48 research outputs found

    Reversals-space-parallelism tradeoffs for language recognition

    Get PDF

    Equality languages and fixed point languages

    Get PDF
    This paper considers equality languages and fixed-point languages of homomorphisms and deterministic gsm mappings. It provides some basic properties of these classes of languages. We introduce a new subclass of dgsm mappings, the so-called symmetric dgsm mappings. We prove that (unlike for arbitrary dgsm mappings) their fixed-point languages are regular but not effectively obtainable. This result has various consequences. In particular we strengthen a result from Ehrenfeucht, A., and Rozenberg, G. [(1978), Theor. Comp. Sci. 7, 169–184] by pointing out a class of homomorphisms which includes elementary homomorphisms but still has regular equality languages. Also we show that the result from Herman, G. T., and Walker, A. [(1976), Theor. Comp. Sci. 2, 115–130] that fixed-point languages of DIL mappings are regular, is not effective

    Finite automata with multiplication

    Get PDF
    AbstractA finite automaton with multiplication (FAM) is a finite automaton with a register which is capable of holding any positive rational number. The register can be multiplied by any of a fixed number of rationals and can be tested for value 1. Closure properties and decision problems for various types of FAM's (e.g. two-way, one-way, nondeterministic, deterministic) are investigated. In particular, it is shown that the languages recognized by two-way deterministic FAM's are of tape complexity log n and time complexity n3. Some decision problems related to vector addition systems are also studied

    Computing with cells: membrane systems - some complexity issues.

    Full text link
    Membrane computing is a branch of natural computing which abstracts computing models from the structure and the functioning of the living cell. The main ingredients of membrane systems, called P systems, are (i) the membrane structure, which consists of a hierarchical arrangements of membranes which delimit compartments where (ii) multisets of symbols, called objects, evolve according to (iii) sets of rules which are localised and associated with compartments. By using the rules in a nondeterministic/deterministic maximally parallel manner, transitions between the system configurations can be obtained. A sequence of transitions is a computation of how the system is evolving. Various ways of controlling the transfer of objects from one membrane to another and applying the rules, as well as possibilities to dissolve, divide or create membranes have been studied. Membrane systems have a great potential for implementing massively concurrent systems in an efficient way that would allow us to solve currently intractable problems once future biotechnology gives way to a practical bio-realization. In this paper we survey some interesting and fundamental complexity issues such as universality vs. nonuniversality, determinism vs. nondeterminism, membrane and alphabet size hierarchies, characterizations of context-sensitive languages and other language classes and various notions of parallelism

    Logic and the Challenge of Computer Science

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/154161/1/39015099114889.pd

    Tradeoffs for language recognition on alternating machines

    Get PDF
    AbstractThe alternating machine having a separate input tape with k two-way, read-only heads, and a certain number of internal configurations, AM(k), is considered as a parallel computing model. For the complexity measure TIME · SPACE · PARALLELISM (TSP), the optimal lower bounds Ω(n2) and Ω(n3/2) respectively are proved for the recognition of specific languages on AM(1) and AM(k) respectively. For the complexity measure REVERSALS · SPACE · PARALLELISM (RSP), the lower bound Ω(n1/2) is established for the recognition of a specific language on AM(k). This result implies a polynomial lower bound on PARALLEL TIME · HARDWARE of parallel RAM's.Lower bounds on the complexity measures TIME · SPACE and REVERSALS · SPACE of nondeterministic machines are direct consequences of the result introduced above.All lower bounds obtained are substantially improved in the case that SPACE⩾ nɛ for 0<ɛ<1. Several strongest lower bounds for two-way and one-way alternating (deterministic, nondeterministic) multihead finite automata are obtained as direct consequences of these results. The hierarchies for the complexity measures TSP, RSP, TS and RS can be immediately achieved too

    Bounded Languages Meet Cellular Automata with Sparse Communication

    Full text link
    Cellular automata are one-dimensional arrays of interconnected interacting finite automata. We investigate one of the weakest classes, the real-time one-way cellular automata, and impose an additional restriction on their inter-cell communication by bounding the number of allowed uses of the links between cells. Moreover, we consider the devices as acceptors for bounded languages in order to explore the borderline at which non-trivial decidability problems of cellular automata classes become decidable. It is shown that even devices with drastically reduced communication, that is, each two neighboring cells may communicate only constantly often, accept bounded languages that are not semilinear. If the number of communications is at least logarithmic in the length of the input, several problems are undecidable. The same result is obtained for classes where the total number of communications during a computation is linearly bounded
    corecore