1,174 research outputs found

    Multi-Lane Perception Using Feature Fusion Based on GraphSLAM

    Full text link
    An extensive, precise and robust recognition and modeling of the environment is a key factor for next generations of Advanced Driver Assistance Systems and development of autonomous vehicles. In this paper, a real-time approach for the perception of multiple lanes on highways is proposed. Lane markings detected by camera systems and observations of other traffic participants provide the input data for the algorithm. The information is accumulated and fused using GraphSLAM and the result constitutes the basis for a multilane clothoid model. To allow incorporation of additional information sources, input data is processed in a generic format. Evaluation of the method is performed by comparing real data, collected with an experimental vehicle on highways, to a ground truth map. The results show that ego and adjacent lanes are robustly detected with high quality up to a distance of 120 m. In comparison to serial lane detection, an increase in the detection range of the ego lane and a continuous perception of neighboring lanes is achieved. The method can potentially be utilized for the longitudinal and lateral control of self-driving vehicles

    GNSS/LiDAR-Based Navigation of an Aerial Robot in Sparse Forests

    Get PDF
    Autonomous navigation of unmanned vehicles in forests is a challenging task. In such environments, due to the canopies of the trees, information from Global Navigation Satellite Systems (GNSS) can be degraded or even unavailable. Also, because of the large number of obstacles, a previous detailed map of the environment is not practical. In this paper, we solve the complete navigation problem of an aerial robot in a sparse forest, where there is enough space for the flight and the GNSS signals can be sporadically detected. For localization, we propose a state estimator that merges information from GNSS, Attitude and Heading Reference Systems (AHRS), and odometry based on Light Detection and Ranging (LiDAR) sensors. In our LiDAR-based odometry solution, the trunks of the trees are used in a feature-based scan matching algorithm to estimate the relative movement of the vehicle. Our method employs a robust adaptive fusion algorithm based on the unscented Kalman filter. For motion control, we adopt a strategy that integrates a vector field, used to impose the main direction of the movement for the robot, with an optimal probabilistic planner, which is responsible for obstacle avoidance. Experiments with a quadrotor equipped with a planar LiDAR in an actual forest environment is used to illustrate the effectiveness of our approach

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Control and communication systems for automated vehicles cooperation and coordination

    Get PDF
    Mención Internacional en el título de doctorThe technological advances in the Intelligent Transportation Systems (ITS) are exponentially improving over the last century. The objective is to provide intelligent and innovative services for the different modes of transportation, towards a better, safer, coordinated and smarter transport networks. The Intelligent Transportation Systems (ITS) focus is divided into two main categories; the first is to improve existing components of the transport networks, while the second is to develop intelligent vehicles which facilitate the transportation process. Different research efforts have been exerted to tackle various aspects in the fields of the automated vehicles. Accordingly, this thesis is addressing the problem of multiple automated vehicles cooperation and coordination. At first, 3DCoAutoSim driving simulator was developed in Unity game engine and connected to Robot Operating System (ROS) framework and Simulation of Urban Mobility (SUMO). 3DCoAutoSim is an abbreviation for "3D Simulator for Cooperative Advanced Driver Assistance Systems (ADAS) and Automated Vehicles Simulator". 3DCoAutoSim was tested under different circumstances and conditions, afterward, it was validated through carrying-out several controlled experiments and compare the results against their counter reality experiments. The obtained results showed the efficiency of the simulator to handle different situations, emulating real world vehicles. Next is the development of the iCab platforms, which is an abbreviation for "Intelligent Campus Automobile". The platforms are two electric golf-carts that were modified mechanically, electronically and electrically towards the goal of automated driving. Each iCab was equipped with several on-board embedded computers, perception sensors and auxiliary devices, in order to execute the necessary actions for self-driving. Moreover, the platforms are capable of several Vehicle-to-Everything (V2X) communication schemes, applying three layers of control, utilizing cooperation architecture for platooning, executing localization systems, mapping systems, perception systems, and finally several planning systems. Hundreds of experiments were carried-out for the validation of each system in the iCab platform. Results proved the functionality of the platform to self-drive from one point to another with minimal human intervention.Los avances tecnológicos en Sistemas Inteligentes de Transporte (ITS) han crecido de forma exponencial durante el último siglo. El objetivo de estos avances es el de proveer de sistemas innovadores e inteligentes para ser aplicados a los diferentes medios de transporte, con el fin de conseguir un transporte mas eficiente, seguro, coordinado e inteligente. El foco de los ITS se divide principalmente en dos categorías; la primera es la mejora de los componentes ya existentes en las redes de transporte, mientras que la segunda es la de desarrollar vehículos inteligentes que hagan más fácil y eficiente el transporte. Diferentes esfuerzos de investigación se han llevado a cabo con el fin de solucionar los numerosos aspectos asociados con la conducción autónoma. Esta tesis propone una solución para la cooperación y coordinación de múltiples vehículos. Para ello, en primer lugar se desarrolló un simulador (3DCoAutoSim) de conducción basado en el motor de juegos Unity, conectado al framework Robot Operating System (ROS) y al simulador Simulation of Urban Mobility (SUMO). 3DCoAutoSim ha sido probado en diferentes condiciones y circunstancias, para posteriormente validarlo con resultados a través de varios experimentos reales controlados. Los resultados obtenidos mostraron la eficiencia del simulador para manejar diferentes situaciones, emulando los vehículos en el mundo real. En segundo lugar, se desarrolló la plataforma de investigación Intelligent Campus Automobile (iCab), que consiste en dos carritos eléctricos de golf, que fueron modificados eléctrica, mecánica y electrónicamente para darle capacidades autónomas. Cada iCab se equipó con diferentes computadoras embebidas, sensores de percepción y unidades auxiliares, con la finalidad de transformarlos en vehículos autónomos. Además, se les han dado capacidad de comunicación multimodal (V2X), se les han aplicado tres capas de control, incorporando una arquitectura de cooperación para operación en modo tren, diferentes esquemas de localización, mapeado, percepción y planificación de rutas. Innumerables experimentos han sido realizados para validar cada uno de los diferentes sistemas incorporados. Los resultados prueban la funcionalidad de esta plataforma para realizar conducción autónoma y cooperativa con mínima intervención humana.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Francisco Javier Otamendi Fernández de la Puebla.- Secretario: Hanno Hildmann.- Vocal: Pietro Cerr

    Towards Visual Ego-motion Learning in Robots

    Full text link
    Many model-based Visual Odometry (VO) algorithms have been proposed in the past decade, often restricted to the type of camera optics, or the underlying motion manifold observed. We envision robots to be able to learn and perform these tasks, in a minimally supervised setting, as they gain more experience. To this end, we propose a fully trainable solution to visual ego-motion estimation for varied camera optics. We propose a visual ego-motion learning architecture that maps observed optical flow vectors to an ego-motion density estimate via a Mixture Density Network (MDN). By modeling the architecture as a Conditional Variational Autoencoder (C-VAE), our model is able to provide introspective reasoning and prediction for ego-motion induced scene-flow. Additionally, our proposed model is especially amenable to bootstrapped ego-motion learning in robots where the supervision in ego-motion estimation for a particular camera sensor can be obtained from standard navigation-based sensor fusion strategies (GPS/INS and wheel-odometry fusion). Through experiments, we show the utility of our proposed approach in enabling the concept of self-supervised learning for visual ego-motion estimation in autonomous robots.Comment: Conference paper; Submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2017, Vancouver CA; 8 pages, 8 figures, 2 table
    corecore