24 research outputs found

    Coverage probability in wireless networks with determinantal scheduling

    Full text link
    We propose a new class of algorithms for randomly scheduling network transmissions. The idea is to use (discrete) determinantal point processes (subsets) to randomly assign medium access to various {\em repulsive} subsets of potential transmitters. This approach can be seen as a natural extension of (spatial) Aloha, which schedules transmissions independently. Under a general path loss model and Rayleigh fading, we show that, similarly to Aloha, they are also subject to elegant analysis of the coverage probabilities and transmission attempts (also known as local delay). This is mainly due to the explicit, determinantal form of the conditional (Palm) distribution and closed-form expressions for the Laplace functional of determinantal processes. Interestingly, the derived performance characteristics of the network are amenable to various optimizations of the scheduling parameters, which are determinantal kernels, allowing the use of techniques developed for statistical learning with determinantal processes. Well-established sampling algorithms for determinantal processes can be used to cope with implementation issues, which is is beyond the scope of this paper, but it creates paths for further research.Comment: 8 pages. 2 figure

    Exploiting Regional Differences: A Spatially Adaptive Random Access

    Full text link
    In this paper, we discuss the potential for improvement of the simple random access scheme by utilizing local information such as the received signal-to-interference-plus-noise-ratio (SINR). We propose a spatially adaptive random access (SARA) scheme in which the transmitters in the network utilize different transmit probabilities depending on the local situation. In our proposed scheme, the transmit probability is adaptively updated by the ratio of the received SINR and the target SINR. We investigate the performance of the spatially adaptive random access scheme. For the comparison, we derive an optimal transmit probability of ALOHA random access scheme in which all transmitters use the same transmit probability. We illustrate the performance of the spatially adaptive random access scheme through simulations. We show that the performance of the proposed scheme surpasses that of the optimal ALOHA random access scheme and is comparable with the CSMA/CA scheme.Comment: 10 pages, 10 figure

    ACCESS AND STABILITY ISSUES IN SPECTRUM COMMONS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    An Upper Bound on Multi-hop Transmission Capacity with Dynamic Routing Selection

    Full text link
    This paper develops upper bounds on the end-to-end transmission capacity of multi-hop wireless networks. Potential source-destination paths are dynamically selected from a pool of randomly located relays, from which a closed-form lower bound on the outage probability is derived in terms of the expected number of potential paths. This is in turn used to provide an upper bound on the number of successful transmissions that can occur per unit area, which is known as the transmission capacity. The upper bound results from assuming independence among the potential paths, and can be viewed as the maximum diversity case. A useful aspect of the upper bound is its simple form for an arbitrary-sized network, which allows insights into how the number of hops and other network parameters affect spatial throughput in the non-asymptotic regime. The outage probability analysis is then extended to account for retransmissions with a maximum number of allowed attempts. In contrast to prevailing wisdom, we show that predetermined routing (such as nearest-neighbor) is suboptimal, since more hops are not useful once the network is interference-limited. Our results also make clear that randomness in the location of relay sets and dynamically varying channel states is helpful in obtaining higher aggregate throughput, and that dynamic route selection should be used to exploit path diversity.Comment: 14 pages, 5 figures, accepted to IEEE Transactions on Information Theory, 201

    Heterogeneous Visible Light and Radio Communication for Improving Safety Message Dissemination at Road Intersection

    Get PDF
    Visible light communication (VLC) has recently emerged as an affordable and scalable technology supporting very high data rates for short range vehicle-to-vehicle (V2V) communication. In this work, we advocate the use of vehicular-VLC (V-VLC) for basic safety messages (BSMs) dissemination in lieu of conventional vehicular radio frequency (V-RF) communication in road intersection applications, where the reception performance is affected by interference from the concurrent transmissions of other vehicles. We make use of stochastic geometry to characterize the interference from the same lane as well as the perpendicular lane for various network configurations, i.e., standalone V-VLC, stand-alone V-RF and hybrid V-VLC/V-RF network. Specifically, by modelling the interfering vehicles’ locations as a spatial Poisson point process (PPP), we are able to capture a static two-dimensional road geometry as well as the impact of interference due to vehicles clustering in the vicinity of road intersection in terms of outage probability and throughput. In addition to above, the performance of spatial ALOHA and carrier sense multiple access with collision avoidance medium access control (CSMA/CA MAC) protocol for standalone V-VLC, standalone V-RF and hybrid V-VLC/V-RF network configuration for relaying BSMs at road intersection is also compared. The performance metrics such as delay outage rate (DOR) and information outage rate (IOR) are utilized to investigate the impact of latency associated with various network configurations. Our numerical results reveal that our proposed hybrid V-VLC/V-RF leads to significant improvement in terms of outage performance, throughput and latency as compared to stand-alone V-VLC or stand-alone V-RF network

    Characterizing the Energy Trade-Offs of End-to-End Vehicular Communications using an Hyperfractal Urban Modelling

    Get PDF
    We characterize trade-offs between the end-to-end communication delay and the energy in urban vehicular communications with infrastructure assistance. Our study exploits the self-similarity of the location of communication entities in cities by modeling them with an innovative model called "hyperfractal". We show that the hyperfractal model can be extended to incorporate road-side infrastructure and provide stochastic geometry tools to allow a rigorous analysis. We compute theoretical bounds for the end-to-end communication hop count considering two different energy-minimizing goals: either total accumulated energy or maximum energy per node. We prove that the hop count for an end-to-end transmission is bounded by O(n1α/(dF1))O(n^{1-\alpha/(d_F-1)}) where α2\alpha2 is the fractal dimension of the mobile nodes process. This proves that for both constraints the energy decreases as we allow choosing routing paths of higher length. The asymptotic limit of the energy becomes significantly small when the number of nodes becomes asymptotically large. A lower bound on the network throughput capacity with constraints on path energy is also given. We show that our model fits real deployments where open data sets are available. The results are confirmed through simulations using different fractal dimensions in a Matlab simulator
    corecore