30,561 research outputs found

    European White Book on Real-Time Power Hardware in the Loop Testing : DERlab Report No. R- 005.0

    Get PDF
    The European White Book on Real-Time-Powerhardware-in-the-Loop testing is intended to serve as a reference document on the future of testing of electrical power equipment, with specifi c focus on the emerging hardware-in-the-loop activities and application thereof within testing facilities and procedures. It will provide an outlook of how this powerful tool can be utilised to support the development, testing and validation of specifi cally DER equipment. It aims to report on international experience gained thus far and provides case studies on developments and specifi c technical issues, such as the hardware/software interface. This white book compliments the already existing series of DERlab European white books, covering topics such as grid-inverters and grid-connected storag

    The Economic Value of Remote Sensing of Earth Resources from Space: An ERTS Overview and the Value of Continuity of Service. Volume 1: Summary

    Get PDF
    An overview of the ERTS program is given to determine the magnitude of the benefits that can be reasonably expected to flow from an Earth Resources Survey (ERS) Program, and to assess the benefits foregone in the event of a one or two-year gap in ERS services. An independent evaluation of the benefits attributable to ERS-derived information in key application areas is presented. These include two case studies in agriculture-distribution, production and import/export, and one study in water management. The cost-effectiveness of satellites in an ERS system is studied by means of a land cover case study. The annual benefits achieveable from an ERS system are measured by the in-depth case studies to be in the range of 430to430 to 746 million. Benefits foregone in the event of a one-year gap in ERS service are estimated to be 147to147 to 220 million and 274to274 to 420 million for a two-year gap in ERS service

    A Detail Based Method for Linear Full Reference Image Quality Prediction

    Full text link
    In this paper, a novel Full Reference method is proposed for image quality assessment, using the combination of two separate metrics to measure the perceptually distinct impact of detail losses and of spurious details. To this purpose, the gradient of the impaired image is locally decomposed as a predicted version of the original gradient, plus a gradient residual. It is assumed that the detail attenuation identifies the detail loss, whereas the gradient residuals describe the spurious details. It turns out that the perceptual impact of detail losses is roughly linear with the loss of the positional Fisher information, while the perceptual impact of the spurious details is roughly proportional to a logarithmic measure of the signal to residual ratio. The affine combination of these two metrics forms a new index strongly correlated with the empirical Differential Mean Opinion Score (DMOS) for a significant class of image impairments, as verified for three independent popular databases. The method allowed alignment and merging of DMOS data coming from these different databases to a common DMOS scale by affine transformations. Unexpectedly, the DMOS scale setting is possible by the analysis of a single image affected by additive noise.Comment: 15 pages, 9 figures. Copyright notice: The paper has been accepted for publication on the IEEE Trans. on Image Processing on 19/09/2017 and the copyright has been transferred to the IEE

    Methods and Tools for Objective Assessment of Psychomotor Skills in Laparoscopic Surgery

    Get PDF
    Training and assessment paradigms for laparoscopic surgical skills are evolving from traditional mentor–trainee tutorship towards structured, more objective and safer programs. Accreditation of surgeons requires reaching a consensus on metrics and tasks used to assess surgeons’ psychomotor skills. Ongoing development of tracking systems and software solutions has allowed for the expansion of novel training and assessment means in laparoscopy. The current challenge is to adapt and include these systems within training programs, and to exploit their possibilities for evaluation purposes. This paper describes the state of the art in research on measuring and assessing psychomotor laparoscopic skills. It gives an overview on tracking systems as well as on metrics and advanced statistical and machine learning techniques employed for evaluation purposes. The later ones have a potential to be used as an aid in deciding on the surgical competence level, which is an important aspect when accreditation of the surgeons in particular, and patient safety in general, are considered. The prospective of these methods and tools make them complementary means for surgical assessment of motor skills, especially in the early stages of training. Successful examples such as the Fundamentals of Laparoscopic Surgery should help drive a paradigm change to structured curricula based on objective parameters. These may improve the accreditation of new surgeons, as well as optimize their already overloaded training schedules

    Aircraft System Noise Prediction Uncertainty Quantification for a Hybrid Wing Body Subsonic Transport Concept

    Get PDF
    Aircraft system level noise prediction for advanced, unconventional concepts has undergone significant improvement over the past two decades. The prediction modeling uncertainty must be quantified so that potential benefits of unconventional configurations, which are outside of the range of empirical models, can be reliably assessed. This paper builds on previous work in an effort to improve estimates of element prediction uncertainties where the prediction methodology has been improved, or new experimental validation data are available, to provide an estimate of the system level uncertainty in the prediction process. In general, the uncertainty of the prediction will be strongly dependent on the aircraft configuration as well as which technologies are integrated. While the quantitative uncertainty values contained here are specific to the hybrid wing body design presented, the underlying process is the same regardless of configuration. A refined process for determining the uncertainty for each element of the noise prediction is detailed in this paper. The system level uncertainty in the prediction of the aircraft noise is determined at the three certification points, using a Monte Carlo method. Comparisons with previous work show a reduction of 1 EPNdB in the 95%coverage interval of the cumulative noise level. The largest impediment for continued reduction in uncertainty for the hybrid wing body concept is the need for improved modeling and validation experiments for fan noise, propulsion airframe aeroacoustic effects, and the Krueger flap, which comprise the bulk of the uncertainty in the cumulative certification noise level

    The incidence of binaries in Globular Cluster stellar populations

    Get PDF
    Binary fraction and orbital characteristics provide indications on the conditions of star formation, as they shed light on the environment they were born in. Multiple systems are more common in low density environments rather than in higher density ones. In the current debate about the formation of Globular Clusters and their multiple populations, studying the binary incidence in the populations they host offers a crucial piece of information on the environment of their birth and their subsequent dynamical evolution. Through a multi-year observational campaign using FLAMES at VLT, we monitored the radial velocity of 968 Red-Giant Branch stars located around the half-light radii in a sample of 10 Galactic Globular Clusters. We found a total of 21 radial velocity variables identified as {\it bona fide} binary stars, for a binary fraction of 2.2%±\pm0.5%. When separating the sample into first generation and second generation stars, we find a binary fraction of 4.9%±\pm1.3% and 1.2%±\pm0.4% respectively. Through simulations that take into account possible sources of bias in detecting radial velocity variations in the two populations, we show that the difference is significant and only marginally affected by such effects. Such a different binary fraction strongly suggests different conditions in the environment of formation and evolution of first and second generations stars, with the latter being born in a much denser environment. Our result hence strongly supports the idea that the second generation forms in a dense subsystem at the center of the loosely distributed first generation, where (loose) binaries are efficiently destroyed.Comment: A&A, Accepte

    Prospects for Measuring Cosmic Microwave Background Spectral Distortions in the Presence of Foregrounds

    Full text link
    Measurements of cosmic microwave background spectral distortions have profound implications for our understanding of physical processes taking place over a vast window in cosmological history. Foreground contamination is unavoidable in such measurements and detailed signal-foreground separation will be necessary to extract cosmological science. We present MCMC-based spectral distortion detection forecasts in the presence of Galactic and extragalactic foregrounds for a range of possible experimental configurations, focusing on the Primordial Inflation Explorer (PIXIE) as a fiducial concept. We consider modifications to the baseline PIXIE mission (operating 12 months in distortion mode), searching for optimal configurations using a Fisher approach. Using only spectral information, we forecast an extended PIXIE mission to detect the expected average non-relativistic and relativistic thermal Sunyaev-Zeldovich distortions at high significance (194σ\sigma and 11σ\sigma, respectively), even in the presence of foregrounds. The Λ\LambdaCDM Silk damping μ\mu-type distortion is not detected without additional modifications of the instrument or external data. Galactic synchrotron radiation is the most problematic source of contamination in this respect, an issue that could be mitigated by combining PIXIE data with future ground-based observations at low frequencies (ν<1530\nu < 15-30GHz). Assuming moderate external information on the synchrotron spectrum, we project an upper limit of μ<3.6×107|\mu| < 3.6\times 10^{-7} (95\% c.l.), slightly more than one order of magnitude above the fiducial Λ\LambdaCDM signal from the damping of small-scale primordial fluctuations, but a factor of 250\simeq 250 improvement over the current upper limit from COBE/FIRAS. This limit could be further reduced to μ<9.4×108|\mu| < 9.4\times 10^{-8} (95\% c.l.) with more optimistic assumptions about low-frequency information. (Abridged)Comment: (16 pages, 11 figures, submitted to MNRAS. Fisher code available at https://github.com/mabitbol/sd_foregrounds. Updated with published version.

    Residual acceleration data on IML-1: Development of a data reduction and dissemination plan

    Get PDF
    The research performed consisted of three stages: (1) identification of sensitive IML-1 experiments and sensitivity ranges by order of magnitude estimates, numerical modeling, and investigator input; (2) research and development towards reduction, supplementation, and dissemination of residual acceleration data; and (3) implementation of the plan on existing acceleration databases
    corecore