental challenges in data mining that are not specific to any given application domain

    A Hybrid Approach for Data Analytics for Internet of Things

    Full text link
    The vision of the Internet of Things is to allow currently unconnected physical objects to be connected to the internet. There will be an extremely large number of internet connected devices that will be much more than the number of human being in the world all producing data. These data will be collected and delivered to the cloud for processing, especially with a view of finding meaningful information to then take action. However, ideally the data needs to be analysed locally to increase privacy, give quick responses to people and to reduce use of network and storage resources. To tackle these problems, distributed data analytics can be proposed to collect and analyse the data either in the edge or fog devices. In this paper, we explore a hybrid approach which means that both innetwork level and cloud level processing should work together to build effective IoT data analytics in order to overcome their respective weaknesses and use their specific strengths. Specifically, we collected raw data locally and extracted features by applying data fusion techniques on the data on resource constrained devices to reduce the data and then send the extracted features to the cloud for processing. We evaluated the accuracy and data consumption over network and thus show that it is feasible to increase privacy and maintain accuracy while reducing data communication demands.Comment: Accepted to be published in the Proceedings of the 7th ACM International Conference on the Internet of Things (IoT 2017
    corecore