3,961 research outputs found

    Nondeterministic one-tape off-line Turing machines and their time complexity

    Full text link
    In this paper we consider the time and the crossing sequence complexities of one-tape off-line Turing machines. We show that the running time of each nondeterministic machine accepting a nonregular language must grow at least as n\log n, in the case all accepting computations are considered (accept measure). We also prove that the maximal length of the crossing sequences used in accepting computations must grow at least as \log n. On the other hand, it is known that if the time is measured considering, for each accepted string, only the faster accepting computation (weak measure), then there exist nonregular languages accepted in linear time. We prove that under this measure, each accepting computation should exhibit a crossing sequence of length at least \log\log n. We also present efficient implementations of algorithms accepting some unary nonregular languages.Comment: 18 pages. The paper will appear on the Journal of Automata, Languages and Combinatoric

    Time and Space Bounds for Reversible Simulation

    Get PDF
    We prove a general upper bound on the tradeoff between time and space that suffices for the reversible simulation of irreversible computation. Previously, only simulations using exponential time or quadratic space were known. The tradeoff shows for the first time that we can simultaneously achieve subexponential time and subquadratic space. The boundary values are the exponential time with hardly any extra space required by the Lange-McKenzie-Tapp method and the (log3\log 3)th power time with square space required by the Bennett method. We also give the first general lower bound on the extra storage space required by general reversible simulation. This lower bound is optimal in that it is achieved by some reversible simulations.Comment: 11 pages LaTeX, Proc ICALP 2001, Lecture Notes in Computer Science, Vol xxx Springer-Verlag, Berlin, 200

    Reversible Simulation of Irreversible Computation by Pebble Games

    Get PDF
    Reversible simulation of irreversible algorithms is analyzed in the stylized form of a `reversible' pebble game. While such simulations incur little overhead in additional computation time, they use a large amount of additional memory space during the computation. The reacheable reversible simulation instantaneous descriptions (pebble configurations) are characterized completely. As a corollary we obtain the reversible simulation by Bennett and that among all simulations that can be modelled by the pebble game, Bennett's simulation is optimal in that it uses the least auxiliary space for the greatest number of simulated steps. One can reduce the auxiliary storage overhead incurred by the reversible simulation at the cost of allowing limited erasing leading to an irreversibility-space tradeoff. We show that in this resource-bounded setting the limited erasing needs to be performed at precise instants during the simulation. We show that the reversible simulation can be modified so that it is applicable also when the simulated computation time is unknown.Comment: 11 pages, Latex, Submitted to Physica

    One-Tape Turing Machine Variants and Language Recognition

    Full text link
    We present two restricted versions of one-tape Turing machines. Both characterize the class of context-free languages. In the first version, proposed by Hibbard in 1967 and called limited automata, each tape cell can be rewritten only in the first dd visits, for a fixed constant d2d\geq 2. Furthermore, for d=2d=2 deterministic limited automata are equivalent to deterministic pushdown automata, namely they characterize deterministic context-free languages. Further restricting the possible operations, we consider strongly limited automata. These models still characterize context-free languages. However, the deterministic version is less powerful than the deterministic version of limited automata. In fact, there exist deterministic context-free languages that are not accepted by any deterministic strongly limited automaton.Comment: 20 pages. This article will appear in the Complexity Theory Column of the September 2015 issue of SIGACT New

    Verifying Time Complexity of Deterministic Turing Machines

    Full text link
    We show that, for all reasonable functions T(n)=o(nlogn)T(n)=o(n\log n), we can algorithmically verify whether a given one-tape Turing machine runs in time at most T(n)T(n). This is a tight bound on the order of growth for the function TT because we prove that, for T(n)(n+1)T(n)\geq(n+1) and T(n)=Ω(nlogn)T(n)=\Omega(n\log n), there exists no algorithm that would verify whether a given one-tape Turing machine runs in time at most T(n)T(n). We give results also for the case of multi-tape Turing machines. We show that we can verify whether a given multi-tape Turing machine runs in time at most T(n)T(n) iff T(n0)<(n0+1)T(n_0)< (n_0+1) for some n0Nn_0\in\mathbb{N}. We prove a very general undecidability result stating that, for any class of functions F\mathcal{F} that contains arbitrary large constants, we cannot verify whether a given Turing machine runs in time T(n)T(n) for some TFT\in\mathcal{F}. In particular, we cannot verify whether a Turing machine runs in constant, polynomial or exponential time.Comment: 18 pages, 1 figur

    Are there new models of computation? Reply to Wegner and Eberbach

    Get PDF
    Wegner and Eberbach[Weg04b] have argued that there are fundamental limitations to Turing Machines as a foundation of computability and that these can be overcome by so-called superTuring models such as interaction machines, the [pi]calculus and the $-calculus. In this paper we contest Weger and Eberbach claims
    corecore