Theoretical Computer Science 2 (1976) 271-294,
© North-Holland Publishing Company

FINITE AUTOMATA WITH MULTIPLICATION*

Oscar H. IBARRA, Sartaj K. SAHNI and Chul E. KIM'

Department of Computer Science, University of Minnesota,
Minneapolis, MN55455, U.S.A.

Communicated by M. Harrison
Received 22 January 1975
Revised 3 July 1975

Abstract. A finite automaton with multiplication (FAM) is a finite automaton with a register
which is capable of nolding any positive rational number. The register can be multiplied by any of
a fixed number of rationals and can be tested for value 1. Closure properties aid decision
problems for various types of FAM’s (e.g. two-way, one-way, nondetermiristic, deterministic) are
investigated. in particular, it is shown that the languages recognized by two-way deterministic
FAM’s are of tape complexity log n and time complexity . Some decision probiems related to
vector addition systems are also studied.

0. Introduction

It is well known that a one-way firite automaton with two counters can recognize
any recursively enumerable set [12]. Clearly, the two counters can be simulated by a
single register that is capable of stcring any positive rational number whose value
can be modified and tested as follows: The register can be multiplied by any of a
fixed number of rotional numbers and, in addition, the machine can check if any of
these rationals is a factor of the register value. If p/q and r/s are two rationals in
lowest terms, then p/q is a factor of r/s iff p divides r and q divides s. For example,
if the register value is 6/35, then 2/5 is a factor, but 3/25 is not. Such a machine,
similar to the program-machine of [12], is then equivalent to a Turing machine.
Thus, we see that multiplication and “factor test” are sufficient operations for
single-register machines to recognize all recursively enumerable sets. As one might
expect, a weaker sct of operations reduces the computing power of these machines.
One such device is studied in this paper: the program-machine as described above
except that the “factor test” is replaced by an “equality to 17 test (i.e., the register
can only be tested for being equal to 1). We call such a machine a finite automaton
with multiplication (FAM). A FAM is considerably weaker than a Turing machine.
In fact, the languages recognized by two-way deterministic FAM’s belong to the

* The work of ‘he first author was supported in part by National Science Foundation Grant
DCR 72-03728-A(1, and the work of the second author was supported in part by the University of
Minnesota Gradua‘e School Research Grant 481-0906-4125-02 and by NSF Grant DCR 74-10081.

' Present address: University of Maryland, College Park, MD 20742, U.S.A.

271

272 : O. H. IBARRA ET AL.

tape-complexity class log n and time-complexity class n’. One may readily verify
that a FAM is equivalent to a multicounter antomaton which can oniy detect when
its counters are simultaneously zero. We shall also see that the notion of FAM’s is
usefui in studying certain decision problems concerning vector addition systems and
integer programming.

The paper is divided into 5 sections. In Section !, we give definitions and
notations we use throughout the paper. The two-way nondeterministic FAM is
defined formally as a language recognizer where the mode of acceptance is by
accepting state with the register value equal to 1. Special classes of FAM’s are then
introduced and some examples are given to illustrate the workings of these
automata.

In Section 2 we show that the languages recognized by two-way deterministic
FAM’s are recognizable by deterministic Turing machines of tape-complexity log n
and time-complexity n’. Closure properties of one-way nondeterministic and
deterministic FAM’s are then investigated. In particular, it is shown that the
languages recognized by one-way deterministic FAM’s are incomparable with the
context-free languages rior do they form an abstract family of languages (AFL) [3].
The one-way nondeterministic languages, however, form an AFL.

In Section 3 we consider FAM’s in which the “‘equality to 1" is not allowed as a
primitive operaticn. We call those machines FAM’s without equality. Contrasting
closure properties arc obtained (e.g., the languages recognized by the one-way
nondeterministic such machines do not form an AFL). We also show that the class
of boainded languages recognized by one-way nondeterministic FAM’s without
equality is precisely the class of bounded semilinear languages as defined in [6]. A
class of machines similar to FAM’s without equality called multiplicative analog
memory automata (MAMA) was recently introduczd in [17]. The only difference is
that in a MAMA, the register (calied analog in [17]) has a cut-off value of 1 (i.e., the
device halts and rejects the input whenever the register value exceeds 1). The
computing capability of the MAMA, however, was rot investigated in [17].

Section 4 gives inclusion relations among the different classes of FAM’s and
discusses some decidability questions. It is shown that the emptiness, containment
and equivalence problems for one-way deterministic FAM’s without equality are
solvable while the universe problem for the nondeterministic case is undecidable.

We conciude the paper in Section 5 where we summarize our results and state a

few open problems.
1. Preliminaries

We begin by defining the general model of a FAM.

Definition. A two-way nondeterministic finite automaton with multiplication
(INFAM)isadevice M = (K, 3, T, 6, 30,4, %, F), where K, 3, F C K, I are finite sets

FINITE AUTOMATA WITH MULTIPLICATION 273

I da] i
square right if a = —1,0 or + 1, respectively) and multiply its register by m.

Let x be a string in 3*.°> An instantaneous description of M operating on the
input tape ¢..$ can be described by a 4-tuple (g, ¢x3$, i, y), where q is a state of M,
¢x$ is the input tape, i is the position of the input head within ¢x$ (1<i < [¢x$))
and y is the value of the register.” A move of M can be indicated by the relation -
between instantaneous cescriptions. Thus (q, ¢x$,i, y)F(p, ¢x$, j. w) if M can attain
instantaneous desc.iption (p,¢x$,j,w) from (q,¢x$,i,y) in one move. The
reflexive-transitive closure of + is denoted by F*.

A string x in 3* is accepted by M if (qo, ¢x8$, 1, 1)F-*(q, ¢x$,|¢x$|, 1) for some ¢
in F (i.e., M started in is initial state qo with the input head on ¢ and register value
equal to 1 eventually enters an accepting state with the input head on the right
endmarker and register value equal to 1). We assume that 6(¢,$,x) =0 for all ¢ in
F, i.e., in an accepting state M always halts on $. We shall also assume that M is
prevented from falling off either end of the input tape. The set of strings (i.c., the
language) accepted (or recognized) by M is the sei

A2NFAM M = (K, Z, T, §, g0, ¢, $, F) is deterministic 2DFAM)if | 5(q, a,a)| =
for each q in K, a in 3 U{¢,5}, and a in {=, #}.* M is one-way (denoted by
INFAM) if (n,d,m) in 8(q, a, a) implies d = 0.

A 2NFAM without equality (denoted by 2NFAMW) is a 2NFAM M =
(K,3,T,38, q0,¢.8, F) with the property that (g, a, #)=8(q.a, =) for all ¢ in K
and a in 2 U{c, 8} (i.e., M cannot detect whether or not the register has value 1). In
this case, we may omit writing the third cornponent of the domain in describing the

INFAM, 1DFAM,

2 X% is the set of all finite strings of symbols in 2, including the null siring denotec by . 'f x and y are
strings in ¥, xy is the string x followed by the string y; x°=¢, and x**' = x*x for all k =0.
* |z | denotes the length of z (i.e., tiie number of symbois in 2).

4 ¥o : A o

0O Lt . Al __ | ol e oal %% _Bt._ £
il 9 IS @ NRRe SCi, Wen | o5 | Genoies ine carummanty ot 3.

274 O. H. IBARRA ET AL.

INFAMW, 2DFAMW, INFAMW, IDFAMW to denote the different types of
FAM’s described above. For example, IDFAMW refers to a one-way deterministic
FAM without equality.

By Z(INFAM), £(1IDFAM), etc., we shall mean the set of all languages
recognized by the corresponding FAM.

We say that a FAM M (of any type) operates in time ¢(n) if for any input x,
|¢x$| = n, that is accepted, M has a sequence of at most #(n) moves leading to the
acceptance of x.°

To illustrate the working of these automata we describe below in Examples 1.1
and 1.2, FAM’s , M; and M,, such thai T(M,)={a"b"c" |n =0} and T(M,) =
{a"db™ |m = n=0}.

Example 1.1. M,=(K,,%,, I}, 81,401, ¢, 8, F1), where K;=1{q1,92qs 34}, 1=
{a,b,c}, I =1{2,3}, qu=q:, Fi={qs}, and 8 is defined as foilows: 5:(q:,¢)=
(q:; + 1,1), 81(‘]‘19‘2): (qh + 1’ -'%)a 51(‘1:,3) = (q4!0a1)s 81(‘11,1’) = (42, + 1’2)’ 51(4%”) =
(g2 +1,2), 8:(q2¢)=(gs,+1,3), 8:i(g5, €)= (g5 +1,3), 8:(¢2,$)= (94,0, 1).

M, is a IDFAMW so that (by convention) “ =" and “ # > have been cmitted
from the move function 8,. M, goes through the input and multiplies the register by
5,2, or 3 depending on whether it sees an q, b, or c. Thus, if the input is of the form
a’bic*, the register value at the end of the progess is v =) - 2 - 3 Clearly, v = 1 if
and oniy if i =j = k. Also, the finite state control rejects inputs not of the form
a'bc*. It follows that T(M,)={a"b"c" |n = 0}.

Example 1.2. M,=(K;, 3;, I, 62,902, ¢, $, F>), where K>={0,,q,,q;}, 2.={a, b},
r={1,%2}, qn=q, F={q:}, and &, is defined as follows: dx(q:¢, =)=
(qh + }91)’ 62“’“ $7 =) = (q39 0’ 1)’ 82(‘1“ a, =)= (qh + 1’%)’ 2;2(‘11’ a, 75) =
(q|, + 1,%), 32(‘]1, b, =)=(£I3, +1,1), az(q., b, #)=(Q2, +1,2), 32(‘12, b, #)=
(92 + 1,2}, 842 b, =)=(qs, +1,1), 8xq2.8, =) =(q:0,1), &xAqs, b =)=
(g5 +1, 1) '

M, with input of the form a"b™ goes through the “a’’ segment and multiplies the
register by ; for each a it sees. Thus, at the end of the “a’’ segment, the register
value would be (3)". Then M, multiplies the register by 2 for each b in the first n b’s

it sees, thereafter multiplying the register by 1. It should be clear that T(M,) =
{a™d™ | m =n =0}.

Remarks. (a) A 1IDFAM with I' = {3, 2} can simulate any cne counter machine (see
[8] for « definition of counter machines). It follows from the result ot Minsky [12]
that a IDFAM with ‘wo registers is equivalent to a Turing machine.

(b) {a"b’c" | n =0} is clearly recognizable by a IDFAMW but is not a context-

* We assume that t(n) is a computable function from paositive integers inio postive integers.

FINITE AUTOMATA WITH MULTIPLICATION 275

free language [8] and so not recognizable by a one-way one-counter machine.
{a"b" |n =0}* is a deterministic context-free language [2] recognizable by a
one-way one-counter machine but is not INFAMW recognizable. (The proof is
given in Lemma 3.1.) It follows that £(1IDFAMW) and Z(INFAMW) are
incomparable with context-free languages, deterministic context-free lunguages,
and languages recognizable by one-way one-counter machines.

(c) Any type of FAMW with several registers can easily be converted to an
equivalent FAMW of the same type with only one register (by choosing distinct
primes for the multipliers). Thus, there is no complexity hierarchy based on the
number of registers.

2. Finite autvinata with multiplication

In this sc ction, we investigate th: properties of FAM’s. We begin by showing in
Section 2.1 that languages in £ (21’ FAM) belong to the tape complexity class log(n)
and time compliexity class n*. Then, in Section 2.2 we exhibit languages that are not
in £(1IFAM). These results are then used in Section 2.3 to obtain the ciosure
properties of 1FAM's. Our proofs involve the notion of cycle. By a cycle of M we
shall mean a se Juence of moves starting and ending in the same state q.. The length
of a cycle is the number of input symbols over which M has moved since it was last
in the same state of that cycle. The computation of M on reaching the endmarker $
will consist of some number (= 0) of cycles followed by an incomplete cycle.

2.1. Relaiionship ‘o log(n)-tape Turing maciunes
We begin with the foliowing lemma.

Lemma 2.1. Let M =(K, 3, T, 8, qo,¢,$, F) be a 1DFAM. Then M operates in time
t(n)<c - s> n (cis a constant depending only on I" and s is the number of states of
M) for al: strings x € T(M), |¢x$|= n.

Proof. Lct P ={p,,- -+, p.} be the primes appearing in the prime decomposition of
the numerators and denominators of the multipliers, I" = {m,, m,," - -, m,}, of M.
For i =1,+--,t let m;, =IT;., p» where e;’s are integers. Let e = maxi; | ¢;|.

If a string x is accepted, the read head eventually moves right from every symbol,
except the $, of the input tape ¢x$ = a,a." - - a.. If the register does not become 1 on
a, M moves its head to a;., after at most | s | stationary moves. If the register does
become 1, then it can become 1 at most | s | times, as ctherwise M enters an infinite
cycle on a..

Suppose that the -cgister value becomes 1 on both a; and a;, j </, and not on a.

for any j <k <. ;

276 O. H. IBARRA ET AL.

Examine the computation of M between times when the register value becomes
1 for the last time on a@; and for the first time on a.. The value of the register, a,
when the read head moves into a; depends only on computations carried out on
(i — j) symbols @; ;.. * - - a:-1 (on a;, the computation after the register became 1 for
the last time). Since at most | s | moves are possible on each of these, the largest
possible absolute value for the exponent of the primes in the prime decomposition
of the numerator and denominator of « is e *(i — j)*| s |. On a; the comyp:tation of
M until the register becomes 1 is as follows: M enters a; in state q with register
value a. Then, it is in state q' with register value af after less than | s | moves, when
it enters a cycle. For each of these cycles M multiplies the register by . Finally,
after an incomplete cycle with a multiplication of & the register becomes 1,
apy’d=1.

B ¥ ¥ v
/"\/'\./’\ /—\/-\
q--q.""9,° "9, "4.°°°4¢ 9"

B and 8 involve at most | s | multiplicrs each and so the largest absolute value of
exponents of prime factors of numerator and denominator of aBé is at most
ex(i—j+2)*|s|. For aBy’d to equal 1 for some integer r, every prime factor in
af8 should be cancelled by the corresponding prime factors in ¥ and every prime
factor in y changes the exponer:t of the corresponding prime in a8 by ai least 1 for
each cycle, which is of length at most |s|. Thus r<e*(i—j+2)*|s{® If the
register becomes 1 on a more than oncc, the computation of M between
consecutive 1’s takes less than 2#*e *|s |, since it is identical to the one above
except that the register value is 1 instead of a.

Hence, on a; on which the register value becomes 1, the computing time is
bounded by

ex(i—j+2)x|sP+2%ex[sx|s|=ex|sP*((i—j)+4).
The total computing time for ¢x$ is then bounded by

2lsl+ 2 elsPi-j)+4)<6e|sn,

&I i€

[

where I is the set of all integers i such that on g; the register value becomes 1. [

Coroilary 2.1. Let M =(K, 3, T, 8,40,¢,8, F) be a 2DFAM. Then 1 operates in
time O(n®).

Proof. Given M and an input x with [¢x$|= n, we construct a IDFAM M, with
the property that M, operates sn input ¢$ in ¢, steps if and only if M operates on
input ¢x$ in ¢, steps.

Moreover, M, will have n - | s | states. It would then follow from Lemina 2.1 that
M, on input ¢$ operates in <c'(n-|s|)® steps for some constant ¢’. M, is

FINITE AUTOMATA WITH MULTIPLICATION 277

constructed as follows: M, =(K,, 3, I, 8., qox; ¢, $, F,), where K, = {(¢,¢x$,i)|q in
K, 1<is<|éx$|[}, 70 = (o, ¢x8$,1), F. = {(q,¢x8$,|¢x$|)|q in F}, and 8. is defined
by:

(1) 8, ((qo,¢x$,i ¢, =)=((qo,¢x$,1), 1,1).

(2) For each q in K, 1<i<|¢x$|, « in {=, #}, 86:((q,¢x$,i),8.a)=
((p, ¢x8,i + d),0,m) if 8(q, a, a) = (p,d, m), where a; is the ith symbol of ¢x$.

M, encodes the input ¢x$ in its finite control and simulates M in the finite
control. It is obvious that M, has n-|s| states and that M, accepts ¢x$ in ¢,
steps. [J

Theorem 2.1. If M is a 2NFAM (2DFAM) operating in polynomial time, then
T(M) is accepted by a log n tape-bounded nondeterministic (determinisiic) Turing
mackiine.

Proof.* Le: M =(K, 3, T, 8,qo,¢.$, F). Let p,, - - -, p« be the prime numbers appeai-
ing in the prime decompositions of the numerators and denominators of multipliers
in I. Then during the computation of M on ¢x$, the value of its register takes the
form pi---pk, where iy, -, i, are integers (positive, negative, or zero). At the
start i, =i, =--- =i =0. Since M operates in polynomial time, the absolute value
of 4 (1<Isk)is at most cn’ for some integers ¢ and r, where n = |¢x$). It is
obvious that a log n tape-bounded nondeterministic (deterministic) Turing machine
can keep track of the values of i),-- -, i, and heace the simulation of M is
possible. [J

Corollary 2.1 taken together with the above theorem gives:
Coroliary 2.2, If M is a 2DFAM, then T(M) is of tape-ccmplexity log n.

Corollary 2.3. If M is a 2DFAM, then T(M) can be accepted by a deterministic
Turing macaine of time-complexity n>.

Prooi. This follows from Corollary 2.1 and the observation that the Turing machine
constructed in the proof of Theorem 2.1 can be made to oper:te in time n? if it is
given n’space. []

2.2. Languages not in £(1DFAM)

Here, we show that certain languages are not IDFAM recognizable. These results

will be used in Section 2.3 to ot:tain the closure properties of 1FAM’s. Since we ate

¢ See {8] for a discussion of tape and time bounded Turing machines.

Proof. The pro pS. rist, 1In SIEP 1, We Siiow
1IDFAM, M, u.cogmzmg L,, there exists a constant, ¢, such that if the value of the
register is equai to 1 at any time durmg M’s computatlon on the segment of b’s of
x € L, then u\u)\ C \u \n) is the distance, i.e., the number of ii‘lpiil 3ymDOIb, of
M’s read head from the right endmarker, $, wher: the register first has the value
i on me D S) 1nen, we Sl'lOW that Ullb mstance, a(n), must in IaC[OC‘ ZEero except
for a finite number of values of n for which d(n)may be > 0.Finall ly, in step 3,

show that L, is not recognizable by any M for which the regist.:r never has
the vaiue i on the b’s {(except on a finite number of n’%).

Step 1. Assume that M recognizes L, and d/-) is not bounded by any constant.
Then, there are at least s + 1 values of n, (1, ny, - + -, K1) such that d(n) # d(n;),
i# j (s is the number of states of M). Consider the state M is in when the register
first becomes 1 on the segment of b’s for each of these n’s. Since M has only s
distinct states, it must be the case that for two n’s, n; and »; (i # j), M is in the same
state and reading the same symbol “b”’. But d(n;) # d(n;). We may assume without
loss of generality that d(n;)>d(m). Since M is deterministic, M must accept
a™b>*4¢-4® which is not a member of L,. Consequently, d(r)<c for some
constant c. _

Step 2. d(n)=0 except for a finite number of n’s. Suppose that d(n)# 0 for
infinitely many n’s. Denote by A, and A, the languages {a"b"|n =c} and
{a"b> | n = 0}, respectively. Since A,SL,, d(n)<c and M is a 1IDFAM, it.follows
*hat for x €{a"b" [n > c}, d(n) = 0 as otherwise there is an m such that x = ¢™b>"
amd d(m)> m > c. Hence, there must be infinitely many n’s for which x = a"b*"
and d(n)# 0. We shall show that there is an infinite subset {r, ., - - -} of these n’s
for which .

(a) if x =a"b* and y = a’b*i then M is in the same state q, at d(r,) and at d(r,).

(b) forall x €{a"b"}U{a"b*}, M enters the segment of b’s following the a’s in
the same state,

(¢) for all x €{a"b"}, M enters the right endmarker, $, in the same state q: and
exits the cycle on the § in the same g

To see this, start with the infinite set of n’s for which d(n)# 0 when x = a"b*".
Since the number of states in M is finite, an infinite subset of these n’s must satisfy
(a). An infinite subset of these n’s must satisfy (b} as M is finiic and deterministic.
The same argument implies that there is an infinite subset {r,, ,, - - - } of these n’s
that satisfies (c) also.

Consider the behavior of M on input x; = a"b" for r, one of the r’s described
above. Since M must set its register to 1 in order to accept x, let us assume it

FINITE AUTOMATA WITH MULTIPLICATION 279

multiplies the register by ko p* k,, where p represents the multiplication within a
cycie, on the $, k, the multiplications made before M entered the cycle on the §,
and k, the multiplicand contributed by the incomplete cycle made before M ieft the
cycle. Note that ko, p and k, do not depend on »; as we have fixed the state in which
M can enter the $ as well as the state in which M leaves the cycle. We also note that
for two distinct r’s r, and r, the number of times the cycle on the $ is made (i.e., j;
and j) is different (as otherwise M will also accept a"b"*" and a"b"*", since j, = j,
implies that register has the same value and state after a"b" as after a'ib"). Note
that since 0 < d(r.)<c and r, > max{c, s}, the moves of M form cycles on the b’s.
The length, A < s, of each cycle is the same as M's register is # 1 until M’s read
head gets to d(r;). The amount by which the register is changed in each cycle is &
(i.e., the multiplicative change). §# 1 as otherwise deletion of A <s b’s would
result in an x that is also accepted by M. The value of the register at the end of the
first r. b’s is (kop'k,)~' for the input x = a"b*:. But at d(r;) the register becomes 1.
Thereforz o 'k, = kop’k,, where f(r,) = | (r. — d{r.))/A] and k; is the contribution
ot the unfinished cycle segment on the last r, &’s. Again, note that k, doe. not
depenc on r; as for all r, M enters the last r b’s in the same state and also reaches
d(r) in the same state.
We now obtain the following:

8“"’](2 = kopiikl, 8“")’(2 = kopj'kl;
dividing out. we get

8™ =p™, where m,=f(r}—f(n) and m,=j —j.

Further, since it must be that j; >j for some r,>r, w2 assume m;, m,>0.
However, this implies that M accepts all inputs of the form a"b"**™, Am, < n, for n,
one of :he infinitely many r’s.

This contradicts our assumption that T(M)= L,. Hence d(n)=0 exrept for
infinitely many n.

Step 3. Since d(n) =0 and M is deterministic, it follows that for infinitely many
k, M enters the right endmarker, $, in the same state on the inputs x; = a“b" and
x;=a"b* where r = s! (this is so as the cycle length <ys). If v, and v, are the
values of the register on entering the $, then v, = v,6*"* (A is the cycle length on
the b’s and & the effective multiplication per cycle). Repeating the argument of step
2 this ieads us to conclude tnat ™ = p™ for some m,, m.>0 implying that
T(M)# L.

Consequently, there is no M such that T(M)=L,. O

Lemma 2.3. L,={b"(a"b") |n=1,k =1} & L(1DFAM).

Proof. Let M be a IDFAM recognizing L.. Then, M’s register cannot be £qual to 1
anywhere after the first b” segment and before the right endmarker, $, except for a
finite number of n’s. Suppose tnis is not the case. Then, for infinitely many n’s, M’s

280 0. H. IBARRA ET AL.

register becomes 1 either on an “a” or on a *b”. Without loss of generality, let us
assume this happens on a “b” for infinitely many n’s. Since M has only s distinct
states, M is in the same state and reading the same symbol “b” for infinitely many
n’s when its register becomes 1. Interchanging the tails of these inputs (if the tail
does not contain at least one complete a"b" segment, just consider a bigger k value
for the same n) results in the acceptance of strings not in L..

- Define an entering state to be a state in which M moves to a new symbol. For n
large enough, M must repeat some enterin:g state on the segment of a’s. By the
preceding argument M’s register is not equal to 1 on the a’s. Hence, there are at
most s distinct cycles that M can go through on the a’s. Consequently, for k > s, M
must repeat the same cycle on the a’s on two different a"b" segments. Let A be the
length of this cycle and iet 8, be the multiplicative change of the register. 6, is a
constant depending only on the specifications of M. We claim that for k sufficiently
large there are two such a"b" segments towards the right end of the input (we
choose the closest such segmenrts) such that moving a’s from one segment to the
other allows M to perform tne same computation. Such a change does noi alter the
value of the register nor M’s state when M reaches the $. Hence, the string so
obtained would be accepted by M. But, this string is not a member of L,.
Consequently T(M.) # L,. It foliows that L,& L(1DFAM).

Note that our claim will be true if the absolute value of the exponent of at least
one of the primes in the decomposition {e,, e, - * -, e,) of the register value (register
value = pi'p32- - - p7) becomes arbitrarily large. Then, for at least one e, |¢; | is
greater than the exponents contributed by M between the two segments (for large
enough k). As a result, moving A a’s cannot result in the register becoming 1 on the
new input segment. Let us now prove that |e; | can be made arbitrarily large for
some e..

Look at the siates, (41,93, -, qi), M is in at the end of each a"b" segment. For
k > s, there must be some repetitive cycle in (g1, g3, * * *, q1), i.e., it is of the form
41,9295 Q"% q, qi1,"*+,qi) where j, (k — 1+ 1)< s and each Q represents a
biock of states gm, Gm," * *Gm, I < S, qm, # q4, 1 < p < j, | < p < k. Note that Q is fixed
since M’s register is never 1 after the first b" segments and M is deterministic. Let
. be the multiplicative factor by which M'’s register changes on each Q segment.
Except for a finite number of n’s, 8, # 1. This follows from the observation that if
8. = 1 for infinitely many n’s, then for two such n’s n, # n,, the Q’s are formed by
the same state cycles. Since the input x read during the Q segment of n, contains at
least one occurrence of a™b™, substituting this input for the input y read during the
Q segment of n, results in a string which is not in L, but is accepted by M.

Hence, for any constant, ¢, the absolute value of the exponents of at least one of
the primes in the decomposition of the register value becomes = ¢ when M’s read
head is a distance d. from the left endmarker ¢. Note that d. depends only on ¢, 5,

and the value of the register before the first Q cycle. This completes the proof of
the lemma. [J

FINITE AUTOMATA WITH MULTIPLICATION 281
Lemma 24. L,={(a"b")* |n, k =0}U{(a"b*")* | n, k =0} € (IDFAM).

Proof.” This follows from Lemma 2.2, the observation that L;N a*b* = L, and the
fact that L(1DFAM) is closed under intersection with regular sets. [J

Lemma 2.5. The deterministic context free language L,={x # x"|x €{0,1}*}
g (1DFAM).®

Proof. Let M be a 1IDFAM recognizing L,. Let s be the number of states of M, r
the number of distinct multipliers, | I' |, and r = | x |. From the proof of Lemma 2.1
it follows that there is a constant, c, such that the number of moves made by M by
the time its read head reaches the # is bounded by cn. Consequently, the number
of distinct configurations (i.e., state and register value) of M when its read head is
positioned on t' = # is bounded by s(cn). However for every n, there are 2"
different strings x. Since for every constant, c, there exists an n, such that
2" = s(cn)’, n = n,, it follows that for some n, M has the same configuration while
on the # for two different x, x, # x, and | x,| = | x2| = n. Since M accepts x, # x|
and x, # x5 and has the same configuration while on the # for both it follows that
M also accepts x;, # x; and x, # xi. Neither of these is a member of L, as x; # x..
Consequently T(M)# L,. O

Lemma 2.6. L = [a'bic*|j#k ori<j}€ £(1DFAM).

Proof The proof foliows the pattern of Lemmas 2.2 and 2.3 and may be found in
[10). O3

We conclude this subsection by showing that all IDFAM recognizable iangua,es
over a one letter alphabet are regular.

Theorem 2.2. If L € #(1DFAM) and |3 | =1 then L is regular.

Proof. We just ouiline the proof. Given a IDFAM, M,, recognizing L, we construct
a nondeterministic finite automaton, M,, such that T(M,) = T(M,). Since M, is
deterministic, there is a constant ¢ such that M, can make at most ¢ multiplications
on its register before the register value either becomes equal to 1, or if more than ¢
multiplications are made then the register cannot become 1 except on the
endmarker $. This foliows from the observation thai between two consecutive times
when the register value becomes 1, M, effectively multiplies the register by ko p* k;

?” We are grateful to an anonymous referee for providing this proof which shortens our proof.

8 x" is the reverse of «x.

282 O. H. IBARRA ET AL.

(ko and p depend only on the state g, of M when its register was last 1 and on I'; k;
depends only on the state of M; when its register was last 1, I' and the position in
the state repetition cycle M, is in, 0 < j < I, where [is the lengih <f the state cycle of
M, for g,). For i = ¢, (¢, depends only on g, p and the k;’s), kop’ is such that
multiplication by any of the k;’s cannot esult in the register having a value 1.
Finally, the behavior of M, on the $ depends only on the state in which it reaches
the $ and whether or not its register has the value 1. M, begins by guessing the state
in which M, will reach the $ and aiso the state in which it will leave the
multiplicative cycle on $. Then it behaves as M,, performing the multiplications in
its finite control (actually, it just keeps track of the exponents in the prime
decomposition of the numerator and denominator).

M, on the $ multiplics its register by k(p')'k; (kq, p', kj depending on the state in
which M, reaches the $ and the state in which it halts). If M, makes more than ¢,
cycles, then M, knows that the register can never become 1 except on the $. So, M,
now multiplies its register by kok|. Then, while moving to the right and simulating
M,, M, also multiplies by p' as needed, to keep the prime decomposition bounded.
If while doing this, the exponent of any of the primes in the decomposition of the
register exceeds a bound dependent only on g, p, the k;’s and p’, then M, on the §
cannot leave the multiplicative cycle on the § in the state gucssed by M,. So M,
aborts the computation. Clearly, x € T(M,) iff x € T(M). O

2.3. Closure properties of LFAM’s

Theorem 2.3 summarises our results for IDFAM while Theorem 2.4 dces this for
INFAM.

Theorem 2.3. The class of languages recognizable by i DFAM’s is not closed under
the following operations:®

(a) union,

(b) concatenation,

(c) intersection,

(d) left quotient with a regular set,

(e) ¢-free homomorphism, v

(f) Kleene closure (i.e., *),

{g) complementation.

° Let X and Y be sets of strings. The concatenatior. of X and Y is the set XY = {xy |x in X, y in Y}.
The reverse of X is the set X® ={x"|x in X}. The left-quotient of X with respect to Y is the set
Y\X ={x|yx in X for some y in Y}. The Kleene closure of X is the set X* = {J .0 X" where X* is
defined by X°={e} and X*"'=X*X for all k=>0. Let 3 and 4 be finite sets of symbols. A
homomorphisa k from Z* into A* is any mapy.ng from 3* into A* such that L(s)=¢ and
h{a, --a.)=h(a\) - -h(a) for al k =1 and a, in 5. h is e-free if h(x)=¢ implies x = .

FINITE AUTOMATA WITH MULTIPLICATION 283

Proef. (2) I et ={a"h"in =20 and B ={a"h?"|lp >0 c PIDIEARY thom
2 EVVEe \Gj asvr i3 1% U e F Uy auu s s v I8 = Ui LA AVE), UICTH
AUB =L, of Lerrma 2.2 and L, & Z{1DFA}).

(Y Tne tha lanairasa A D Af ln) alhAua we hhouva AR N[A%L%* . 1 AT e oL

\Vj 4Ur v lausuasoo 3y L UL Q) auuvv, wv liave A iy v ¢~ Ly, NNOLC 11dt
Z(1IDFAM) is closed under intersection with regular sets.

c) A=b*{a""|n= 1})* and B = ({b"]r = 1})*b* are in (IDFAM). But

ANMND—fLns npnrk!
ANID =W ao)

an 2a 2
ey, & = 1[is 1.42 Ul L/Vll ma .7

i
d) A={a"b"|n=0}U{ca"b*|n=0}c L(1DF AM) Consider the regular set
R ={c,e}. Then R\A g Z(1DFAM)since (R\A)N{a'b’'|i,j =0}is L, of Lemma
2.2

(¢) Just consider A ={a"b"|n =0} U{ca"'b*" | n = 0} and the homomorphism
h defined by h(a)= h(c)=a and h(b)=b.

() A={a"b"|n=0}U{ca"b>|n=0}€ L(IDFAM). If A*€ L(IDFAM)
then B=A*N{ca'd'|i,j=0j={ca™" |n=0}U{ca"b* |n =0} L(IDFAM).
However, P& £(1IDFAM) since from a 1DFAM, M, recogrizing B one easily
obtains a IDFAM, M’, recognizing L, = {a"b" | r =0} U {a"b*" | n =0}. (M’ on the
left endmarker ¢ simulates the behavior of M on ¢c and then behaves exactly as M.)

g L={a"b™c™|n=m =0} L(IDFAM) but L N{a'b'c*|ijk=0}&
Z(1IDFAM) (Lemme 2.6). [

Theorem 2.4. L(INFAM) is a fuli AFL closed urder reversal."
Proof. The ccnstructions are fairly straightforward and so are omitted. O

Conjeciures. S(1DFAM) is not closed under reversal. £(1NFAM) is not closed
under intersection and complementation.

3. FAM without equality

W2 now turn our attention to FAM’s that are not able to check their register for
equality :0 1. As we shall see, these machines do not have the same closure
properties as IFAM’s. In Section 3.1 we obtain the closure properties for IFAMW.
In Section 3.2 we study the relationship between bounded scmiiinear languages and
bounded 1IFAMW languages.

3.1. Closure probem‘es of 1IFAMW’s

Observation 3.1. For any 1DFAMW, M, if r, is the value of the register when M

' A nonempty family of sets (or strings) is a full AFL if it is closed under the operations of unicn,
concatenation, Kleerz closure, homomorphism, inverse homomorphism and intersection with regular
sets.

284 O. H. IBARRA E'i AL.

moves its read head to the right endmarker, $, ar 1 r, its value whewn M halts, then r./r,
can take on only finitely many distinct values.

Proof. This follows from the fact that M is det :rministic, has only a finite number
of distinct states and a finite number of distinct multipliers. []

Lemma 3.1. (a) L,={a"b"|n=1}U{a"b*c|n =1} € Z(1IDFAMW).
(®) L,=1{a"b" | n =0}* & Z(INFAMW).

Proof. (a) Let M be a IDFAMW accepting L;. M has a finite number of states, s.
So, for infinitely many n’s, (ni, na, - - -, 1, - - *), it must be the case that M enters the
first b of x = a"b" in the same state q'. For each of these n’s > s, M must repeat
some state. Let g; be the first state that is repeated on the b’s. Let § be the
multiplicative factor by which the register changes between two consecutive
appearances of the state g.. Since M is deterministic and its moves are independent
of the register value, the cycle length, [, (i.e., the distance on the input tape between
two consecutive appearances of ¢;) and 8 are fixed over the segment of b’s. § # 1 as
otherwise deletion or addition of I b’s to x would result in a string x'& L, but
x € T(M). Note tha: 8 are fixed for all the n’s, (ny,n--+,n,--) we are
considering as [, 8 depend only on the state in which M enters the first b. By
Observation 3.1, since M accepts all the infinitely many inputs x; = a™b", it follows
that for some infinite subset of these n’s, (f1;, iz, - -+, fim, * *), M’s register has the
same value, k, when M moves right from the last b ui x; = a™b™. Since M is
deterministic, has only a finite number of multipliers and 8 # 1, it follows that for
infinitely many n’s, M arrives at the ¢ of y; = a™b*™c with'a different register value
(i.e., when M is reading the c, its register could have any one of infinitely many
distinct values depending on #i;). This in turn implies that M can reach the $§ with
infinitely many different register values. Observation 3.1 then implies that M
cannot accept all these y;’s. Consequently T(M) # L,. Note that L, €. £(1DFAM).

(b) Assume there is a INFAMW, M, such that T(M) = L.. Let s be the number
of states of M. The string x = d.d, - -d,,, d; = aiai»* * *ai, 0™ (@ = a, 1< i, j<n)
and n; > s, is a member of L,. Consequently, M has a computation on x that resclts
in an accepting configuration. For each sumbol a; (a; = a) let g; be the state M is
in when its read head moves onto a; in this accepting computation on x. Since
n; > s, it must be the case that for each d, M is in the same state at least twice on
the d.’s. i.e., for every i there exist j, 0 <j <[< n, such that ¢; = q.. For each d,
let g; be one such state being repeated and let a;, and aq, be two a’s in d; where the
entering state is §; (0 <ji < & < n,). There are n, > s segments of d’s. So, for some
m and [, 0<n <l <n,,q,. = q. Since the moves of M are independent of the
value of its register, and - ultiplication is commutative, M will have an accepting
computation on the string y obtained from x by moving (k.. — j.) a’s from d,, to
the segment of a’s in d. But, y¢ L,. Hence, L, & Y(INFAMW). O

FINITE AUTOMATA WITH MULTIPLICATION =85

Theorem 3.1. Z(1DFAMW) is closed under intersection but not closed under the
following operations :

(a) union,

(b) concatenation,

(c) Kleene closure,

(d) e-free homomorphism,

(e) left quotient with a regular set,

(f) complementation,

(g) reversal.

Proof. For (a)-(e), the proofs of the corresponding results for L{1IDFAM)
(Theorem 2.3) also apply here. Nonclosure under complementation follows from
(a), closure unde intersection (shown below) and De Morgan’s law. That
Z(1IDFANW) is not closed under reversal follows from the fact that L,=
{b"a" |n=1}{cb**a™ | n = 1}is in Z(1DFAMW) while its -eversal is not (Lemma
3.1 (a)). The proof for closure under intersection is by construction. If L, and
L. € Z(1IDFAMW) then there exist IDFAMW'’s M, and M, such that T(M,)= L,
and T(M;)= L,. We construct a IDFAMW M; such that T(M,;)= L, N L,. The
details of the proof are omitted and may be found in [10]. First, IDFAMW’s M|
and M are obtained such that the primes in the prime decompositions of the
factors of M| and M; are disjoint and T(M) = T(M,), T{M;)= T(M,). Next, an
M, is constructed from M; and M;. It is essentially M; and M; operating in
parallel. Whenever M| and M; multiply their register by r, and r,, M; muliiplies its
register by 1,r.. Since the primes in the multipliers of M; and M; are disjoint, the
register value ;or M, is 1 iff the registers of both M| and M; have value 1. [J

Theorem 3.2. The ciass of languages recognized by INFAMW s is closed under the
operations of union, reversal, homomorphism, lefi-quotient with a regular set,
intersection, and concatenation. The class is not closed under Kleene closure and
complementaticn.

Proof. Closure under union, reversal, homomorphism and ieft-quotient with a
regular set are easily verified. The proof for intersection is similar to the one
outlined in Theorem 3.1. The proof for concatenation is also obvious if we note that
when we are dealing with two INFAMW’s M, and M,, we may assume that the
primes occurring in the prime decompositisns of the multipliers of M, and M, are
distinct (see the proof of Theorem 3.1). The language L.={a"bh"|n =0}
& P(INFAMW), Nonclosure under Kleene closure and .cmplementatiocn now
follow from the fact tist {a"h"{n =0} and the complement of L, are in
Z(INFAMW).

286 O. Ii. IBARRA ET AL.
3.2. Relationship to bounded semilinear languages

We now look at the class of bounded languages accepted by INFAMW’s. We show
that this class coincides with the class of semilinear bounded languages [6].

A set L C 3* is bounded if there exist nonnull strings w,, - -+, w, in Z* such that
LCwi---wt"

Let N be the set of natural numbers and N" the set of n-tuples of natural
numbers. A subset Q of N" is called a linear set if there exist vo. v, -, U, in N*
such that Q = {vo+ kv, + - * * + KUn | ki in N}. 0o, - + -0, are the generators of Q; vo
is called the constant and v, - -, v. the periods. Any finite union of linear sets is
called 2 semilinear sei. If L Cwi%:--w}, define the mapping f,...w, Of L as
follows:

fon mm(L)={(i1, " * =y in) | Wit-»-wh in L}.

Thus, [, .owm(L) C N If fiu,..w.(L) is a semilinear set, then L is called a bounded
semilinear language. In {6] it is shown that semilinear sets with certain properties
characterize exactly the bounded context-free languages.

In [9,15,16] it is shown that bounded semilinear languages are exactly those
bounded languages accepted by one-way nondeterministic multihead finite au-
tomata. We now show a similar result for INFAMW?’s,

Theorem 3.3. LetL C wi---w} be a bounded semilinear language. Then L can be
accepted by a INFAMW in linear time.

Proof. Since L is a bounded semilinear language, f,.....w.,(L) is a semilinear set,
Q. Now the class of languages accepted by INFAMW?’s operating in linear time is
clearly closed under union. Hence it is sufficient to show that L is accepted by a
INFAMW in linear time for Q, a linear set. Let Q be generated by vo, v, * *, U,
where vo=(b,,"*-,b.) and v; = (viy,*+,) for 1 <i <m. We may assume that
vy, *, Un are distinct from (0, - -,0). Then

L= {W?‘{W;’")k;' . .(w:’ml)km wgz(wgnz)"x. . -(w;mz)km . ‘W:“(W:"‘)k" .o (W:""‘ Kk, |

ki=0 for 1<i=<n}
Let ¢, a; (1<i=<n,1<j=<m)be distinct symbols and

e 4 k . -
R ={ciaft a1z --atnc.astaz - -afm c.ak ats - -akn|k =0,1<i<m}.

Foreach2<i=<n,1<j=<m,let p; be a distinct prime zumber. R is accepted by a
IDFAMW (in real-time) operating as follows: When M reads each a;;, it multiplies
- by pz;- - -puj, when M reads ay, i > 1, it multiplies by 1/p,. if the number of a;’s is
the same as the number of ay;’s, the p;’s will cancel out bv the time M sees the $.
Now define a homomorphism h by: For 1sis<n, 1<j=<m, let h(c)=w" and

" For sirings wy,- -+, w, in 3* we write w* - -w* to denote the set {wo---wili,- i, =0}

n =

FINITE AUTOMATA WITH MULTIPLICATION 287

h(a;)= wis. Then, h(R)= L. Since ", -, u are non-zerc n-tuples, there exists
k =1 such that k | i{x)|=|x | for all x# c,c.r ¢, in R. Using this condition, we
can easily construct a INFAMW M’ accepting h(7T{M)) and which operates in
lissear time. (O

Before we can prove the converse of Theorem 3.3 we need a lemma connecting
1WFAMW with a special class of one-way multihead finite automata.

One-way multihead fizite automata have been studied in several places in the
literature (see, e.g., {7,14, 15]). Here we are interested in a special class which is
related to INFAMW and 1DFAMW.

A one-way nondeterministic k-head finite automaton (%-NFA) is a device
M =(k, K, 3, 6, qo,¢,$, F), where k is the number of input heads, k, 3, and F are
finite sets of states, input symbols, and accepting states, q, in K is the initial state, ¢
and $ are the left » 2 right endmarkers for the inputs, and § is a mapping from.
K XxX(ZU{,$H into the set of all subsets of K x{0,1}*. The significance of
(p,di, -+, di)in 8(q, a1, - -, ac) is that if M is in state g with head i reading a; on
the input (1 <i < k), M may change state to p and move head h; to the right if
d; = 1 and does not move it if d; = 0. A string x in 3 * is accepted if M when started
in state go with all input heads on the left endmarker of ¢x$ eventually enters an
accepting state with all heads on the right endmarker. We denote by T(M) the set
of all strings accepteci by M. A multihead NFA is a k-NFA for some k.

We shall only be concerned with a special class of one-way k-head finite
automata: A simple k-NFA is a k-NFA M =(k, K, 3, 8,90, ¢,%, F) with the
restriction that for each 2<i<k, q in K, a,,***, @i-1, Qisy,* =, 4 in 3 U{¢,$},

6(g. a1, Qi-1,8, G, A) = 8(q, a1, 7, ity by Qiv,* * 05 Q)

for all a;, b, in 3. Thus, a simple k-NFA is a k-NFA in which all heads except the
first head cannot distinguish symbols in 5. We refer to the first head as the input
head and the other heads as counting heads. A simple multihead NFA is a simple
k-NFA for some k.

A k-NFA (simple k-NFA) M =(k,K, 3,8,q0,¢8$,F) is deterministic if
|8(q, @, - ac)| <1 forall q in K, a,---, ax in 3 U{¢,$}. We write k-DFA and
simple k-DFA for the deterministic cases.

The following lemma connects INFAMW (IDFAMW) to simple multihead
NFA(DFA).

Lemma 3.2. Let L = T(M) for some INFAMW (1DFAMW) M =(K,2,T,8,
gc,¢. 8, F). Let ¢ be some positive integer and let L(cn)={x | x in L, M accepts x in
< ¢ |¢x$| steps}. Then L(cn) is accepted by a simple multihead NFA (DFA), M'.

Proof. Let P ={p;,---,p} be the set of &ll primes appearing in the prime
decompositions of the numerators and denominators of multipliers in I' and

288 O. H. IBARRA ET AL.

e = max{le]| | p5 - -p%isin I'}. For each p, we associate two counting heads N; and
D. N, and D; will keep track of “counts” initially set to zero. During the simulation
thic counts of N; and D; are updated as follows: Each time M multiplies the register
by m, the count of N; or D; is increased by m, depending on whether the m,
occurrences of the prime p; is in the numerator or denominator of m. Actually, N;
(cr D,) is only moved one square right for every increase of ce units in the count.
Thus, M has 2k counting heads associated with the primes in P and an input head
to simulate the input head of M. If during the simulation, M enters an accepting
state with the input head on $, M' moves all its counting heads to the right
endmarker and checks that heads N; and D; arrive at the right endmarker at the
same time (for 1 <i < k). (This corresponds to the register having value 1). If such
is the case, M’ accepts the input. It is clear that T(M')=L(cn). O

The next result is taken from [9, 15, 16].

Lemma 3.3. Let L Cw*---w* be recognizable by some multihead NFA, M. Then
fowr-wo (L) is a semilinear set effectively computable from M.

Theorem 3.4. LetL Cwi---wh and L = T(M) for some 1INFAMW, M. Then L is
a bounded semilinear language. Moreover, the corresponding semilinear set Q is
effectively computabile from M.

Proof. Let d be a new symbol and let L ={xd* |k =1,x in L}. We construct a
INFAMW M' accepting L' which operates as follows: Given ¢xd*$, M’ simulates
M on x treating the first d like $. When M accepts x, M' moves its input head to $
and enters an accepting state. It is obvious that for each input x, there exists an
integer i, such that M’ accepts xd* in <2|¢xd$| steps. By Lemma 3.2, L'(2n) is
accepted by scme simple multihead NFA. It follows from Lemma 3.3, that
fone-waa{(L'(2n)) is a semilinear set, say Q. By deleting the (n + 1)st coordinates
from the generators of the linear sets making up Q, we obtain the generators of the
semilinear set f.,.....,(L). O

Corollary 3.1. All INFAMW recognizable languages over a one letter alphabet, i.e.,
|3 =1, are regular.

Proof. This follows from the above theorem and the fact that all bounded
semilinear languages over one letter alphabets are regular. [

4. Inclusion relztions and decidability results

It is interesting to note the relationships among the different classes of FAM’s. The
next theorem lists some of these relationships.

FINITE AUTOMATA WiTH MULTIPLICATION 289

Theorem 4.1. The following relationships hold among the classes of languages
accepted by the various FAM’s.

(a) L(IDFAM)S £(INFAM),

() £(1IDFAM)S £(2DFAM),

ic) L(1IDFAMW)S Z(INFAMW),
‘d) $(IDFAMW)S £(2DFAMW),
(&) Z(INFAMW)S £(2NFAMW),
(f) L(IDFAMW)S £(1DFAM),
() LANFAMW)S £(INFAM).

Proof. (a) and (c) follow from the fact that L ={a"b"|n=0}U{a"b>*|n=0
€ Z(INFAMW) and L & Y(1DFAM) (see Lemrna 2.2). (b) follows from Lemma
2.3 and the observaion that L ={b"(a"b")" |k =1} € L(2DFAM).

For (d) consider the language L,={a"b" |n =0}U{a"b*"c |n =0} of Lemraa
3.1. L, € (1DFAMW) but clearly L, € (2DFAMW) (a 2DFAMW accepting L,
works by first determining the preseace or absence of the *““c’’, returning to the left
endmarker “¢” and then proceeding to recognize a"b™ or a"b?>" depending on
whether or not there was a “c’ on the right end).

(e) Consider the language L ={a"b*"|n=2,k=1}. Clearly, } €
F(2NFAMW). (The 2NFAMW nondeterministically makes k passes over the a
segment, multiplying its register by 2 each time an a is encountered. It then scans
the b’s multiplying its register by 3.) Suppose L € Z{INFAMW). Then by Theorem
3.2, h(L) is also accepted by a INFAMW, where h is the homomorphism
h(a)= h(b) = a. Then by Corollary 3.1, h(L) is regular. But h(L)={a*" |k =2,
n =2} is the set o: all strings a' for which [is not prime, which is not regular. We
conclude that L& £(INFAMW).

(f) L, of Lemma 3.1 is not IDFAMW recognizable but L, € Z(1DFAM).

(g) L. of Lemma 3.1is not INFAMW recognizable but L, € £(1DFAM). [J

Observation 4.1. There exist languages L, anc L, such that L, € L(IDFAM) but
L, & $(INFAMW, and L,€ $(INFAMW) bu: L. & S2(1DFAM).

Proof. L,={a"h"|n=0}*,L,={a"b"|n=0}J{a"b*" |n=0}. O

We now investigate some decidability questions concerning FAM’s. We shall
reduce their decision probiems to the solvability of the emptiness and containment
problems for simple multihead NFA’s and simple muitihead DFA’s, respectively.
In [7], it is shown that every set accepted by a multihead NFA over a one-lette:
input alphabet is regular. A close look at the proof shows that, in fact, a finite
automaton accepting the set can be effective’y constructed. Thus, we may state the
following lemma.

290 O H. IBARRA ET AL.

Lemma 4.1. Let M be a multihead NFA over a one-letter input alphabet. Then we
can effectively find a finite automaton M' accepting the set T(M).

Next, we observe that the class of languages recognized by simple multihead
DFA'’s is closed under the operations of intersection, union, and complementation.

Lemma 4.2. If M, and M, are simple multihead DFA’s with input alphabet 3, then
we can effectively find simple multihead DFA’s M;, M, and Ms such that

(@ T(Ms)= T(M)NT(M,),

(b} T(M,)=T(M,)U T(M.),

(c) T(Ms)=3*— T(M,).

Thus the class of languages recognized by simple multihead DFA’s is a Boolean |
algebra.

Proof. The construction of M;, M, and M; uses standard techniques and is
therefore omitted. Formal construction can be found in [10]. [

We can now established the solvability of the emptiness and containment
problems for simple multitead NFA’s and simple multihead DFA’s, respectively.

Theorem 4.2. The following problems are solvable (i.e., decision algorithms exist):

{a) Emptiness problem: Given an arbitrary simple multihead NFA M, determine
whether or not T(M) =,

(b) Containment problem : Given two arbitrary simple multihead DFA’s M, and
M., determine whether or not T(M,)C T(M.).

(c) Equivalence problem: Given two arbitrary simple multihead DFA’s M, and
M,, determine whether or not T(M,) = TiM,).

Proof. (a} Given M =(k, X, 3, §, qo, ¢, $, F), construct a simple multihead NFA M’
accepting the set h (M), where h is a homomorphism defined by h(a) = # for each
a in X, # is a new symbol not in 3. The construction of M’ is obvious. Then
T{M)=49 if and only if T(M')=0. By Lemma 4.1, we can construct a finite
automaton M" accepting T(M’). The result now follows from the solvability of the
eraptiness problem for finite automata [13].

(b) Given simple multihead DFA’s M, and M., we construct (using Lemma 4.2)
a simple multihead DFA M, such that T(M,) = 3* — T(M,). Then T(M,)C T(M,)
if and only if T(M,)N T(M;)=¢. By Lemma 4.2, we can construct a simple
multihead DFA M, accepiing T(M;) N T(M,). Then T(M,)C T(M,) if and only if
T{M,) =0 which is solvable by (z).

(c) This follows from (b). O

We now mention a few solvable problems concerning FAM’s.

FINITE AUTOMATA WITH MULTIPLICATION 291
Theorem 4.3. The emptiness problem for INFAMW is solvable.

Proof. Given a INFAMW M =(K, 3, T, 8, q»,¢,$, F), define the set Ly = {xd* | x
in T(M), k =1} (d is a new symbol not in X). Clearly we can construct a INFAMW
M, recognizing Ly (see the proof of Theorem 3.4). By Lernma 3.2 we can construct
a simple multihead NFA M, recognizing Ly(2n) = {x |x in Ly, M, accepts x in
<2|¢x$| steps}. Now T(M.) = @if and only if T(M,) = P which is true if and only if
T(M) = 0. The result follows from Theorem 4.2. [J

Lemma 2.1 and Corollary 2.1 show that IDFAM and 2DFAM operate in time
O(n) and O(n>), respectively. it is obvious that these results apply to IDFAMW
and 2DFAMW also. Hence the membership problem (i.e., deciding whether or not
an arbitrary inpnt to an arbitrary machine is accepted) is solvable. At present, we
do not have an algorithm for the membership problem for 1INFAM’s and
2NFAM'’s. The following result shows the problem to be solvable for 2NFAMW?’s,

Corollary 4.1. There is an algorithm to decide given a 2NFAMW M =
(K, %, T, 8,q0,¢,8,F) and x in 3* whether or not x is in T(M).

Proof. Given M 1nd x, we construct a INFAMW M, which when given an input
¢y$, disregards ti.e iuput and simulates in its finite control the computation of M on
¢x$. M, accepts y if and only if M accepts x. It follows that x is in T(M) if and only
if T(M,)# @ which is solvable by Theorem 4.2. [

From Lemma 2.1 and Lemma 3.2, we know that we can effectively construct a
simple multihead DFA accepting the language accepted by 2 given IDFAMW. The
next result then follows Theorem 4.1.

Theorem 4.4. The emptiness, containment, and equivalence problems for
I1DFAMW?’s are solvable.

We now prove a result showing the unsolvability of the universe problem (i.e.,
deciding whether or not T(M) = 3*) for INFAMW?s, a contrasting result from that
of Theorem 4.4.

Theorem 4.5. It is unsolvable to decide given an arbitrary INFAMW (with input
alphabet 3) whether or not ii iccepts I *.

Proof. Given a single-tape Turing machine (see [8]) M, define a string xm
represanting a valid computation of M on an initially blank tape (if it exists) as a
sequence xy = ao # a, # - -+ # au, where a, is the initiai configuration of M, a;.. is
the configuration resulting from a; after one move of M, and . is a halting

292 -~ ©. H. IBARRA ET AL.

. I fe 1 i .
;o [AUKULED —{xm} i xm exists,
- (A UK U{#}H* otherwise.
Then Ly, = 3* (where 3 = A UK U{#)}) if and only if x,» does not halt on an
initially blank tape. Now can casily construct a INFAMW to accept Ly. (The
construction is left as an exercise to the reader.) The theorem now follows from the
unsolvability of the haltine problem for Turing machines on blank tape 181 (Nate
e 4 AV ARS AR llulwllls ilu\lvlvlll aANFA & “‘lllb' AREBUAWASEAAWIN WA WALLARAR ‘-“rv lav]o ‘-I NN -
that hy an annranriate cadine S can he reduced to 2 2-letter alnhabhet) 1]
(221410 B4 ail GUPIUPIIALY VUGLLES) 4 VORI UV 1VUBYEU LU & LTavicvl aiplaavve.) e

concerning vector addition systems and integer programming problems.
» A vector addition system [11] is a pair S = (vy, V), where »; is an n-dimensional
vector of nonnegative integers, and V is a finite set of n-dimensional inte
vectors. The reachability set R(S) is th 1e form g+ v, + -
+ 1. cuch tha
v ivjp Dwwiz viidas
1Y 2 1c in V £far < i) and
“‘-, v" A A4k v AVE at l — '\’ VRAAE
% v Ly Loeodn >0 Ffar1<i<l
] VT VUi VU U AU AT S e
Te :g nnt bnawn whoathar Ar nat thara ic an aloarithm ta Aanida sivan an
AL kI LU RIVUYVYYiIL YYAREN-LEEW L vl jeiviy Alwiv 10 aail alsul 401111k LU UWWIMW 5] Y&l Qi
w_Aimnancianal vantane additiam curatsoan C anmd o want~e s srhhntlhhan 2 ta e thha
1-GiMensionar veCior aqadqirion Si¢ili O andg a VeCior o neuicr v is in uic
wandintilliter ane BIQ)Y fora {111 LTawrncran (4 oo samtemdad ces 2ca T111 shhne sha
CiIRAULIIL hlv] 8 1\\0} \Bbc l\lll}. I1IUWEVel, It wad PQ.‘I IICU VUl Ll llll, ildL WIe
amsidiralaman membhlars £ ook akilde cnde fo tsmemluakla
cqurvalc J ¥~ Pl UICil 101 & ‘Q%llaulllly STLd D IDUIVADIC.
Qrimmmom tirm ealoe st Aol e o P oab o b Lt e M AV aad i S A
SUPPOSC WC [CldA LIC UCLITILIVIL OI LIC [CaClavlilly 5Cl DYy ut’,lc[mg I qUIIC“lCﬂ[<)
| T F o s | VS LI _ _ a4 _ .y _ 1 1 7 o 2V & « 5 ULa o PN | al. . a1
dUOVe. Ldll tls ICW SCL relaxea reacnaouity set, 2 (o). 1n€n we can snow tnat inc
s__ 1 _1_ 1

Theorem 4.6. The equivalence problem: for relaxed reachability sets is decidabie.
Proof. Let S = (vo, V) be an n-dimensional vector addition system, V = vy, * *, Up.
Let vo=1(eo1, ", €0m) and v =(ey,***,€n), 1<is<m. For O0sism, let =
pi*---pd~, where py,---,p, are the first n primes. Let a,,--+, a, be distinct
symbols, and define the language

C. 1. o £ 4
C;l i

Le={cialv-camle, in [+
=4 [S e | R Cadl I B L § iv19 % ¥n*n

-1} i) T™(SH
) 1 V4 Rl e J B

Ls can be accepted by a INFAMW M operating as follows: Foreach g; (1 <j <n),
M multiplies the register by p; if ¢; is —and by 1/p; if ¢; is +. When M reaches §$, it
nondete:ministically multiples the register by the product ft}- - -tk for some
k,20,:--, k. =0, and accepts if the register becomes 1. Clearly, T(M)= Ls. Now
T(MYC +*—4%a%---+%—%a?} is bounded. By Theorem 3.4, the set

=407 1. 5. e 5 1 M ah ol iy, e b il 3V AN
tJIs 81y o1y sdms fny T J| Y i1 T dp il 1 Qve jy

LS iy

FINITE AUTOMATA WITH MULTIPLICATION 293

is a semilinear set effectively computable from M. Now if we are given two vector
addition systems S, and S,, we can construct their associated semilinear scts, Qs,
and Qs, Then T(S:)= T(S.) if and only if Qs, = Qs, which is decidable [6]

As another application of the notion oi INFAMW, consider the system of
equations of the form FX = G, where F is an n X m matrix of intsgers, X is a
vector of m variables, and G is a vector of n integers. We shall show that the set of
all nonnegative integer solutions X to the system of equations forms an effectively
computable semilinear set. This result has been shown earlier in [19]. [J

Theorem 4.7. The set of nonnegative integer solutions to the system of equations,
FX = G forms an effectively computable semilinear set.

Proof. Let F be an n X m matrix. Let a,, - - -, a» be distinct symbols. Define the
languasc

L ={a® a% -ak|(i1, ", im) is a nonnegative integer solution
to equations, FX = G}.

One can easily construct a INFAMW M to accept L. By Theorem 3.4, the set
Q ={(ir,***sim)|ai--alx in L} is a semilinear set effectively computable from
M. O "

As a corollary, we obtain the following resuit which was recently shown in [1].

Corollary 4.2. It is decidable whether or not the system of equations FX = G has a
nonegative iriteger solution.

5. Conclusion

In conclusion, we summarize our results and state a few unresolved problems
concerning FAM’s.

(1) The closure properties of the families of languages recognized by INFAM’s,
1IDFAM’s, INFAMW’s and IDFAMW’s are summarized in Table 1.

(2) The class of languages accepted by 2-way machines properly contains the
class of languages accepted by corresponcing 1-way machines. Also for 1-way
machines, nondeterministic machines are more powerful than deterministic ones.

(3) Some of the interesting questions that remain uuanswered are:

(i) Is the class of languages accepted by INFAM closed by INFAM closed under
intersection and complement? We conjecturc that it is not. Our counterexample is
L={b"(a"b")*|n =1,k =1} but we have 10 proof.

(ii) Is every bounded language accepted Ly INFAM (or IDFAM) semi-linear?

294 0. H. IBARRA ET AL.

TABLE 1.
\\ FAM’s
operations \\ INFAM 1IDFAM INFAMW 1DFAMW
uaion yes no yes no
intersection ? no yes yes
complement ? no no no
concatenation yes no yes no
reversal yes 7 yes no
Kleene closure yes no no no
{¢-frez) homomorphism yes no yes no
left quotient with regular set yes no yes ne

Referernces

{1] B. E:aker, On finding non-negative integer solutions to sets of linear equations, Harvard University,
Report (1974).
[2] S. Ginsburg and S. Greibach, Deterministic context-free languages, Information and Control 9
(1966) 620-648.
[3] S. Ginsburg and S. Greibach, Abstract families of languages, in: Studies In Abstract Families of
Languages, AMS Memoir 87 (Am. Math. Soc., Providence, R. L., 1969) 1-32.
[4] S. Ginsburg, S. Greibach and M.A. Harrison, One-way stack automata, J. ACM 14 (1967) 389-418.
[5] S. Ginsburg and M. Harrison, On the closure of AFL under reversal, information and Control 17
(1970) 395-40¢.
[6] S. Ginsburg and E.H. Spanier, Bounded ALGOL-iike languages, Trans. Am. Math. Soc. 113 (1964)
333-368.
[7] M.A. Harrison and O.H. Ibarra, Multi-tape and multi-head pushdown automata, Information and
Control 13 (1968} 433-470.
[8] J.E. Hopcroft and J.D. Ullman, Formal Languages and their Relaticn to Automata
(Addison-Wesley, Reading, Mass., 1969).
[9] O.H. Ibarra, A note on semilinear sets and bounded-reversa! multihead pushdown automata,
Information Processing Lett. 3 (1974) 25-28.
{19] O. H. Ibarra, S. Sahni and C. E. Kim, Finite automata with multiplication, University of Minnesota,
Technical Report 74-7 (May 1974).
{11] R.M. Karp and R.E. Miller, Parallel program schemata, J. Comput. System Sci. 3 (1969) 147-195.
{12} M.L. Minsky, Recursive unsolvability of Post’s problem of ““Tag” and other topics in the theory of
Turing machines, Annals of Math. 74 (1961) 437-455. See also Computation: Finite and Infinite
Machines (Prentice-Hall, Englewood Cliffs, N. J., 19:7).
{13] M.O. Rabin and D. Scott, Finite automata and their Jecision problems, IBM J. Res. Develop. 3
(1959) 114-125.
[14] A.L. Rosenberg, Nonwriting extensions of finite automata, Ph.D. Thesis, Harvard University
(1965).
{15} LH. Sudborough, Bounded-reversal multi-head finite a:utomata languages, Information and Control
25 {(1974) 317-328.
{16] LH. Sudborough, Personal Communication.
{17} S. Tamura and K. Tanaka, Note on analogue memory automata, Information Sci. 7 (1974) 74-80.
{18] A.M. Turing, On computable numbers with an application to the Entscheidungs problem, Proc.
London Math. Soc. 42 (1936) 230--265.

[19] J. Van Leeuwen, A partizi solution to the reachability problem for vector addition systems,
Stochastics (1974) 303-309.

