137 research outputs found

    Coastal altimetry for the computation of a Mean Dynamic Topography in the Mediterranean sea

    Get PDF
    Satellite Sea Level Anomaly (SLA) observations are crucial in an operational oceanographic system due to their high coverage on sea surface currents and elevation and their strong constraint on water column integrated steric contributions. The use of Sea Surface Height (SSH) measurements by altimeter satellites in the Mediterranean Forecasting System (MFS) requires an accurate Mean Dynamic Topography (MDT) field with a high horizontal resolution which must be added to SLA observations. Here a new MDT computed through a direct method is proposed to solve the main limitations to the current MDT, evaluated from a model-dependent first guess. The direct method consists in the difference between an altimetric Mean Sea Surface Height (MSSH) and a geoid model. Moreover, a novel altimetric dataset reprocessed near the coast is adopted in order to improve the representation of coastal dynamics. Altimetric data from a single satellite, Jason-2, are used to generate a SSH dataset. This is used along with the EGM2008 geoid model to compute along track MDT observations. Optimal Interpolation algorithms are used to regrid along track MDT on MFS model grid. Derived geostrophic velocities are then computed. The validation of the altimetric dataset against the operational dataset showed improved performances in terms of time series completeness and standard mean error. From the analysis of the MDT and the retrieved geostrophic velocities we can conclude that the direct method allowed us to reconstruct basin scale and large scale MDT features but not meso/small scale and coastal dynamics. Main limitations in our results are due to the low accuracy of geoid model and the Jason-2 tracks spacing

    Parameter estimation for peaky altimetric waveforms

    Get PDF
    Much attention has been recently devoted to the analysis of coastal altimetric waveforms. When approaching the coast, altimetric waveforms are sometimes corrupted by peaks caused by high reflective areas inside the illuminated land surfaces or by the modification of the sea state close to the shoreline. This paper introduces a new parametric model for these peaky altimetric waveforms. This model assumes that the received altimetric waveform is the sum of a Brown echo and an asymmetric Gaussian peak. The asymmetric Gaussian peak is parameterized by a location, an amplitude, a width, and an asymmetry coefficient. A maximum-likelihood estimator is studied to estimate the Brown plus peak model parameters. The Cramér–Rao lower bounds of the model parameters are then derived providing minimum variances for any unbiased estimator, i.e., a reference in terms of estimation error. The performance of the proposed model and the resulting estimation strategy are evaluated via many simulations conducted on synthetic and real data. Results obtained in this paper show that the proposed model can be used to retrack efficiently standard oceanic Brown echoes as well as coastal echoes corrupted by symmetric or asymmetric Gaussian peaks. Thus, the Brown with Gaussian peak model is useful for analyzing altimetric easurements closer to the coast

    Comparison of sea-ice freeboard distributions from aircraft data and cryosat-2

    Get PDF
    The only remote sensing technique capable of obtain- ing sea-ice thickness on basin-scale are satellite altime- ter missions, such as the 2010 launched CryoSat-2. It is equipped with a Ku-Band radar altimeter, which mea- sures the height of the ice surface above the sea level. This method requires highly accurate range measure- ments. During the CryoSat Validation Experiment (Cry- oVEx) 2011 in the Lincoln Sea, Cryosat-2 underpasses were accomplished with two aircraft, which carried an airborne laser-scanner, a radar altimeter and an electro- magnetic induction device for direct sea-ice thickness re- trieval. Both aircraft flew in close formation at the same time of a CryoSat-2 overpass. This is a study about the comparison of the sea-ice freeboard and thickness dis- tribution of airborne validation and CryoSat-2 measure- ments within the multi-year sea-ice region of the Lincoln Sea in spring, with respect to the penetration of the Ku- Band signal into the snow

    On the accuracy of integrated water vapor observations and the potential for mitigating electromagnetic path delay error in InSAR

    Get PDF
    Abstract. A field campaign was carried out in the framework of the Mitigation of Electromagnetic Transmission errors induced by Atmospheric Water Vapour Effects (METAWAVE) project sponsored by the European Space Agency (ESA) to investigate the accuracy of currently available sources of atmospheric columnar integrated water vapor measurements. The METAWAVE campaign took place in Rome, Italy, for the 2-week period from 19 September to 4 October 2008. The collected dataset includes observations from ground-based microwave radiometers and Global Positioning System (GPS) receivers, from meteorological numerical model analysis and predictions, from balloon-borne in-situ radiosoundings, as well as from spaceborne infrared radiometers. These different sources of integrated water vapor (IWV) observations have been analyzed and compared to quantify the accuracy and investigate the potential for mitigating IWV-related electromagnetic path delay errors in Interferometric Synthetic Aperture Radar (InSAR) imaging. The results, which include a triple collocation analysis accounting for errors inherently present in every IWV measurements, are valid not only to InSAR but also to any other application involving water vapor sensing. The present analysis concludes that the requirements for mitigating the effects of turbulent water vapor component into InSAR are significantly higher than the accuracy of the instruments analyzed here. Nonetheless, information on the IWV vertical stratification from satellite observations, numerical models, and GPS receivers may provide valuable aid to suppress the long spatial wavelength (>20 km) component of the atmospheric delay, and thus significantly improve the performances of InSAR phase unwrapping techniques
    corecore