
ACCESS AND STABILITY ISSUES IN

SPECTRUM COMMONS

JIANGBIN LU

NATIONAL UNIVERSITY OF SINGAPORE

2015





ACCESS AND STABILITY ISSUES IN

SPECTRUM COMMONS

JIANGBIN LU

(B.Eng. (Hons), Zhejiang University, China)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

NUS GRADUATE SCHOOL FOR INTEGRATIVE SCIENCES

AND ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2015





Declaration

I hereby declare that this thesis is my original work and it has been written by me

in its entirety. I have duly acknowledged all the sources of information which have

been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

———————————

Jiangbin Lu

November 18, 2015

i





To my loving parents: Tengfei and Mianhua.

iii



Acknowledgement

I would like to express my sincere gratitude to my supervisor, Prof. Lawrence Wong

Wai-Choong, for his guidance, support, and many opportunities he has provided

to me through the years. I am very grateful for his mentoring and sharing of

experiences, which have opened doors for me, helped me grow both in technical skills

and intuition. I have benefited from his insights and advice during our discussions,

which have motivated many ideas in my research.

I would like to express my heartfelt appreciation to my co-supervisor, Dr. Chew

Yong Huat, for his mentorship and encouragement throughout my PhD candidature.

His breadth of knowledge, his motivational thoughts, and the continuous rigor and

effort he puts into our work, have always inspired me to move forward. His kindness,

patience and enthusiasm are essential to my progress.

I thank Prof. Lee Tong Heng and Prof. Tham Chen Khong for serving on my

thesis advisory committee, and for their interest and invaluable suggestions on my

research. Prof. Lee has also taught me a lively course on adaptive control.

I thank Prof. Chen Jiming, Prof. Dai Liankui, Prof. Wang Hui and Prof.

Ye Wei from Zhejiang University, for their teaching, advice, and kindest help in

my undergraduate studies. I thank my beloved teachers in my hometown Xiamen,

whose patient teaching and selfless caring have helped me grow up.

I would like to express my deepest gratitude to my parents. It is their love,

care, support and encouragement that raised me up from a poor village and offered

me the opportunities to receive better education. I am also grateful to my elder

brother and sister-in-law, who accompany our parents when I am away from home.

I thank the lab officers, Song Xianlin, Guo Jie and Ang Kian Sin for providing

assistance in carrying out my research. I also thank the alumni Lu Yu, Wang Lei,

Chen Penghe, Wang Ke and Yu Jinqiang for helpful discussions and advice.

I thank my host family Ip Pik-Ching and Hui Yew-Foong, and other friends in

Singapore, for the happy times together.

Last but not least, I would like to thank Singapore, and NGS in particular, for

providing me scholarship to pursue my PhD degree.

iv



Contents

Declaration i

Acknowledgement iv

Contents v

Summary xi

List of Tables xiii

List of Figures xv

List of Symbols xvii

List of Abbreviations xix

1 Introduction 1

1.1 Dynamic Spectrum Access . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Cognitive Radios . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Dynamic Spectrum Access Models . . . . . . . . . . . . . . 2

1.1.3 Spectrum Commons . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Multi-Agent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Nash Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Stability Issues . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Aloha-Type Random Access Games . . . . . . . . . . . . . . . . . . 9

1.3.1 Aloha Games . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Channel Selection Games in Multi-Channel Aloha Networks

with Spatial Reuse . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 CSMA-Type Random Access Games . . . . . . . . . . . . . . . . . 12

v



1.4.1 CSMA Games . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.2 Spatial CSMA Networks . . . . . . . . . . . . . . . . . . . . 13

1.4.3 Managing Spatial CSMA Users with Heterogeneous Rate Re-

quirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Device-to-Device Communication . . . . . . . . . . . . . . . . . . . 15

1.6 Discussions on Interference Model . . . . . . . . . . . . . . . . . . . 17

1.7 Motivations and Contributions . . . . . . . . . . . . . . . . . . . . . 19

1.7.1 Generalized Aloha Games . . . . . . . . . . . . . . . . . . . 20

1.7.2 Heuristic Algorithm to Approach Pareto Front . . . . . . . . 21

1.7.3 Clustering-based Control Theoretic Approach . . . . . . . . 21

1.7.4 Joint MAP Tuning and Channel Selection Games in Multi-

Channel Spatial Aloha . . . . . . . . . . . . . . . . . . . . . 22

1.7.5 A Stackelberg Game Model for Spatial CSMA Networks . . 23

1.8 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 24

2 System Models and Problem Statements 25

2.1 Spatial Reuse Model . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Single-Channel Spatial Aloha . . . . . . . . . . . . . . . . . . . . . 26

2.3 Multi-Channel Spatial Aloha . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Spatial CSMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Spatial Reuse and Contention Graph . . . . . . . . . . . . . 30

2.4.2 Ideal CSMA Network Model . . . . . . . . . . . . . . . . . . 30

2.4.3 Stationary Distribution . . . . . . . . . . . . . . . . . . . . . 31

2.4.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 34

3 Aloha Games with Spatial Reuse 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Model for Aloha Games with Spatial Reuse . . . . . . . . . . . . . . 36

3.3 Mathematical Foundation . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Equilibrium of the Generalized Aloha Game . . . . . . . . . . . . . 39

3.4.1 Existence of Solutions . . . . . . . . . . . . . . . . . . . . . 39

3.4.2 Existence of a Least Fixed Point . . . . . . . . . . . . . . . 40

3.4.3 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Stability of the Equilibrium Point . . . . . . . . . . . . . . . . . . . 42

3.5.1 Krasovskii’s Method . . . . . . . . . . . . . . . . . . . . . . 42

3.5.2 Stability Comparison between Multiple Fixed Points . . . . 44

vi



3.5.3 How to Dynamically Converge to the Least Fixed Point . . . 45

3.6 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.1 Three-player Chain-like Topology . . . . . . . . . . . . . . . 46

3.6.2 Spatial Reuse Gain versus Connectivity . . . . . . . . . . . . 52

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 A Heuristic Algorithm to Approach Pareto Front in Spatial Aloha

Networks 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Fully Distributed Algorithm . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 System Diagram . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Myopic Best Response to Channel Idle Rate . . . . . . . . . 60

4.2.3 Pre-Installed Target-Rate Adjusting Rules . . . . . . . . . . 61

4.2.4 Measured Throughput Characteristics . . . . . . . . . . . . 63

4.3 Modelling Practical Packet Collisions . . . . . . . . . . . . . . . . . 63

4.3.1 Estimating Throughput . . . . . . . . . . . . . . . . . . . . 63

4.3.2 Measures Taken to Handle Estimation Error . . . . . . . . . 64

4.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Efficient and Scalable Distributed Autonomous Spatial Aloha Net-

works via Local Leader Election 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Throughput Optimality Conditions . . . . . . . . . . . . . . . . . . 70

5.2.1 Optimal Conditions . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.2 Sub-optimal Conditions . . . . . . . . . . . . . . . . . . . . 71

5.3 The SALE Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.1 Local Leader Election under Equal MAP . . . . . . . . . . . 72

5.3.2 Control System Design . . . . . . . . . . . . . . . . . . . . . 74

5.3.3 Single Local Leader Case . . . . . . . . . . . . . . . . . . . . 76

5.3.4 Multiple Local Leaders Case . . . . . . . . . . . . . . . . . . 82

5.3.5 “Distance” to Pareto Front . . . . . . . . . . . . . . . . . . . 86

5.3.6 Complexity, Scalability and Overhead of SALE . . . . . . . 87

5.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.1 Parameter Tuning: Stability and Convergence Time . . . . . 90

5.4.2 Steady State, Optimality and Fairness . . . . . . . . . . . . 91

5.4.3 Comparison with Heuristic Algorithm . . . . . . . . . . . . . 93

vii



5.4.4 Scalability of SALE . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Multi-Leader Stackelberg Games in Multi-Channel Spatial Aloha

Networks 99

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Multi-Leader Stackelberg Games . . . . . . . . . . . . . . . . . . . . 100

6.2.1 MAP Management by Multiple Stackelberg Leaders . . . . . 100

6.2.2 Spatial Channel Selection Process . . . . . . . . . . . . . . . 102

6.2.3 Iterative Play of the MLSG game . . . . . . . . . . . . . . . 103

6.2.4 Oscillation Resolving Mechanism . . . . . . . . . . . . . . . 103

6.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.1 Illustration of the MLSG Game: 10 Users Case . . . . . . . 105

6.3.2 50 Users Case . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.3 100 Users with Various User Density . . . . . . . . . . . . . 110

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 A Stackelberg Game Model for Overlay D2D Transmission with

Heterogeneous Rate Requirements 113

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Feasible Throughput Region in Spatial CSMA Networks . . . . . . 115

7.2.1 Feasible and Strictly Feasible Throughput Region . . . . . . 115

7.2.2 Transmission Aggressiveness . . . . . . . . . . . . . . . . . . 115

7.2.3 Feasible Throughput Region Under ICN . . . . . . . . . . . 118

7.2.4 D2D Network Model . . . . . . . . . . . . . . . . . . . . . . 120

7.3 Stackelberg Games for Non-Cooperative D2D Links . . . . . . . . . 122

7.3.1 D2D Link Utility Function . . . . . . . . . . . . . . . . . . . 123

7.3.2 A Subgame of Noncooperative CSMA Users . . . . . . . . . 124

7.3.3 Analysis of the Stackelberg Game . . . . . . . . . . . . . . . 127

7.3.4 Pricing Strategies of the Stackelberg Leader . . . . . . . . . 129

7.3.5 Complexity of Algorithm 7.1 . . . . . . . . . . . . . . . . . . 132

7.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.4.1 CSMA Subgame . . . . . . . . . . . . . . . . . . . . . . . . 134

7.4.2 Stackelberg Game . . . . . . . . . . . . . . . . . . . . . . . . 135

7.4.3 Effect of Parameter rmax . . . . . . . . . . . . . . . . . . . . 137

7.4.4 Performance Comparison with Generalized Aloha Game un-

der BS Pricing . . . . . . . . . . . . . . . . . . . . . . . . . 138

viii



7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8 Conclusions and Future Work 143

8.1 Conclusions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 143

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.2.1 Apply PI Controller in Multi-Channel Spatial Aloha . . . . . 144

8.2.2 Exact Characterization of Throughput in Spatial CSMA Net-

works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.2.3 Non-Saturated Throughput . . . . . . . . . . . . . . . . . . 145

8.2.4 Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . 145

8.2.5 Implementation Issues . . . . . . . . . . . . . . . . . . . . . 146

Bibliography 149

List of Publications 161

ix





Summary

This thesis studies the shared access and stability issues in a spectrum commons

among a group of spatially distributed transmit-receive (Tx-Rx) user pairs. These

users with built-in intelligence are able to learn the local spectrum dynamics and

other users’ decisions, and then dynamically adapt their transmission parameters

to exploit the spatial and temporal spectrum opportunities. As a result of their

selfish nature, the built-in intelligence should jointly consider the stability issues

concerning whether the whole network converges to an equilibrium solution during

interactions, which also provides efficiency and fairness for the users. We study

how to manage the spectrum access problem for such autonomous and spatially

distributed Tx-Rx pairs with the objective to achieve efficient spectrum sharing

with fairness and scalability.

Chapter 1 gives some background of the thesis, including dynamic spectrum

access, multi-agent systems, Aloha-type and CSMA-type random access games,

device-to-device communications, etc. The motivations and contributions of the

thesis are also outlined.

In Chapter 2 we introduce the spatial Aloha model in single channel and multi-

channel scenarios, and state the problems to be solved. Then we introduce the ideal

CSMA network (ICN) model which is the basis for our study in Chapter 7.

As an initial attempt to address the shared access and stability issues in a

spectrum commons, we first investigate slotted Aloha type of random access with

spatial reuse in Chapter 3. We propose the generalized Aloha games and obtain

the stability conditions for the unique Nash equilibrium (NE) in terms of medium

access probability (MAP), as a result of the users’ autonomous and selfish strategic

interactions.

Based on the stability conditions, we develop a heuristic algorithm in Chapter

4 to approach the Pareto front in spatial Aloha networks. Each user repeatedly

measures its current throughput and adjusts its target rate based on a set of pre-

installed rules, so that a fair and close-to-Pareto-front operating point can be found.

The algorithm is implemented in a fully ditributed manner, which requires no in-

formation exchange among the users.

The drawback of the heuristic algorithm is the transient fluctuations and long

convergence time. To provide faster and more smooth convergence to a stable

operating point, we apply the control theoretic approach to spatial Aloha networks

xi



in Chapter 5. Based on a sufficient stability condition in Chapter 3, we define a

local parameter R which indicates the cumulative radio intensity level within each

user’s one-hop communication range. The users first self-organize into several non-

overlapping neighborhoods, each of which elects the user with the highest node

degree as the local leader. By ensuring R ≤ 2 at the local leaders, the stability of

network can be guaranteed even when each user has only local information. We

propose each local leader to use R = 2 as the constant reference signal to its built-in

proportional and integral (PI) controller. The PI parameters are adaptively tuned

to provide fast and smooth convergence, regardless of the network size or user

densities. We validate through simulations that the proposed scheme achieves fair

and close-to-Pareto-front throughputs.

After investigating the single-channel scenario, we then extend to multi-channel

spatial Aloha networks in Chapter 6. We propose a multi-leader Stackelberg game

to solve the joint MAP tuning and spatial channel selection problem. Compared to

existing method of pre-allocating MAPs, the proposed game further improves the

overall network throughput by iteratively tuning the MAPs toward max-min fair

throughputs in each sub-network.

Finally, we leverage on the ICN model in the context of overlay D2D communi-

cations in Chapter 7, and investigate how the commons spectrum can be efficiently

and fairly shared among the self-interested spatial CSMA users with heterogeneous

rate requirements. A Stackelberg game is proposed in which the base station acts

as the Stackelberg leader to regulate the individual payoff by modifying the service

price, so that the total D2D throughput can be maximized.

In summary, this thesis provides theoretical guidance for managing the shared

access to a spectrum commons, with insights into how the spatially distributed Tx-

Rx pairs can share the commons spectrum with stability, efficiency, fairness and

scalability. Some future directions are discussed in Chapter 8.
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Chapter 1

Introduction

1.1 Dynamic Spectrum Access

The increasing demand for wireless communication, along with the poor utilization

efficiency in the conventional static spectrum allocation scheme, has triggered the

development of dynamic spectrum access schemes [1]. One of the critical enabling

technologies for a dynamic spectrum access network is cognitive radios (CRs). By

properly designing the built-in intelligence, CRs will discipline themselves and be

able to make dynamic adaptations when accessing the spectrum to improve overall

system performance.

1.1.1 Cognitive Radios

According to Simon Haykin’s definition [3], a CR is an intelligent wireless communi-

cation device which is capable in using the understanding-by-building methodology

to learn from its surrounding radio environment and adapt its internal system states

according to the learned statistical behaviors observed in the incoming radio fre-

quency (RF) stimuli. In other words, by sensing the RF stimuli or monitoring the

transmission outcomes, a newly arrived CR can learn from its surrounding environ-

ment and gather necessary information such as transmission frequency, bandwidth,

interference level, etc. After a CR gathers its needed information from the radio

environment, it can dynamically adapt its transmission parameters to exploit the

spatial and temporal spectrum opportunities, hopefully without significant degra-

dation to the performance of existing users. The design of CRs bears two primary

objectives: 1) highly reliable communications whenever and wherever needed; 2)

efficient utilization of the radio spectrum.

This thesis focuses on the spectrum sharing problems among a group of spatially
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distributed transmit-receive (Tx-Rx) user pairs. We use the concept of CRs in the

broadest sense and refer them as intelligent wireless communication users, which are

able to learn from RF environment and other users’ behaviors before adapting their

transmission parameters to achieve a certain performance objective. If such intelli-

gent users participate in sharing a common spectrum for transmission, they should

be able to make intelligent decisions on spectrum access and choose transmission

parameters based on learned spectrum dynamics and their competitors’ decisions.

As a result of their autonomous behaviors and interactions, stability issues arise

concerning whether the whole network converges to an equilibrium solution which

also provides efficiency and fairness for the users. We therefore study how to man-

age the spectrum access problem for such autonomous and spatially distributed

Tx-Rx pairs with the objective to achieve efficient spectrum sharing with fairness

and scalability.

1.1.2 Dynamic Spectrum Access Models

As opposed to the current static spectrum management policy, the term dynamic

spectrum access has broad connotations that encompass various approaches to spec-

trum reforms that try to improve spectrum utilization [1]. As shown in Fig. 1.1,

dynamic spectrum access strategies can be broadly categorized under three models:

dynamic exclusive use model, hierarchical access model, and open sharing model [1].

Dynamic Spectrum Access

Dynamic Exclusive
Use Model

Open Sharing Model
(Spectrum Commons Model)

Hierarchical Access Model

Spectrum Property Rights Dynamic Spectrum Allocation
Spectrum Underlay
(Ultra Wide Band)

Spectrum Overlay
(Opportunistic Spectrum Access)

Figure 1.1: A Taxonomy of Dynamic Spectrum Access [1]

In the dynamic exclusive use model, spectrum bands are licensed to services for

exclusive use, which maintains the basic structure of the current spectrum manage-

ment policy. What is different is the additional flexibility in dynamically allocating

spectrum to improve spectrum efficiency. Specifically, spectrum property rights [4]

and dynamic spectrum allocation [5] are proposed under this model. Spectrum
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property rights allow the license holders to trade spectrum and freely adopt tech-

nologies to provide services. The spectrum resource utilization is thus regulated by

economy and market and driven toward the most profitable use. In the other ap-

proach known as dynamic spectrum allocation, improvement of spectrum efficiency

is achieved through dynamically assigning the spectrum according to the spatial

and temporal traffic statistics of different services [1].

The hierarchical access model consists of both primary users (licensees) and

secondary users (unlicensed users), with the secondary users having a lower ac-

cess priority. In this model, the licensed spectrum is opened to the secondary

users with restrictions on the interference caused to the primary users. Spectrum

underlay and spectrum overlay are considered for spectrum sharing between pri-

mary users and secondary users [6]. Spectrum underlay restricts the transmission

power of secondary users such that they operate below the noise floor of primary

users [7]. Transmission with extremely low power is possible for the secondary users

by spreading the transmitted signal over a wide frequency band (UWB) [8]. On the

other hand, spectrum overlay, also known as opportunistic spectrum access, does

not restrict the transmission power of the secondary users, but rather restricting

when and where they may transmit [1]. This approach exploits the spatial and

temporal spectrum opportunities by enabling the secondary users to identify and

access the spectrum white space in an opportunistic manner. Therefore, there exists

a trade-off between the services provided to the secondary users and the protection

provided to the primary users from secondary interference.

The open sharing model will be discussed in the next subsection.

1.1.3 Spectrum Commons

The open sharing model, also known as spectrum commons [9–13], treats the spec-

trum as an open resource for peer users to share among themselves. An example

of this model is the unlicensed industrial, scientific and medical (ISM) radio band,

which brings up the success of wireless operating systems such as WiFi, Bluetooth,

RFID, ZigBee, etc [14]. However, open sharing without regulations may lead to

the overuse of the time, frequency and power units, and eventually the users would

suffer from a “tragedy of the commons” [15] due to increasing interference.

Actually, there are distinctions between the ideas of “open access” and “com-

mons”, although they are often used interchangeably. A commons is a resource

that is owned or controlled jointly by a group of individuals [16]. It is characterized
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by the restrictions on who uses the resource, and when and how. The owner or

controller of the commons is the person or group of persons that establishes and

enforces these restrictions. On the other hand, open access is a regime in which

anyone has access to an unowned resource without limitations; no one controls ac-

cess to the resource under open access [16]. Therefore, open access is subject to

over-exploitation and degradation of a finite resource if the users have no incentive

to preserve. Based on the above discussion, the tragedy does not befall commons

generally but rather “unmanaged commons” [17].

To improve the efficiency of the spectrum usage, [13] suggests basic proto-

cols/etiquettes to be set by either government or industry standardization, and the

commons spectrum should only be shared among those wireless users which con-

form to these protocols/etiquettes. The design of such protocols/etiquettes should

follow three general principles: efficiency, fairness, and incentive compatibility [18].

A resource allocation is efficient if it is impossible to improve the performance of a

user without degrading the performance of some other users (also known as Pareto

optimality [19]). Usually many efficient operating points exist, each representing a

different performance trade-off among the users. Fairness is related to the relative

performance among the users, based on different criteria such as max-min fairness,

proportional fairness, etc [20, 21]. Finally, an allocation is incentive compatible or

self-enforcing if no user has incentive to deviate from such an operating point,

which means that no intervention from an external authority is needed [18]. This

is particularly important for new technologies such as CRs, which equip users with

cognitive capability and self-adaptivity to make autonomous decisions about spec-

trum usage based on learned environment characteristics and interactions among

the users. Both centralized [22, 23] and decentralized [18, 24–27] spectrum sharing

approaches have been proposed under the spectrum commons model.

1.2 Multi-Agent Systems

The key component of dynamic spectrum access is how to provide efficient and fair

spectrum allocation or scheduling solutions for the users [28]. For autonomous Tx-

Rx pairs which are participating in sharing a commons spectrum for transmission,

they should be able to make intelligent decisions on spectrum usage and choose

transmission parameters based on learned spectrum dynamics and their competi-

tors’ decisions. We therefore study how to manage the spectrum access problem

for such autonomous and spatially distributed Tx-Rx pairs with the objective to
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achieve efficient spectrum sharing with fairness and scalability.

A network consisting of autonomous and spatially distributed Tx-Rx user pairs

is essentially a multi-agent system [29]. The users are said to be autonomous if they

are capable of making independent decisions about what to do in order to satisfy

their design objectives. In reality, the spatially distributed users only possess local

views, i.e., no user has a full global view of the network, or the network is too large

for a user to gather all information and make practical use of such knowledge. How

each individual can make a decision on the transmission parameters with partial

network knowledge so as to approach the design objective, and how much partial

knowledge is required are the two main design challenges.

A multi-agent system may target at a global objective but solve it distributively

[30]. In such settings there is no concern about the individual preferences, but rather

it may be advantageous to distribute the task among multiple users, whose actions

may require coordination. Examples of such problems can be found in [20, 21, 31].

The effective mathematical tool in use is the distributed optimization techniques

[30,32].

On the other hand, a multi-agent system may also embrace issues of competi-

tion as well as coordination. The key mathematical tool to model the problems

is game theory, which models strategic interactions among the users using formal-

ized incentive structures. Game theory provides models for efficient self-enforcing

distributed design. The formulated game model should also be able to derive well

defined equilibrium criteria to study the optimality of game outcomes under vari-

ous game settings (static versus dynamic, complete versus incomplete information,

non-cooperative versus cooperative, etc) [28]. More details will be reviewed in the

next subsection.

1.2.1 Game Theory

Game theory is often described as a branch of applied mathematics and economics

that studies situations where multiple players (self-interested agents) interact and

make decisions in an attempt to maximize their own benefits. The essential feature

is that game theory provides a formal mathematical approach to modeling these

social situations in which all agents participate and interact. A game consists of a

set of players, a set of moves (or strategies) available to those players and a complete

set of payoffs for every combination of strategies available. All possible outcomes

are thus encapsulated in the mathematical model of the game.
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To enable efficient dynamic spectrum sharing, the behaviors and interactions

among network users have to be thoroughly investigated and analyzed. Game theory

has been used to study the competition and cooperation among rational decision

makers, and thus has excellent match when applied to dynamic spectrum sharing

problems [28].

The advantages of using game theoretical framework to analyze dynamic spec-

tum sharing are multifold [28]. First of all, by modelling dynamic spectrum sharing

as games, the strategic interactions among network users can be expressed in a for-

mal game structure, by which the theoretical results from game theory can be fully

utilized. Moreover, since the optimization for heterogeneous network users is a dis-

tributed multi-objective optimization problem with each individual user having its

own objective and constraints, the problem is difficult to analyze and solve. Game

theory equips us with well defined equilibrium solutions to evaluate the system opti-

mality under various network scenarios. Finally, non-cooperative games [33] can be

used to analyze the selfish behaviors of network users, which inspires us to look for

ways to design incentive compatible or self-enforcing protocols to achieve efficient

and fair spectrum sharing.

1.2.2 Nash Equilibrium

An important solution concept to non-cooperative games is the Nash equilibrium

(NE) [34]. A NE, named after John Nash, is a set of strategies, one for each player,

such that no player has an incentive to change its action unilaterally. If each player

has chosen a strategy and no player can benefit by changing its strategy while the

other players keep theirs unchanged, then the current set of strategies and payoffs

constitute a NE.

Formally, we can define s−i = (s1, · · · , si−1, si+1, · · · , sN) as a strategy profile

of N players without player i (also known as the opponent of i). Thus we can

write s = (si, s−i) as the strategy profile of all N players. If the players other than

i (whom we denote as -i) were to commit to play s−i, a player who is intent on

maximizing its own payoff ui would be faced with the problem of determining its

best strategy from its strategy set Si in response to s−i, or best response. Therefore

we have the following definitions.

Definition 1.1. (Best response) Player i’s best response to other players’ strat-

egy s−i is a strategy s∗i ∈ Si such that ui(s
∗
i , s−i) ≥ ui(si, s−i) for all strategies

si ∈ Si.
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Definition 1.2. (Nash equilibrium) A strategy profile s = (s1, · · · , sN) is a Nash

equilibrium if, for all players i, si is a best response to s−i.

In the above definitions, a NE is defined as a strategy profile (i.e., vector of play-

ers’ strategies) in which each player’s strategy is the best response to the strategies

of all the other players. Based on this definition, no selfish player has incentive

to unilaterally change its strategy when operating at the NE. However, this so-

lution concept for a non-cooperative game is essentially confined to searching for

an equilibrium condition. It does not teach us about the underlying dynamics in-

volved in establishing that equilibrium, or whether such dynamics are converging

or diverging at the equilibrium due to disturbances (e.g., introduced by parameter

estimation errors) [3]. The following subsection will review existing work on the

dynamic stability of the NEs in non-cooperative spectrum access games.

1.2.3 Stability Issues

Existing game models in communication networks have adopted various game dy-

namics and stability concepts such as Markov decision process (MDP) and stochas-

tic stability [35,36], which appear in a Markov game or stochastic game introduced

by Shapley in [37]. A stochastic game is played in a sequence of stages. At the

beginning of each stage, the game is in a certain state which follows a Markov pro-

cess, i.e., in the next stage the game would move to a new random state whose

distribution depends on the previous state and the actions chosen by the players.

The procedure is repeated at the new state and play continues for a finite or infinite

number of stages. The payoffs obtained in each stage depend on the state and the

current actions of the players. The total payoff of a player is often taken to be the

discounted sum of the stage payoffs or the limit inferior of the averages of the stage

payoffs [35]. The corresponding equilibrium concept is the Markov perfect equi-

librium (MPE) in which each player’s chosen action depends only on the current

state [33].

For example, in [38] [39], MacKenzie and Wicker consider the slotted Aloha

protocol as a stochastic game between users contending for a conventional collision

channel where no two or more users are allowed to transmit simultaneously. In

their work, an infinite users’ model is adopted with a finite packet arrival rate, and

all users are assumed to be indistinguishable. In this game, the state represents

the number of users currently contending for the channel, and this information is

assumed to be known to all users. A strategy in this game is a mapping from
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the number of backlogged users to a medium access probability (MAP). The total

payoff of a user is the discounted sum of the stage payoffs. The authors then

prove the existence of an MPE in such a game using the Glicksberg-Fan fixed

point theorem [40, 41]. The stability of the equilibrium is analyzed based on the

drift analysis of a Markov chain and the selfish behavior of users when the number

of backlogged users goes to infinity. The authors conclude that, the equilibrium

strategy is stable given that the total packet arrival rate of the Aloha system is

less than a certain value determined by the cost parameter. Moreover, for the

optimal value of the cost parameter, the throughput of a slotted-Aloha system with

non-cooperative users can be as high as the throughput of a centrally controlled

system. This result is generalized in [42] to show that the same result holds for

multi-packet reception channels that allow more than one packet to be successfully

received simultaneously.

Besides MDP and its stochastic stability, some other game models in commu-

nication networks have formulated the game as a nonlinear system and studied its

asymptotic stability using Lyapunov functions [43,44]. The authors in [45] formulate

a random access game consisting of N wireless nodes in a wireless local area network

(WLAN) [14] with contention-based medium access. Three types of repeated play

have been considered for the distributed strategy update mechanism to achieve the

NE, namely, best response, gradient play, and Jacobi play. The simplest update

mechanism is the best response strategy: at each iteration, every player chooses the

best response to the actions of other players in the previous iteration. The authors

restrict the discussion to supermodular games [46] with the problem-specific payoff

function and prove its convergence. Another dynamic is the gradient play [47], i.e.,

each player adjusts its strategy gradually in a gradient direction that improves its

current payoff. In gradient play, nobody must know the game, his rivals, their pref-

erences or actions; no one looks for large size improvements, i.e., nobody makes a

great leap towards a best response. Each player simply observes its marginal payoff

persistently and use restricted stepsize to update its strategy. Despite that players

know little and update slowly, the gradient play does enjoy remarkable stability

(see [47] for more details). The third update scheme is Jacobi play [48]. In Jacobi

play, each player adjusts its current strategy gradually towards the best response

strategy, i.e., the player does not make a great leap towards a best response within

one single iteration, but instead applies a discount factor ε ≤ 1 to the stepsize. An-

other example that uses the Jacobi play is the Aloha game model proposed by Jin

and Kesidis [49]. The dynamics of the Jacobi play is approximated by a continuous-
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time nonlinear system whose asymptotic stability at the equilibrium is studied by

constructing a Lyapunov function [43,44].

The next two sections review some types of random access games which are

based on the Lyapunov stability concept.

1.3 Aloha-Type Random Access Games

Game theoretic approaches have been widely used to design multiple access proto-

cols in wireless networks. In [50], the authors provide a comprehensive review of

the game models developed for different multiple access schemes, including both

contention-free and random access schemes. For contention-free schemes, time-

division multiple access (TDMA) [51–53], frequency-division multiple access (FDMA)

[54–56], and code-division multiple access (CDMA) [57–59] are reviewed. For

contention-based channel access, Aloha and carrier sense multiple access (CSMA)-

based game models are discussed.

This thesis focuses on random access based game models in wireless networks.

In the following subsections, we would review certain classes of Aloha games and

channel selection games in Aloha-type of random access networks. CSMA-type

random access games will be reviewed in Section 1.4.

1.3.1 Aloha Games

In [50], several channel access games in ALOHA-like protocols are presented. A

good example is the Aloha games proposed by MacKenzie and Wicker in [38, 39].

An alternative Aloha game model is proposed by Jin and Kesidis [49], whereby

a group of heterogeneous users in a fully connected network share a conventional

collision channel and transmit via slotted Aloha. Each user in this game attempts

to obtain a target rate by updating its MAP in response to observed activities. The

authors further assume in [60] that, for users with inelastic bandwidth requirements,

each user’s target rate depends on its utility function and its willingness to pay,

and they propose a pricing strategy to control the behavior of the users (in order

to bring their target rates within the feasible region). This Aloha game model

is further investigated in [61–63]. In [61], the authors investigate the effects of

altruistic behavior on the stability of equilibrium points in a two-player game. In

[62], the authors generalize the model and propose a generic networking game with

applications to circuit-switched networks. In [63], Menache and Shimkin extend the
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model by incorporating time-varying channel conditions to the channel model.

The conditions for the existence and stability of the equilibrium solutions have

been well studied in these works. However, the results of these studies are more

suitably applied to the fully connected uplink random access channel. In the context

of spatially distributed Tx-Rx pairs, it is likely that not all players will interfere

with each other. In these scenarios, we normally have to deal with a non-fully

connected network, where the presence of a connected edge means that the two

players are not allowed to transmit together. There also remain fundamental issues

for such partially connected networks which are not addressed. For example, among

all equilibrium solutions, does there exist an equilibrium point which is optimal

to all players, or a solution which always favors different subgroups of players?

Furthermore, if a global optimal solution does exist for all players, how to converge

to that equilibrium point during implementation?

An important concept associated with partially connected networks is spatial

reuse. Spatial reuse, also known as frequency reuse, is a powerful technique to

improve the area spectral efficiency of multi-user communication systems. Cellular

systems are examples whereby radios exploit the power falloff with distance and

reuse the same frequency for transmission at spatially separated locations [64, 65].

Similar ideas can be applied to users in a distributed wireless network, where differ-

ent transmit-receive pairs at a distance away are allowed to transmit simultaneously,

with the objective to maximize system capacity whilst still meeting all the transmis-

sion quality requirements [66–69]. When spatial reuse is considered in a distributed

wireless network where the autonomous Tx-Rx user pairs compete for transmission

in the common collision channel using slotted Aloha, how to model the interactions

and competitions among the users? Does there exist a stable equilibrium operating

point? What about the efficiency and fairness of such an equilibrium, if they ex-

ist? How to approach the Pareto-front throughput solution using only limited local

information?

The above challenges motivate our design of Aloha games with spatial reuse

in Chapter 3, as well as a heuristic algorithm (Chapter 4) and a control theoretic

method (Chapter 5) to approach the Pareto optimal throughput solution in the

proposed games.
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1.3.2 Channel Selection Games in Multi-Channel Aloha Net-

works with Spatial Reuse

To further improve network performance, multiple collision channels can be con-

sidered in Aloha networks with spatial reuse. Chen and Huang in [70] study the

random access based distributed spectrum sharing problem with spatial reuse. Each

user is allowed to access only one channel in each slot, under the assumption that

the MAPs are fixed and pre-allocated. The problem is formulated as a spatial chan-

nel selection game, in which each user is a player who chooses one channel to access

in order to maximize its own expected throughput. The game is shown to be a

potential game [71] and thus possesses a NE and the finite improvement property

(FIP). A game is said to be a potential game if the incentive of all players to change

their strategy can be expressed using a single global function called the potential

function, which is a special form of the Lyapunov function [72]. The FIP refers to

the property that asynchronous player updating (where players switch channels to

increase payoffs) always converges to a NE.

However, the method in [70] relies on the assumption that the MAPs are fixed

and pre-allocated, but the efficiency and fairness of such allocations are not dis-

cussed. A better design is to let the users jointly optimize the MAPs and channel

selection to maximize individual user throughput. This is a highly non-trivial prob-

lem since the setting of the MAPs would affect each user’s expected throughput,

intertwine with the channel selection decisions and thus affect the final location of

the NE.

This challenging problem has been partially solved by Cohen et al. in [73],

although no spatial reuse has been considered. The sub-game of channel selection

under fixed MAP constraints is also shown to be a potential game, and thus the

convergence to a NE is guaranteed. The authors then formulate the problem of

choosing the MAPs as a single-leader Stackelberg game [33]. The classic Stackelberg

games are a class of non-cooperative games in which a single “leader”, who makes

the first move in the game, anticipates the actions of the “follower” based on a model

of how the follower would respond to the actions of the leader. Since no spatial reuse

is considered, the users are homogeneous in the sense that each user’s transmission

will affect all remaining users in the network. Therefore, a single elected leader is

sufficient to manage the network, which mandates all MAPs to be the same and

sets this common MAP value to maximize the sum-rate at the NE of the sub-game.

When spatial reuse is considered, heterogeneous MAPs are generally observed
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due to the non-uniform node degrees. Therefore, multiple leaders at different spatial

locations might be a proper extension to better manage the network and handle the

joint MAP tuning and channel selection problem in a local region. This motivates

our design of a multi-leader Stackelberg game [74] in Chapter 6, which jointly

considers the MAP tuning and channel selection problem in multi-channel Aloha

networks with spatial reuse.

1.4 CSMA-Type Random Access Games

1.4.1 CSMA Games

In random access games, wireless users share a common channel and want to max-

imize their payoffs independently. A recent survey on applying game theory to

CSMA can be found in [75], where several non-cooperative contention control games

in CSMA methods are presented. Using game theory and the NE concept, it is

shown in [76] that the current IEEE 802.11 standard does not work well if there are

selfish users trying to maximize their performance by unfairly accessing the channel,

as this reduces the ability of other users to access it. Besides fairness, the stability

of strategic interactions among the self-interested users is also an important issue.

The authors in [77, 78] model the exponential backoff protocol in 802.11 standards

as a non-cooperative game in which links try to maximize their payoff function in

the form of reward for successful transmission. After proving the existence of the

NE, it has been shown that the obtained NE may not be unique and steady. There-

fore, it becomes a motivation for designing medium access mechanisms so that the

strategic interactions among the self-interested users would finally converge to a

stable steady-state operating point.

The game presented in [79] is one of the first research works proposing a fair

non-cooperative game model for 802.11 distributed coordination function (DCF)

[80] mechanism. Authors of [45, 81–83] define a general game-theoretic model to

capture the distributed nature of contention control and wireless users’ interactions

in CSMA. In these games, the strategy of a player is usually the MAP or equivalently

the size of the contention window, and the payoff function is a combination of

the channel access gain and the packet collision cost. The wireless users estimate

their collision probabilities through observing idle time slots between transmissions

as well as unsuccessful transmissions, and then accordingly adjust their MAPs.

The utility functions of the users are designed to achieve a good trade-off between
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efficiency and fairness. Gradient play is adopted as the game dynamics whose

convergence to the steady-state NE is proved by constructing a proper Lyapunov

function. In another CSMA game model, Jin and Kesidis [84] analyze the non-

cooperative user behaviors in CSMA wireless networks where users have the freedom

to choose the contention window sizes according to the network congestion level.

The existence and uniqueness of the equilibrium point are investigated, as well as

a distributed iterative method to converge to the equilibrium.

However, as commented by [75], most of the proposed CSMA games assume

all-inclusive carrier sensing, i.e., each user hears transmissions of all the other users.

The analysis in the above game models cannot be directly applied in the presence

of spatial reuse.

1.4.2 Spatial CSMA Networks

When spatial reuse is considered in CSMA methods, the carrier-sense relationships

among the CSMA users become non-all-inclusive, i.e., each CSMA user may only

sense a subset, but not all other users. In [85], Bianchi proposes a simple model

that accounts for all exponential backoff protocol details and allows computation

of saturation throughput of IEEE 802.11 DCF [80]. Although simulations in [85]

demonstrate high accuracy, the model does not consider the network topology and

could not characterize the collisions that result from the other active nodes in the

neighborhood of the transmitter. As commented by Liew et al. [86], it is extremely

difficult to extend the analytic methods for all-inclusive carrier-sense networks (e.g.,

[85, 87–89]) to the non-all-inclusive case because of the inhomogeneity in the state

spaces of the CSMA users. In fact, the problem of computing user throughputs in

a spatial CSMA network is shown to be NP-hard [86].

In order to perform tractable analysis, existing literature [86,90–92] have adopted

an ideal CSMA network (ICN) model to capture the essence of the CSMA mecha-

nism under spatial reuse. Boorstyn et al. in [90] first consider the spatial CSMA

network model with exponential idle and transmission times. They use a Markov

model to efficiently analyze the throughput of CSMA networks with arbitrary topol-

ogy. Wang and Kar in [91] model the throughput of the CSMA network using the

same line of analysis, but they further take into account the RTS/CTS exchange in

the CSMA network and their result is readily extended to the throughput analysis

of the IEEE 802.11 DCF. The effectiveness of the throughput analysis is verified by

simulation investigations.
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The throughput analysis in [90,91] corresponds to a subclass of the ICN model,

which models the backoff and transmission processes with exponential distributions

so that backoff and transmission processes are memory-less and can be analyzed

using a continuous time-reversible Markov chain. In practical CSMA protocols,

the backoff process is controlled by a counter and has “memory”. The general

ICN model in [86] takes this memory effect into account. It is proved that the

link throughputs in ICN are insensitive to this memory effect and to the detailed

distributions of the backoff countdown and transmission times given the ratio of

their means. This result enables the use of ICN in practical CSMA networks.

Backoff collisions are unavoidable in practical networks, especially when the

network is highly populated. The ICN model is an idealized model that removes

such collisions by adopting a continuous-time countdown process [93]. In other

words, it models a system in which the “minislot” used in the countdown backoff

process is very small, and that carrier sensing is instantaneous. In [94], Kai and Liew

propose a generalized ICN model for a perturbation analysis that tries to capture

the effects of backoff collisions. However, as is pointed out in [94, Section V], the

effects of collisions are not significant as far as the link throughputs are concerned.

More specifically, the original ICN model already yields good approximations with

errors within 10% even though it does not incorporate the collision effects. Jiang

and Walrand in [95] extend the ICN model to an “almost” time-reversible Markov

chain which takes into account the cost of collisions and overheads. The idea is to

use RTS/CTS handshaking so that the collision period will be comparatively small

under a sufficiently large holding time.

In summary, ICN is a proper mathematical model for the throughput analysis

in spatial CSMA networks. The ICN model will be formally introduced in Section

2.4.

1.4.3 Managing Spatial CSMA Users with Heterogeneous

Rate Requirements

Based on the ICN model, people are interested in the resource allocation problem

in spatial CSMA networks for efficient spectrum sharing. In particular, Jiang and

Walrand [92] develop an elegant distributed CSMA algorithm for throughput and

total utility maximization based on the ICN model after making assumptions about

concavity and monotonicity of the user utility functions. Their work removes the

need for knowledge of the underlying link topology and their transmission param-
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eters can be updated distributively. However, the approach implicitly assumes a

best effort transmission to achieve total utility maximization and there is no explicit

treatment if users have heterogeneous rate requirements and different willingness to

pay. In other words, while optimizing the sum-rate, there is no mechanism to weigh

the individual user utility so as to differentiate the services. Moreover, the global

optimization approach does not reflect the fact that users are selfish and behave

non-altruistically in maximizing their own payoff. In fact, Cagalj et al. have shown

that even the presence of a few selfish users may lead such a CSMA network to

collapse [96], while proper pricing or penalty mechanisms lead to overall improve-

ment [97]. Indeed, when users with heterogeneous rate requirements coexist in the

network and the collective target rates are outside the feasible throughput region,

the self-interested actions by the CSMA users would lead the network into heavily

congested status.

In Chapter 7 we incorporate a game theoretic framework into the ICN model

to harness the selfish behaviors of a group of non-cooperative spatially distributed

CSMA users with heterogeneous rate requirements.

1.5 Device-to-Device Communication

A prospective application background of the spatial CSMA network is overlay

Device-to-Device (D2D) communication. In this section we give a brief introduction

on D2D communication, and discussed the settings used in our work in Chapter 7.

The growing popularity of smartphones and tablets has resulted in the increasing

demand for high data rate services, and a huge amount of data traffic normally needs

to be transmitted through cellular networks, which in turn leads to severe traffic

overload problems. Recently, D2D communication has emerged as a new data-

offloading solution by enabling direct communication between two mobile users

without traversing the base station (BS) or core network [98].

D2D communication can be implemented over the cellular spectrum (i.e. in-

band) or the unlicensed spectrum (i.e. outband). Inband D2D can be further

classified into spectrum overlay and spectrum underlay. In the overlay scenario, the

cellular and D2D transmitters use orthogonal time/frequency resources or alternate

channels, while in the underlay scenario the D2D transmitters opportunistically ac-

cess the time/frequency resources occupied by cellular users. The rate performance

is evaluated in [99] for both overlay and underlay scenarios. It is observed that D2D

mobiles in both scenarios can enjoy much higher data rate than regular cellular mo-
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biles. As for cellular mobiles in the overlay scenario, their rate performance also

improves due to the offloading capability of D2D communication. Besides perfor-

mance improvement over the pure cellular mode, inband overlay D2D is also more

tractable in analysis since it does not interfere with regular cellular mobiles or suffer

from random interference from unlicensed band.

In the licensed spectrum, a potential D2D pair can communicate through con-

ventional cellular mode (relay through the BS), dedicated D2D mode (spectrum

overlay), or underlay sharing mode (share with cellular users). Game theoretic

approaches have been applied in D2D communications for mode selection and re-

source management [100]. In particular, Cai et al. [101] model the spectrum sharing

mode selection as a coalition formation game, and propose a distributed coalition

formation algorithm to improve the total achievable rate. Wu et al. [102] study the

underlay spectrum sharing problem among potential D2D pairs and cellular users

with quality-of-service requirements. A coalition formation game and a distributed

coalition formation algorithm are proposed to decide for the most energy-efficient

spectrum sharing strategy. The focus of these works is to look for efficient spectrum

sharing solutions among the D2D pairs and cellular users, and spectrum underlay

is adopted in the sharing mode under the constraints on the amount of mutual

interference. Our work focuses on spectrum overlay mode, in which the number of

orthogonal channels is limited and there are multiple D2D pairs sharing a common

channel via distributed transmission scheduling.

In [99] the authors use a simple spatial Aloha access scheme to support D2D

scheduling. In Chapter 7 we assume that all D2D links use CSMA as the multiple

access scheme to share a dedicated inband overlay channel. Spatial reuse is consid-

ered, i.e., different transmit-receive (Tx-Rx) pairs at a sufficient distance away that

do not cause interference are allowed to transmit simultaneously [86], with the ob-

jective to achieve higher throughput while still meeting all the transmission quality

requirements for the channel access of the individual link. Although D2D commu-

nication does not route the data traffic through the cellular network, the available

network infrastructure can still be an effective means to exert light control over all

the D2D links when performing resource allocation. In our model in Chapter 7, the

D2D links have heterogeneous service requirements and different willingness to pay,

and the central entity (e.g., evolved node B (eNB)) [98] controls the transmission

behaviors of all links by modifying the price per unit service rate.

A simple example is given in Fig. 1.2, where there are three D2D links and a

single BS oversees/controls them in the control plane. Each D2D link consists of
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D2D link D2D link

D2D link

BS

Figure 1.2: An Example of Overlay D2D Communications. The solid arrow represents the
data communication of a D2D link; the dashed arrow represents the control information
exchange between a D2D transmitter and the BS.

a Tx-Rx pair, and hence the D2D links resemble the situation where distributed

pairs are transmitting. The involvement of the cellular network in the control plane

is the key difference between our system model with that defined in Mobile Ad-

hoc NETworks (MANET) [103]. Moreover, D2D communication is mainly used

for single-hop communications [98], which does not inherit the multihop routing

problem of MANET [104,105].

1.6 Discussions on Interference Model

There are two popular interference models, namely, the physical model and the

protocol model [106]. Under the physical model, a transmission is considered suc-

cessful if and only if the signal to interference and noise ratio (SINR) exceeds a

certain threshold, where the interference includes all other concurrent transmis-

sions. Under the protocol model, a transmission is successful if and only if the

receiving node is in the transmission range of the corresponding transmitting node

and is out of the interference range of all other transmitting nodes.

The physical model is considered to be a better characterization of interference

(but also more difficult to analyze) than the protocol model. The main difficul-

ties are two folds. First, SINR is a non-convex function of transmitting powers;

an optimization problem in the physical model is usually non-convex and NP-hard

in general [107]. Second, the aggregated interference at a receiver may vary sig-
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nificantly with respect to time according to the transmission behaviors of all its

neighbors, which makes the analysis difficult.

To circumvent the complexity issue associated with the physical model for large-

sized networks, the protocol model has been widely used by researchers in wireless

networking community as a way to simplify the mathematical characterization of

the physical layer. Under the protocol model, the impact of interference from a

transmitting node is binary and is solely determined by whether or not a receiver

falls within the interference range of this transmitting node. Due to such simpli-

fication, the protocol model can be easily applied to analyse large-sized wireless

ad-hoc and sensor networks [108–111]. However, since the protocol model has not

accounted for aggregated interference from multiple interfering nodes, the accuracy

of characterizing interference is compromised.

For both the protocol model and the physical model, power control is an effective

physical layer technique to control the network topology so as to increase spatial

reuse through controlling the effect of interference. With the power control capabil-

ity, we could adjust the transmission power and thus reduce the interference range

of some transmission so as to achieve scheduling feasibility for other transmissions.

However, the enlarged design space also introduces much more complexity in the

mathematical modelling, problem formulation and solution procedure.

The authors in [112] [113] have developed a formal mathematical model for link

scheduling feasibility under the influence of power control. This model extends ex-

isting protocol interference model for wireless networks where power control (and

thus transmission range and interference range) is now part of the optimization

space. Based on this model, the joint power control, scheduling and flow routing

problem is formulated as a mixed integer nonlinear programming (MINLP) prob-

lem. They develop a centralized solution procedure based on the branch-and-bound

technique. The authors in [107] further consider the joint power control, scheduling

and flow routing problem based on the physical interference model. The prob-

lem is also formulated as a MINLP and branch-and-bound technique is used as a

centralized solution procedure. However, since the formulated MINLP is NP-hard

in general, it cannot be directly applied in practice, but rather as a performance

benchmark for other algorithms developed for practical implementation.

The authors in [114] [115] further consider the problem about how to correctly

use the protocol interference model for wireless networks and try to bridge the gap

between protocol and physical models. The physical model is widely considered

as a reference model for physical layer behaviour but its application is limited by
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its complexity. On the other hand, the protocol model is simple but the accuracy

is compromised. The authors in [114] [115] propose a new concept called “reality

check” and present a method of using a protocol model with reality check for wireless

networks. Subsequently, they show that by appropriate setting of the interference

range in the protocol model, it is possible to narrow the solution gap between the

two models. The simulation results confirm that this gap is indeed small (or even

negligible). Therefore, their proposed method of joint reality check and interference

range setting retains the protocol model as a viable approach to analyse wireless

networks.

Similarly, in the domain of dynamic spectrum management, the authors in [116]

show that if the conflict graphs are optimized properly, they can produce spec-

trum allocations that closely match those derived from the physical interference

model. The authors further propose Physical confLict grAph geNerator (PLAN),

a systematic framework to produce conflict graphs based on physical interference

characteristics. PLAN first applies an analytical framework to derive the criterion

for identifying conflicting neighbors, capturing the cumulative effect of interference.

PLAN then applies a local conflict adjustment algorithm to address heterogeneous

interference conditions and improve spectrum allocation efficiency.

In this thesis, the interference relationship is characterized by the interference

matrix, which corresponds to the conflict graph in the protocol model. The tech-

niques in [114] [115] [116] can be used to generate an appropriate conflict graph

which caters for the aggregated physical interference to some extent and bridges

the gap between protocol and physical models.

1.7 Motivations and Contributions

This thesis studies the spectrum sharing problems among a group of spatially dis-

tributed Tx-Rx user pairs in a spectrum commons. The users are able to make

intelligent decisions on spectrum usage and choose transmission parameters based

on learned spectrum dynamics and their competitors’ decisions. As a result of

their autonomous and intelligent behaviors and interactions, stability issues arise

concerning whether the whole network would converge to an equilibrium solution

which also provides efficiency and fairness for the users. We therefore study how to

manage the spectrum access problem for such autonomous and spatially distributed

users with the objective to achieve efficient spectrum sharing with fairness and scal-

ability. As discussed in Section 1.1.3, basic spectrum sharing rules are needed in a
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spectrum commons, which should follow three general principles: efficiency, fairness,

and incentive compatibility.

To design incentive compatible spectrum sharing rules, non-cooperative games

can be used to analyze the self-interested behaviors of the users (i.e., game players).

An important solution concept to non-cooperative games is NE, which is incentive

compatible for all players since no one has the incentive to deviate from such an

equilibrium point. Stability issues arise when the users act non-altruistically in

maximizing their own benefits. First of all, we need to know whether a NE exists

for the game. Secondly, to search for the NE(s) of the game, we need to carefully

design the underlying dynamics so that the game converges to the NE(s), i.e., the

strategic interactions among the intelligent and self-interested users would converge

to a steady-state equilibrium point. More desirably, the NE should be “stable” so

that the game converges back to the NE after being perturbed by small disturbances

(e.g., introduced by parameter estimation errors). Finally, we need to consider the

efficiency and fairness of the NE. It is desirable to design the spectrum sharing rules

so that the network operating point is incentive compatible, being on or close to

the Pareto front, while providing a certain degree of fairness among the users.

1.7.1 Generalized Aloha Games

As a starting point, we first investigate the spectrum commons model with dis-

tributed Tx-Rx user pairs competing for transmission in a single random access

channel. CSMA-type random access could be used, in which the users sense the

channel first and then transmit in the absence of other traffic [14]. Alternatively,

if there is no sensing before each transmission, Aloha-type random access could be

used [14]. We first focus on the slotted-Aloha-type random access scheme of the

distributed user pairs.

Aloha games study the MAPs of a group of non-cooperative users which share

a channel to transmit via the slotted Aloha protocol. Chapter 3 extends the Aloha

games to spatial reuse scenarios, and studies the system equilibrium and perfor-

mance. Specifically, fixed point theory and order theory are used to prove the exis-

tence of a least fixed point as the unique NE of the game and the optimal choice of

all players. The Krasovskii’s method is used to construct a Lyapunov function and

obtain the conditions to examine the stability of the NE. Simulations show that

the theories derived are applicable to large-scale distributed systems of complicated

network topologies. An empirical relationship between the network connectivity
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and the achievable total throughput is finally obtained through simulations.

1.7.2 Heuristic Algorithm to Approach Pareto Front

In Chapter 4, we go beyond the generalized Aloha game, and study how future

autonomous radios can make use of the developed theory to improve the overall

system performance [117]. The most challenging issue is that, the Pareto-front [19]

target rate is determined by the network as a whole, while in a distributed network

each user usually has only limited local information and hence does not know how

to achieve the Pareto-front throughput. As a result, if some or all the users are over-

demanding, the resulting network can be unstable due to congestions. However, if

the users set low target rates, the network is stable but the channel is not fully

exploited. The challenge lies in how users can determine their equilibrium MAPs as

a result of competing among themselves and yet still maintaining network stability.

In the generalized Aloha game, we derive the stability condition of the NE, which

can be used to test whether a certain target rate is within the feasible throughput

region. However, this testing condition requires complete knowledge on the net-

work topology, which is neither practical nor scalable for an individual player to

implement. Therefore, we need to design a self-adaptive algorithm for the players to

self-adjust their target rates based on a set of pre-installed rules so that the network

always approaches Pareto optimal bandwidth utilization automatically. In Chapter

4, we implement such an algorithm in a fully distributed manner, which requires

no information exchange among the players. Each player repeatedly measures its

current throughput and uses the measured value to make myopic best response to

the current channel idle rate. Our simulations show that the system indeed achieves

close to Pareto optimal performance while guaranteeing a certain degree of fairness.

The algorithm is robust and can handle various practical issues such as the dynamic

arrival/departure of players, parameter estimation errors, etc.

1.7.3 Clustering-based Control Theoretic Approach

In the algorithm proposed in Chapter 4, the distributed users heuristically search

for Pareto-front target rates, and the system indeed settles down with a target

rate that is close to the Pareto front. However, the users using such a heuristic

approach have to monitor the channel activities continuously, and will experience

several fluctuations before settling down since the network has to be driven into

the unstable region to detect the crossing of the Pareto front. As the network
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size increases, the system will experience more fluctuations and take longer time to

converge. Hence it is worth to look into how to design a fast self-adaptive network

rigorously.

The objective of Chapter 5 is to develop an intelligent algorithm to be embedded

into the transceivers so that all users know how to self-tune their MAPs to achieve

overall Pareto optimality in terms of network throughput under spatial reuse while

maintaining network stability. While the optimal solution requires each user to

have complete information about the network, our proposed scheme in Chapter 5

only requires users to have local information.

The fundamental of our proposed scheme is that the users will first self-organize

into a number of non-overlapping neighborhoods, and the user with the maximum

node degree in each neighborhood is elected as the local leader. Each local leader

then adjusts its MAP according to a parameter R which indicates the radio intensity

level in its neighboring region, whereas the remaining users in the neighborhood

simply follow the same MAP value. We show that by ensuring R ≤ 2 at the local

leaders, the stability of the entire network can be assured even when each user only

has partial network information. For practical implementation, we propose each

local leader to use R = 2 as the constant reference signal to its built-in proportional

and integral (PI) controller. The settings of the control parameters are discussed

and we validate through simulations that the proposed method is able to achieve

close-to-Pareto-front throughput.

1.7.4 Joint MAP Tuning and Channel Selection Games in

Multi-Channel Spatial Aloha

To further improve the network performance, multiple collision channels can be

considered in Aloha networks with spatial reuse. However, as discussed in Sec-

tion 1.3.2, the problem of joint MAP tuning and channel selection has not been

addressed, which motivates our design in Chapter 5.

Chapter 5 uses the multi-channel spatial Aloha model to describe a distributed

autonomous wireless network where a group of Tx-Rx user pairs share multiple

collision channels via slotted-Aloha-type random access. The design objective is to

enable each autonomous user i to select a channel ci and decide a MAP qi to improve

its throughput, while providing a certain degree of fairness among the users. Game

theoretic approaches are applied, where each user i is a player who chooses the

strategy (ci, qi) to improve its own throughput. To search for a NE, a multi-leader
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Stackelberg game is formulated to iteratively obtain a solution on each dimension of

the (ci, qi) strategy. Initially, multiple Stackelberg leaders are elected to manage the

MAPs of all players. Then under the resulting MAP profile, each player iteratively

chooses its channel to improve its throughput. An oscillation resolving mechanism

is further proposed to stabilize the design in some special cases where the operating

points of some players in a local region would oscillate between the two dimensions

of the myopic search.

Compared to existing methods of pre-allocating MAPs, the proposed game fur-

ther improves the overall network throughput by iteratively tuning the MAPs to-

ward max-min throughput in each subnet. Simulation results show that the pro-

posed game gradually improves the total throughput until reaching a NE, which

also provides good throughput fairness for the players.

1.7.5 A Stackelberg Game Model for Spatial CSMA Net-

works

Slotted-Aloha-type random access has been used in the above works. In Chapter

7, we investigate another type of random access scheme, i.e., CSMA, under spatial

reuse.

Chapter 7 studies the performance of overlay D2D communication links via

CSMA-type random access. We assume that the D2D links have heterogeneous

rate requirements and different willingness to pay, and each of them acts non-

altruistically to achieve its target rate while maximizing its own payoff. Spatial

reuse is allowed if the links are not interfering with each other. A non-cooperative

game model is used to address the resource allocation among the D2D links, at

the same time leveraging on the ICN model to address the physical channel access

issue. We propose a Stackelberg game in which the base station in the cellular

network acts as a Stackelberg leader to regulate the individual payoff by modifying

the unit service price so that the total D2D throughput is maximized. The problem

is shown to be quasi-convex and can be solved by a sequence of equivalent convex

optimization problems. The pricing strategies are designed so that the network

always operates within the feasible throughput region. The results are verified by

simulations.
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1.8 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2 we introduce the spatial

Aloha model in single channel and multi-channel scenarios, which lays the basis for

the studies in Chapter 3 to Chapter 6. Then we introduce the ICN model which

will be used in Chapter 7.

Chapter 3 to Chapter 7 are dedicated to each of the contributions in Section

1.7.1 to Section 1.7.5, respectively. Then we summarize the thesis in Chapter 8 and

point out possible future research directions.
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Chapter 2

System Models and Problem State-

ments

In this chapter we first introduce the spatial reuse model in distributed wireless

networks. Then we introduce the spatial Aloha model in single channel and multi-

channel scenarios, and state the problems to be solved. Finally we introduce the

ICN model which is the basis for our study in Chapter 7.

2.1 Spatial Reuse Model

Consider a distributed wireless network with N transmitters, where each transmit-

ter has its unique designated receiver. Each Tx-Rx user pair shares a common

collision channel with other users, via slotted-Aloha or CSMA type of random ac-

cess. Spatial reuse is considered, i.e., if the users are located sufficiently far apart,

then they can transmit in the same frequency band simultaneously without causing

any performance degradation to each other. Such a spatial reuse model can be

characterized by an “interference graph” as in [70], or similarly by an “contention

graph” as in [86]. The interference estimation methods in [118] can be applied to

obtain the interference graph.

As an example, three Tx-Rx pairs and their equivalent interference graph are

shown in Fig. 2.1, where users 1 and 3 can transmit concurrently without collisions

but neither of them can transmit together with user 2. Such interference relations

can be characterized by an interference matrix A. For the topology given in Fig.

2.1,

A =




0 1 0

1 0 1

0 1 0



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Figure 2.1: 3 Transmit-Receive Pairs and the corresponding Interference (Contention)
Graph [2]. In the upper part of the figure, the solid-thick arrow represents the trans-
mission from a transmitter to its designated receiver; the solid-thin (dash-thin) arrow
represents the non-negligible (negligible) interference from a transmitter to other unin-
tended receivers.

in which a12 = 1 means user 2 is a neighbor of user 1, a13 = 0 means user 3 is not

a neighbor of user 1, etc. By default, aii = 0,∀i.
The interference matrix characterizes the spatial distribution and frequency

reuse capability of the users. Each user has different neighboring users who di-

rectly affect its transmission. For a successful transmission for user i, i ∈ N =

{1, 2, · · · , N}, all of user i’s neighbors (user j with aij = 1), should not transmit.

We assume that every user’s transmission queue is continuously backlogged, i.e., the

transmitter of every user always has a packet to transmit to its designated receiver.

2.2 Single-Channel Spatial Aloha

We first consider a distributed wireless network in which a group of Tx-Rx pairs

share a common collision channel via slotted-Aloha-type random access. These Tx-

Rx user pairs are allowed to reuse the channel if they receive negligible interference

from others. With the defined interference matrix in Section 2.1, if we assume

that each user i chooses a MAP qi in slotted Aloha, then the throughput θi can be

obtained as:

θi = qi
∏

aij=1(1− qj), ∀i ∈ N . (2.1)
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The equation indicates that for a successful transmission for user i, all those users

which will interfere with its transmission (user j where aij = 1), should not transmit.

It can be seen that the equations obtained here do not have a symmetric structure

since the MAPs of some of the users are missing in some of the equations, depending

on the network interference topology. This is unlike the relationship obtained from

a fully connected network [49], where aij = 1, ∀i 6= j; in this situation, the equations

exhibit symmetric structures.

As a starting point, we first investigate the spectrum commons model with

distributed Tx-Rx user pairs competing for transmission in a single collision channel

using slotted Aloha. Under such a scenario, an autonomous user would naturally

want to transmit more and obtain higher bandwidth utilization. This results in

competition among the users on the common collision channel. If everyone wants

to transmit more, the contention level will be high and all pairs will suffer, whilst if

everyone transmits at a lower probability, the bandwidth is not fully exploited. Our

objective is to develop tailored algorithms so that each user has self-autonomous

capability to enable the network to operate at one stable equilibrium solution that

is close to the Pareto-front [19] throughput.

Challenges arise in the above problem. First of all, how to model the interactions

and behaviors of the users if each of them is interested in maximizing its own

benefit? If a non-cooperative game model is adopted, how to formulate the game

under spatial reuse? In the formulated game, does there exist a NE? Is it the unique

NE? Furthermore, if a NE exists, how to design the underlying dynamics so that

the game would converge to the NE? More desirably, is the NE “stable” in the

sense that the game would converge back to the NE after being perturbed by small

disturbances (e.g., introduced by parameter estimation errors)? These questions

will be addressed in Chapter 3.

Secondly, we need to consider the efficiency and fairness of the NE. In particu-

lar, how to approach the Pareto-front throughput solution using only limited local

information, while providing a certain degree of fairness for the users? This is a

challenging problem. Since the users are inter-connected either directly or indi-

rectly, the network stability condition, and hence the achievable throughput region

and Pareto front, would most likely involve having complete information of the

network (including the complete topology information and the MAPs of all users).

However, in reality, the spatially distributed users only possess local views, i.e., no

user has a full global view of the network, or the network is too complex for a user

to gather all information and make practical use of such knowledge. Moreover, even
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if the Pareto front is known, we also need to design the spectrum sharing rules so

that the final operating point not only is close to the Pareto front, but also provides

a certain degree of fairness for the users.

The above challenges motivate our design of a heuristic algorithm to be presented

in Chapter 4 and a control theoretic method to be presented in Chapter 5. We will

also show that our solutions achieve close-to-Pareto-front throughputs while at the

same time taking into account the fairness issues among the users.

2.3 Multi-Channel Spatial Aloha

In some situations, multiple channels could be available for transmission. The

autonomous radios are allowed to decide not only the MAP but also the channel

it can transmit on. Consider a distributed wireless network with N transmitters,

where each transmitter has its unique designated receiver. Each Tx-Rx user pair

selects one of the K orthogonal channels for transmission, and shares channel access

with other users via slotted-Aloha. We make the following assumptions:

• In each time slot each user is allowed to access a single channel.

• Every user’s transmission queue is continuously backlogged, i.e., the transmit-

ter of every user always has a packet to transmit to its designated receiver.

• Each user perfectly estimates the load on all channels [73] (i.e., monitors the

channel utilization for a sufficient time, or by enabling local information exchange

about MAP).

• For simplicity, we assume that the channel conditions of all the channels at

all the users remain stable for a relatively long period of time.

If the users are located sufficiently far apart, then they can transmit in the same

frequency band simultaneously without causing any performance degradation to

each other. For the example in Fig. 2.1, users 1 and 3 can transmit concurrently

without collisions but neither of them can transmit together with user 2, given

that these users are sharing the same channel. Such interference relations can be

characterized by an interference matrix A, as introduced in Section 2.1. With

the interference matrix, assuming that each user i chooses a MAP qi, then the

throughput θi in the single channel case can be obtained as in (2.1).

Then we generalize to the case with K orthogonal channels. Hereafter, we

assume the network starts with all users transmitting in one of the channels, where

the interference matrix A is applied. Only those neighboring users transmitting on

the same channel can interfere with each other. The design objective is to distribute
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Figure 2.2: 4 Users Topology

these users among all channels. We shall adopt the following notations. Denote K =

{1, 2, · · · , K} as the available channel set, and ci ∈ K as the channel selected by user

i,∀i ∈ N . Since we assume that all users experience the same channel conditions

on all channels, the neighboring relationship remains. After the channel allocation,

all users are partitioned into G groups, where each groupMg(g ∈ G = {1, · · · , G})
corresponds to a connected sub-network, and ∪Gg=1Mg = N . These subnets are

disconnected from others, i.e., Mg1 ∩Mg2 = Ø,∀g1, g2 ∈ G, g1 6= g2, either because

they operate on different channels, or they are on the same channel but spatially

disconnected. Then the throughput for user i is

θi = qi
∏

j:aij=1,cj=ci
(1− qj),∀i ∈ N . (2.2)

For example, consider the interference graph in Fig. 2.2a, with the corresponding

interference matrix A =




0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0



. Now assume that two channels are available

and the channel allocation is c = (1, 2, 1, 1) as indicated in Fig. 2.2b. Then there

are 3 subnets, i.e., M1 = {1}, M2 = {2} and M3 = {3, 4}. The throughput for

each user, according to (2.2), is θ1 = q1, θ2 = q2, θ3 = q3(1 − q4), θ4 = q4(1 − q3),
respectively.

We further observe that, under a certain channel allocation profile, we can im-

prove the users’ throughputs and provide a certain degree of fairness by properly

managing the MAPs of the users. For the example in Fig. 2.2b, we can tune up

the MAPs as q = (1, 1, 1/2, 1/2) so that max-min throughput is achieved in each

subnet, i.e., θ = (1, 1, 1/4, 1/4).

Problems arise in the above settings. Specifically, how to enable the autonomous

users to properly choose their channels and tune their MAPs so that the network

29



throughput is improved while providing a certain degree of fairness for the users?

In the above distributed wireless network model where users make autonomous

decisions based on local information, how to model and analyze such strategic in-

teractions? These questions will be addressed in Chapter 5, in which we propose

to use a game-theoretic approach to handle the joint MAP tuning and channel

selection problem.

2.4 Spatial CSMA

Slotted-Aloha-type random access has been used in the above models. In this

section, we introduce another type of random access scheme, i.e., CSMA, under

spatial reuse.

2.4.1 Spatial Reuse and Contention Graph

Consider the situation where there are N D2D links (i.e., Tx-Rx pairs) in the

network sharing a dedicated inband overlay channel via CSMA-type random access.

These D2D links can transmit in the same frequency band simultaneously if they

do not cause any performance degradation to each other. We assume that the

CSMA network is hidden-node-free, which can be achieved by properly setting the

carrier-sensing power threshold as in [119] [120]. Such a spatial reuse model can be

characterized by a “contention graph” as in [86]. For simplicity, only a connected

network is considered, and if the network is not connected, then it can be divided

into several independent connected sub-networks and dealt with separately. We

assume that the contention graph is un-directed and the transmission queue of each

D2D link is continuously backlogged, i.e., the transmitter of every D2D link always

has a packet to transmit to its designated receiver. An example for three D2D links

is shown in Fig. 2.1, where D2D links 1 and 3 can transmit concurrently without

collisions but neither of them can transmit together with link 2. In such cases, link

2 is a neighbor of link 1, but link 3 is not.

2.4.2 Ideal CSMA Network Model

In the CSMA random access method, a link senses the channel before transmitting.

Based on such a carrier-sensing relationship, a link will refrain from transmitting

if any of its neighbors is transmitting. In the ICN model, each link maintains a

countdown timer, whose value tcd is modelled as a continuous random variable with
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an arbitrary distribution [86]. The timer value tcd counts down if the channel is

sensed as idle, and is frozen if the channel is sensed as busy. When the channel

becomes idle again, the countdown of tcd resumes until tcd = 0, upon which the

link transmits a packet. The transmission time ttr is a random variable with an

arbitrary distribution. For simplicity, we have adopted uniform distributions for

both tcd and ttr in our simulations.

At any time, a link is either transmitting or idle. Denote the state of link i

as si ∈ {0, 1}, where si = 1 if link i is transmitting and si = 0 otherwise. When

si = 0, link i is either actively counting down or frozen, depending on whether a

neighboring link j is transmitting or not. We shall denote the system state of a

N -link ICN by a N -tuple binary vector s = [s1, s2, · · · , sN ] or simply by a string

s1s2 · · · sN . Notice that si = sj = 1 is not allowed if links i and j are neighbors,

for the reasons that they can sense each other and the probability of them counting

down to zero simultaneously is negligibly small under ICN due to the adopted

continuous random variables [86]. Therefore, each feasible state corresponds to an

independent set [86] of the contention graph.

As an example, for the contention graph in Fig. 2.1, the five independent sets

are Ø, {1}, {2}, {3}, {1, 3}. By default, we also include Ø, which corresponds to

s = 0, as an independent set. The collection of these feasible system states are

denoted by the set

S = {[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 1]}. (2.3)

If we denote the state s with sj = 0,∀j ∈ N = {1, 2, · · · , N} as e0, and the state s

with si = 1, sj = 0,∀j 6= i as ei, then S can be denoted as

S = {e0, e1, e2, e3, e1 + e3}. (2.4)

2.4.3 Stationary Distribution

Here we summarize the stationary distribution of the system states based on the

results in [86]. If the transmission time and countdown time are exponentially

distributed, then the system state s(t) is a time-reversible Markov process. The

state transition diagram of the example in Fig. 2.1 is shown in Fig. 2.3, where

there are 5 feasible system states. Each transition from a state in the left to a

state in the right represents the beginning of a link transmission, while the reverse

transition represents the ending of the same link transmission. For example, the
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Figure 2.3: State Transition Diagram for Fig. 2.1

transition from 001 to 101 represents the beginning of link 1’s transmission while

link 3 is transmitting. Similarly, the transition from 101 to 001 represents the

ending of link 1’s transmission while link 3 continues its transmission.

The transition rate of a link from idle state to transmission state is λ = 1/E[tcd],

while the transition rate from transmission state to idle state is µ = 1/E[ttr].

Therefore, a higher rate λ and a lower rate µ would suggest a higher intensity of

the link to access the channel. The access intensity (AI) [86] of a link is then

defined as the ratio of its mean transmission time to its mean countdown time:

ρ = E[ttr]/E[tcd] = λ/µ. Note that a higher value of AI suggests a higher intensity

to access the channel. We further introduce the transmission aggressiveness (TA)

[92], which is defined as the natural logarithm of AI ρ, i.e., r = loge ρ. Since

natural logarithm is a monotonically increasing function, a higher value of AI would

correspond to a higher value of TA, which suggests the link is more aggressive to

transmit.

Given a profile of AIs ρ = [ρ1, ρ2, · · · , ρN ], the stationary probability of the state

s ∈ S is shown in [86] to be given by

ps = 1/Z ·∏i:si=1 ρi,∀s ∈ S, (2.5)

where

Z =
∑

s∈S
∏

i:si=1 ρi. (2.6)

and by default, pe0 = 1/Z. In (2.6), when evaluating ps, the notation
∏

i:si=1 ρi

means that for each state s, only those transmitting links are involved in the mul-

tiplication. Collectively, we can write the state probability distribution as a vector

p = [ps1 , ps2 , · · · , ps|S| ], where |S| is the cardinality of the set S, i.e., the number of
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feasible states.

Similarly, if we replace AIs by TAs and define a profile of TAs r = [r1, r2, · · · , rN ] =

loge ρ for all links, the stationary state probabilities are given by

ps = 1/Z · exp(
∑N

i=1 siri), ∀s ∈ S, (2.7)

where

Z =
∑

s∈S exp(
∑N

i=1 siri). (2.8)

As an illustration, consider the state transition diagram in Fig. 2.3. Since

the system state is a time-reversible Markov process, the stationary probability

distribution should satisfy





p100 = ρ1 · p000,
p010 = ρ2 · p000,
p001 = ρ3 · p000,
p101 = ρ1 · p001 = ρ3 · p100 = ρ1 · ρ3 · p000,
p000 + p100 + p010 + p001 + p101 = 1.

(2.9)

Solving the equations in (2.9) yields

p000 = 1/(1 + ρ1 + ρ2 + ρ3 + ρ1ρ3) = 1/Z, (2.10)

where Z is given in (2.6). Once Z is evaluated, other state probabilities can be

easily computed.

Despite the idealized assumption about instantaneous sensing and continuous

backoff time, the ICN model does capture the essence of CSMA under spatial reuse.

It is shown in [86] that the stationary probability distribution in (2.5) holds even if

both the transmission time and countdown time are not exponentially distributed,

given that the ratio of their mean ρi = E[ttr,i]/E[tcd,i] for each link i ∈ N re-

mains unchanged. On the other hand, in the discrete time model, the stationary

probability distribution will deviate from (2.5) due to collisions. Fortunately, when

RTS/CTS handshaking is used and under the same TAs, the stationary distribu-

tion will approach that given in (2.5) since the collision period will be comparatively

small for a sufficiently large holding time [95].

Finally, it then follows from (2.7) and (2.8) that the throughput or mean service
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rate of link i is given by

θi =
∑

s∈S sips =

∑
s∈S si exp(

∑N
i=1 siri)∑

s∈S exp(
∑N

i=1 siri)
,∀i ∈ N , (2.11)

which is the sum of the stationary state probabilities defined in (2.7) in which link

i is actively transmitting (i.e., si = 1). In vector form, if we define the vector

θ = [θ1, θ2, · · · , θN ], then the N equations in (2.11) can be collectively written as

θ =
∑

s∈S pss. (2.12)

where s is the N -dimensional vector used to represent a system state.

2.4.4 Problem Statement

Based on the above ICN model, the discussion in this subsection is on how to

efficiently model the resulting D2D network if the CSMA channel access mechanism

is adopted by all D2D links. If the objective of the network is to maximize the sum-

rate of all transmitting links, and the BS gives no control on the admission and

transmission of links, then [92] has successfully solved this problem. The solution

is computed in a completely distributed manner. However, as pointed out earlier

in Section 1.4, such a fully cooperative model is too idealistic and there is no

consideration on the utility heterogeneity and selfish behaviors of the links. In fact,

Cagalj et al. have shown that even the presence of a few selfish users may lead the

CSMA network to collapse [96], while proper pricing or penalty mechanisms lead to

overall improvement [97]. Therefore, it may be better to build a pricing framework

so that each link tries to maximize its payoff function when competing for resources,

rather than someone tries to take advantage when the network is in operation and

drive the network to unstable states. Furthermore, maximizing the sum-rate may

not distribute the resources according to demand because links with low demand

may be assigned to transmit at higher rate due to its spatial location.

To address the above concerns, in Chapter 7 we incorporate a game theoretic

framework into the ICN model to harness the selfish behaviors of a group of non-

cooperative spatially distributed CSMA users (D2D links) with heterogeneous rate

requirements.
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Chapter 3

Aloha Games with Spatial Reuse

3.1 Introduction

A detailed review on Aloha games has been made in Section 1.3.1. In this chapter,

the Aloha game model in [49] is generalized to include the spatial reuse capability,

named as a generalized Aloha game. Unlike the model in [49], the use of spatial

reuse here distorts the symmetric structure in the expressions to evaluate the NE

solution. As a result, a new Lyapunov function needs to be constructed to prove

the convergence of a generalized Aloha game.

Also notice that our generalized Aloha game is different from the multi-packet

reception (MPR) Aloha game model in [42], although they both allow multiple

packets to be successfully received simultaneously. In [42], the users are assumed

to be indistinguishable; every user knows the current number of backlogged users

in the system; the MPR model is possible by enabling multiple captures in a single

channel, or single capture via the use of multiple parallel channels; the stability

conditions and stability region of the equilibrium strategy are based on the drift

analysis of a Markov chain and the selfish behavior of users when the number of

backlogged users goes to infinity. On the other hand, the generalized Aloha game in

this chapter assumes that users are heterogeneous in their bandwidth requirements

and their neighboring user environment; users have information about the MAPs

of others; the MPR capability comes from the spatial reuse of a conventional Aloha

collision channel; the stability issues are based on the Lyapunov stability analysis

of a nonlinear system.

We introduce the model for the generalized Aloha game in Section 3.2, followed

by some mathematical fundamentals on fixed point theory and order theory in

Section 3.3. We next discuss the existence of a NE in Section 3.4. In particular,
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we use fixed point theory and order theory to prove the existence of a least fixed

point in the generalized Aloha game, which is the unique NE of the game and the

most energy-efficient operating point for all players. In Section 3.5, we propose

a method to prove the stability of the NE. The Krasovskii’s method is used to

construct the Lyapunov function and obtain the conditions to examine the stability

of the NE. After obtaining the conditions to test for system stability, we summarize

how to dynamically converge to the least fixed point in game iterations. Section

3.6 shows through simulations that the generalized Aloha game is applicable to

large-scale distributed systems with complicated network topologies. An empirical

relationship between the achievable total throughput and the network connectivity

is finally obtained through our simulations. We conclude the chapter in Section 3.7.

3.2 Model for Aloha Games with Spatial Reuse

With the interference matrix defined in Section 2.1, we can now study the behavior

of a generalized Aloha game. The objective of the game is for player i to select a

suitable MAP qi so that player i achieves its target rate yi, ∀i ∈ N = {1, 2, · · · , N},
with the lowest possible transmission energy, i.e., each player uses the smallest MAP

as it could to attain its target rate. The target rate combination y = [y1, · · · , yN ]

is controlled by certain pricing strategies [60] or some commonly agreed adjusting

rules that try to achieve Pareto efficiency [19]. When the target rate yi is achieved,

we have

yi = qi
∏

aij=1

(1− qj), ∀i ∈ N . (3.1)

The equation indicates that for a successful transmission for player i, all those

players which will interfere with its transmission (player j where aij = 1), should not

transmit. It can be seen that the equations obtained here do not have a symmetric

structure since the MAPs of some of the players are missing in some of the equations,

depending on the network interference topology. This is unlike the relationship

obtained from a fully connected network [49], where aij = 1,∀i 6= j; in this situation,

the equations exhibit symmetric structures. We now formally state the generalized

Aloha game as follows:

Players : Distributed Tx-Rx pairs, i ∈ N , who compete for a single collision

channel to transmit via slotted-Aloha-type random access scheme.

Actions : Each player i chooses a MAP qi ∈ [0, 1], ∀i ∈ N .

Objectives : Each player i (i ∈ N ) aims to minimize the transmission energy
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consumption in attaining its target rate yi, i.e.,

min qi

s.t. yi = qi
∏

aij=1(1− qj).
(3.2)

The solution of a generalized Aloha game is NE, which is defined as an action

profile (in our case, q∗ = [q∗1, · · · , q∗N ]) in which each action is a best response to

the actions of all the other players [34]. To be qualified as a NE of the generalized

Aloha game, the constraints of all players have to be satisfied first, or in other words,

we can directly examine the solutions to the set of equations in (3.1). Interesting

questions arise related to the problem. By definition, since all the MAPs are real-

valued and cannot exceed 1, some of the solutions to (3.1) that do not satisfy these

constraints should be discarded. Among the remaining solutions, is there an optimal

one existing for all players, or multiple solutions each favoring different subgroups

of players? In case if there are multiple solutions to (3.1), how to make the players

reach the consensus to choose the same solution? If the consensus can be made,

how to dynamically reach that solution in game iterations?

Suppose the iterative approach in [49] is applied to (3.1) to find out the solutions,

i.e., the MAP of player i at the (m+ 1)th iteration of the game is given by

q
(m+1)
i = min{ yi∏

aij=1(1− q
(m)
j )

, 1}, ∀i ∈ N . (3.3)

If a solution q
s

= [qs,1, qs,2, · · · , qs,N ] exists, it should satisfy

qs,i = min{ yi∏
aij=1(1− qs,j)

, 1}, ∀i ∈ N . (3.4)

Besides satisfying the equality constraints in (3.1), if there exist multiple feasible

solutions, we will prove in Section 3.4 that there exists an optimal solution which

enable each player to operate with the minimal MAP. This optimal solution q∗ is

then the unique NE of the generalized Aloha game defined in (3.2). Mathematically,

if we introduce a binary relation “�” between two real-valued vectors a, b, which is

defined as component-wise less than or equal to, i.e., a � b⇔ ai ≤ bi,∀i ∈ N , then

the NE q∗, as compared to other solutions q
s
, would satisfy q∗ � q

s
.
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3.3 Mathematical Foundation

In this section, we introduce the Brouwer’s fixed-point theorem (in order to prove

the existence of solutions to (3.4)), the Kleene fixed-point theorem (in order to prove

the existence of a least fixed point, which is later shown to be the unique NE of the

game), and some related definitions. These proofs involve an N -dimensional vector

function F = (f1, f2, · · · , fN)T , whose component fi(q)(i ∈ N ) is a real-valued

function of q ∈ Γ, where Γ ⊂ RN .

Theorem 3.1 (Brouwer’s fixed-point theorem [121]). Every continuous vector func-

tion F from a convex compact set Γ (where Γ ⊂ RN) to Γ itself has a fixed point,

i.e., there is a point q ∈ Γ such that F (q) = q.

Definition 3.1. A binary relation over a set Γ ⊂ RN is a collection of ordered

pairs in Γ.

Definition 3.2. A binary relation “�” over a set Γ ⊂ RN is a partial order if it

is reflexive, antisymmetric, and transitive, i.e., ∀a, b, c ∈ Γ,

(a) reflexivity: a � a;

(b) antisymmetry: if a � b and b � a, then a = b;

(c) transitivity: if a � b and b � c, then a � c.

Definition 3.3. A subset S of a partially ordered set (Γ, �) is called directed if,

for any a, b ∈ S, there is c ∈ S such that a � c and b � c.

Definition 3.4. A partially ordered set (Γ, �) is said to be complete, and hence

a complete partial order, if there is a least element of Γ (denoted by ⊥) and

every directed subset S ⊂ Γ has a least upper bound supS ∈ Γ.

Definition 3.5. Let (Γ, �) be a partially ordered set. A vector function F : Γ→ Γ

is monotonic or order-preserving if whenever a � b, we have F (a) � F (b).

Definition 3.6. Given a partially ordered set (Γ, �), a vector function F : Γ→ Γ

is Scott-continuous if, for every directed subset S of Γ, supF (S) = F (supS) ∈ Γ.

Theorem 3.2 (Kleene fixed-point theorem [122] [123]). Let (Γ, �) be a complete

partial order, and let F : Γ→ Γ be a Scott-continuous vector function. Then F has

a least fixed point, which is the supremum of the ascending Kleene chain of F.

The ascending Kleene chain of F is the chain

⊥� F (⊥) � F (F (⊥)) � · · · � F n(⊥) � · · ·
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obtained by iterating F on the least element ⊥ of Γ.

Expressed in a formula, the theorem states that

LFP(F ) = sup
n→∞

F n(⊥) (3.5)

where LFP denotes the least fixed point, which is less than or equal to all other

fixed points by some partial order.

3.4 Equilibrium of the Generalized Aloha Game

In this section, we prove the existence of solutions to (3.4), and the existence of a

least fixed point which would later be shown to be the unique NE in the generalized

Aloha game. We specify the aforementioned N -dimensional vector function F =

(f1, f2, · · · , fN)T , whose component fi is defined as a real function given by

fi(q) = min{ yi∏
aij=1(1− qj)

, 1}, ∀i ∈ N . (3.6)

The function fi maps q = [q1, · · · , qN ] ∈ [0, 1]N into the ith component of the vector

function F . The reason to define (3.6) will become clearer shortly.

3.4.1 Existence of Solutions

The equations defined in (3.6) and Brouwer’s fixed-point theorem are used to ex-

amine the existence of solutions to (3.4). From definition, the fixed point of the

vector function F , q
s

= (qs,1, qs,2, · · · , qs,N), is given by solving F (q
s
) = q

s
, or

fi(qs) = qs,i,∀i ∈ N . By substituting such a relationship into (3.6), it results in

the solution having the same form as that obtained in (3.4). This means that the

solution to (3.4) can be understood as a fixed point to the defined vector function

F . Since the continuous vector function F maps a point q from the convex compact

set Γ ≡ [0, 1]N to Γ itself, according to Brouwer’s fixed-point theorem, there exists

a point q
s

such that q
s

= F (q
s
), i.e., (3.4) follows.

It is now clear why (3.6) is defined, as the fixed point behavior of (3.6) is equiv-

alent to the original equality constraints defined in (3.1) except that we explicitly

include the bound qi = 1 in (3.6) to ensure that F maps into a compact set. One

issue to take note is that by using (3.6) to replace (3.1), an extraneous solution

q
s

= 1 is introduced to the original equality constraints defined in (3.1). This so-

lution is not desirable since all players continuously transmit and all transmissions
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will result in contention. Fortunately, this undesirable solution to (3.1) can be easily

identified and discarded.

Since the fixed points are proper only if they exist in (0, 1)N , we focus on such

solutions in the following discussion. We will show that if multiple fixed points exist

in (0, 1)N , there should exist a most energy-efficient one.

3.4.2 Existence of a Least Fixed Point

In the discussion for the generalized Aloha game, the following properties about

“�” over the set Γ hold:

(a) By Definitions 3.1 & 3.2, the binary relation “�” over the set Γ = [0, 1]N is

a partial order, since it is reflexive, antisymmetric, and transitive.

(b) By Definitions 3.3 & 3.4, the partially ordered set (Γ, �) is a complete partial

order. The least element of Γ is given by 0. For every directed subset S ⊂ Γ, the

least upper bound of S is the largest element in S, thus supS ∈ Γ. Therefore, (Γ,

�) is a complete partial order.

We are now ready to prove the following propositions.

Proposition 3.1. The vector function F in (3.6) is an order-preserving function

over the complete partial order (Γ, �).

For any two vectors q, p ∈ Γ, where q � p, we have

min{ yi∏
aij=1(1− qj)

, 1} ≤ min{ yi∏
aij=1(1− pj)

, 1},

for i ∈ N . According to Definition 3.5, the proposition holds.

Proposition 3.2. For the vector function F defined by (3.6), if there exist multiple

fixed points in (0, 1)N , then a least fixed point exists, which is less than or equal to

all other fixed points, according to the partial order “�” over the set Γ.

According to Definition 3.6, the vector function F defined by (3.6) is Scott-

continuous, because for every directed subset S of Γ, supF (S) = F (supS) ∈ Γ,

which follows from the order-preserving properties of F .

In summary, by Kleene fixed-point theorem, the vector function F defined by

(3.6) has a least fixed point, which is less than or equal to all other fixed points, in

the partial order “�”. Moreover, the least fixed point can be obtained by iterating

F on the least element of Γ, i.e.,

LFP(F ) = sup
n→∞

F n(0). (3.7)
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3.4.3 Initialization

Eq.(3.7) suggests that the players can choose initial MAPs q(0) = 0 to reach the least

fixed point by game iteration. Actually we are able to prove that the initial MAPs

q(0) can be set as any point in the set I ≡ [0, y1]× [0, y2]× · · · [0, yN ], i.e., q(0) � y.

This can be done using Kleene fixed-point theorem. By replacing Γ ≡ [0, 1]N with

Γ′ ≡ [q
(0)
1 , 1]× [q

(0)
2 , 1]× · · · [q(0)N , 1], one can easily use the earlier approach to show

that Γ′ is convex and compact, and can verify that (Γ′, �) is a complete partial

order. Moreover, from the structure of the continuous vector function F defined by

(3.6), one easily sees that F (q) � y � q(0), therefore F maps a point q from Γ′ to

Γ′ itself. Finally, one can also verify that F : Γ′ → Γ′ is a Scott-continuous vector

function. Therefore, by Kleene fixed-point theorem, the least fixed point can be

obtained by iterating F on the least element of Γ′, i.e.,

LFP(F ) = sup
n→∞

F n(q(0)), q(0) ∈ I. (3.8)

Notice that the actual feasible region for initial MAPs is larger than I. Later

in Section 3.6.1 we will numerically show that, for a stable NE, there exists a

neighborhood Ψ of this NE such that the system starting from any point in Ψ will

converge to this NE. However, while the value of the least fixed point is not known

at the point of evaluating, it might be sufficient to look for initial probabilities just

from the region I.

3.4.4 Discussion

The existence of a least fixed point is of great significance. If there exist multiple

fixed points (i.e., multiple solutions to (3.1)) in Γ, every selfish player will choose

the fixed point which is best for itself. If the least fixed point exists, then the MAP

for every player will be the least at this point, thus this fixed point is also the most

energy-efficient for every player. As a result, every player will choose this fixed

point as the operating point. Therefore, the least fixed point is the unique NE of

the generalized Aloha game. Finally, we have proved that the players can choose

any initial MAPs q(0) ∈ I to reach the least fixed point by game iteration. These

results have not been pointed out in the existing work published in [49] [60], where

the Aloha game model is first brought up.

On the other hand, (3.8) does not guarantee that such an iteration process is

stable, i.e., the solution may still diverge due to small disturbance at this fixed
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point. In the next section, we will discuss the method to prove the stability of the

NE.

3.5 Stability of the Equilibrium Point

This section investigates the stability of a generalized Aloha game defined by the

iteration process in (3.3). Stability is a desired property of the NE. A stable NE

can absorb small disturbances within a certain neighborhood Ψ, e.g., due to the

inaccuracy in estimating other players’ MAPs. On the other hand, if a NE is

not stable, then the game iteration process will diverge to some undesirable states

such as q = 1, which unfortunately leads to network congestion and results in

zero throughputs for everyone. Another motivation is that by understanding the

conditions to maintain network stability, we hope to acquire good knowledge to

design the intelligence inside future self-autonomous radios. We will discuss this in

section 3.6 using an example.

To prove the stability of the resulting NE, we follow the pattern from [49] and

approximate the generalized Aloha game by the Jacobi update scheme:

q(m+1) = q(m) + ε(F (q(m))− q(m)) (3.9)

where ε is a fixed small positive number and F is defined by (3.6). For sufficiently

small ε, (3.9) can be approximated by a continuous-time game:

q̇(t) = g(q(t)) = F (q(t))− q(t) (3.10)

In the presence of spatial reuse, functions defined in (3.6) do not have a sym-

metric structure since the MAPs of some of the players are missing in some of the

equations, depending on the network interference topology. As a result, the Lya-

punov function Λ(q) in [49] is no longer applicable to the scenarios with spatial

reuse. Therefore, it is necessary to develop a more general Lyapunov function to

examine the stability of the solutions.

3.5.1 Krasovskii’s Method

We use a new method to construct a Lyapunov function to prove system stability,

namely the Krasovskii’s method [44].

42



Theorem 3.3 (Krasovskii’s Method). Consider the non-linear system defined by

ẋ = g(x), with the equilibrium point of interest being the origin. Let J(x) denote

the Jacobian matrix of the system, i.e., J(x) = ∂g/∂x. If the matrix B(x) =

J(x) + JT (x) is negative definite in a neighborhood Ψ, then the equilibrium at the

origin is asymptotically stable. A Lyapunov function for this system is given by

Λ(x) = gT (x)g(x).

Define C(q) = −B(q) = −[J(q) + JT (q)], where J(q) is the Jacobian matrix of

the system in (3.10). For those fixed points in (0, 1)N , the entries of J(q) can be

calculated as follows:

[J(q)]ij = [∂g/∂q]ij = ∂gi
∂qj

=



−1 i = j

0 i 6= j, aij = 0
fi(q)

1−qj i 6= j, aij = 1

=

{
−1 i = j
aijfi(q)

1−qj i 6= j

(3.11)

Notice that at a fixed point in (0, 1)N , q̇(t) = g(q(t)) = F (q(t))− q(t) = 0, i.e.,

qs,i = fi(qs) =
yi∏

aij=1(1− qs,j)
. (3.12)

Therefore, the entries of C(q
s
) at the fixed point can be obtained from (3.11)

and (3.12):

[C(q
s
)]ij = −[J(q

s
) + JT (q

s
)]ij

=

{
2 i = j

− aijqs,i
1−qs,j −

ajiqs,j
1−qs,i i 6= j

(3.13)

An equivalent condition for the positive definiteness of C(q
s
) is stated in Lemma

3.1 [124].

Lemma 3.1. The real-valued square matrix CN×N is positive definite if and only

if detCi > 0 for i = 1, 2, · · · , N , where Ci is the leading principal sub-matrix of C

determined by the first i rows and columns.

Alternatively, a sufficient condition for the positive definiteness of C(q
s
) is that

C(q
s
) be diagonally dominant [124], i.e.,

N∑

j=1

(
aijqs,i

1− qs,j
+

ajiqs,j
1− qs,i

) < 2, ∀i ∈ N . (3.14)

If C(q
s
) is positive definite, according to the Krasovskii’s method, the follow-
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ing proposition holds with the corresponding Lyapunov function being Λ(q) =

gT (q)g(q).

Proposition 3.3. If there is a fixed point q
s
∈ [0, 1]N with C(q

s
) being positive

definite, then there is a neighborhood Ψ ⊂ [0, 1]N of q
s

such that: for any initial

MAPs q(0) ∈ Ψ, the function q(t) obeying the dynamics (3.10) will converge to

q
s
∈ Ψ as t→∞.

For sufficiently small ε, Proposition 3.3 can be adjusted to make a statement

about the convergence of (3.9) at a fixed point q
s
. Following the postulation in [49],

we also postulate that the fixed points that are stable for (3.10) are also stable when

ε = 1, i.e., for the original iteration (3.3).

In summary, we can verify the positive definiteness of C(q∗) in order to judge the

stability of the NE q∗ in a generalized Aloha game. Certain necessary and sufficient

conditions could be used, e.g., Lemma 3.1. Alternatively, the sufficient condition

given in (3.14) can also be used, which is easier to implement and gives almost the

same bound.

3.5.2 Stability Comparison between Multiple Fixed Points

Stability is a desired property of the NE. The price of instability is that the whole

network would be congested and nobody can transmit successfully. This subsection

compares the stability of the fixed points. Specifically, the following proposition

suggests that the least fixed point is more likely to be stable than other fixed points.

Therefore, the least fixed point not only is optimal in terms of energy efficiency, but

also carries less risk of instability.

Proposition 3.4. If the least fixed point is not stable in Aloha games, nor are other

fixed points.

Proof: Let’s investigate the entries of C(q
s
) from (3.13) first.

cij = [C(q
s
)]ij =

{
2 i = j

− aijqs,i
1−qs,j −

ajiqs,j
1−qs,i i 6= j

(3.15)

When i 6= j, cij is a non-increasing function of q
s

in the partial order “�”, i.e.,

if two fixed points satisfy q
s
� p

s
, then cij(qs) ≥ cij(ps),∀i 6= j.
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Define a function h(x, q
s
) as follows:

h(x, q
s
) = xTC(q

s
)x =

∑
2x2i +

∑

i 6=j

cij(qs)xixj, (3.16)

where x ∈ RN is the variable, and q
s

is a parameter.

Now suppose the least fixed point q∗ is not stable, i.e., C(q∗) is not positive

definite. According to the definition of positive definiteness [124], ∃x 6= 0, x ∈ RN ,

such that h(x, q∗) ≤ 0.

Since cij ≤ 0,∀i 6= j, we can always find an x with xixj ≥ 0, ∀i 6= j, such that

h(x, q∗) ≤ 0. For such a given x and any other fixed point p
s
� q∗, we have

h(x, q∗)− h(x, p
s
) =

∑

i 6=j

xixj(cij(q
∗)− cij(ps)) ≥ 0. (3.17)

Consequently, h(x, p
s
) ≤ h(x, q∗) ≤ 0, i.e., C(p

s
) is not positive definite. There-

fore, if the least fixed point is not stable, nor are other fixed points.�

In summary, we only need to focus on the stability of the least fixed point. If

it is not stable, then no stable equilibrium point exists; if it is stable, then it will

be the choice of all players, and the behavior of the remaining fixed points may not

be of our concern since they are not energy efficient even if the solution is stable.

The reason behind this can be easily interpreted as follows. If each player transmits

more often but achieves the same throughput, it is just an indication that it is likely

there are more collisions in the network and hence more likely that the network will

become congested.

3.5.3 How to Dynamically Converge to the Least Fixed

Point

We summarize our results. First, we construct an interference matrix A based

on a given distribution of players. Second, for a given target rate combination

y = [y1, · · · , yN ], we iteratively calculate the least fixed point q∗ of the vector

function F defined in (3.6) by choosing the initial point q(0) ∈ I. Third, we judge

the stability of q∗ by verifying the positive definiteness of the matrix C(q∗) given in

(3.13), based on Proposition 3.3. Finally, if the least fixed point q∗ is stable, then

all players can arrive at this equilibrium point through iterations, by choosing any

initial point from the set I.

In short, for a combination of target rates satisfying the stability conditions
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given by Proposition 3.3, all players can reach the least fixed point (i.e., the unique

NE of the game) as a stable operating point, by choosing any initial MAPs q(0) ∈ I,

among which 0 and y are two convenient choices.

3.6 Simulation Studies

In Section 3.6.1, we first demonstrate the existence of the least fixed point and the

use of the Krasovskii’s method to check its stability by using the three-player chain-

like topology. The actual iteration process is simulated so as to test the stability

of the fixed points predicted by the Krasovskii’s method. The Region of Attraction

(RoA) of the least fixed point is estimated by using the Lyapunov function. Then

we study the behavior of the fixed points with one varying parameter yi. Moreover,

the combinations of maximum achievable target rates for the players are plotted.

Finally, we go beyond the defined game and give simple illustrations on how future

autonomous players can make use of the developed theory to improve the overall

system sum-rate. In Section 3.6.2, our theory is applied to more complicated net-

work topologies to examine the maximum achievable target rates, with the objective

to understand the relationship between the spatial reuse capability and the network

connectivity.

3.6.1 Three-player Chain-like Topology

Least Fixed Point

We use the three-player chain-like topology in Fig. 2.1 as an illustration. Assume

y1 = y2 = y3 = 0.15, then the fixed points can be obtained by solving (3.1), which

yields 3 solutions: [qs,1, qs,2, qs,3] = [0.1952, 0.2316, 0.1952], [0.5451, 0.7248, 0.5451],

[1.4097, 0.8936, 1.4097]. Obviously the third solution is not feasible because two

of the MAPs are greater than 1. The first two solutions are in [0, 1]3 and are the

feasible solutions to (3.1). Denote the first solution as q∗ and second solution as p
s
.

It is obvious that q∗ � p
s
. Therefore, q∗ is the least fixed point.
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Krasovskii’s Method

The system dynamics is given by:





q̇1 = g1(q) = min{y1/(1− q2), 1} − q1
q̇2 = g2(q) = min{y2/(1− q1)(1− q3), 1} − q2
q̇3 = g3(q) = min{y3/(1− q2), 1} − q3

(3.18)

The entries of C(q
s
) evaluated at a fixed point q

s
can be obtained from (3.11)

and (3.12):

C(q
s
) = −[J(q

s
) + JT (q

s
)] =



2 − qs,1
1−qs,2 −

qs,2
1−qs,1 0

− qs,1
1−qs,2 −

qs,2
1−qs,1 2 − qs,2

1−qs,3 −
qs,3

1−qs,2

0 − qs,2
1−qs,3 −

qs,3
1−qs,2 2




(3.19)

We now verify the stability of q∗ and p
s

using the Krasovskii’s method by ex-

amining whether C(q
s
) given by (3.19) is positive definite. It can be claimed that

q∗ is stable while p
s

is not.

Game Iteration Process

The iteration process of the generalized Aloha Game is given by (3.3). To verify

the above claim about the stability of q∗ and p
s

using the Krasovskii’s method, set

y1 = y2 = y3 = 0.15, set the initial MAPs [q
(0)
1 , q

(0)
2 , q

(0)
3 ] equal to [y1, y2, y3] (P0), q∗

and p
s

separately, and run the process to see its actual performance.

We see from Fig. 3.1 that the iteration starting at P0 converges to q∗ within

10 iterations. On the other hand, we also see that the iteration starting at p
s

ends

up oscillating between two points, [0.1952, 1, 0.1952] and [1, 0.2316, 1]. Therefore,

q∗ is stable while p
s

is not. This is consistent with the previous claim using the

Krasovskii’s method.

Region of Attraction of the Least Fixed Point

The Region of Attraction (RoA) is defined as the set of all initial points from which

the system will converge to the equilibrium point as time goes to infinity [43]. As

was commented in [43], finding the exact RoA analytically might be difficult or even

impossible. However, the Lyapunov function can be used to estimate the RoA. From

Theorem 3.3 and Proposition 3.3, if the least fixed point is verified to be stable,
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Figure 3.1: The Iteration Process. P0 converges to q∗; p
s

is unstable.

then the neighborhood Ψ specified using the Krasovskii’s method is within the RoA.

Therefore, for the three-player chain-like topology with y1 = y2 = y3 = 0.15, we

estimate the RoA for the least fixed point ( i.e., the NE q∗), by verifying the positive

definiteness of C(q).

In Fig. 3.2, the region under the mesh surface provides an estimate of the RoA of

the NE q∗. Clearly the region I (the cuboid near the origin) defined in Section 3.4.3

is within the RoA and can be obtained much easier. However, such an estimation

is still quite conservative. For the described game iteration process, we actually

observe that the set of points satisfying q ≺ p
s

are all within the RoA of the NE q∗.

Bifurcation of the Fixed Points

For the three-player chain-like topology, we study here the behavior of the fixed

points with y2 varying, while keeping y1 = y3 = 0.15. For different values of y2, we

solve (3.1), and plot the solutions accordingly in Fig. 3.3 (denote the least fixed

point as q∗, the second fixed point as p
s
; the third solution is outside [0, 1]3).

From Fig. 3.3 we observe that, as y2 increases from 0 to 0.246, there exist

two real-valued fixed points q∗, p
s

with q∗ � p
s
. We verify using the Krasovskii’s

method that q∗ is stable while p
s

is not. When y2 = 0.246, q∗ and p
s

coincide and

obtain a critical equilibrium q∗
c

= [0.3138, 0.5223, 0.3138], which corresponds to a
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Figure 3.2: Estimation of the Region of Attraction for the NE q∗

zero eigenvalue of the Jacobian matrix J(q∗
c
). If y2 further increases, the fixed points

disappear, i.e., there is no real-valued fixed point in [0, 1]3 (except the extraneous

one q
s

= 1 introduced by including the bound qi = 1 in (3.6)). This phenomenon is

mathematically named as Fold Bifurcation [125]. This bifurcation is characterized

by a single bifurcation condition that the Jacobian matrix J(q∗
c
) has a codimension-

one zero eigenvalue at the critical equilibrium point [125].

Similar simulations with y1 or y3 being the varying parameter have been carried

out, and we observe similar fold bifurcation of the fixed points. Therefore, for the

three-player chain-like topology, we postulate that at most one stable fixed point

exists and it is the least fixed point.

We also extend the simulations to cases with more players and different topolo-

gies. Due to computational complexity of calculating all the solutions of (3.1), we

only examine cases with no more than 8 players. We observe three interesting phe-

nomena: (1) there are at most two real-valued fixed points in (0, 1)N ; (2) these two

fixed points exhibit fold bifurcation with any of the target rate yi being selected as

the varying parameter and the remaining fixed; (3) among these two fixed points,

the least fixed point is stable while the other is not, before they coincide and disap-

pear. However, a rigorous mathematical proof of such bifurcation behavior of the

fixed points is still difficult, and might require further investigation.

In the next two subsections, we demonstrate how to extend the results obtained
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from the stability study and apply beyond the described game.

Feasible Region of Target Rates

We compare the maximum achievable target rates between a three-player chain-like

topology and a fully connected topology (conventional Aloha games). We vary the

combinations of the players’ target rates [y1, y2, y3] and use the iterative approach

to evaluate the least fixed point until the stability of this point cannot be achieved.

We then plot the contour of y2 for some given [y1, y3].

From Fig. 3.4, it can be seen that the maximum achievable target rates in three-

player chain-like topology are larger than those of the fully connected topology. For

example, notice that [y1, y3] = [0.15, 0.15] is below the target rate contour y2 = 0.15

of the chain-like topology, thus the combination [y1, y2, y3] = [0.15, 0.15, 0.15] is

achievable and a stable NE can be found. However, the same combination is not

achievable for the fully connected topology.

An alternative way of illustrating the feasible target rate region (the region

under the mesh surface) for the three-player chain-like topology is shown in Fig.

3.5. The upper boundary of this feasible region is the Pareto front [19], i.e., each

point on the mesh surface is a target rate combination that achieves the Pareto

optimal bandwidth utilization.

50



y1

y3

Maximum Achievable Target Rate Contours

 

 

y2=0.001

y2=0.15

0.3
0.6

y2=0.001

y2=0.15

0.3
0.6

[y1,y3]=[0.15,0.15]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
y2 in fully−connected network
y2 in chain−like network

Figure 3.4: Contour Plot of the Maximum Achievable Target Rate

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y3

y1

y
Pareto

y
feasible

y 2

y1

Figure 3.5: Feasible Target Rate Region for the 3-Player Chain-like Topology

Improving System Sum-Rate

Now suppose the three players have chosen [y1, y2, y3] = [0.15, 0.15, 0.15] as their

target rates. According to the previous results, they will arrive at a stable oper-

ating point q∗=[0.1952, 0.2316, 0.1952]. At this operating point which is the NE,
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kmax or bmax y q∗ Σyi
original
demand 1 [0.15,0.15,0.15] [0.1952,0.2316,0.1952] 0.45
y → ky 1.27 [0.1905,0.1905,0.1905] [0.3336,0.4290,0.3336] 0.5715

q∗ → bq∗ 1.94 [0.2086,0.1734,0.2086] [0.3787,0.4493,0.3787] 0.5905

Table 3.1: Improving Sum-Rate by Proper Pricing Strategies

since the network is not fully loaded, intelligent players have the opportunity to

further increase their throughputs until the network becomes critically stable, so

as to achieve a better spectrum utilization efficiency. In the process of adjusting,

all players should also ensure that the process is still governed by the underlying

stability conditions defined by the generalized Aloha game.

There are many ways to achieve this and we will get different sum rates and

fairness for all players. Two direct ways are: (a) each player proportionally increases

its demand from yi to kyi, where k ≥ 1. (b) each player proportionally increases its

MAP from q∗i to bq∗i , where b ≥ 1. The results are summarized in Table 3.1.

This example shows that we can increase the sum rate of all players by proper

pricing strategies or some commonly agreed target-rate adjusting rules which guar-

antee certain criteria of fairness and maintain network stability. Conversely, the

pricing strategies or target-rate adjusting rules can also be used to bring the target

rates of the players back to the feasible region, if the players are over demanding

and the resulting network is congested. The rationale behind this study is as fol-

lows. For future autonomous radios which compete to transmit like in the ISM

band, we would like each device to equip with intelligence so that while competing

to transmit, each transmission pair is also governed by the underlying rules so that

maximum throughput can be achieved without affecting the network stability. This

will result in a win-win situation for all transmission pairs. More vigorous design

approach can be found in Chapter 4 and Chapter 5.

3.6.2 Spatial Reuse Gain versus Connectivity

Consider a distributed network with N players, which are randomly placed in a

square region of a given area. One half of the players will have transmission range

of 5 unit length, while the other half of players have transmission range of 3 unit

length. For simplicity, we assume that all the distances between any transmitter

and its designated receiver are much smaller than the distances between any two

transmitters, so that a Tx-Rx user pair can be represented by a single node in the
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topology. We further assume that those players who are in each other’s transmission

range will have significant interference on each other, and the two nodes are said

to be connected. The interference matrix can then be constructed based on the

generated network topology.

Performance as Player Density Increases

Player density is defined as the number of players per unit area. We first set

N = 20, and the player density is increased by decreasing the spatial area under

consideration. For each given player density, we run the simulation 100 times.

Each time a random topology is generated, and for simplicity, we assume that all

players have the same target rate. We increase this common target rate in steps

of 0.001, and run the Krasovskii’s method until the least fixed point is no longer

stable. Consequently, this NE corresponds to the MAPs for the players to achieve

the maximum target rate.

Fig. 3.6 shows that both the average throughput and the average MAP decrease

as the player density increases. The average throughput curve gradually approaches

the lower limit in which all players are fully connected (which is equivalent to the

conventional Aloha games).

Performance as Number of Players Increases

In this subsection we fix the player density at 0.1, and increase the number of players

by increasing the spatial area.

Fig. 3.7a shows that the average throughput and MAP for the players decrease

as the number of players increases, for both fully connected network and the gener-

alized Aloha game. It can be seen that the average throughput in the generalized

Aloha game is significantly higher than that in a fully connected network. The

achievable average throughput of the fully connected network drops below 0.01

when there are more than 40 players. This is comparatively low when compared to

the generalized Aloha game, whose average throughput stays above 0.04 even when

there are 100 players. We skip the simulation for the fully connected network when

the number of players is more than 50.

Fig. 3.7b shows that the total throughput for the generalized Aloha game in-

creases almost linearly as the number of players increases. On the other hand, the

total throughput for the fully connected network remains at a low level around 0.37.
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Relationship between Total Throughput and Connectivity

Define connectivity as the total number of links in the current network versus the

total number of links in the fully connected case. In particular, connectivity equals

to 1 in the conventional Aloha games. Connectivity therefore serves as an indication

of spatial reuse capability. From the above observations, it can be seen that if the

network is nearly fully connected, i.e., most of the players are within the interference

range of each other, its throughput resembles to that of a conventional Aloha game.

As the network connectivity drops, either due to decreased player density or due

to a larger spatial area compared to the transmission range, the total achievable

throughput increases, indicating an increased spatial reuse capability. We therefore

postulate that there could exist a relationship between the reuse capability versus

the network connectivity. We will use the data from the above two subsections, and

present the relationship between total throughput and connectivity.

Fig. 3.8 shows that the total throughput decreases as the connectivity in-

creases, regardless of the number of players involved. The relationship between

total throughput (Y ) and connectivity (X ) can be approximated by an empirical
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formula:

Y =

{
0.95 ∗X−0.47 0.001 ≤ X < 0.1

0.37 ∗X−0.82 0.1 ≤ X ≤ 1
(3.20)
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Notice that when connectivity is sufficiently low (below 0.001), the network

actually degenerates into several independent connected sub-networks, whose con-

nectivity is higher than the original network. In that case, we can apply the above

formula separately to each connected sub-network.

3.7 Conclusions

In this chapter, we extend the slotted Aloha games to spatial reuse scenarios,

namely, generalized Aloha games. We use fixed point theory and order theory

to prove the existence of a unique NE in the generalized Aloha game. In particu-

lar, we use the Kleene fixed-point theorem to prove the existence of a least fixed

point, which is the unique NE of the game and the most energy-efficient operating

point for all players. We then propose to use the Krasovskii’s method to prove the

stability of the NE. After obtaining the conditions for system stability, we further

prove that if the least fixed point is not stable, nor are other fixed points. These

findings ensure the ease in finding the NE of a generalized Aloha game as we only

need to focus on the least fixed point. If this point is stable, then all players can

arrive at this NE through game iteration, by conveniently choosing 0 or y as the

initial point.

We then show through simulation that the theory derived can be applied to

large-scale distributed systems with complicated network topologies to study the

maximum achievable throughput. An empirical relationship between the network

connectivity and the achievable total throughput is finally obtained through simu-

lations.

Pricing strategies or some target-rate adjusting rules are required to bring the

target rates within the feasible region. This chapter has not yet addressed such

issues for the generalized Aloha game, despite the simple illustration via the example

of the three-player chain-like topology. Extension to this work could be the design

of pricing strategies or target-rate adjusting rules for the players in a distributed

manner to bring the target rates within the feasible region, or more desirably, toward

an optimal combination of target rates which maximizes the total throughput of all

players given certain fairness criteria. This motivates our works in Chapter 4 and

Chapter 5.
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Chapter 4

A Heuristic Algorithm to Approach

Pareto Front in Spatial Aloha Net-

works

4.1 Introduction

In this chapter, we go beyond the generalized Aloha game in Chapter 3, and study

how future autonomous radios can make use of the developed theory in decision

making to improve the overall system performance. For example, consider the sce-

narios where autonomous Tx-Rx user pairs (i.e., players) are competing among

themselves to transmit over the channel. If some or all the players are over-

demanding (total target rate beyond the network capacity), the resulting network

is unstable and all pairs will suffer from network congestions. On the other hand, if

the players set a low target rate, the network is stable but the bandwidth is not fully

exploited. We therefore call for a set of target-rate adjusting rules which are com-

monly agreed by the players, and enable the players to improve their throughputs

without affecting the network stability. This will result in a win-win situation for

all transmission pairs. In order to accomplish such goals, we therefore develop an

autonomous Pareto optimality achieving algorithm beyond the generalized Aloha

game.

Our main contributions in this chapter are as follows. First of all, we implement

the algorithm in a fully distributed manner, which requires no information exchange

among the players. As is commented in [50], the cost of information gathering needs

to be considered when designing games in communication networks. In our algo-

rithm, each player measures its current throughput and uses it to make myopic
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best response to the current channel idle rate. Therefore, there is no communica-

tion overheads in performing information exchange among the players. Moreover,

channel sensing is necessary and needs to be performed only once for a player to

set its initial target rates when it joins the network. Secondly, we design a set of

target-rate adjusting rules to control the players’ behaviors in a distributed manner.

Each player uses its measured throughput to dynamically adjust its target rate so

that all players have their throughputs adaptively approaching the Pareto optimal

bandwidth utilization. The predefined rules can be set to guarantee certain criteria

of fairness. Finally, the algorithm is robust and can handle various practical issues

such as dynamic arrival/departure of players, parameter estimation errors, etc.

We present the details of our algorithm in Section 4.2, then we describe how the

measured throughput can be obtained from practical channel collision scenarios in

Section 4.3. We test our algorithm through simulations in Section 4.4 and conclude

the chapter in Section 4.5.

4.2 Fully Distributed Algorithm

From the analytical results in Chapter 3, we know that there exists a feasible region

of the target rate combination y. The upper boundary of this feasible region is the

Pareto front [19]. We illustrate the feasible target rate region (the region under the

mesh surface) for the 3-player chain-like topology in Fig. 4.1. Each point on the

surface is a target rate combination that achieves the Pareto optimal bandwidth

utilization.

The overall design objective is to achieve Pareto optimal bandwidth utilization

for all players. While all the players self-adjust their target rates to approach the

Pareto front, it is necessary to guarantee system stability with a predefined way

of maintaining certain fairness among the players. The general ideas behind such

target rate adjustment are as follows:

1) Suppose the initial target rate combination y
init

is within the feasible region

(as illustrated in Fig. 4.1). After the system is stabilized and y
init

is achieved, the

players find that there is room to increase their transmission rates, thus repeatedly

increasing the target rates in some predefined manner until reaching a point y
div

beyond the Pareto front.

2) Since y
div

is outside the feasible region, the system will diverge to q = 1,

and θ = 0. We can then reduce y
div

in some predefined manner to bring it back

to the feasible region. We can refine the steps of decrement so that the target rate
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Figure 4.1: Feasible Target Rate Region, 3-Player Chain-like Topology

combination will come to a point y
Pareto

on the Pareto front.

3) We should guarantee certain criteria of fairness among the players. For ex-

ample, a player with a larger target rate should increase less when the target rate

combination goes from y
init

to y
div

, and decrease more when it goes from y
div

to

y
Pareto

.

The above target rate adjusting mechanism is designed to provide best effort

transmissions for users with elastic traffic. This is different from [60] which is de-

signed for users with inelastic bandwidth requirements, though they both try to

adjust the target rates to maintain system stability and achieve better bandwidth

utilization. Another difference is that the target rate adjustment in [60] is centrally

controlled by network pricing strategies. As a result, our model can find its appli-

cations when distributed Tx-Rx pairs are competing among themselves to transmit

over the channel. If everyone wants to transmit more, the interference level will

be high and all pairs will suffer, whilst if everyone transmits at a low probability,

the bandwidth is not fully exploited. Therefore, we would like each device to equip

with intelligence so that while competing to transmit, each transmission pair is also

governed by the underlying rules so that maximum throughput can be achieved

without affecting the network stability.
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4.2.1 System Diagram

In the channel collision model, each player i transmits with a certain probability qi.

Simultaneously transmitted packets are either successful or in collision according

to the relationship specified by the interference matrix. Then each player i can

monitor its successful rate (throughput) θi, and use it to 1) make myopic best

response to the current channel idle rate; 2) dynamically adjust its target rate from

yi,init according some pre-installed target-rate adjusting rules. For the example of

3-player chain-like topology, the general implementation scheme is shown in Fig.

4.2.
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Figure 4.2: System Diagram for 3-Player Chain-like Topology

4.2.2 Myopic Best Response to Channel Idle Rate

The channel idle rate of player i’s neighborhood is defined as the probability that

none of player i’s neighbors are transmitting in a slot, i.e., xi :=
∏

aij=1(1 − qj).

Given a target rate yi, player i’s myopic best response to the channel idle rate in the

(m+ 1)th iteration is given in (3.3). Since a fully distributed algorithm requires no

information exchange among the players, xi should be estimated by player i itself.

For the initial channel idle rate x
(0)
i , a one-time channel sensing is needed,

i.e., player i listens to the channel for some time and counts the number of idle

slots to obtain x
(0)
i . Afterwards, player i starts transmitting, and x

(m)
i , (m ≥ 1)
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can be obtained from the measured throughput θ
(m)
i , which requires no chan-

nel sensing. Specifically, since the measured throughput in the mth iteration is

θ
(m)
i = q

(m)
i

∏
aij=1(1− q

(m)
j ) = q

(m)
i x

(m)
i , we then have x

(m)
i = θ

(m)
i /q

(m)
i .

4.2.3 Pre-Installed Target-Rate Adjusting Rules

Initializing Target Rates

When player i powers on, it first synchronizes to its neighbors. Then player i sets

its initial target rate yi,init based on x
(0)
i . During the one-time sensing process,

player i also finds the number of active neighbors, i.e., Ni =
∑

j aij. Then player i

uses x
1/Ni

i to calculate the geometric mean of 1− qj,∀j with aij = 1. Player i then

assumes the MAP of every of its neighbors to be q̄−i := 1− x1/Ni

i .

In terms of fairness, we set player i’s initial target rate in approximation to

the average target rate of its neighbors. Since the achieved throughput of a player

is no larger than its MAP due to collisions, therefore, under the current q̄−i, we

guess the average target rate of player i’s neighbors ȳ−i ≤ q̄−i. Therefore, we design

yi,init = q̄γ−i, in which the exponent parameter γ ≥ 1 so that yi,init ≤ q̄−i.

We also apply a minimum and a maximum initial target rate minit and Minit

(0 < minit < Minit ≤ 1). minit is needed in the case that none of player i’s neighbors

are active when player i powers on, and hence player i attempts to transmit with

a small initial target rate. Minit is used to proportionally control the size of the

increment. Therefore, the Target Rate Initializing Curve is designed as:

yi,init = max{minit,Minit · q̄γ−i}, γ ≥ 1. (4.1)

Increase Target Rates from Inside to Outside the Feasible Region

After the system stabilizes and y
init

is achieved, we can increase the target rates by

a step size, and wait for the system to stabilize again. Then we increase the target

rates again until the system diverges (with target rate combination y
div

).

Based on fairness criteria, the player who currently has a larger target rate

should increase less in the above process. Conversely, the player who has a smaller

target rate deserves a larger step size. The Target Rate Increment Curve is given

in (4.2). Minc is used to proportionally control the increment size, while (1 − yi)α
is used so that the increment steps are refined and gradually decrease as the target
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rate increases.

∆i,inc = Minc · (1− yi)α, α ≥ 1, 0 < Minc ≤ 1. (4.2)

Reduce Target Rates from Outside the Feasible Region to the Pareto

Front

Since the system diverges under y
div

, we reduce the target rates by a step size and

wait for the system to stabilize. If the system still diverges, we reduce the target

rates again until the system becomes stable (with target rate combination y
Pareto

).

Based on fairness criteria, the player who currently has a larger target rate

should decrease more. The Target Rate Decrement Curve is given in (4.3). Mdec

is used to proportionally control the size of decrement, while yβi is used so that the

decrement steps are refined and gradually decrease as the target rate decreases.

∆i,dec = Mdec · yβi , β ≥ 1, 0 < Mdec ≤ 1. (4.3)

When player i detects divergence and reduces its target rate from yi to y′i, it

will lock the MAP qi = y′i for some time, so that the previously high contention it

caused to other players will be removed.

Increase Target Rates again when Channel Idle Rate Significantly Rises

The system finally settles down and achieves maximum bandwidth utilization y
Pareto

.

Later when some of player i’s neighbors leave the collision channel, player i might

detect significant rise of the channel idle rate. In such cases, it will attempt to

increase its target rate again. The curve in (4.2) can be used again to increase the

target rates. An alternative way is to predict the amount of increment currently

available for player i, and set the increment accordingly.

The amount of increment available for player i is upper bounded by ( xi
xi,inf
−1)yi.

xi,inf is the lowest value of xi recorded whenever the system is stable. In other words,

xi,inf stands for the highest level of contention under which the system is still stable.

(xi,inf should be reset to 1 and recorded again when divergence happens.) If we

observe that xi = b · xi,inf , (b ≥ Mrise > 1), i.e., there is a significant rise of the

channel idle rate, and we keep qi unchanged, then ideally we can achieve a higher

throughput θ′i = qi · xi = qi · b · xi,inf = b · θi. Therefore, the amount of increment

available for player i is upper bounded by ( xi
xi,inf

− 1)yi.

Another design principle is based on fairness criteria. The player who has a
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larger target rate should increase less aggressively, although it might have a larger

amount of increment available. Therefore, we apply a factor of (1 − yi)ρ, ρ ≥ 0 to

the target rate increment. Finally, the Target Rate Increment Curve (Channel Idle

Rate Rises) is given in (4.4).

∆i,inc2 = (xi/xi,inf − 1)yi · (1− yi)ρ, ρ ≥ 0 (4.4)

4.2.4 Measured Throughput Characteristics

The measured signal is the throughput θi that player i achieves during one iteration

time. We need to characterize it to judge the convergence or divergence of the

system.

When the system is converging, the absolute gap between the target rate and

the measured throughput will diminish with time, and finally go to 0 when the

system becomes stable. The dynamic characteristics is |yi − θ(m)
i | ≤ |yi − θ(m−1)i |.

The steady-state characteristics is |yi − θi| ≤ mgap, where mgap is a small positive

threshold value.

When the system is diverging, the measured throughput θi is less than the

target rate yi, and θi keeps decreasing until it becomes 0. During the diverging

process, the dynamic characteristics is yi − θ
(m)
i > yi − θ

(m−1)
i > 0. If θi drops

below a certain threshold, i.e., yi− θi ≥Mgap > 0, player i will judge the system as

diverging. Another scenario for player i to judge system divergence is that player i

has reached the dead-end situation, i.e., qi = 1, θi = 0.

4.3 Modelling Practical Packet Collisions

4.3.1 Estimating Throughput

So far we have been using the mathematical model in (2.1) to model the channel

collisions. We now describe how player i’s throughput can be estimated from prac-

tical packet collision scenarios. Suppose each iteration consists of LI slots. In the

mth iteration, player i generates bq(m)
i · LIc packets, and randomly scatter these

packets in the LI slots. We then use the interference matrix to judge the status

of each player’s packets, i.e., successful or in collision. Then player i counts the

number of successful packets N
(m)
suc,i in the mth iteration. Its throughput is then

estimated by θ̂
(m)
i = N

(m)
suc,i/LI . This θ̂i is used as the measured throughput in our

algorithm.
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4.3.2 Measures Taken to Handle Estimation Error

1) The estimation error of θ̂i compared to its genuine value θi is mainly affected

by the iteration length LI . The larger LI is, the smaller the estimation error.

However, a larger LI also means that it takes longer time (even with the same

number of iterations) for the system to converge.

2) We apply a Lq-taps mean-value filter to player i’s MAP qi, so as to smooth

out the trembling effect introduced by the estimation error of θ̂i.

3) We compose every LB iterations as a block, and assume the players to be block

synchronized. Player i makes a judgement about system convergence or divergence

at the end of each block. The measured throughput is averaged over each block to

reduce the effects of the estimation error. In this way, the judgements made will

result in smaller errors.

4.4 Simulation Studies

We implement our scheme for N = 11 players with an interference topology given

in Fig. 4.3. The parameters for the target rate adjusting curves are: γ=1.5,

minit=0.01, Minit=0.8; α=25, Minc=0.02; β=1.2, Mdec=0.2; ρ=0.35, Mrise=1.1.

The threshold parameters for the measured throughput characteristics are: mgap=0.005,

Mgap=0.025. The parameters for the practical packet collision model are: LI=2000,

Lq=10, LB=4. Suppose the channel bit rate is 20Mbps and the packet length is 100

bits, then the slot time is 5µs. In this case, LI=2000 means that iterations take

place every 10 ms.

1

2

3

4

5

6

7

8

9

10

11

Figure 4.3: Interference Topology for 11 Players
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The simulation consists of 3 phases. Phase 1 : Player 1 ∼ 10 power on se-

quentially at iterations = 1, 10, 20, 30, · · · , 90, while player 11 remains at power-off.

Phase 2 : Player 11 powers on at iterations = 2000. Phase 3 : Player 1 powers off

at iterations = 4000. The results are plotted in Fig. 4.4.
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Figure 4.4: Behaviors of Player 1 and Player 11

Phase 1 : Player 1 ∼ 10 power on sequentially, and the system settles down

within 1000 iterations. Upon starting up, player 1 attempts transmitting with a

small initial target rate. Then it gradually increases the target rate in diminishing

steps until the system diverges. When divergence is detected, player 1 reduces its

target rate in diminishing steps. The procedure repeats until the system becomes

stable and achieves ŷ
Pareto

close to the Pareto front. Notice that there exists a

trade-off between the convergence time and the distance to the Pareto front. If we

decrease the target rate in very small steps, then ŷ
Pareto

will be very close to the

Pareto front. However, the system will experience a longer period of divergence

before it settles down.

We can use the analytical method in Chapter 3 to find the “distance” between

ŷ
Pareto

and the Pareto front, i.e., we proportionally increase ŷ
Pareto

until it is not

achievable according to the analytical method. The increased ratio k(k ≥ 1) then

indicates such distance. For phase 1, k = 1.05. In addition, the mean value and

standard deviation of ŷ
Pareto

is 0.0689 and 0.0093 respectively. The standard de-

viation is small compared to the mean value, thus suggesting a certain degree of

fairness among the players. Finally, the estimation error of θ̂i is well handled, and
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the steady state error between the average θ̂i and yi is close to 0.

Phase 2 : Player 11 sets y11,init close to the current target rates of its neighbors.

As player 11 gradually increases its target rate and raises the contention level of

its neighbors, the system diverges some time later. Both players 1 and 11 detect

divergence and reduce their target rates. The process repeats until the system

stabilizes with k = 1.08. The mean value and standard deviation of ŷ
Pareto

is

0.0653 and 0.0131 respectively.

Phase 3 : Player 1 powers off and player 11 detects significant rise of the channel

idle rate, thus increasing its target rate based on the prediction given in (4.4).

The system finally stabilizes again with k = 1.09. The mean value and standard

deviation of ŷ
Pareto

is 0.0770 and 0.0100 respectively.

Brief summary : Phase 1 illustrates the target-rate adjusting rules envisioned

at the beginning of Section 4.2. The target rate increment process and decrement

process are illustrated. After the adjustment, the system stabilizes and achieves

close to Pareto optimal bandwidth utilization (distance to Pareto front k = 1.05,

close to 1). Phase 2 demonstrates the dynamics in the players’ throughputs when

a new player enters the system. The newly entered player chooses a proper initial

target rate close to the average value of its neighbors. Moreover, after dynamic

target rate adjustment, the system becomes stable again and achieves close to Pareto

optimal performance (k = 1.08). Phase 3 demonstrates the case when an existing

player leaves the system. The remaining players are able to detect the bandwidth

opportunity left over by the leaving player, and adjust their target rates accordingly

so that the system still operates at a point close to the Pareto front (k = 1.09).

Finally, the standard deviation of ŷ
Pareto

is small compared to its mean value in

Phase 1 ∼ 3 respectively, suggesting a certain degree of fairness among the players.

4.5 Conclusions

This chapter goes beyond the Aloha games with spatial reuse in Chapter 3, and

develops an autonomous Pareto optimality achieving algorithm that enables the

players to maximize their throughputs without affecting the network stability. The

algorithm is implemented in a fully distributed manner, which requires no infor-

mation exchange among the players. Our simulations show that the system indeed

achieves close to Pareto optimal performance while guaranteeing a certain degree

of fairness. The algorithm is robust and can handle various practical issues such as

the dynamic arrival/departure of players, parameter estimation errors, etc.
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Chapter 5

Efficient and Scalable Distributed

Autonomous Spatial Aloha Networks

via Local Leader Election

5.1 Introduction

In this chapter, we consider a distributed wireless network in which a group of Tx-Rx

user pairs share a common collision channel via slotted-Aloha-type random access.

These users are allowed to reuse the channel if they receive negligible interference

from others. Such a network model is studied using stochastic geometry by Baccelli

et al. in [126], and named as spatial Aloha. In [126], the Poisson bipolar network

model has been used, where the locations of the transmitters are modeled as a

homogeneous Poisson point process. Based on the assumption of homogeneity,

the network-wide performance of a large distributed network can be derived from

the statistical average performance of a typical user. These approaches predict

the achievable performance of the network but give no information about network

stability during its operation. Indeed, it is mathematically challenging to obtain the

stability conditions of the equilibrium solutions due to the nonsymmetric structure

in the equations formulated for a partially connected network. How to enable

the autonomous users to self-behave yet achieve high efficiency, good fairness and

operation stability becomes the design objectives. This motivates our work in this

chapter.

For better utilization of spatial reuse and network scalability, clustering is used in

our design. Clustering algorithms in wireless networks typically appear in the con-

text of ad hoc [127] [128] and sensor networks [129], where a flat network topology
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is divided into a set of connected clusters that cover all nodes in the network. These

algorithms are mainly designed to perform cluster-based routing and to achieve scal-

able network management, whereas our proposed clustering method tries to resolve

the concurrent transmission issue among Tx-Rx pairs, and focuses on the attainable

throughput and the stability of the spatial Aloha network. In [130], a cluster of

sensor nodes operating in slotted Aloha is studied. The authors consider the issue of

partitioning the nodes and available frequencies into groups so as to maximize the

system throughput. However, the setting is different from ours since we focus on the

single channel case and with spatial reuse. In [131], the authors study the effect of

clustered topologies on the throughput of spatial Aloha using stochastic geometry.

The results suggest that if the nodes have local information about their topologi-

cal neighborhood, then the system performance can be improved if the nodes can

locally adjust their transmission parameters, which also motivates this work.

Instead of viewing the distributed network from the statistical perspective, we

zoom into the micro-level design of a deployed network with any given topology.

We specifically develop tailored algorithms so that each user has self-autonomous

capability to enable the network to operate at one stable equilibrium solution that

is close to the Pareto-front [19] throughput predicted by the generalized Aloha

games in Chapter 3. In the algorithm proposed in Chapter 4, the distributed users

heuristically search for Pareto-front target rates, and the system indeed settles down

with a target rate that is close to the Pareto front. However, the users using such

a heuristic approach have to monitor the channel activities continuously, and will

experience several fluctuations before settling down since the network has to be

driven into the unstable region to detect the crossing of the Pareto front. As the

network size increases, the system will experience more fluctuations and take longer

time to converge. Hence it is worth to look into how to design a fast self-adaptive

network rigorously.

To provide faster convergence to a stable operating point that is close to the

Pareto-front throughput predicted by the generalized Aloha game, we apply the

control theoretic approach to update the MAPs of spatial Aloha networks in this

chapter. The control theoretic approach is used to provide reliable and optimal

configuration of 802.11 WLANs [132], however, no spatial reuse is considered as

only one common access point is used. Similar approaches have also been applied to

implement the Distributed Opportunistic Scheduling (DOS) algorithm [133], where

each node contends for the channel with a certain access probability and gives up the

transmission opportunity if the channel quality is below a certain threshold. The
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authors further propose a game-theoretic approach to design a decentralized penalty

mechanism to control selfish users [134]. However, although the PHY layer channel

quality is jointly considered with the MAC layer channel contention in DOS, spatial

reuse has not been included in their study. PI controllers are adopted in the above

works. Other applications of PI controllers include the design of feedback-based

clock synchronization in wireless sensor networks [135].

The novelties of our proposed Spatial Aloha via local Leader Election (SALE)

scheme [136] are listed as follows:

• Each user can self-regulate its transmission parameter to ensure that the net-

work always operates in the stable region and yet achieves close-to-Pareto-front

throughput, by using only local information about its neighbors.

• Rigorous theoretical reasoning for a condition to achieve the above objective.

By using the stability conditions derived in the generalized Aloha game [2], we

show that a local parameter Radio Intensity Metric (RIM), denoted as R, can be

used to indicate the cumulative radio intensity level of each user within its one-hop

communication range — a RIM value of less than or equal to 2 for all users can

guarantee network stability.

• The implementation aspects including the integration of PI controllers on local

leaders are addressed. As commented by [132], one of the key issues in building the

control system is to discover a constant reference signal which relates to the desired

system performance (e.g., maximum throughputs). Specifically, a user which has

the maximum node degree in a certain neighborhood is elected as the local leader,

and the remaining users in this neighborhood follow the same value of MAP. Each

local leader adjusts its MAP according to the value of RIM computed based on its

local information, and uses R=2 as the constant reference signal in its built-in PI

controller.

• Fast and smooth tuning of MAP. The PI parameters in the controller are

designed to achieve a good trade-off between fast convergence and the transient

behavior. On the contrary, the heuristic algorithm in Chapter 4 is an engineering

approach with no guarantee in convergence rate, and the network operating point

would experience several fluctuations before settling down.

• Fast convergence regardless of the number of users or user densities, which

is guaranteed by the Ziegler-Nichols rules (see Section 5.3.3) that adapt the PI

parameters to various user densities (associated with different node degree at the

local leader).

• Low complexity, high scalability and low signalling overhead compared to the
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heuristic algorithm. See Section 5.3.6.

• Extensive simulations are performed to verify that the proposed SALE scheme

has much faster convergence rate, better scalability and better fairness than the

heuristic algorithm, while achieving close-to-Pareto-front throughputs.

The rest of the chapter is organized as follows. We investigate the throughput

optimality conditions in spatial Aloha Networks and introduce the design param-

eter RIM in Section 5.2. Based on RIM, we design the control system for the

SALE scheme in Section 5.3. Then we evaluate the system performance through

simulations in Section 5.4. We conclude the chapter in Section 5.5.

5.2 Throughput Optimality Conditions

In this section, we explain how a local parameter RIM can be defined and utilized

by each user in the spatial Aloha network to judge for system optimality using only

local information.

5.2.1 Optimal Conditions

For any MAP vector q = [q1, q2, · · · , qN ] ∈ [0, 1]N , the N equations in (2.1) define

a vector function θ(q) = [θ1, θ2, · · · , θN ], whose value space is an N -dimensional

region. The upper boundary (θi > 0,∀i ∈ N ) of this region is formed by the critical

values of θ(q), with the critical points q ∈ (0, 1)N . Mathematically, this corresponds

to the Jacobian matrix J = δθ
δq

being singular [137], i.e., the determinant of J at the

critical point is 0:

det(J) = | δθ
δq
| = D(q) ·

N∏
i=1

∏
aij=1(1−qj)

1−qi = 0

⇒ D(q) = 0,

(5.1)

where

D(q) =

∣∣∣∣∣∣∣∣∣∣∣

1− q1 −a12q1 · · · −a1Nq1
−a21q2 1− q2 · · · −a2Nq2

...
...

. . .
...

−aN1qN −aN2qN · · · 1− qN

∣∣∣∣∣∣∣∣∣∣∣

. (5.2)

Similar derivations for the maximum throughputs of the original Aloha system

(centralized, no spatial reuse) can be found in Section III-B of [138] by Abramson.

Notice that when the network is fully connected, i.e., aij = 1,∀i 6= j, (5.1) is
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equivalent to formula (26) (27) in [138]. In a very specific case, if all MAPs are

equal to q in a fully connected network of N users, then the maximum throughput

is achieved at q = 1/N .

Since D(q) involves all the MAPs and the complete interference matrix A, it is

not possible for an individual user to test for this optimal condition. In practice,

generally only local information about neighbors is readily available for each user.

To acquire information beyond this will require large transmission overheads and the

design will suffer from large delay. We therefore shall look for certain sub-optimal

yet locally implementable testing conditions. The optimal condition in (5.1) gives

the maximum throughput boundary and can be used to benchmark the optimality

of any sub-optimal schemes.

5.2.2 Sub-optimal Conditions

From the analytical results in Chapter 3, a sufficient condition for a target rate y to

be feasible is that we can find a corresponding operating point q so that the matrix

C(q) is positive definite. We retrospect on the analysis in Section 3.5 and find a

sufficient condition for C(q) to be positive definite, i.e., C(q) is strictly diagonally

dominant [124]:

Ri =
N∑

j=1,j 6=i

(
aijqi

1− qj
+

ajiqj
1− qi

) < 2, ∀i ∈ N . (5.3)

Here we define Ri as the Radio Intensity Metric (RIM) for user i. In other words, if

(5.3) is satisfied, the corresponding target rate y is achievable, i.e., at the operating

point q, the throughput θi equals to the target rate yi,∀i ∈ N , or the target rate

falls within the feasible region (but not necessarily on the maximum throughput

boundary). The converse of this, on the other hand, is not necessarily true.

We now examine the physical meaning of RIM. Firstly, RIM is a local metric

since Ri consists of qi and the qj terms with aij = 1, i.e., each user i only needs the

information about its neighbors to calculate the parameter Ri. Secondly, from (5.3)

we observe that Ri is related to the number of user i’s neighbors, i.e., Ni =
∑

j∈N aij.

Also notice that Ri is monotonic with respect to qi and qj(aij = 1). In other words,

the more neighbors with the higher MAPs, the larger the value of Ri. Therefore,

RIM can be used to indicate the cumulative radio intensity level in the neighborhood

of user i.

After all the Ri,∀i ∈ N are obtained, the condition (5.3) is sub-optimal to (5.1)
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but is now locally implementable. The basic implementation idea is to tune the

MAPs of all users so that the condition (5.3) is critically satisfied, hence achieving

a sub-optimal network throughput. In other words, the MAPs of all users are tuned

so that Rl = 2, ∀l ∈ Ω;Rj < 2,∀j 6∈ Ω, where Ω is a certain subset of N . Such an

idea will be incorporated into our proposed scheme in Section 5.3.

5.3 The SALE Scheme

In this section we present the design principle for our proposed scalable and efficient

scheme using (5.3), named as Spatial Aloha via local Leader Election (SALE). In

the SALE scheme, the users will first self-organize into a number of non-overlapped

neighborhoods. There are many ways to approach the Pareto front surface defined

in (5.1). One possible way is for the users in each neighborhood to adopt the same

MAP to fulfill the fairness criterion, as it is also easier to analyze and implement.

5.3.1 Local Leader Election under Equal MAP

From the definition of RIM in (5.3), if we assume equal MAP in user i’s neighboring

region, then the value of Ri is related to the number of user i’s neighbors given by

Ni =
∑

j∈N aij. In graph theory [139], Ni is also known as the node degree of

user i. Therefore, if the MAPs of all users in a certain neighborhood are the same

and gradually increase from zero, then the one with the highest node degree in

this neighborhood will dissatisfy the condition (5.3) first (here we assume that the

interference relationship among users is symmetric, i.e., aij = aji, ∀i, j). Therefore,

unless the users have homogeneous node degrees (regular graph), their RIM values

cannot reach 2 at the same time. We call the user with a locally highest RIM value as

a local leader. The key principle behind the proposed scheme is to identify these local

leaders, since they are most likely to cause network instability due to interference

from more neighbors. Mathematically, this means that the RIM of the local leader

is more likely to exceed 2 than any of the followers in the same neighborhood. If

we keep the RIM for the local leader(s) at 2, all the followers will have a RIM

not exceeding 2 and according to (5.3), the network will be operating in the stable

region. We next introduce how to identify these local leaders, which consists of two

steps: 1) Preliminary Local Leader Election; 2) Leadership Validation.
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Preliminary Local Leader Election

Only two rounds of information exchange among each user and its neighbors are

needed to complete the preliminary local leader election process. In the first round,

each user i broadcasts its identity number (ID) i to its neighbors. After the first

round of broadcasting, each user i will be able to count its node degree Ni. In

the second round, each user i broadcasts its ID i and its node degree Ni to its

neighbors. Then user i will compare its node degree (and ID) with those of its

neighbors. If Ni is the largest, then user i will be aware of its role as a local leader

(for simplicity, when two or more candidates are connected, the one with lower ID

wins). Otherwise, user i acts as a follower of one of its neighbors k who has the

highest node degree (or neighbor which has the same node degree but lower ID).

Such a user k is called the parent of user i, and user i is a child of user k. Note

that a parent need not be the local leader. For the example in Fig. 5.1, user 2 is

the parent of user 6, but is also a child of leader 1. As a result, the whole network

is grouped into several disjoint trees [139] (previously we have been using the term

“neighborhood”), with each local leader being the root of the tree, and the users

with no children being the leaves. The tree containing leader l is thus called tree

l, which behaves like an independent neighborhood. The height Hl of tree l is the

length from the root to a leaf which is the farthest away. For the example in Fig.

5.1, there are two trees with leaders 1 and 7 being the roots respectively. The

child-parent relationship is denoted by dashed blue arrows. Tree 7 has a height of

1, while tree 1 has a height of 2, with the longest path being 6→ 2→ 1.

A remark to make here is that there is no requirement for each user to have

the knowledge for neighbors beyond two hops. Although a neighborhood may have

users at two or more hops away, there is no need for each node to know who is in

the neighborhood. Once the child-parent relationship has been identified, all users
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who can trace back to the same local leader define a neighborhood. The concept of

a neighborhood or disjoint tree is just a virtual concept to explain the grouping of

users who move as a group while adjusting their MAPs.

Leadership Validation

The essential property of a local leader l is that it has the locally highest RIM value

Rl. Therefore, if Rl ≤ 2, then all its neighbors would have a RIM value no greater

than 2, hence the stability condition in (7) is satisfied. The preliminary local leader

elected in the above process is the one with the highest node degree. When multiple

candidates are connected, the one with the smallest ID is elected. However, choosing

candidates based on smaller ID might not always guarantee the leader to have a

locally highest RIM value, in cases when the tree under consideration is affected by

other trees (more details will be discussed in Section 5.3.4). We therefore introduce

a leadership validation mechanism to handle these exceptions.

During each iteration of update, all users monitor their own RIM values. If a

user l1 finds that Rl1 > 2, then it declares leadership and activates its PI controller

to achieve Rl1 = 2. If there is a preliminary leader l2 connected to user l1 which

hears the leadership declaration, the preliminary leader l2 should shut down its PI

controller and regard user l1 as its parent, i.e., both users perform an exchange in

the leadership. If there is no neigboring preliminary leader, user l1 is a new leader

with a separate neighborhood which consists of all its followers. In cases when two

or more connected users declare leadership, the one with smaller ID wins.

An example will be given in Section 5.3.4 to illustrate the leadership validation

process.

5.3.2 Control System Design

So far in the presented approach, although the theory predicts that the network can

operate in the stable region, the MAP tuning process may still exhibit oscillatory

behavior if improperly designed. An example is given by the heuristic algorithm

in Chapter 4, in which a user is able to detect the Pareto front solution provided

that it detects the sudden drop in its throughput when it gradually increases its

MAP. By doing so, the network is already driven out of the stable region and

the long monitoring process to collect the operating parameters will significantly

affect the rate it converges to the steady state solution. To improve the tuning

process, we adopt the control theoretic approach for the users to autonomously
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Figure 5.2: The SALE Scheme

adapt themselves toward the sub-optimal solution.

In each update iteration, each user i broadcasts its ID i, MAP qi and node

degree Ni to its neighbors. After the broadcasting, each user is able to compute

its RIM value as in (5.3). Assume that the elected local leaders make up the set

Ω. Each local leader l ∈ Ω sets its referenced RIM Rl,sp to 2, and uses a PI

controller [140, Ch.10] to adjust its MAP ql in order to achieve Rl = 2. Each

follower j /∈ Ω follows its parent k, and sets qj(t+ 1) = qk(t) (qk ultimately follows

the MAP ql of its local leader l). Notice that when Rl = 2 is achieved, the RIM

of the followers in tree l will not be greater than 2. If Rl = 2,∀l ∈ Ω, then the

conditions in (5.3) will be critically satisfied, thus providing a sub-optimal network

throughput. We will examine in Section 5.3.5 how close the design is to the Pareto

front solution predicted by (5.1).

The control system shown in Fig. 5.2 is designed as follows. For each local

leader l, the use of the PI controller is to eliminate the steady-state error [140, Ch.

10.1] while trying to achieve the desired reference signal Rl,sp = 2. The relationship

between the input error signal el(t) = Rl,sp − Rl(t) and the output ql(t) of the PI

controller in discrete time (sampling time interval = 1) can be expressed as follows:

ql(t) = KP,lel(t) +KI,lσl(t) = KP,lel(t) +KI,l

∑t
n=0el(n), KP,l > 0, KI,l > 0, (5.4)
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where σl(t) =
∑t

n=0el(n) is the integral function, and {KP,l, KI,l} are the propor-

tional and integral parameters for the PI controller in leader l. Alternatively, we

can use the recursive form below which requires no memory on the integral value

σl:

ql(t) = ql(t− 1) +KP,l[el(t)− el(t− 1)] +KI,lel(t), KP,l > 0, KI,l > 0. (5.5)

We can see from (5.4) that ql(t) stops changing after a certain time instant t0,

if and only if el(t) = 2 − Rl(t) = 0,∀t ≥ t0 is achieved, i.e., Rl = 2 is achieved in

the steady states. Taking z-transform on both sides of (5.4), the transfer function

for the PI controller can be obtained as

CPI(z) = Ql(z)/El(z) = KP,l +
KI,l

1− z−1 . (5.6)

The PI controller enables smooth adaptation of the MAP to achieve this desired

RIM value. As commented by [141, p.174], when the goal is to asymptotically

regulate the system output (RIM) to a “set point” (Rl,sp = 2), asymptotic regulation

and disturbance rejection can be achieved by including “integral action” in the

controller. Moreover, by properly tuning the PI parameters, the PI controller can

achieve a good tradeoff between the response speed and stability while guaranteeing

convergence, which is a major challenge when designing adaptive algorithms.

In the following two subsections, we perform the steady-state analysis, transient

analysis, and PI parameter tuning for the above control system. In particular, we

first consider a simple scenario with only one local leader, and then extend to more

general cases with multiple local leaders.

5.3.3 Single Local Leader Case

Consider the simple case where there is only one local leader (thus only one tree) in

the network. For such a network, the node degree is the highest at the local leader

and decreases towards the leaves. For example, if tree 7 in Fig. 5.1 does not exist

and the network only comprises of tree 1, the node degree decreases from the root

(leader 1) towards the leaves (users 3, 4, 5, 6).
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Steady-State Analysis

For the above scenario, the system will finally settle down with all MAPs being

equal, and the RIM for the only local leader l at the steady state is given by:

Rl =
N∑

j=1,j 6=l

(
aljql

1− qj
+

ajlqj
1− ql

) = 2Nl
ql

1− ql
= Rl,sp = 2. (5.7)

Therefore, when operating at the steady-state, every user has a MAP equal to

q̃l = 1/(Nl + 1). (5.8)

For the example of tree 1 in Fig. 5.1 (without tree 7), the steady-state MAPs of all

users is equal to q̃1 = 1/(N1 + 1) = 1/(4 + 1) = 0.2.

In a very specific case, when the network is fully connected, the local leader l is

directly connected to all the remaining users, hence q̃l = 1/(Nl + 1) = 1/N , which

coincides with the optimal condition in (5.1). Therefore, for any fully connected

network, the SALE scheme is able to achieve a solution which falls on the Pareto

front.

Throughput Sensitivity on RIM

The throughput at the local leader is

θl = ql(1− ql)Nl . (5.9)

Here we analyse the throughput sensitivity on the value of RIM around 2 at the

local leader. When the RIM value is perturbed by a small value ε, i.e., Rl = 2 + ε,

according to (5.7), we have

ql = (2 + ε)/(2 + ε+ 2Nl). (5.10)

Therefore, we can take the derivative of θl on the perturbation ε to observe the local

sensitivity [142, p.251] of the throughput on the value of RIM at 2.

∂θl
∂ε

=
∂θl
∂ql
· ∂ql
∂ε

= [1− (Nl + 1)ql] · (1− ql)Nl−1 · 2Nl

(2 + ε+ 2Nl)2
. (5.11)
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From (5.11) we have

∂θl
∂ε
|ε=0 =

∂θl
∂ql
|ql= 1

Nl+1
·∂ql
∂ε
|ε=0 = [1−(Nl+1)

1

Nl + 1
]·(1− 1

Nl + 1
)Nl−1· 2Nl

(2 + 2Nl)2
= 0.

(5.12)

Therefore, the local sensitivity of the throughput θl on the value of RIM at 2 is 0,

which means that the throughput θl is locally insensitive to small perturbations of

the RIM value around 2.

Moreover, we can similarly obtain

∂θl
∂ε
|ε<0 =

∂θl
∂ql
|ql< 1

Nl+1
· ∂ql
∂ε
|ε<0 > 0, (5.13)

∂θl
∂ε
|ε>0 =

∂θl
∂ql
|ql> 1

Nl+1
· ∂ql
∂ε
|ε>0 < 0. (5.14)

The results from (5.12) to (5.14) suggest that the throughput θl is being maximized

when ε = 0, i.e., when the RIM value Rl = 2. Moreover, (5.13) suggests that

when ε < 0 or equivalently Rl < 2, there is a margin for the throughput θl to be

improved since ∂θl
∂ε
> 0, i.e., the network around the location of user l is operating

at a slightly underload situation. On the other hand, (5.14) suggests that when

ε > 0 or equivalently Rl > 2, the throughput θl decreases with Rl since ∂θl
∂ε

< 0,

i.e., the network around the location of user l is operating at a slightly overload

situation.

Now consider other users in the same neighborhood as user l. Firstly, if other

users have the same node degree as user l (regular graph), then they are homoge-

neous in terms of MAP, RIM, and throughput. Therefore, their throughputs are

also maximized when they have the same RIM value of 2. In such a homogeneous

node degree case, the throughput under the RIM value of 2 would be on the Pareto

front. On the other hand, if another user j has a smaller node degree Nj than that

of user l, i.e., Nj ≤ Nl, then the throughput of user j is

θj = ql(1− ql)Nj , (5.15)

where ql = q̃l = 1/(Nl + 1) is the common MAP value in this neighborhood. Since

∂θj
∂ql
|ql=q̃l = [1−(Nj+1)q̃l] ·(1− q̃l)Nj−1 = [1−(Nj+1)

1

Nl + 1
] ·(1− 1

Nl + 1
)Nj−1 ≥ 0,

(5.16)

hence user j would be operating at the underload situation. As a result, since the
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followers normally do not fully exploit the transmission opportunities, the overall

throughput solution is expected to be below the Pareto front. We will address this

issue again in Section 5.3.5.

Transient Analysis

Before the system converges to the steady-state operating point, there exists a

transient period in which q is varying. Here we use control theory to derive a

sufficient condition to guarantee system stability. The block diagram for the PI

controller at the local leader is shown in Fig. 5.3, where CPI(z) defined in (5.6) is

the transfer function of the PI controller, Gl(z) represents the transfer function of

the spatial Aloha system to be controlled at the local leader l, and z−1 represents

one sample time delay in the z-domain.

Define pl = ql − q̃l and el = Rl,sp − Rl as the input and output of the system

Gl(z), respectively, where q̃l is the desired operating point given in (5.8), and pl

is a small perturbation around q̃l. For simplicity of analysis, we simplify Gl(z) by

assuming no information propagation delay between the leader and its neighbors,

i.e., qj(t) = ql(t), ∀j with al,j = 1. The transfer function Gl(z) can then be obtained

by linearising the non-linear function from (5.7):

Rl = (2Nlql)/(1− ql) (5.17)

about the operating point q̃l. Eq.(5.17) can be expressed using pl and el as:

Rl,sp − el = (2Nl(pl + q̃l))/(1− (pl + q̃l)). (5.18)

Taking the derivative on both sides of (5.18), and evaluating at the operating

point pl = ql − q̃l = 0, we have:

del
dt

=
−2Nl

[1− (pl + q̃l)]2
|pl=0 ·

dpl
dt

=
−2Nl

[1− q̃l]2
· dpl
dt

= Kl ·
dpl
dt
, (5.19)
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where Kl is a constant related to Nl:

Kl =
−2Nl

[1− q̃l]2
=

−2Nl

[1− 1/(Nl + 1)]2
=
−2(Nl + 1)2

Nl

. (5.20)

Then we can discretize el(t) and pl(t), and take the z-transform on both sides

of (5.19):

(1− z−1)El(z) = (1− z−1)KlPl(z). (5.21)

The transfer function Gl(z) can then be obtained as:

Gl(z) = El(z)/Pl(z) = Kl. (5.22)

In the following we study the linearized model and ensure its stability by appro-

priately choosing the PI parameters. Note that the stability of the linearized model

guarantees that our system is locally stable, which means that small perturbations

around the desired operating point q̃l can all be absorbed, i.e., the control system

will eventually converge to the operating point q̃l after being perturbed.

According to the control theory [143, eq.(6.22)], we need to check that the

following transfer function is stable:

H(z) = [1− z−1CPI(z)Gl(z)]−1CPI(z), (5.23)

i.e.,

H(z) = [1− z−1 · (KP,l +
KI,l

1− z−1 ) ·Kl]
−1 · (KP,l +

KI,l

1− z−1 )

=
(KP,l +KI,l)z

2 −KP,lz

z2 − [1 +Kl(KP,l +KI,l)]z +KlKP,l

. (5.24)

According to the Schur-Cohn stability criterion [144, Sec. 3.2], a necessary and

sufficient condition for a discrete-time system H(z) to be stable is that its poles all

lie within the unit circle, i.e., the roots of the characteristic equation:

C(z) = z2 − [1 +Kl(KP,l +KI,l)]z +KlKP,l = 0 (5.25)

all lie within the unit circle in the complex z-domain. Furthermore, for a second

order characteristic equation A(z) = z2 + a1z + a2 = 0, an equivalent stability
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condition is given by the Jury’s stability test [144, Theorem 3.3]:

a2 < 1; a2 > −1 + a1; a2 > −1− a1. (5.26)

If we apply the Jury’s stability test to (5.25), we have:

KlKP,l < 1 (5.27)

KlKP,l > −1− [1 +Kl(KP,l +KI,l)] (5.28)

KlKP,l > −1 + [1 +Kl(KP,l +KI,l)] (5.29)

Since Kl < 0, we only need KP,l > 0 to satisfy (5.27). Eq. (5.29) can be

equivalently reduced to KI,l > 0. From (5.28), we have

−Kl(2KP,l +KI,l) < 2. (5.30)

Hence a sufficient condition to guarantee stability is obtained:

{
−Kl(2KP,l +KI,l) < 2,

KP,l > 0, KI,l > 0.
(5.31)

PI Parameter Tuning

In addition to guaranteeing stability, another consideration in selecting {KP,l, KI,l}
is to find a suitable trade-off between fast convergence and the transient oscillations.

Ziegler-Nichols rules [140, Ch. 10.3] can be used for this purpose.

First, we compute the parameter KU , which is defined as the KP,l value that

leads to instability when KI,l = 0; and the parameter TI , which is defined as the

oscillation period under these conditions. Then according to Ziegler-Nichols rules,

KP,l and KI,l can be configured as follows:

KP,l = 0.4KU , (5.32)

KI,l = KP,l/(0.85TI). (5.33)
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To compute KU , we first set KI,l = 0 in (5.30), and we have

KP,l < 1/(−Kl). (5.34)

From (5.34), we take KU as the value where the system may turn unstable:

KU = 1/(−Kl). (5.35)

Then set KP,l according to (5.32),

KP,l = 0.4KU =
0.4

−Kl

=
0.4Nl

2(Nl + 1)2
=

0.2Nl

(Nl + 1)2
. (5.36)

With the KP,l value that renders the system unstable, a given set of input values

may take great changes up to every time interval, yielding an oscillation period of

two time intervals (TI = 2). Then from (5.33),

KI,l =
KP,l

0.85TI
=
KP,l

1.7
=

0.4

1.7(−Kl)
=

2Nl

17(Nl + 1)2
. (5.37)

In summary, using the {KP,l, KI,l} values given in (5.36) (5.37), the SALE

scheme is guaranteed to converge fast to a stable steady-state operating point given

in (5.8).

5.3.4 Multiple Local Leaders Case

In order to study the scalability of the SALE scheme, we consider more general cases

where there are multiple local leaders in the network. We use the simple example

given in Fig. 5.1, with users 1 and 7 being the local leaders.

Steady-State Analysis

We have illustrated that after the local leader election process, the whole network

is partitioned into several disjoint trees or neighborhoods. However, these trees are

disjoint but their MAPs are not necessarily independent of each other. In our SALE

scheme, the MAPs of all users in tree l are controlled by leader l, who adjusts its ql

based on Rl, which only involves the neighbors of leader l. Therefore, if leader l is

not directly connected to a user in other trees, then the MAP in tree l will not be

affected by other trees. For Fig. 5.1, the MAP in tree 1 is not affected by tree 7,

however, the steady-state MAP of leader 7 is affected by user 5 which is a follower
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in tree 1.

The steady state of the SALE scheme can then be determined as follows. For

those independent trees, the analysis in Section 5.3.3 is readily applied to obtain

the steady states. For leader l1 who is affected by user m in tree l2 (which happens

normally when Nl1 ≤ Nl2), it should wait until the steady state of q̃m = q̃l2 is

calculated before calculating q̃l1 based on Rl1 = 2. To achieve the same RIM

level Rl1 = Rl2 = 2 with a smaller node degree Nl1 ≤ Nl2 , leader l1 should have

q̃l1 ≥ 1/(Nl1 + 1) ≥ q̃l2 in general. For Fig. 5.1, the steady state MAP in tree 1 can

be obtained from (5.8) as q̃i = 1/(N1 + 1) = 1/(4 + 1) = 0.2, ∀i ∈ {1, · · · , 6}. Then

for leader 7,

R7 =
∑

j=5,8,9

(
q7

1− qj
+

qj
1− q7

) = 4 · q7
1− q7

+
q7

1− q̃5
+

q̃5
1− q7

. (5.38)

By setting R7 = 2 and substituting in q̃5 = 0.2, we have q̃7 = 0.2598. Thus the

steady state MAP in tree 7 is q̃i = 0.2598,∀i ∈ {7, 8, 9}. It is easily verified that

q̃7 > 1/(N7 + 1) = 0.25 > q̃1. Notice that the steady state MAP in tree 7 is not

trivially equal to 1/(N7 + 1) as in the single leader case. Fortunately, our control

system is able to converge to the steady state automatically.

Now consider adding another user 10 as a neighbor of user 8, as shown in Fig.

5.4. Here user 1 and user 7 are the preliminary local leaders. User 8 now has

the same node degree as user 7, but user 7 is still elected as the preliminary local

leader due to its smaller ID. As shown in the above analysis, the preliminary local

leader 7 would push the MAP in the tree to be q̃i = 0.2598,∀i ∈ {7, 8, 9, 10}, which

achieves R7 = 2 but this would push the RIM of user 8 to R8 = 2.1, which is higher

than 2 and hence should be avoided. Somewhere in the process of following the

MAP of user 7, user 8 should find itself a more suitable local leader than user 7.

This example shows that the leadership should not be finalized simply based on

smaller ID. In such a case, the leadership should be handed over to user 8. For the

above example, in the midst of updating, when user 8 detects R8 > 2, it declares

leadership and activates its PI controller to achieve R8 = 2. The preliminary leader

7 becomes a follower whose parent is the new leader 8. For simplicity, the child-

parent relationship is only adjusted between the new and old leaders, while other

followers stick to their original parent. For example, follower 9’s parent is still user

7. The new child-parent relationship is shown in Fig. 5.4. Notice that after the

leadership handover, the new leader 8 is not connected to any users in tree 1, hence

the MAP in tree 8 becomes independent of tree 1. The equilibrium MAP in the
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tree led by leader 8 is 0.25, while R8 = 2 and R7 = 1.91.

Transient Analysis and PI Parameter Tuning

The stability is guaranteed through the following argument. When all trees are

independent, the transient analysis and PI parameter tuning in each tree follow

those in Section 5.3.3, hence stability is guaranteed. Each local leader l has its own

PI controller, with the parameters KP,l, KI,l given in (5.36) and (5.37), respectively.

Again the PI parameter tuning only relies on the local information Nl, hence can

be immediately performed after the local leader election. In particular, the system

transfer function to be controlled at the local leader l1 follows (5.22) after applying

(5.20):

Gl1(z) = Kl1 = −2(Nl1 + 1)2/Nl1 . (5.39)

If leader l1 is affected by user m in tree l2 (e.g., see Fig. 5.1), this happens

normally when Nl1 ≤ Nl2 . In this case, tree l2 is independent of tree l1, but tree

l1 depends on tree l2 through user m. Tree l2 reaches the steady state first, with

q̃m = q̃l2 ≤ 1/(Nl1 + 1), which remains constant afterwards. For tree l1, due to the

impact of q̃m, from (5.17) the RIM parameter for leader l1 becomes:

R′l1 =
N∑

j=1,j 6=l1

(
al1jq

′
l1

1− qj
+

ajl1qj
1− q′l1

) =
2(Nl1 − 1)q′l1

1− q′l1
+

q′l1
1− q̃m

+
q̃m

1− q′l1
, (5.40)

where q̃m is now a constant, i.e., dq̃m/dt = 0. In (5.40), we have used ′ to denote

the respective parameters to differentiate from the independent case. As a result of

fewer neighboring followers, R′l1 reacts more slowly to q′l1 than in the independent

case, hence we expect the absolute gain |Kl1| of the system Gl1(z) to decrease.

Specifically, if we apply the same linearisation procedure in Section 5.3.3 to
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(5.40), then the system G′l1(z) to be controlled at the local leader l1 is:

G′l1(z) = K ′l1 = −2(Nl1 − 1)

(1− q̃′l1)2
− 1

1− q̃m
− q̃m

(1− q̃′l1)2
, (5.41)

where q̃′l1 is the operating point that achieves R′l1 = 2 in (5.40). It can be verified

using Mathematica [145] that |K ′l1| < |Kl1| for all Nl1 ≥ 2 and 0 ≤ q̃m ≤ 1/(Nl1 +1).

Similar results can be verified if leader l1 is affected by more neighbors m1,m2, · · ·
that belong to other trees.

Then the PI parameters {K ′P,l1 , K ′I,l1} that guarantee system stability can be set

from (5.36) and (5.37):

K ′P,l1 =
0.4

−K ′l1
>

0.4

−Kl1

= KP,l1 =
0.2Nl1

(Nl1 + 1)2
, (5.42)

K ′I,l1 =
0.4

−1.7K ′l1
>

0.4

−1.7Kl1

= KI,l1 =
2Nl1

17(Nl1 + 1)2
. (5.43)

Since {KP,l1 , KI,l1} are easy to obtain using Nl1 only, leader l1 uses {KP,l1 , KI,l1} in

practice. More importantly, since the current system G′l1(z) has a smaller absolute

gain |K ′l1| due to fewer neighboring followers, leader l1 is using the less aggres-

sive PI parameters {KP,l1 , KI,l1} (see Section 5.3.3) and hence system stability is

guaranteed.

Throughput Sensitivity on RIM

Following the above settings, assume that the local leader l1 is affected by user m

in tree l2, whose steady state MAP is q̃m. The throughput at the local leader l1 is

θ′l1 = q′l1(1− q′l1)Nl1
−1(1− q̃m). (5.44)

When the RIM value in (5.40) is perturbed by a small value ε around 2, i.e., R′l1 =

2 + ε, by taking derivative on both sides of (5.40), we have

∂q′l1
∂ε

= − 1

K ′l1
> 0. (5.45)

Therefore, the derivative of θ′l1 on the perturbation ε is

∂θ′l1
∂ε

=
∂θ′l1
∂q′l1
· ∂q

′
l1

∂ε
= (1−Nl1q

′
l1

) · (1− q′l1)Nl1
−2 · (1− q̃m) · (− 1

K ′l1
). (5.46)
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Notice that when ε = 0, i.e., R′l1 = 2, it can be verified from (5.40) that the

operating point q̃′l1 should be no greater than 1/Nl1 . Therefore, the local sensitivity

of the throughput θ′l1 on the RIM value R′l1 around 2 is

∂θ′l1
∂ε
|ε=0 =

∂θ′l1
∂q′l1
|q′l1≤ 1

Nl1

·∂q
′
l1

∂ε
|ε=0 ≥ (1−Nl1 ·

1

Nl1

)·(1− 1

Nl1

)Nl1
−2 ·(1−q̃m)·(− 1

K ′l1
) = 0.

(5.47)

Therefore, in such cases there are still some margins for the throughput θ′l1 to

be improved, i.e., the network around the location of leader l1 is operating at a

slightly underload situation. Similar conclusions can be drawn when the leader l1

is affected by more users in other trees. In the next subsection we discuss how close

the throughput solution obtained by SALE is to the Pareto front.

5.3.5 “Distance” to Pareto Front

The Pareto front surface is obtained if we apply the sufficient and necessary test-

ing criteria (5.1) to the network. Any point on this surface is the combination of

throughputs which can be achieved by all users while keeping the network operat-

ing in a stable condition. The solution obtained in SALE generally stays below the

Pareto front due to two reasons. First, the stability criteria (5.3) used in imple-

menting the algorithm is only a sufficient condition. Second, some of the followers

(especially those who are further away from the leader) may not have fully exploited

the transmission opportunities. Hence, the feasible throughput region obtained by

SALE is only a subset to that obtained by using (5.1).

Based on the sensitivity analysis in Section 5.3.3 and Section 5.3.4, in the ho-

mogeneous node degree case (regular graph), the users are homogeneous in terms of

MAP, RIM, and throughput. Since the throughput solution for all users all have a

RIM value of 2, the solution would stay on the Pareto front. However, in most prac-

tical cases where there are variations in the node degrees of users, the local leader

election allows partitioning the network into several local neighborhoods. Each local

leader, which has the highest node degree in its neighborhood, uses a PI controller

to achieve a RIM value of 2. The remaining nodes in the same neighborhood have

a smaller node degree than its local leader, and will have a RIM value no greater

than 2. This suggests that normally the followers are operating at the underload

condition, or at a distance below the Pareto front obtained by using (5.1).

We attempt to characterize such a throughput margin with the optimal one

obtained in (5.1) by defining the “distance to Pareto” dpareto. When we obtain

86



a solution θ = [θ1, θ2, · · · , θN ] in the SALE scheme, we continue to move in the

direction d · θ (d ≥ 1, i.e., proportionally increase the throughput of all users) until

we find an operating point q that achieves dpareto · θ, and beyond this point there

is no stable solution. In particular, when dpareto = 1, the solution is on the Pareto

front. As will be shown in the simulation results, the SALE scheme achieves a close-

to-Pareto-front throughput, with dPareto below 1.05 for most of the topologies, i.e.,

we usually can obtain a solution which is less than 5% below the Pareto front.

5.3.6 Complexity, Scalability and Overhead of SALE

We summarize the SALE scheme in Algorithm 5.1. The proposed scheme shows

the following advantages:

Low Implementation Complexity

a) It takes only two rounds of information exchange among each user and its neigh-

bors to complete the preliminary local leader election. b) In each iteration, each

user only needs to broadcast its ID, MAP, and node degree to its neighbors. c)

Each user only uses information about its neighbors to update its MAP in each

iteration. d) Each leader l implements a simple PI controller to adjust its MAP

ql so as to achieve Rl = 2, which corresponds to a throughput close to the Pareto

front. e) The PI parameter tuning can be autonomously done by the local leader

itself based on its node degree Nl, which guarantees stability and fast convergence.

f) Each follower j only needs to find its parent k, and simply sets qj(t+ 1) = qk(t)

in each iteration. g) Only in some situations, there is a need to change the local

leader. Therefore, the SALE scheme can be implemented autonomously with low

complexity.

High Scalability

a) The SALE scheme is fully autonomous without any centralized controller. b)

The whole network is grouped into several disjoint trees, within each tree there

is a local leader controlling the MAPs in this tree. c) The Ziegler-Nichols rules

adapt the PI parameters in (5.36) (5.37) to various user densities (associated with

different node degree Nl at the local leader), thus guaranteeing fast convergence

of MAPs at the local leaders. d) Given a certain user density, if the number of

users increases, the number of local leaders also increases correspondingly, i.e., the

whole network is grouped into more trees. As a result, the average number of users
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Algorithm 5.1 The SALE Scheme

1: Preliminary Local Leader Election:
2: Each user i broadcasts its ID to its neighbors;
3: Each user i counts its number of neighbors (node degree) Ni;
4: Each user i broadcasts its ID and node degree Ni to its neighbors;
5: Each user i compares Ni with the node degrees of its neighbors. If Ni is the largest,

then user i is elected as a local leader. Otherwise, user i is a follower, whose parent
is the neighbor with the largest node degree. In cases when two or more candidates
are connected, the one with smaller ID wins. Assume the local leaders make up a set
Ω ⊂ N .

6: Control System:
7: Rl,sp = 2, KP,l = 0.2Nl/(Nl + 1)2,KI,l = 2Nl/[17(Nl + 1)2],∀l ∈ Ω;
8: t = 0, q(t) = 0; Declarei = 0, ∀i ∈ N ;
9: repeat:

10: Each user i broadcasts its MAP qi(t) to its neighbors;
11: Each user i computes Ri(t) =

∑N
j=1,j 6=i[aijqi(t)/(1− qj(t)) + ajiqj(t)/(1− qi(t))];

12: for each local leader l ∈ Ω do:
13: el(t+ 1) = Rl,sp −Rl(t);
14: ql(t+ 1) = ql(t) +KP,l[el(t+ 1)− el(t)] +KI,lel(t+ 1);
15: end for
16: for each follower j 6∈ Ω do:
17: qj(t+ 1) = qk(t), where user k is the parent of user j;
18: end for
19:

20: Leadership Validation:
21: for each user i ∈ N do:
22: if Declarei = 1 then:
23: User i joins Ω and becomes a local leader. In cases when two or more

connected users declare leadership, the one with smaller ID wins.
24: else if user i ∈ Ω and its neighbor declares leadership then:
25: the preliminary leader i quits from Ω, and follow the newly declared leader;
26: end if
27: if Ri(t) > 2 then:
28: mark Declarei = 1 and declare leadership in the next round of broadcast;
29: elseDeclarei = 0;
30: end if
31: end for
32:

33: t = t+ 1;
34: until Convergence, i.e., Rl(t) = Rl,sp, ∀l ∈ Ω.
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in a tree, as well as the tree height, will not change significantly as the network

size grows. Therefore, when a local leader l reaches the steady state (Rl = 2), the

corresponding MAP ql would not take too many hops to reach all the followers in

tree l. e) As we will see in Section 5.4.4, the SALE scheme converges in around

30 iterations, regardless of the user density or the number of users in the network.

Therefore, the SALE scheme provides fast convergence with high scalability.

Overhead of Information Exchange

The SALE scheme requires local information exchange for leader election and MAP

adaptation. The local leader election requires two rounds of local information ex-

change about node ID and node degree. Thereafter, the MAP adaptation requires

each user to broadcast its ID and MAP to its one-hop neighbors.

As mentioned in [146] to handle the case with information exchange, slotted

Aloha usually has a framed structure consisting of a control phase for the informa-

tion exchange and a normal phase for data transmission. In our case, we embed

the message in the packet header. In a simplified model, assume that each packet

originally (i.e. in the heuristic approach) has a header field and constant packet

size, which at least contains the user ID or address. For the need of our algorithm,

we add three subfields to the header, i.e., node degree subfield, MAP subfield and

leadership declaration subfield, and each occupies 8 bits, 16 bits and 1 bit, respec-

tively. We further assume each packet occupies a time slot and has a packet size

of LS bits, e.g., 250 bytes = 2000 bits, the newly added fractional overhead is then

given by 25/LS=25/2000=0.0125.

The message exchange is realized in the following way. In each time slot, each

user either sends a message to its neighbors according to its MAP, or listens to the

channel to receive a message from its neighbors. Assume that each iteration in the

SALE scheme corresponds to packet transmissions in LF slots which is known as

a frame, and all users are frame-synchronized. Since the transmission of a packet

is subject to collision, some packets (and hence the added subfields) will not be

received correctly by some users. However, for a sufficiently large LF value, each user

is likely to receive at least one packet from all its neighbors and hence gather enough

information about all its neighbors through the subfields embedded in the received

packets. By the end of each iteration, all users then update the MAP subfields for

the next iteration according to the SALE scheme. Since the SALE scheme relies

on an accurate estimation of node degree, we assume that each user counts and

updates its node degree in every LND slots. LND can be chosen to be sufficiently
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large to guarantee an accurate estimation of node degree. In our simulations, we

choose LND = 10LF slots (i.e., 10 iterations) to guarantee an accurate estimation.

5.4 Performance Evaluation

In the simulations we assume the channel bit rate is rb=20 Mbps, and each packet

in slotted Aloha has LS=2000 bits. Then the slot time is LS/rb = 0.1 ms. Each

iteration in the SALE scheme corresponds to a frame of LF = 100 slots (i.e., 10

ms), and the users are frame-synchronized. Each user counts and updates its node

degree in every LND = 10LF = 1000 slots (i.e., 10 iterations).

5.4.1 Parameter Tuning: Stability and Convergence Time

In Section 5.3 we claim that the PI parameters given in (5.36) (5.37) are able to

guarantee system stability as well as fast convergence to the steady-state operating

point. Here we illustrate this by using the example in Fig. 5.4. Three sets of PI

parameters are used in the PI controllers respectively: {KP,l/5, KI,l/5}, {KP,l, KI,l},
and {5KP,l, 5KI,l}, where {KP,l, KI,l} are obtained by (5.36) (5.37). The algorithm

starts with small initial MAPs, e.g., qi = 0.05,∀i. The transient behaviors of R1

are plotted in Fig. 5.5. Notice that each iteration in the SALE scheme corresponds

to packet transmissions in LF = 100 slots. The value of LF is arbitrary and with

the purpose to safe-guard the correct reception of neighbors’ information in each

iteration. This is similar to the use of LND. In fact, instances of message passing

failure in a frame are rarely captured in our simulations. In the rare occasion if

it happens, the transient variations caused by the delay of MAP feedback are well

handled by the control system.

From Fig. 5.5 we can see that {KP,l, KI,l} obtained by (5.36) (5.37) enable

the system to converge to the steady state (R1 = 2) within 30 iterations, i.e.,

0.3s. In contrast, the conservative PI parameters {KP,l/5, KI,l/5} take around 120

iterations (i.e., 1.2s) for the system to converge, while the aggressive PI parameters

{5KP,l, 5KI,l} render the system unstable. Similar results are observed for more

complicated topologies, e.g., the 50 users case in Fig. 5.8 that will be introduced in

Section 5.4.4. Therefore, the PI parameters given by (5.36) (5.37) indeed guarantee

system stability with fast convergence.
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Figure 5.5: Stability and Convergence Time under Different PI Parameters

5.4.2 Steady State, Optimality and Fairness

For the same example given in Fig. 5.4, we demostrate more details about the

steady state, throughput optimality and fairness among the users. The transient

behaviors of RIM Ri, MAP qi and throughput θi are plotted in Fig. 5.6 for users

1, 5, 7 and 8, respectively.

It takes around 40 iterations (i.e., 0.4s) for the system to converge. The pre-

liminary local leader election can be completed in the first 10 iterations, in which

each user counts its own node degree and exchanges information with its neighbors.

Starting from the 11-th iteration, the PI controllers in leader 1 and leader 7 start

working. At the 28-th iteration, user 8 (green line in Fig. 5.6) detects R8 > 2 and

takes over the leadership from the preliminary leader 7 (red diamond in Fig. 5.6).

In the steady state, leader 1 and 8 have R1 = R8 = 2; the follower 5 has R5 = 1.08

and has MAP q̃5 = q̃1 = 0.2; the follower 7 has R7 = 1.91 and MAP q̃7 = q̃8 = 0.25.

Regarding the throughput, generally the users with a higher node degree would

have a lower throughput due to contentions from more neighbors. In this example,

θ1 < θ8 < θ7 < θ5.

The distance to Pareto front dPareto is used to evaluate the throughput opti-

mality. For our SALE scheme applied to Fig. 5.4, dPareto = 1.02, which suggests

only 2% loss between the achieved throughput θ and the Pareto front. Therefore,
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Figure 5.6: Performance of SALE, Topology in Fig. 5.4

although the sub-optimal condition (5.3) is used in our design, the result is very

close to the actual optimal.

We also evaluate the throughput fairness among the users. When spatial reuse

is considered, different users at different spatial locations usually have different

connectivity. As a result, those users with a higher node degree usually receive

more interference and consequently a lower throughput than those with a lower node

degree. Therefore, it is difficult to give an exact measurement of fairness in such

a heterogeneous network. We make an attempt to take this spatial characteristic

into consideration, and weigh each user i’s throughput by Ni + 1 (including user i

and its neighbors), i.e., we define the weighted throughput for each user i as:

θ̃i = (Ni + 1) · θi,∀i ∈ N . (5.48)

Then we compute the Jain’s fairness index [147] for the weighted throughput θ̃:

Jain(θ̃) =
(
∑N

i=1 θ̃i)
2

N ·∑N
i=1 θ̃i

2 . (5.49)

Jain’s index rates the fairness of an array of values θ̃ = [θ̃1, θ̃2, · · · , θ̃N ] where there

are N users and θ̃i is the weighted throughput for the ith user. The result ranges

from 1/N (worst case) to 1 (best case), and it is maximum when all users receive
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Table 5.1: Performance Comparison between the SALE Scheme and the Heuristic Algo-
rithm

Topology Scheme θi Σθi θnet,i Jain(θ̃) dPareto Tconv

Fig. 5.4
SALE 0.1246 1.2459 0.1230 0.9921 1.02 ∼0.4s

Heuristic 0.1158 1.1582 0.1158 0.9685 1.045 ∼60s

Fig. 5.8
SALE 0.0578 2.8888 0.0571 0.9906 1.025 ∼0.4s

Heuristic 0.0535 2.6733 0.0535 0.9593 1.04 ∼90s

the same allocation. For our SALE scheme applied to Fig. 5.4, Jain(θ̃) = 0.9921,

which is close to 1 and suggests good fairness among the users.

5.4.3 Comparison with Heuristic Algorithm

Here we apply the heuristic algorithm in Chapter 4 to the same example in Fig.

5.4 and compare performance with the SALE scheme shown in Fig. 5.6. The

algorithm in Chapter 4 assumes no information exchange among the users, and

the users adapt their MAPs based on the measured throughput and channel idle

rate, which require a relatively accurate estimation. In the simulations we choose

each estimation period to consist of LI = 1000 slots so that the adaptation in the

heuristic algorithm works properly. Since the slot time is 0.1ms, each estimation

period lasts 0.1s.

The transient states of the heuristic algorithm for user 1 are plotted in Fig.

5.7. As the users heuristically search for the Pareto front, the system experiences

several fluctuations before settling down. The convergence time Tconv takes around

600 estimation periods, i.e., around 60s, which is much longer than that of the

SALE scheme. Since other users experience similar transient states as user 1, their

behaviors are not plotted for brevity. The steady-state performance is summarized

in the upper part of Table 5.1 for the SALE scheme and the heuristic algorithm.

Both schemes achieve a throughput θ close to the Pareto front (dPareto = 1.02, 1.045

respectively), while the SALE scheme provides better fairness for the users (the

heuristic algorithm has a lower Jain’s index = 0.9685). Since the SALE scheme has

an additional information exchange overhead of 25/LS=25/2000=0.0125, we also

compare the average net throughput θnet,i in the table. Note that we assume both

approaches use the same header except the three additional subfields in the SALE

scheme, and the common parts of the header are included in computing the net

throughputs.
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Figure 5.7: Performance of the Heuristic Algorithm, Topology in Fig. 5.4

5.4.4 Scalability of SALE

50 Users Case

Consider a distributed network with N users, which are randomly placed in a square

region of a given area. For simplicity, we assume that all the distances between any

transmitter and its designated receiver are much smaller than the distances between

any two transmitters, so that a Tx-Rx pair (user) can be represented by a single

node in the topology. We further assume that all users have transmission range of

5 unit length, and those users who are in each other’s transmission range will have

significant interference on each other, and the two users are said to be connected.

Based on the above assumptions, we can generate a random connected topology

with 50 users in a square region of area 500 (units), as plotted in Fig. 5.8.

We apply the SALE scheme to Fig. 5.8, and the whole network is shown to be

grouped into 4 trees, governed by leaders l ∈ Ω = {11, 17, 27, 42} respectively. The

users in different trees are marked by different shapes and colors, e.g., the largest

tree is marked with red triangles, which is governed by leader 11 with the highest

node degree N11 = 10. For clarity, the child-parent relationship is not shown in

the figure. For comparison, we also apply the heuristic algorithm to the example in

Fig. 5.8. The performances of the two schemes are summarized in the lower part

of Table 5.1.
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Figure 5.8: Randomly Generated Connected Topology with 50 Users

The heuristic algorithm converges in around 90s, longer than the 10 users case

in Fig. 5.4. Therefore, the convergence time increases with the network size in the

heuristic algorithm. In contrast, the SALE scheme still converges in around 0.4s,

thus is more efficient as the network size increases. After the system converges,

both schemes achieve throughputs θ close to the Pareto front (dPareto = 1.025, 1.04

respectively), while the SALE scheme provides better fairness for the users, with a

higher Jain’s index 0.9906 > 0.9593.

100 Users with Various User Density

We define the user density as the number of users per unit area. For the 50 users

case above, the user density is 50/500=0.1. Now we generate a sequence of random

connected topologies with various user density, by randomly scattering 100 users in

a square region of various areas. In particular, when the square region has an area

of 12.5, the network becomes fully connected (the diagonal line length is equal to

the transmission range of 5). We apply the SALE scheme to these topologies and

summarize the results in the upper part of Table 5.2.

As the user density increases from 0.1 to 8 (tend to a fully connected network),

the network is grouped into fewer but bigger trees, and the maximum height of all
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Table 5.2: Scalability of the SALE Scheme

Users Area Density Σθi Jain(θ̃) dPareto Tconv Leaders Max. Hl

100

12.5 8 0.3697 1.0000 1 ∼0.8s 1 1
31.25 3.2 0.4075 0.9998 1.00 ∼0.8s 1 2
62.5 1.6 0.5240 0.9912 1.03 ∼0.8s 1 2
125 0.8 0.9246 0.9881 1.05 ∼0.4s 1 2
250 0.4 1.4922 0.9795 1.055 ∼0.4s 1 4
500 0.2 2.5146 0.9856 1.04 ∼0.4s 2 4
1000 0.1 5.1930 0.9823 1.02 ∼0.4s 5 5

200 2000

0.1

9.9504 0.9800 1.01 ∼0.4s 12 5
400 4000 18.8848 0.9692 1.01 ∼0.4s 22 8
600 6000 27.2568 0.9757 1.02 ∼0.4s 32 5
800 8000 37.2249 0.9771 1.015 ∼0.4s 49 5
1000 10000 45.7275 0.9799 1.01 ∼0.4s 54 5

trees gradually decreases to 1. As the user density increases, the total throughput

decreases due to increased interference from more neighbors experienced by each

user. However, regardless of the user density, the number of iterations for con-

vergence is still around 40 iterations. Such fast convergence is guaranteed by the

Ziegler-Nichols rules which adapt the PI parameters in (5.36) (5.37) to various user

densities (associated with different node degree Nl at the local leader).

Note that as the user density increases above 1.6, the individual throughput

drops significantly, and the probability of packet collision increases and affects the

success rate of passing the subfield information. Hence we have to choose a larger

frame of LF = 200 slots in each iteration for the proposed SALE scheme. As

a result, each iteration in these high-density topologies now takes 20ms and the

convergence time is around 0.8s. Also note that similar problems exist for the

heuristic algorithm in dense topologies, in which the individual user throughput

is relatively small. To acquire a relatively accurate estimation for a small value of

user throughput, a longer estimation period is required so as to suppress the relative

error and keep the variance of the estimated throughput at a low level, in order for

the MAP adaptation in the heuristic algorithm to work properly.

On the other hand, regardless of the user density, the network still achieves close-

to-Pareto-front throughput, with dPareto around 1.05, i.e., only 5% below the Pareto

front. In particular, dPareto is equal to 1 in the fully connected case, thus verifying

the statement in Section 5.3.3 that our SALE scheme achieves a throughput on the

Pareto front in a fully connected network. Finally, the SALE scheme provides good

fairness for all users, with Jain’s index around 0.98 (close to 1).
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200∼1000 Users Cases

Here we keep the user density as 0.1, and increase the number of users by enlarging

the area under consideration. Then we generate a sequence of random connected

topologies with N=200, 400, 600, 800 and 1000, respectively. We apply the SALE

scheme to these topologies and summarize the results in the lower part of Table 5.2.

From Table 5.2 we can see that, as the number of users increases, the number

of local leaders also increases correspondingly, i.e., the whole network is grouped

into more trees. As a result, the average number of users in a tree, as well as the

tree height, will not change significantly as the network size grows. This is verified

in Table 5.2 that the maximum tree height Hl remains around 6 regardless of the

network size. Therefore, when a local leader l reaches the steady state (Rl = 2),

the corresponding MAP ql would only take around 6 hops to reach all the followers

in tree l. From Table 5.2, the SALE scheme converges in around 40 iterations,

i.e., 0.4s, regardless of the network size. Therefore, the SALE scheme provides fast

convergence with high scalability.

In the steady state, the SALE scheme achieves a throughout θ close to the Pareto

front, with dPareto around 1.02 for all cases. Consequently, the total throughput Σθi

increases almost linearly with the number of users in the network. Meanwhile, the

Jain’s index is around 0.97 for all cases, suggesting good fairness among the users.

5.5 Conclusions

This chapter focuses on spatial Aloha networks, and attempts to approach global

optimization of network throughput based on limited spread of local information

and realize the model’s quick convergence and stability. The SALE scheme is in-

troduced, which can be autonomously implemented by users using only local infor-

mation. Specifically, a user with maximum node degree in a certain neighborhood

is elected as the local leader, and the remaining users in this neighborhood simply

follow the same MAP. The SALE scheme makes use of a sufficient condition previ-

ously derived for the spatial Aloha network, which ensures the network to operate

in the stable region if the RIM parameter R at the local leader(s) satisfies R ≤ 2.

In our design, the local leader adjusts its MAP by a build-in PI controller to achieve

R=2. The resulting control system is sustained by mathematical foundations from

control theory, which guarantees fast convergence and network stability. Most im-

portantly, RIM is a local parameter based on only local information, which makes
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the SALE scheme easy and systematic to implement with high scalability. Through

simulations, we validate the fast convergence of the system to a steady-state op-

erating point with close-to-Pareto-front throughputs and good fairness among the

users, while comparing with our previous heuristic algorithm.
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Chapter 6

Multi-Leader Stackelberg Games in

Multi-Channel Spatial Aloha Net-

works

6.1 Introduction

In Chapters 3 to 5, we have been studying the single channel spatial Aloha model.

To further improve the network performance, multiple collision channels can be

considered. A detailed review on channel selection games in multi-channel Aloha

networks with spatial reuse has been presented in Section 1.3.2.

The main contributions of this chapter are summarized as follows. We study

the multi-channel Aloha networks with spatial reuse, with the objective to enable

each autonomous user i to select a channel ci and decide a MAP qi to improve its

throughput, while providing a certain degree of fairness among the users [148]. We

apply the game theoretic approach to the problem, where each user i is a player

who chooses the strategy (ci, qi) to improve its own throughput. To search for a NE,

a Multi-Leader Stackelberg Game (MLSG) [74] is formulated to iteratively obtain a

solution on each dimension of the (ci, qi) strategy.

First, multiple Stackelberg leaders are elected to manage the MAPs of all players.

Then under the resulting MAP profile, each player iteratively chooses its channel

to improve its throughput. Specifically, assume the current network consists of

several sub-networks. These subnets are disconnected from others, either because

they operate on different channels, or they are on the same channel but spatially

disconnected. First of all, each subnet elects the player with the highest node degree

to be the leader to manage this subnet. Within each subnet, the leader mandates the
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MAPs of all players to be the same, and sets the MAP value to provide localized

max-min throughput fairness for the players in this subnet. Such a myopic best

response update performed by the leader requires only local information within its

subnet. Secondly, under the resulting MAP profile, each player iteratively chooses

its channel to improve its own throughput. The iteration dynamics follow the

formulation in [70], whose convergence is guaranteed under the theory of potential

games. An Oscillation Resolving Mechanism (ORM) is further proposed to stabilize

the design in some special cases where the operating points of some players in a

local region would oscillate between the two dimensions of the myopic search.

Compared to existing methods of pre-allocating MAPs as in [70], our iterative

MAP management explicitly takes into account the localized fairness issue among

the players, and is able to approximately achieve max-min throughput fairness in

each subnet. Moreover, under the above fairness constraint, the MLSG game is

able to further improve the overall network throughput iteratively compared to any

pre-allocated MAPs. Simulation results show that, by playing the MLSG game, the

overall network throughput is gradually improved until a NE is reached, and the

resulting NE provides good throughput fairness for the players.

The rest of the chapter is organized as follows. We dedicate Section 6.2 to

discuss the MLSG game in details. We evaluate the system performance through

simulations in Section 6.3. We conclude the chapter in Section 6.4.

6.2 Multi-Leader Stackelberg Games

In this section we design a Multi-Leader Stackelberg Game (MLSG), where each

user i is a player who chooses the strategy (ci, qi) to improve its own throughput

in the multi-channel spatial Aloha model introduced in Section 2.3. First, multiple

Stackelberg leaders are elected to manage the MAPs of all players. Then under

the resulting MAP profile, each player iteratively chooses its channel to improve its

own throughput. The process will repeat until a stable solution is obtained.

6.2.1 MAP Management by Multiple Stackelberg Leaders

Assume the current network settles with G subnets, as described in Section 2.3.

Each subnet Mg, g ∈ G elects a player lg ∈ Mg as the leader within this subnet.

Further assume that each leader’s management goal is to provide localized max-min

throughput fairness for the players in its subnet, by mandating a proper common
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MAP value for the players in this subnet to follow. Hence, the leader lg solves the

following optimization problem:

maxqlg mini∈Mg{θi}

s.t.





θi = qi
∏

j:aij=1,cj=ci
(1− qj), ∀i ∈Mg,

qi = qlg ,∀i ∈Mg,

0 ≤ qlg ≤ 1.

(6.1)

The optimization problem in (6.1) can be equivalently reduced to:

maxqlg mini∈Mg{θi}

s.t.

{
θi = qlg(1− qlg)Ni,g ,

0 ≤ qlg ≤ 1,

(6.2)

where Ni,g is the number of neighbors for user i (excluding user i itself) in subnet

Mg, which is also known in graph theory [139] as the node degree of user i in this

subnet. Here we assume that the interference relationship among users is symmetric,

i.e., aij = aji,∀i, j. It is now obvious that the minimum throughput always happens

at the player with the highest node degree in this subnet under the common MAP

constraint. Since the leader lg is responsible for solving the max-min problem in

(6.2), it is natural to elect the player with the highest node degree as the leader lg.

For simplicity, in cases where there are multiple players in this subnet who have

the same highest node degree, the one with the smallest ID is elected as the leader.

The leader lg then solves the max-min problem in (6.2) by actually maximizing its

own throughput:

maxqlg θlg = qlg(1− qlg)Nlg,g

s.t. 0 ≤ qlg ≤ 1.
(6.3)

which yields the optimal solution to (6.2) as:

qlg = 1/(Nlg ,g + 1). (6.4)

We thus formulate the problem of choosing the MAPs and subsequent spatial

channel selection as a multi-leader Stackelberg game [74], where the player lg with

the highest node degree Nlg ,g in each subnetMg, g ∈ G is elected to be the leader to

manage the MAPs in this subnet. Within each subnetMg, the leader lg mandates

the MAPs of all players to be the same, and sets the MAP value as 1/(Nlg ,g + 1) to

provide max-min throughput fairness for the players in this subnet. Such a myopic
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best response update by the leader requires only local information within its subnet.

As a result, a MAP profile of all the players would be generated.

Note that the role of the Stackelberg leader in this chapter is slightly different

from that of the local leader in Chapter 5, although they share some characteristics

such as highest node degree, mandating equal MAP within its subnet, etc. The

key difference lies in the information requirement. The local leader in Chapter 5

requires only one-hop information to make MAP adaptation, while the Stackelberg

leader in this chapter requires local information within its subnet, i.e., it knows the

highest value of node degree within its subnet. We allow the Stackelberg leader to

have the above information so that (6.4) can be used to determine the MAP instead

of using PI controller described in Chapter 5, and focus more on the joint issues

with spatial channel selection. On the other hand, in the multiple-channel scenario,

it is expected that the network can be divided into more non-overlapping subnets,

each of which has fewer users and a lower user density than in the single-channel

scenario. Therefore, the node degree information in a subnet would be relatively

easy to acquire.

6.2.2 Spatial Channel Selection Process

Under the MAP profile resulting from the above MAP management process, each

player then iteratively chooses its channel to improve its own throughput using the

iteration dynamics formulated in [70]. Here we briefly rewrite the spatial channel

selection subgame using our settings and notations:

Players : Distributed Tx-Rx pairs, i ∈ N , who compete for K orthogonal chan-

nels to transmit via slotted-Aloha-type random access scheme.

Strategies : Each player i is allowed to choose a single channel ci ∈ K to access.

Its MAP qi ∈ [0, 1] is assumed to be fixed and given, ∀i ∈ N . We denote c =

[c1, c2, · · · , cN ] as the channel profile and q = [q1, q2, · · · , qN ] as the MAP profile of

all players.

Objectives : Each player i (i ∈ N ) aims to maximize its utility function ui(c, q,A),

which is defined as the logarithm of its throughput θi in its transmitting channel:

ui(c, q,A) = log θi = log[qi
∏

j:aij=1,cj=ci
(1− qj)]

= log qi +
∑

j:aij=1,cj=ci
log(1− qj),∀i ∈ N . (6.5)

The solution of the spatial channel selection subgame is a NE of the subgame,
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which is defined as a strategy profile (in our case, c∗ = [c∗1, · · · , c∗N ]) in which each

player i’s channel selection strategy c∗i is a best response to the strategies of all the

other players c∗−i [34], i.e.,

c∗i = arg max
ci∈K

ui(ci, c
∗
−i, q,A),∀i ∈ N . (6.6)

Assume that asynchronous myopic best response is adopted, i.e., at any given

time, only one player updates its channel selection, which aims to maximize its own

utility defined in (6.5). To make a best response, each player needs to estimate the

load on all channels and choose the one with the highest channel availability. If

we assume that there exists one-hop information exchange about MAPs among the

players, then on each channel k ∈ K player i observes:

vi(k) :=
∏

j:aij=1,cj=k
(1− qj), (6.7)

which is the probability that the k-th channel is available. The myopic best response

by player i is therefore given by

c̃i = arg max
ci∈K

ui(ci, c−i, q,A) = arg max
k∈K

vi(k),∀i ∈ N . (6.8)

Under the above asynchronous myopic best response update, the convergence to a

NE c∗ of the subgame is guaranteed under the theory of potential games [70].

6.2.3 Iterative Play of the MLSG game

The MLSG game is then played iteratively based on the procedure given in the

above two subsections until a NE is reached. Compared to existing methods of pre-

allocating MAPs, the MLSG game further improves the overall network throughput

by iteratively tuning the MAPs toward max-min throughput in each subnet. We

summarize the iteration process of the MLSG game in Algorithm 6.1.

6.2.4 Oscillation Resolving Mechanism

Our simulation results show that convergence to a NE can always be achieved

after a finite number of game plays, except in some cases the operating points of

some players in a local region exhibit oscillation between the two dimensions of

the myopic search. In order to resolve this problem, we introduce an Oscillation

Resolving Mechanism (ORM) to stabilize the design.
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Algorithm 6.1 Iteration Process of the MLSG Game

1: Initialize:
2: Player i stays on channel ci = 1 (channel 1), for all i ∈ N (initially all players are in

the same subnet);
3: Elect the player L with the highest node degree NL as the leader;
4: Player i sets MAP qi = 1/(NL + 1), for all i ∈ N .

5: repeat:
6: repeat:
7: for i = 1, · · · , N players do:
8: Estimate the channel availability vi(k) on each channel k ∈ K;
9: Choose the channel ci = arg maxk∈K vi(k);

10: end for
11: until No player changes its channel.
12:

13: for each connected subnet Mg, g ∈ G do:
14: Elect the player lg ∈Mg with the highest node degree Nlg as the leader,

which broadcasts qlg = 1/(Nlg + 1) to all other players in Mg;
15: Player i sets MAP qi = qlg , for all i ∈Mg;
16: end for
17: (Oscillation Resolving Mechanism)
18: until No player changes its MAP.

Algorithm 6.2 Oscillation Resolving Mechanism

1: for i = 1, · · · , N players do:
2: for t = 2, 3, · · · , Tmax do:
3: Ci(t− 1) = Ci(t);
4: Qi(t− 1) = Qi(t);
5: end for
6: Ci(t) = ci;
7: Qi(t) = qi.

8: for T = 2, 3, · · · , Tmax/2 do:
9: for h = 1, · · · , T do:

10: if Ci(Tmax − h+ 1) = Ci(Tmax − h+ 1− T )
11: and Qi(Tmax − h+ 1) = Qi(Tmax − h+ 1− T )
12: and ∃t, s ∈ {Tmax − T + 1, · · · , Tmax},s.t. Ci(t) 6= Ci(s)
13: and ∃t, s ∈ {Tmax − T + 1, · · · , Tmax},s.t. Qi(t) 6= Qi(s) then
14: Oscillation detected, with period Ti = T .
15: end if
16: end for
17: end for

18: if Oscillation detected then
19: freeze operating point (ci, qi).
20: end if
21: end for
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The ORM mechanism is presented in Algorithm 6.2, which should be inserted

in line 17 of Algorithm 6.1. Specifically, each player i keeps the history of its oper-

ating point (ci, qi) for the recent Tmax rounds of the MLSG game play, denoted as

(Ci(t), Qi(t)), t = 1, · · · , Tmax. If the operating points oscillate with a certain period

Ti, then player i would freeze its operating point at the first detected oscillation

point (ci, qi). This simple mechanism stabilizes the whole network.

In the ORM mechanism, different number of comparisons (T ≤ Tmax/2) need

to be performed when determining the oscillation period Ti of different player i.

The procedure to detect the oscillation period Ti for each player i is presented from

line 8 to line 17. To check for the oscillation period T , it requires at most 4T

comparing operations (equal or different). Since we have to check for the value of

T up to Tmax/2, in the worst case, it takes 4 · (2 + Tmax/2) · (Tmax/2 − 1)/2 =

(Tmax + 4)(Tmax/2 − 1) comparing operations, which is in the order of O(T 2
max).

The value of Tmax required to capture the maximum possible oscillation period may

depend on the number of users, user density, as well as the specific network topology,

which needs future investigations to rigorously characterize. In the simulations we

performed, we only capture oscillation periods of 2 or 3 happening at only one or

two players.

6.3 Simulation Studies

6.3.1 Illustration of the MLSG Game: 10 Users Case

In this subsection we apply the MLSG game to the interference graph in Fig. 6.1a to

illustrate the iteration process and the improvement over total network throughput.

We first consider the case with K = 2 available channels, and the improvement steps

of the MLSG game are plotted in Fig. 6.2a.

The game converges to a NE after tmove = 10 channel moves (for tmove > 10, no

user is changing its channel and the total throughput remains unchanged thereafter).

It can be seen from Fig. 6.2a that the MLSG game gradually improves the overall

network throughput until reaching a NE. Specifically, there are two sudden rises

in the total throughput, which are brought by two rounds of MAP management

that occur at tmove = 7 ∼ 8 and tmove = 9 ∼ 10 respectively. When tmove ≤ 7, the

users are asynchronously updating their channels to improve their own throughputs,

and the total throughput gradually improves as well. Then the channel selection

subgame converges after tmove = 7, and the MAP management process improves
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Figure 6.1: 10 Users Topology, with 1∼6 Channels

the total throughput by tuning the MAPs towards max-min throughput in each

subnet. As a result, the total throughput is significantly improved under the fairness

constraint. Similarly, there is another round of spatial channel selection subgame

and MAP tuning between tmove = 8 ∼ 10, and the total throughput is further

improved until converging to a NE.

Notice that the game could actually start with any pre-allocated MAPs as in [70].

However, the pre-allocated MAPs might be unfair if some users are allocated much

larger MAPs than other users in the same subnet. If the game starts with such

unfairly pre-allocated MAPs, then it is possible that the total throughput would

decrease at first, as a result of the MAP management which re-allocates the MAPs to

approximately provide max-min throughput fairness for the users in each subnet.

After that, our MAP management process is able to further improve the total

network throughput iteratively under the fairness constraint.

We then apply the MLSG game to the same interference graph with more avail-

able channels. The improvement steps of total network throughput with K = 2 ∼ 6

channels are plotted in Fig. 6.2b. Similar to the K = 2 case, the MLSG game grad-

ually improves the total network throughput until reaching a NE. In particular, the

sudden rise(s) of the total throughput in each case is a result brought by the MAP

management process.

The final channel allocation results for K = 1, · · · , 6 are plotted in Fig. 6.1,

where we use different colors and shapes to denote different channels, and the leader
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Figure 6.2: Improvement over Total Throughput, N = 10,K = 2 ∼ 6

in each subnet is plotted using a bigger icon than other players. With K increasing

from 1 to 6, the network is partitioned into more subnets with smaller sizes (the

number of subnets G gradually increases from 1 to 10), and the total throughput

of all players gradually increases as well. When K = 6, each player occupies a

single channel without interfering other players, and the total throughput reaches

10 (each player has a throughput of 1).

6.3.2 50 Users Case

Consider a distributed network with N users, which are randomly placed in a square

region of a given area. For simplicity, we assume that all the distances between any

transmitter and its designated receiver are much smaller than the distances between

any two transmitters, so that a Tx-Rx pair (user) can be represented by a single

node in the topology. We further assume that in the single-channel case, all users

have transmission range of 5 unit length, and those users who are in each other’s

transmission range will have significant interference on each other, and the two

users are said to be connected. Based on the above assumptions, we can generate

a random connected topology with 50 users in a square region of area 500 (units),

as plotted in Fig. 6.3.
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Figure 6.3: 50 Users Topology

ORM Mechanism

It happens that player 30 and player 39 in this particular topology have oscillating

operating points when K = 3 in the MLSG game. As indicated in Fig. 6.4a, the

operating points of player 30 and player 39 are (c30, q30) = (1, 1/4) and (c39, q39) =

(3, 1/2) respectively. Given such a MAP profile, player 39 jumps from channel 3 to

channel 1 since v39(1) = 1−q30 = 1−1/4 = 3/4 > v39(3) = 1−q12 = 1−1/2 = 1/2.

After player 39 switches its channel, player 30 jumps from channel 1 to channel 3

since v30(3) = 1− q12 = 1− 1/2 = 1/2 > v30(1) = (1− q39)(1− q34) = (1− 1/2)(1−
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Figure 6.4: Oscillation States of the MLSG Game

108



0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50

Channel moves tmove

T
o
ta
l
th
ro
u
g
h
p
u
t
∑

θ i

 

 

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

MAP Management

Figure 6.5: Improvement over Total Throughput, N = 50,K = 2 ∼ 7

1/4) = 3/8. Then the channel selection subgame converges, with players 30 and 39

swapping their channels. After that, the MAPs of players 30 and 39 are swapped

as well, as a result of the MAP management process. Now the subgame restarts

with a new state as indicated in Fig. 6.4b. The only difference with Fig. 6.4a is

that players 30 and 39 have swapped their operating points. In this way, there are

Nosc = 2 players (players 30 and 39) whose operating points are oscillating with a

period Tosc of 2 rounds of the MLSG game play.

Fortunately, we can apply the ORM mechanism to stabilize the network. In the

above scenario, player 30 and player 39 both detect oscillation of their operating

points, thus both of them freeze their operating points at the state in Fig. 6.4b, and

the network is stabilized. The total number of channel moves before convergence is

tmove = 51.

Improvement over total throughput

Similar to Section 6.3.1, we apply the MLSG game to the interference graph in

Fig. 6.3 with more available channels. The improvement steps of total network

throughput with K = 2 ∼ 7 channels are plotted in Fig. 6.5, which shows that the

MLSG game converges after tmove ≈ 50 channel moves (no oscillation is detected
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Table 6.1: MLSG Game (N = 100,K = 5)

area D Σθi G tmove Nosc Tosc
12.5 8 1.89 5 80 0 -
25 4 2.10 5 102 0 -
50 2 3.10 5 142 0 -
100 1 5.34 5 160 0 -
200 0.5 16.96 21 195 3 2
400 0.25 32.02 42 111 2 3
1000 0.1 83.50 89 81 0 -

except the K = 3 case, which is stabilized by ORM). Similar to the 10 users case in

Fig. 6.2b, the MLSG game gradually improves the total network throughput until

reaching a NE. In particular, the sudden rise(s) of the total throughput in each

case is a result of the MAP management process which iteratively tunes the MAPs

towards max-min throughput in each subnet. As a result, the total throughput is

significantly improved under the fairness constraint.

6.3.3 100 Users with Various User Density

We define the user density D as the number of users per unit area. For the 50

users case above, the user density is D=50/500=0.1. Now we generate a sequence

of random connected topologies with various user density, by randomly scattering

100 users in a square region of various areas. In particular, when the square region

has an area of 12.5, the network becomes fully connected (the diagonal line length

is equal to the transmission range of 5). We apply the MLSG games to these

topologies with K=5 and summarize the results in Table 6.1.

It can be seen that the MLSG game converges after a finite number of channel

moves. Oscillation is detected in two cases (D = 0.25 and D = 0.5) in the MLSG

game, and the ORM mechanism is applied to stabilize the network. Table 6.1 also

shows that as the user density decreases from 8 to 0.1 ( from a fully connected

network to a network with lower connectivity), the network is partitioned into

more subnets with smaller sizes (the number of subnets G gradually increases). As

a result of spatial reuse, the total throughput increases due to decreased interference

from fewer neighbors experienced by each user.
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6.4 Conclusions

We study the multi-channel spatial Aloha network with the objective to enable

each autonomous user i to select a channel ci and decide a MAP qi to improve its

throughput, while providing a certain degree of fairness among the users. Game

theoretic approaches are applied, where each user i is a player who chooses the

strategy (ci, qi) to improve its own throughput. To search for a NE, a MLSG game

is formulated to iteratively obtain a solution on each dimension of the (ci, qi) strat-

egy. An ORM mechanism is proposed to stabilize the design in some special cases

where the operating points of some players in a local region would oscillate between

the two dimensions of the myopic search. Compared to existing methods of pre-

allocating MAPs, the MLSG game further improves the overall network throughput

by iteratively tuning the MAPs toward max-min throughput in each subnet. Sim-

ulation results show that the MLSG game gradually improves the total throughput

until reaching a NE, which also provides good throughput fairness for the players.

The focus of this chapter is more on the game theoretic formulation to model

the selfish user behaviors in the joint channel selection and MAP tuning problem.

We have only considered the case with static topology during the course of the game

play. In the future we need to further investigate the non-deterministic scenarios

such as topology change, time-varying channels, failure of control message passing,

etc.
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Chapter 7

A Stackelberg Game Model for

Overlay D2D Transmission with

Heterogeneous Rate Requirements

7.1 Introduction

Slotted Aloha random access has been used in the above works. In this chapter,

we investigate another type of random access scheme, i.e., CSMA, under spatial

reuse. We formulate the problem by applying the spectrum commons to overlay

D2D communication, i.e., we assume that all D2D links use CSMA as the multiple

access scheme to share a dedicated inband overlay channel.

Recall from Section 1.1.3 that a spectrum commons is characterized by the

restrictions on who uses the spectrum, and when and how. The owner or controller

of the spectrum commons in our settings is the cellular operator who establishes

and enforces these restrictions, while the users of the spectrum commons are the

D2D links who conform to these restrictions when sharing the spectrum.

Specifically, although D2D communication does not route the data traffic through

the cellular network, the available network infrastructure can still be an effective

means to exert light control over all the D2D links when performing resource al-

location. In our model in Chapter 7, the D2D links have heterogeneous service

requirements and different willingness to pay, and the central entity (e.g., eNB) [98]

controls the transmission behaviors of all links by modifying the price per unit

service rate [149].

Our contributions in this chapter are twofold. First of all, we propose a Stack-

elberg game [33] which maximizes the total throughput of the D2D links, where
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these links have heterogeneous utility functions. The BS in the cellular networks

will act as a Stackelberg leader to regulate the D2D link transmissions by modifying

the service price, so that the payoff of each individual D2D link can be maximized

while maintaining the D2D network to function within the feasible throughput re-

gion determined by the CSMA access mechanism. The problem is shown to be

quasi-convex and can be solved by a sequence of equivalent convex optimization

problems. The pricing strategies are designed so that the network always operates

within the feasible throughput region. Secondly, each D2D link will acquire a rate

based on its actual demand and willingness to pay. We explicitly model the possible

selfish behaviors among the D2D links with spatial reuse. Under a given network

price, the transmitter of each D2D link competes for channel usage by choosing its

transmission parameters in order to maximize its own payoff. Such user dynam-

ics are studied in the setting of non-cooperative games, and the resulting CSMA

game model serves as the follower-subgame in the proposed Stackelberg game. An

algorithm is proposed followed by proofs for the existence and convergence of the

equilibrium solution.

The rest of the chapter is organized as follows. Based on the network model

introduced in Section 2.4, the definition of feasible throughput region for a CSMA

network is defined in Section 7.2, while some important properties about these

feasible regions are derived. The Stackelberg game is detailed in Section 7.3. Per-

formance of the proposed game is evaluated through simulations in Section 7.4. We

conclude the chapter in Section 7.5.

The notations used in this chapter are as follows. An underscore in a random

variable · represents a vector, or a system state consisting of the binary status of

the N links. The variable θ is used to denote the throughput from the channel

access point of view, where the solution is controlled by the ICN model. On the

other hand, θ̃ is used to represent a desired throughput from the link layer aspect,

whose value is derived from the price and link utility function. If the final solution

is within the feasible throughput region, these two values should match. There are

two types of equilibrium to be differentiated, the subgame equilibrium is denoted by

a superscript ‘*’ whilst for the Stackelberg game is denoted by a superscript ‘opt’.
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7.2 Feasible Throughput Region in Spatial CSMA

Networks

The spatial CSMA network model has been introduced in Section 2.4. In this

section, we state and derive the key results on ICN which are important to our

proposed game theoretic framework to be presented in Section 7.3.

7.2.1 Feasible and Strictly Feasible Throughput Region

Each feasible system state s ∈ S corresponds to a feasible scheduling vector of link

transmissions. The feasible throughput region is therefore the convex hull [142, pp.

24] of S, namely,

C̄ = {θ|(θ =
∑

s∈S

pss) ∧ (ps ≥ 0,∀s) ∧ (
∑

s∈S

ps = 1)}. (7.1)

Eq.(7.1) shows that the feasible solutions are given by the convex combinations of

the throughputs at these feasible states while fulfilling the probability and proba-

bility distribution constraints. The solutions are fully defined by a polytope whose

vertices are the feasible system states s ∈ S.

The interior of C̄ is the strictly feasible region, denoted as C:

C = {θ|(θ =
∑

s∈S

pss) ∧ (ps > 0,∀s) ∧ (
∑

s∈S

ps = 1)}. (7.2)

Using the contention graph in Fig. 2.1 as an example. The set of feasible system

states S has been given in (2.3). The feasible throughput region is C̄ shown in Fig.

7.1, which is a polyhedron vertexed by the maximum throughput of these states

(the region enclosed by the mesh surface and its intersections with θ1 − θ2, θ1 − θ3
and θ2 − θ3 planes). The strictly feasible region C refers to the inner region of the

polyhedron only.

7.2.2 Transmission Aggressiveness

CSMA is a distributed and randomized way to schedule the transmissions among the

feasible system states. It is shown in [92] using the ICN model that any throughput

in the strictly feasible region can be achieved through a properly chosen Transmis-

sion Aggressiveness (TA) r, which is stated in the following lemma.
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Lemma 7.1 (Lemma 8 in [150]). In the ICN model, for any desired throughput

for all the N links θ̃ = [θ̃1, θ̃2, · · · , θ̃N ] ∈ C (strictly feasible region), there exists a

unique finite-valued r = [r1, r2, · · · , rN ] ∈ RN such that θi(r) = θ̃i, ∀i ∈ N .

A detailed proof can be found in [92] and [150]. Here we only present a sketch

of the proof.

Proof : Given a θ̃ ∈ C, we use the maximum log-likelihood method to estimate

the parameters r∗ which result in θ(r∗) = θ̃, or equivalently, result in the desired

state probability distribution pθ̃ such that θ̃ =
∑

s∈S p
θ̃
ss. The log-likelihood function

[151] is defined as:

F (r; θ̃) =
∑

s∈S

pθ̃s loge(ps). (7.3)

By applying θ̃ =
∑

s∈S p
θ̃
ss and substituting the expression for ps given in (2.7), and

after some manipulations, we have

F (r; θ̃) =
∑N

i=1 θ̃iri − loge[
∑

s∈S exp(
∑N

i=1 siri)]. (7.4)

Since
∑N

i=1 θ̃iri is affine in r and loge[
∑

s∈S exp(
∑N

i=1 siri)] is a log-sum-exp function

and thus is convex in r, the function F (r; θ̃) is concave in r [142, pp. 72]. Therefore,

the max-log-likelihood problem below is a convex optimization problem with r as
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the variables to be solved and θ̃ as the parameters:

max
r

F (r; θ̃) (Maximize log-likelihood). (7.5)

It is then shown in [92] that the max-log-likelihood problem in (7.5) is the dual

problem of the max-entropy problem in (7.6), where −∑s∈S ps loge ps is the entropy

of the distribution vector p, whose element ps is the state probability for the state

s,∀s ∈ S. The max-entropy problem is also a convex optimization problem, with p

as the variables and θ̃ as the parameters.

max
p

−∑s∈S ps loge ps (Maximize entropy)

s.t.





∑
s∈S sips = θ̃i,∀i ∈ N ,

ps ≥ 0, ∀s ∈ S,
∑

s∈S ps = 1.

(7.6)

We are now ready to prove Lemma 7.1. We need to verify that the Slater’s

condition [142, pp. 226] is satisfied, so that the optimal solutions to the two convex

optimization problems (7.5) (7.6) exist with zero duality gap, given that θ̃ ∈ C
(strictly feasible region).

Since all the constraints in (7.6) are linear equalities and inequalities, we only

need to verify that there exists a feasible p in the relative interior [142, pp. 23] of

the domain D of the objective function −∑s∈S ps loge ps, which is D = {p|ps ≥
0,∀s ∈ S}. The relative interior of D is relintD = {p|ps > 0, ∀s ∈ S}. Since θ̃ ∈ C,
from (7.2) we can write θ̃ =

∑
s∈S p

θ̃
ss where pθ̃s > 0, ∀s ∈ S and

∑
s∈S p

θ̃
s = 1. By

letting p = pθ̃ ∈ relintD, we find a feasible p which satisfies all the constraints in

(7.6). Therefore, the Slater’s condition is satisfied.

As a result, the optimal solutions to the two convex optimization problems (7.5)

(7.6) exist with zero duality gap. Moreover, the dual optimal value is attainable, i.e.,

there exists a finite r∗ such that F (r∗; θ̃) = maxr F (r; θ̃). Therefore, the first order

condition [142, pp. 457] of the unconstrainted differentiable convex optimization

problem in (7.5) is satisfied at r∗, i.e.,

∇F (r; θ̃) |r=r∗= 0, (7.7)
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which yields

∂F (r; θ̃)

∂ri
|r=r∗= θ̃i−

∑
s∈S si exp(

∑N
i=1 sir

∗
i )∑

s∈S exp(
∑N

i=1 sir
∗
i )

= θ̃i−
∑

s∈S sips = θ̃i−θ∗i = 0,∀i ∈ N .

(7.8)

Therefore, for any θ̃ ∈ C (strictly feasible region), the log-likelihood function

F (r; θ̃) attains its maximum value at a finite-valued r = r∗ ∈ RN . At the optimal

solution r∗, the first-order optimality condition (7.7) is satisfied, which corresponds

to θ∗i (r
∗) = θ̃i,∀i ∈ N . It is further shown in [150] that F (r; θ̃) is strictly concave

in r. Therefore, the optimal solution r∗ is unique. �

Lemma 7.1 suggests that, if θ̃ ∈ C, then a unique solution r∗ exists such that

θ∗i (r
∗) = θ̃i,∀i ∈ N . On the other hand, the above proof also suggests that we

can solve for r∗ by maximizing the concave function F (r; θ̃). This is useful for the

design of our game iteration algorithm presented in Section 7.3.2.

7.2.3 Feasible Throughput Region Under ICN

Previously we have defined the feasible throughput region for any given set of fea-

sible system states. The shape of the polytopes derived from the ICN model owns

a property which will be discussed here.

We first introduce a binary relation “�” between two real-valued vectors ϑ̃ and

θ̃, which is defined as component-wise less than or equal to, i.e.,

ϑ̃ � θ̃ ⇔ ϑ̃i ≤ θ̃i,∀i ∈ N . (7.9)

We now establish the following theorem which will be useful when presenting our

proposed games.

Theorem 7.1. In the ICN model, given that θ̃ ∈ C̄ (θ̃ is in the feasible region),

then any desired throughput ϑ̃, where 0 � ϑ̃ � θ̃, is also in C̄.

Proof : A first glance at Fig. 7.1 may lead to the thought that the theorem is

trivial, but this is not true. Fig. 7.2a shows a convex set A1 in the two-dimensional

space. For a θ̃ ∈ A1 as shown in Fig. 7.2a, it is easy to find a point ϑ̃ such that

ϑ̃ � θ̃ and yet ϑ̃ is not within the convex region A1. On the other hand, it is not

difficult to figure out that the convex set A2 in Fig. 7.2b owns the property stated

in Theorem 7.1.

In the ICN model, for a target throughput vector θ̃ where θ̃ ∈ C̄, there exists a

probability distribution pθ̃ = {pθ̃s,∀s ∈ S} where θ̃ =
∑

s∈S p
θ̃
ss according to (7.1).
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Figure 7.2: Examples of 2-Dimensional Convex “Polytopes”

To prove that ϑ̃ � θ̃ ∈ C̄, we need to similarly show that there exists another

probability distribution pϑ̃ = {pϑ̃s ,∀s ∈ S} such that it fulfills (7.1). However, it

is difficult to obtain the distribution pϑ̃ directly from pθ̃ since it depends on the

underlying link topology.

Our approach is to define an orthotope B whose “vertices” are obtained by pro-

jecting θ̃ on all the coordinate planes. An example for the 3-dimensional illustration

is shown in Fig. 7.1. The problem is now becoming equivalent to showing that all

the “vertices” of B are in C̄. Finally, because ϑ̃ � θ̃, ϑ̃ is within the cuboid and

hence within C̄.
We first perform a projection parallel to the i-th axis. Consider a throughput

vector ψ̃, with the setting of ψ̃i = 0, ψ̃j = θ̃j,∀j 6= i, i.e., the i-th link has zero

throughput. It is intuitive that ψ̃ is one of the “vertices” of B. In order to show

that ψ̃ is in C̄, we need to show that we are able to obtain its state probability

distribution {pψ̃} from {pθ̃}, and ψ̃ can be expressed in the form as in (7.1). This

can be done in the following way.

For θ̃ ∈ C̄, its state distribution pθ̃ satisfies θ̃ =
∑

s∈S p
θ̃
ss, p

θ̃
s ≥ 0,∀s ∈ S and

∑
s∈S p

θ̃
s = 1. We next describe how to construct the state distribution pψ̃ for ψ̃.

For those states in S with si = 1, choose pψ̃s = 0 and pψ̃s−ei = pθ̃s−ei + pθ̃s. For the

remaining states, choose pψ̃s = pθ̃s. In other words, those states s with si = 1 should

now have state probability pψ̃s = 0. The “removed” state probability pψ̃s should now

be attributed to the state s − ei. It is not difficult to verify that, by doing so, the

total probability remains one and the throughputs of all unaffected links remain the

same as before. This state probability distribution pψ̃s clearly satisfies (7.1), hence
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we conclude that the vertex ψ̃ is within C̄ and so are other vertexes of B.

It is not difficult to verify this by using the example shown in Fig. 2.3. Assume

that we have a throughput θ̃ = [θ̃1, θ̃2, θ̃3] ∈ C̄. We now show that ψ̃ = [ψ̃1, ψ̃2, ψ̃3] =

[0, θ̃2, θ̃3] is also in C̄. Note that the throughput ψ̃ is equivalent to the case in which

link 1 powers off and stops transmitting. In such a case, there are only three feasible

system states left: 000, 010, 001. In other words, the states 100 and 101 disappear

and are merged into the states 000 and 001 respectively, since link 1 is no longer

transmitting. State 010 remains unchanged. Merging the state probability p101 with

p001 will ensure the throughput for link 3 remains the same, since θ̃3 = p001 + p101.

Merging the state probability p100 with p000 will not affect the throughput of any

remaining links. Since the total probability still sums up to be one, link 1 will

not be transmitting and both link 2 and link 3 transmit as before. Therefore, the

throughput ψ̃ resulting from the above state merging operations is still in C̄.
Other vertices of B can also be similarly shown to be in C̄. Since C̄ is a convex

set and the convex combination of these “vertices” are all in C̄, we have B ⊂ C̄.
Since ϑ̃ � θ̃ is enclosed in the hyperrectangle (N -orthotope), ϑ̃ should also be in C̄.
�

A remark to make is that Theorem 7.1 is not generally true for any con-

vex set. It is true since the values of si are chosen from 0 and 1 only; and

the subset of feasible states induced by a maximal independent set is a com-

plete partially ordered set [2] based on how ICN is modelled. For the example

in Fig. 2.3, the maximal independent set {1, 3} induces the subset of feasible states

Q = {[0, 0, 0], [1, 0, 0], [0, 0, 1], [1, 0, 1]}, which is a complete partially ordered set,

with the least element [0, 0, 0] and the largest element [1, 0, 1] under the partial

order “�”. Hence the use of the theorem needs to be carefully dealt with.

Theorem 7.1 will be used in Section 7.3.3 to show that the pricing problem is a

valid quasi-convex optimization problem.

7.2.4 D2D Network Model

The discussion in this subsection is on how to efficiently model the resulting D2D

network if the CSMA channel access mechanism is adopted by all D2D links. If

the objective of the network is to maximize the sum-rate of all transmitting links,

and the BS gives no control on the admission and transmission of links, then [92]

has successfully solved this problem. The solution is computed in a completely

distributed manner. However, as pointed out earlier in Section 1.4.3, such a fully
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cooperative model is too idealistic and there is no consideration on the utility het-

erogeneity and selfish behaviors of the links. It may be better to build a pricing

framework so that each link tries to maximize its payoff function when competing

for resources, rather than someone tries to take advantage when the network is in

operation and drive the network to unstable states. Furthermore, maximizing the

sum-rate may not distribute the resources according to demand because links with

low demand may be assigned to transmit at higher rates due to its spatial location.

In this chapter, we feel that the BS can take a more proactive role to assist in

D2D transmission. In fact, the problem can be formulated separately in terms of

the objectives of the D2D links and the BS. The objective of the BS is to maximize

the sum-rate while satisfying the physical layer constraints:

max
∑N

i=1 θ̃i

s.t. θ̃ ∈ C,
(7.10)

where θ̃i is the target rate the network has to support link i, and the solution must

fulfill the CSMA channel access constraint, i.e., the final rates to support all D2D

links must be in the strictly feasible throughput region defined in (7.2).

Each link is a player of a non-cooperative game. Each player tries to maximize

its payoff vi(θi, θ−i) while satisfying the physical layer constraints.

max vi(θi, θ−i),∀i
s.t. θ ∈ C.

(7.11)

In (7.10), θ̃i is used to represent the rate demand from the utility point of view

and should be differentiated from θi in (7.11) or (2.11) used in the ICN model

as a result of competing for channel access. At the equilibrium state, these two

quantities have to be the same and the pricing mechanism aims to achieve this

objective.

There are two challenges in the formulation. The above two optimization prob-

lems both involve the constraint defined by the strictly feasible throughput region

C. From Lemma 7.1 we know that, for any desired throughput θ̃ in the strictly

feasible region C, there exists an operating point r such that θ(r) = θ̃. However, in

order to obtain C as in (7.2), we need to know all the feasible system states, which

correspond to all the independent sets [86] in the contention graph. As is shown

in [86], to compute all the independent sets (include the maximal independent sets)

is a NP-hard problem. Hence it is practically difficult to obtain C. The second
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challenge is how to align the solution of (7.10) with the involvement of (7.11).

Our approach is to develop a simple mechanism which does not require a-prior

knowledge of C and yet the radio resource can be allocated to the heterogeneous

D2D links efficiently while satisfying the objectives of both the BS and D2D links.

A pricing mechanism is introduced to achieve this purpose. The payoff function of

each link is made to be dependent on the resource price. The BS will broadcast

the resource price and use it to control the transmission behavior of each link.

Mathematically, the leader solves the following optimization problem:

max
M≥0

g(M) :=
∑N

i=1 θ̃i(M) (7.12)

where θ̃i(M) is the target rate of D2D link i under the service price M , which will

be presented in (7.13). The D2D links are the followers in the overall Stackelberg

game, each of which chooses its transmission strategy so that their individual payoff

is maximized under the service price chosen by the BS, i.e., the Stackelberg leader.

In the next section, we describe how our proposed Stackelberg game model can

achieve the above purposes.

7.3 Stackelberg Games for Non-Cooperative D2D

Links

Stackelberg games [33] are a class of non-cooperative games in which a leader, who

makes the first move in the game, anticipates the actions of the followers based on a

model of how the followers would respond to its actions. We propose a Stackelberg

game, in which the BS in the cellular network acts as a Stackelberg leader to regulate

the transmission behaviors of all the D2D links by broadcasting a proper service

price M . The D2D links are the followers, each of which responds to the price M by

choosing its transmission strategy in an attempt to maximize its individual payoff.

In Section 7.3.1, we first define the utility functions for the D2D links, each

of which characterizes the individual service requirements and willingness to pay.

In Section 7.3.2, we study the non-cooperative behaviors of the D2D links under

a given network price M , which defines the follower-subgame in the Stackelberg

game. The Stackelberg game is analyzed in Section 7.3.3. Based on the analysis,

the pricing strategies of the Stackelberg leader are proposed in Section 7.3.4.
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7.3.1 D2D Link Utility Function

We modify the traffic model used in [60] to our system. Suppose D2D link i has a

target rate θ̃i in the range of [γi, πi], where γi ≤ θ̃i ≤ πi. If θ̃i ≤ γi, link i achieves

zero utility, and each link has no intention to go beyond θ̃i ≥ πi. The exact target

rate value θ̃i is controlled by the service price M through the following relationship

θ̃i(M) =

{
0, M > mi,

min{γi − bi(M −mi), πi}, 0 ≤M ≤ mi,
(7.13)

where γi, πi and mi together decide how link i is willing to pay for the transmission.

For simplicity, we have adopted a monotonically decreasing linear function for θ̃i(M)

in the range γi ≤ θ̃i ≤ πi, where bi is a positive coefficient and −bi is the slope.

Eq. (7.13) is interpreted as follows. The parameter mi is the highest price that

link i is willing to pay for its transmission. When M = mi, link i will only desire

a minimum throughput of γi. When the price is too high (i.e., M > mi), link i

chooses not to transmit, and thus its target rate drops to zero, i.e., θ̃i(M) = 0. Over

the range 0 ≤M ≤ mi, link i is willing to pay for its transmission, and the lower the

price M , the higher throughput it desires, unless it has already reached its maximum

desired throughput πi. In this range, we have used a linear function to simplify the

above monotonic relationship. Other function forms such as hyperbolic, parabolic,

cubic · · · can also be used, as long as the monotonic relationship is preserved. As

a result, the relationship in (7.13) is a piecewise linear function. In the special

case where the minimum desired throughput is γi = 0 and the maximum desired

throughput πi ≥ bimi, the piecewise linear relationship in (7.13) simply reduces to a

linear relationship. A smooth monotonic curve can be similarly obtained when other

function forms are adopted. Note that our algorithm works if only the monotonic

function property holds.

The utility function is designed to provide differentiated treatment for the links

based on their actual demand and willingness to pay for the desired transmission

rate. For the example given in Fig. 7.3a, D2D link 1 and link 3 have the same range

in their target rates, i.e., π1 = π3 and γ1 = γ3, and link 3 has a higher willingness

to pay, i.e., m3 > m1. When the price M continually decreases from a large value

until zero, link 3 will be admitted into the system first.

From the game theoretic perspective, link i will try to choose its target rate θ̃i

in order to maximize its own payoff vi(θi) = Ui(θi) −Mθi (utility minus cost). To

be compatible with such an incentive, we can reversely derive the utility function of
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Figure 7.3: Target Rates and Utility Functions of the CSMA Users

D2D link i as follows. If the utility function Ui(θi) is concave, then the θi value that

maximizes vi(θi) is given by the first-order condition v′i(θi) = 0, i.e., θ̃i = (U ′i)
−1(M).

Equating with the example of (7.13) and we can reversely derive the utility function

for D2D link i:

Ui(θi) =





miθi, 0 ≤ θi < γi,

miθi − (θi−γi)2
2bi

, γi ≤ θi < πi,

miπi − (πi−γi)2
2bi

, πi ≤ θi ≤ 1.

(7.14)

The utility functions for the three links’ example in Fig. 7.3a are plotted in Fig.

7.3b. If we take the derivative of Ui(θi) on θi in (7.14), it can be seen that a higher

mi value corresponds to a steeper slope, which suggests a higher willingness to pay.

This can be seen from Fig. 7.3b, in which the utility function of link 3 has a steeper

slope than that of link 1.

7.3.2 A Subgame of Noncooperative CSMA Users

The Stackelberg game at the l-th iteration begins with the BS broadcasting a price

M (l). Each D2D link i (i ∈ N ) aims to maximize its payoff vi(θi) = U(θi) −
M (l)θi. According to the analysis in Section 7.3.1, link i’s objective is equivalent to

attaining a target rate θ̃
(l)
i under the service price M (l), as given in (7.13). Whether

these target rates are achievable still depends on whether the underlying CSMA

mechanism can support these transmissions. The D2D links therefore play a CSMA

game among themselves to determine their individual TAs to make the throughput

θi as close to θ̃
(l)
i as possible. This CSMA game is therefore the follower-subgame

in the Stackelberg game. To avoid the links from transmitting too aggressively and
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driving the network to unstable states as a result of congestion, a simple approach

is to let M begin with a large value and then gradually decrease.

We formally state the CSMA subgame as follows:

Players : Distributed Tx-Rx pairs (D2D links), i ∈ N , who compete to transmit

in the ideal CSMA network.

Strategies : Each player i chooses its TA ri ∈ R, ∀i ∈ N .

Objectives : Each player i (i ∈ N ) aims to achieve its target rate θ̃
(l)
i set by

maximizing its payoff

vi(θi) = U(θi)−M (l)θi (7.15)

under the given service price M (l).

Note that the throughput θi that player i can achieve is determined by its own

TA ri and the TAs of all the other players r−i based on the relationships in (2.11).

The equilibrium solution of the CSMA subgame is a NE [33], which is defined as a

strategy profile r∗ = [r∗1, · · · , r∗N ]) in which player i’s strategy r∗i is a best response

to the strategies of all the other players r∗−i , i.e.,

r∗i = arg min
ri∈(−∞,+∞)

|θ̃(l)i − θi(ri, r∗−i)|,∀i ∈ N , (7.16)

where θi(r) is the achieved throughput of D2D link i in the ICN model, as given in

(2.11).

It is clear that the objective of the subgame is to find the equilibrium TAs for

all D2D links so that every link achieves throughputs that are as close to what are

desired. According to Lemma 7.1, if the target rate θ̃ is in C, i.e., it is achievable,

then there exists a unique TA r∗ such that θ∗i (r
∗) = θ̃

(l)
i ,∀i ∈ N . On the other

hand, if the target rate θ̃ is beyond C, during the myopic best response updates,

all players will eventually achieve r∗i = +∞, ∀i if there is no further control taken,

i.e., all links transmit aggressively and result in undesired network congestion. The

existence and uniqueness of the NE in the CSMA subgame can then be established

in the following proposition.

Proposition 7.1. For the target rate θ̃ ∈ C (strictly feasible region), there exists a

unique finite-valued NE r∗ ∈ RN in the CSMA subgame. Moreover, the target rate

θ̃ is achieved at the NE, i.e., θ∗(r∗) = θ̃.

Proof : From Lemma 7.1, if the target rate θ̃ ∈ C (strictly feasible region),

then there exists a unique finite-valued r∗ ∈ RN such that θ∗(r∗) = θ̃. As can be

seen from (7.16), there exists a unique NE r∗, since the payoff of each player is
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maximized when θ∗(r∗) = θ̃ and no player has the incentive to deviate from this

NE unilaterally. �

In practice, the strategies of all the other players r−i are usually not known

by player i if we assume that there is no explicit information exchange among the

players. We therefore design some distributed updating method for the players to

arrive at the NE. Let each player update its strategy by measuring its own local

statistics, e.g., measured throughput θ̂i. For the k-th measurement period τ(k),

player i keeps a record of the accumulated transmission time, Ti(k), and obtains

the empirical average throughput as

θ̂i(k) = Ti(k)/τ(k),∀i ∈ N . (7.17)

A distributed way for player i to update its strategy can be

ri(k + 1) = ri(k) + α · (θ̃(l)i − θ̂i(k)),∀i ∈ N , (7.18)

where α is a small positive step size. The conditions for the convergence of the NE

in the CSMA subgame are summarized in the following proposition.

Proposition 7.2. For the target rate θ̃ ∈ C (strictly feasible region), the iteration

dynamics in (7.18) with a small enough step size α and a long enough measurement

period τ will always converge to the NE r∗ ∈ RN in the CSMA subgame.

Proof : We apply the same idea used when proving Lemma 7.1. Given a θ̃ ∈ C, we

use the maximum log-likelihood method to estimate the parameters r∗ which result

in θ(r∗) = θ̃, or equivalently, result in the desired state probability distribution

pθ̃ such that θ̃ =
∑

s∈S p
θ̃
ss. The log-likelihood function F (r; θ̃) is given in (7.4).

It has been shown in Section 7.2.2 that F (r; θ̃) is a strictly concave function in r

and attains its maximum when θ(r∗) = θ̃. Therefore, we can use the subgradient

method [152] to obtain the optimal solution r∗, where θ̃
(l)
i − θ̂i(k) is an estimation of

the gradient ∂F (r;θ̃)
∂ri

(see (7.8)) in the k-th measurement period. Since the objective

function F (r; θ̃) is differentiable and concave in r, the subgradient method with

constant step size α yields convergence to the optimal value, provided the step size

α is small enough and the measurement period is long enough [152]. In summary,

the above proposition follows. �

As mentioned above, under the myopic best response update approach, if the

target rate θ̃ is beyond C, all players will eventually achieve r∗i = +∞,∀i, and the

network will be pushed into the totally congested situation. To overcome this prob-
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lem, we impose a upper limit rmax on ri,∀i ∈ N as an implementation constraint.

The iteration dynamics in (7.18) then become:

ri(k + 1) = min{ri(k) + α · (θ̃(l)i − θ̂i(k)), rmax},∀i ∈ N . (7.19)

The physical meaning of imposing the rmax constraint is to refrain the D2D links

from transmitting too aggressively, so that the local congestion at some links will

not affect the whole network. The outcome of introducing such a restriction is that

the feasible throughput region will shrink into a subset of the original one. Hence

the solution obtained with this constraint imposed is always ensured to be within

C. During the myopic play, if any link arrives at rmax, the BS will be informed.

Then the price M is frozen and the whole D2D network functions at the boundary

of the “shrunken” feasible throughput region. If this happens, not all users are able

to achieve their desired rates or even admitted, as the network is in “congestion”.

7.3.3 Analysis of the Stackelberg Game

In this subsection we analyze the game structure of the Stackelberg game. From

Proposition 7.1 and Proposition 7.2, to satisfy θ̃ ∈ C, it is equivalent to checking that

the CSMA subgame converges to the unique subgame NE r∗ defined in (7.16) under

the given service price M . Therefore, the leader problem in (7.12) is equivalent to

the following optimization problem:

max
M≥0

g(M)

s.t.





equality constraint (7.13),∀i ∈ N ,
equality constraint (7.16),

r∗i < rmax,∀i ∈ N ,

(7.20)

where r∗i is the TA of D2D link i at the NE of the CSMA subgame, as given in

(7.16). The constraint r∗i < rmax,∀i ∈ N implies that the target rate θ̃ as given in

(7.13) is strictly feasible at the subgame NE, i.e., the throughput will converge to

θ∗(r∗) = θ̃ in the CSMA subgame.

To distinguish from the NE r∗ in the CSMA subgame, we call the equilibrium

solution (M opt, ropt) of the Stackelberg game as the Stackelberg Equilibrium (SE)

[153], where M opt is the optimal solution to (7.20) and ropt is the subgame NE under

the price M opt.

The problem in (7.20) is non-convex [142, pp. 136] since the objective function
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g(M) =
∑N

i=1 θ̃i(M) is non-concave in M and the equality constraints (7.13) and

(7.16) are nonlinear. Fortunately, the problem can be converted into a quasi-convex

optimization problem [142, pp. 144] and the solution can be iteratively evaluated

by solving a sequence of convex optimization problems. It can be interpreted in the

following way. Since the target rate θ̃i(M) of each D2D link i is non-increasing with

the price M , the chain of prices M (0) > M (1) > · · · > M (l) > M (l+1) induces a chain

of target rates θ̃
(0) � θ̃

(1) � · · · � θ̃
(l) � θ̃

(l+1)
. Therefore, the objective function

g(M) =
∑N

i=1 θ̃i(M) is also non-increasing with M , and hence is quasi-concave in

M . Regarding the constraints in (7.20), from Lemma 7.1, if the target rate θ̃
(l) ∈ C

(strictly feasible throughput region, which is the interior of the feasible throughput

region C̄), then it is achievable with finite-valued TAs r∗. On the other hand, from

Theorem 7.1, if the target rate θ̃
(l) 6∈ C̄, then any target rate θ̃

(l+1) � θ̃
(l)

is not

in C̄, i.e., it is not achievable and the constraints in (7.20) are not satisfied. The

crossing from within C̄ to beyond can be detected by the use of rmax. Therefore,

the superlevel set {M |g(M) ≥ G} is convex, which is equivalent to the line segment

{M |g−1(sup g) ≤ M ≤ g−1(G)}, where G is a constant, g−1 is the inverse function

of g(M), and sup g is the optimal value of (7.20).

In summary, the problem in (7.20) is quasi-convex [142, pp. 144], since the

objective function g(M) to be maximized is quasi-concave, and the superlevel set

{M |g(M) ≥ G} is convex. As a result, the problem in (7.20) can be reduced into a

sequence of feasibility problems:

find M

s.t.





g(M) ≥ G,

equality constraint (7.13),∀i ∈ N ,
equality constraint (7.16),

r∗i < rmax,∀i ∈ N .

(7.21)

If the problem (7.21) is feasible, then the maximum total throughput sup g is not

less than G. Conversely, if the problem (7.21) is infeasible, then we can conclude

sup g < G. In order to find the optimal value sup g to the problem (7.20), we can

test different superlevels G in the feasibility problem (7.21).

For each superlevel G, from the proof of Proposition 7.2, the feasibility problem
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in (7.21) is equivalent to the following max-log-likelihood problem:

max
r

F (r; θ̃)

s.t.





equality constraint (7.13),∀i ∈ N ,
M = g−1(G),

ri < rmax,∀i ∈ N ,

(7.22)

where F (r; θ̃) is the log-likelihood function defined in (7.4). In other words, if the

problem (7.21) is feasible, then there exists a price M = g−1(G), such that the

target rate θ̃(M) is achievable with finite TA ri < rmax, ∀i ∈ N . Therefore, we can

use the max-log-likelihood method to estimate the parameters r which achieve the

target rate θ̃(M)|M=g−1(G), as given in (7.13). Notice that given the constant G, the

price M and the target rate θ̃ become constant values as well. Moreover, as shown

in the proof of Proposition 7.2, the log-likelihood function is concave in r. As a

result, the max-log-likelihood problem in (7.22) is a convex optimization problem,

and can be solved by the subgradient updating method in (7.19).

If the iteration dynamics converge to a subgame NE with r∗i < rmax,∀i ∈ N ,

then the optimal solution to (7.22) exists, i.e., the problem (7.21) is feasible. Other-

wise, if the iteration dynamics in (7.19) converge to a subgame NE with r∗i = rmax

and θ∗i < θ̃i for some D2D link i, then the optimal solution to (7.22) does not exist

and the problem (7.21) is infeasible, i.e., not all D2D links’ target rates are being

achieved.

In summary, the problem in (7.20) can be reduced into a sequence of convex opti-

mization problems. A simple bisection method can be used to choose the superlevels

G (or equivalently, the price M = g−1(G)) and test the feasibility problem (7.21).

Alternatively, we can borrow ideas from the feasible direction method [154, Chap.

10] which avoids testing in the infeasible region, and design the pricing strategies

so as to keep the network operating in the feasible region while tuning the price M .

7.3.4 Pricing Strategies of the Stackelberg Leader

We call each round of CSMA subgame under a certain price M as a stage in the

Stackelberg game. In each stage, the leader needs the feedback from each D2D link

i about its target rate θ̃i, and the converged TA r∗i and throughput θ∗i . Notice that

the leader only has knowledge about the monotonicity of the D2D link’s target rate

with the price M and no information about (7.13) of all links is required.

Under some low load situations, all links achieve their maximum desired through-
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put πi,∀i ∈ N , if for all links i ∈ N , the target rate θ̃i > 0 and remains unchanged

between two consecutive prices M (l) and M (l+1). Under heavy load situations, the

pricing strategies of the Stackelberg leader need to be carefully designed to converge

to the optimal price M opt.

To detect convergence, we define ∆i = rmax−r∗i as the “margin” of transmission

aggressiveness for each D2D link i ∈ N . When the achieved target rates are close to

the capacity boundary, the leader can make use of ∆min = min{∆i,∀i ∈ N} as an

indication of how close the current throughput θ∗ is to the boundary of C. Since the

total throughput g(M) is non-increasing with the price M , the leader can gradually

decrease M to increase g(M) until the constraint r∗i < rmax is “critically” satisfied

for some D2D link says i, i.e., ∆min ≤ ε, where ε is a small positive threshold.

The algorithm at the BS works as follows. In the 0-th stage, the leader can

start with a large price M (0) so that the network starts with low load. Similar to

the Newton method [142, pp. 488] which applies line search to narrow down the

searching region before using Newtonian steps to refine the optimal solution, the

adjustment of our price strategies consist of two phases as well. In the first phase the

leader uses a relatively large decrement step φ to decrease price M until ∆min ≤ η,

where η > ε is a threshold before entering the second phase. In the second phase,

the decrement steps are refined using ∆min since ∆min is getting smaller as the

target rates are approaching the boundary of the feasible throughput region.

In summary, the leader can update its price M based on ∆min at the end of the

l-th stage as follows:

M (l+1) =

{
M (l) − φ, ∆min > η,

max{M (l) − β ·∆min,Mlower}, ∆min ≤ η,
(7.23)

where φ is a positive constant, β is a positive parameter. Mlower is initially set

at 0 and is updated to take the value of current M (l) once it is detected that the

solution for the target rate θ̃ is outside the feasible region. Its purpose is to ensure

that subsequent M (l+1), · · · should not go below this value. The parameter β can

be chosen to be small enough so that the price gradually decreases until ∆min ≤ ε.

However, for faster convergence, it might happen that the initially chosen β is too

large such that the new price M (l+1) pushes the target rate θ̃ to be outside the

feasible region, i.e., r∗i = rmax but θ∗i < θ̃i for some D2D link i. In such cases,

the leader stores the current unachievable price as the new lower bound Mlower,

resets the price to the previously found achievable price Mprev, and reduces β by a

discount factor σ, e.g., σ = 0.9.
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The pricing strategies of the leader and the CSMA subgame are summarized

in Algorithm 7.1. Through Algorithm 7.1, the Stackelberg game is guaranteed to

gradually converge to the optimal price M opt under which the total throughput of

the CSMA users are maximized while their heterogeneous target rates can all be

satisfied.

Algorithm 7.1 Iteration Process of the Stackelberg Game

1: Initialize:
2: The BS chooses the initial price M = M (0) and informs the D2D links in the control

plane;
3: Each D2D link i ∈ N chooses the initial TA ri(0);

4: repeat:
5: In the l-th stage:
6: for i = 1, · · · , N D2D links do:

7: Set the target rate θ̃
(l)
i based on the price M (l), as in (7.13);

8: end for
9:

10: repeat:
11: In the k-th measurement period:
12: for i = 1, · · · , N users do:
13: Estimate the empirical throughput θ̂i(k), as in (7.17);
14: Update the TA ri(k + 1), as in (7.19);
15: end for
16: k ← k + 1;
17: until r converges to the subgame NE r∗.

18: Each user i ∈ N informs the BS about θ̃
(l)
i , r∗i and θ∗i ;

19:

20: At the BS:
21: ∆min = min

i∈N
∆i = min

i∈N
(rmax − r∗i );

22: if ∆min > ε then:
23: set M (l+1) as in (7.23); Mprev = M (l); ∆prev = ∆min.

24: else if 0 < ∆min ≤ ε or (θ̃
(l) � 0 and θ̃

(l)
= θ̃

(l−1)
) then:

25: The Stackelberg game converges with Mopt = M (l); go to END.
26: else if r∗i = rmax but θ∗i < θ̃i for some user i then:
27: Mlower = M (l); β ← σ · β; M (l+1) = max{Mprev − β ·∆prev,Mlower}.
28: end if
29: l← l + 1;
30: until The Stackelberg game converges. END.

An important side-information which can be provided by the proposed algorithm

is the identification of the bottleneck link in the heterogeneous D2D networks. Upon

convergence of the Stackelberg game, the D2D link L = arg min{∆i,∀i ∈ N} =

arg min{rmax− ropti ,∀i ∈ N} is the bottleneck link to the network since any further

decrease on the price M opt would drive the target rate θ̃ to be outside the capacity
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region and link L can no longer achieve its target rate. The identification of such

bottleneck links can be of valuable information, for example, in data offloading, to

re-assign these links back to the cellular network when necessary. A possible way to

improve system performance is to remove the bottleneck link L in the D2D network

and port link L’s traffic towards the conventional cellular mode. How to achieve

optimal trade-off remains as interesting future work.

7.3.5 Complexity of Algorithm 7.1

Algorithm 7.1 consists of two loops. In the outer loop, the BS chooses a service

price M (l) at the l-th stage according to the pricing strategies in Section 7.3.4. In

the inner loop, for each given service price M (l), the D2D links play the CSMA

subgame distributively and iteratively until converging to their respective target

rates. We analyze the complexity in terms of the number of iterations required,

first for the CSMA subgame, then for setting the pricing strategies.

For the CSMA subgame, assume that the target rate θ̃ under the given service

price M (l) is in the strictly feasible region C. According to Proposition 7.1 and

Proposition 7.2, the distributed strategy updates of the CSMA users in (7.18) are

equivalent to the gradient method in maximizing the log-likelihood function F (r; θ̃)

which is differentiable and strictly concave in r. In particular, the gradient of F (r; θ̃)

is ∇F (r; θ̃) = θ̃ − θ(r), as shown in (7.8). Since the maximum value of F (r; θ̃) is

finite and attained at r∗, hence θ∗(r∗) = θ̃ can be solved by setting the gradient

∇F (r∗; θ̃) = 0.

Since the norms of the throughput θ(r) and its gradient∇θ(r) are both bounded,

it can be shown that ∇F (r; θ̃) is Lipschitz continuous [155] in r, i.e., ‖∇F (ra; θ̃)−
∇F (rb; θ̃)‖ = ‖θ(ra) − θ(rb)‖ ≤ H‖ra − rb‖, ∀ra, rb ∈ RN , where H is a positive

constant. According to Theorem 1 in [155, Section 1.4] and Theorem 2.1.14 in [156,

Section 2.1.5], for small enough step size α (0 < α ≤ 1/H), the number of iterations

to reach ‖∇F (r; θ̃)‖ = ‖θ̃− θ(r)‖ < ξ is O(1/ξ) (i.e., no more than a fixed multiple

of 1/ξ).

It is worth to mention that although this complexity O(1/ξ) on the number

of required iterations is independent on the number of users, we have inherently

assumed that the measurement period τ is long enough to provide an accurate

estimation of throughputs. In fact, the choice of τ depends on the number of users

and the underlying topology. The purpose of choosing a large τ is to ensure that

the Markov chain corresponding to the updated r reaches its stationary distribution
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to allow for an accurate estimation of throughputs. In general, a larger number of

users requires a larger value of τ . More comparisons and discussions on how to

choose τ for a given number of users and different topologies can be found in [150].

We now briefly discuss how to estimate the number of pricing stages required

in the outer loop. This analysis is complicated by the fact that the step sizes

for M are changing each time. Assume that the maximum value of the price is

Mmax. In phase 1 of the price setting, since the price is decreasing at a large

constant step φ, the number of pricing stages in phase 1 is capped by dMmax/φe,
or dMmax/φe/2 on average. In phase 2, the TA margin ∆min ≤ η, and the price is

already close to the optimal. In the algorithm, we refine the price change δM (l+1) =

M (l+1) − M (l) at stage l according to δM (l+1) = −β∆
(l)
min progressively until the

TA margin gradually approaches the required precision ε, i.e., ∆min ≤ ε. Assume

that the interval ε < ∆min ≤ η is small, through simulations we find that the

relationship between the TA margin ∆
(l+1)
min and the price change δM (l+1) can be

approximated by ∆
(l+1)
min = ∆

(l)
min+B · δM (l+1), where B is a positive constant. Since

we set δM (l+1) = −β∆
(l)
min, hence ∆

(l+1)
min = ∆

(l)
min + B · (−β∆

(l)
min) = (1− βB)∆

(l)
min.

The TA margin then follows a geometric progression and we can estimate the value

of h, so that δM (l+h) ≤ ε. Hence it can be easily shown that the number of stages

for ∆min to decrease from η to ε is approximately log10 η/ε
log10 1/(1−βB)

, or O(d log10(η/ε))

for some suitable choices of β and B (0 < βB < 1), where d = 1
log10 1/(1−βB)

. Note

that β can be chosen according to the value of B, but B is topology and utility

dependent. As a result, the total number of stages required for convergence is

O(1/φ) +O(d log10(η/ε)).

In summary, the number of iterations required for convergence in the proposed

game is given by the number of iterations per stage multiplied by the required

number of stages, i.e., O(1/ξ) · (O(1/φ) +O(d log10(η/ε))).

7.4 Simulation Study

In this section we demonstrate the Stackelberg game via an example. Consider the

8 D2D links’ contention graph in Fig. 7.4a. Assume that the relationships between

the links’ target rates and the price M are given as in Fig. 7.4b. In the ICN model,

we assume that the links’ transmission time is uniformly distributed with mean of 1

ms in the range [0.5, 1.5] ms. Further assume that link i’s backoff time is uniformly

distributed with mean of 1/ exp(ri) ms in the range [0, 2/ exp(ri)] ms.
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Figure 7.4: Topology and Target Rates of 8 D2D Links

7.4.1 CSMA Subgame

Assume that the current price M = 30, then from Fig. 7.4b we know that the

D2D links’ target rates are θ̃ = [0.270, 0.297, 0.347, 0.315, 0.242, 0.176, 0.132, 0.220].

Assume that the initial TAs ri = −2,∀i ∈ N . The CSMA subgame is then played

according to Lines 10 to 17 in Algorithm 7.1. In the k-th measurement period, we

apply a simple averaging filter to smooth the measured throughput as:

θ̂i(k) = (1− δ) · θ̂i(k − 1) + δ · Ti(k)/τ, ∀i ∈ N , (7.24)

where δ is the weight of the new measurement. In our simulations, we choose

δ = 0.05 and the measurement time τ = 200 ms. A smaller value of δ makes

the measured throughput more smooth, but also increases the convergence time.

To update TAs as in (7.19), we choose the step size α = 0.4 and the maximum

allowable TA rmax = 3. Note that a smaller value of α guarantees the convergence

of the CSMA subgame, but also increases the convergence time. The iteration

process of the CSMA subgame is then plotted in Fig. 7.5. The CSMA subgame

converges to 99% of the target rates (ξ = 1%) in around 150 iterations. According

to the complexity analysis in Section 7.3.5, the number of required iterations is

O(1/ξ), i.e., in the order of a fixed multiple of 1/ξ = 100. Thus our simulation

result is in the same order as the above prediction.
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Figure 7.5: CSMA Subgame of the 8 D2D links under M = 30

7.4.2 Stackelberg Game

Assume that the initial price M (0) = 55, φ = 5, β = 5, η = 1, ε = 0.1, σ = 0.9, and

the rest of the parameters are the same as in Section 7.4.1. The iteration process

of the Stackelberg game is shown in Fig. 7.6. The game converges after 11 stages,

in which ∆min = rmax − r3 = 3− r3 and gradually approaches 0. The first 6 stages

undergo a constant price decrement (φ = 5), i.e., M = 55, 50, 45, 40, 35, 30 until

∆min ≤ η = 1 is detected. After the CSMA subgame converges under the price

M = 30, we have ∆min = rmax − r∗3 = 3− 2.4 = 0.6 and hence 0.1 = ε < ∆min < η.

Therefore, the Stackelberg game enters the second pricing phase, which consists of

5 stages (M = 27.10, 25.00, 23.68, 22.73, 22.12), according to (7.23). We consider

the game converged when ∆min ≈ 0.08 < ε and the optimal price is M opt = 22.12.

After convergence, the average error of the measured throughputs as compared to

the target rates is around ξ = 1%. Notice that we cannot decrease M any further

since the network is already close to the capacity boundary (r∗3 = 2.92 ≈ rmax = 3).

In other words, any further decrease on M would drive the target rate ~̃θ to be

outside the capacity region and some D2D links (e.g., link 3) can no longer achieve

their target rates. In summary, the proposed Stackelberg game is able to maximize

the total throughput of the CSMA users while the target rates of the heterogeneous

users can all be satisfied.

The number of required stages before convergence is consistent with the analysis

in Section 7.3.5. In the above simulations, the maximum value of the price is
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Figure 7.6: Stackelberg Games of the 8 D2D Links

Mmax = 60, and the constant step φ = 5. Therefore, the maximum number of stages

in phase 1 is dMmax/φe = 12, or 6 on average. In the simulations, phase 1 actually

consists of 6 stages before entering phase 2. In phase 2, the required precision

ε = 0.1, η = 1 and the required number of stages is O(d log10(η/ε)), where d =
1

log10 1/(1−βB)
. The value of B can be estimated by using (∆

(l+1)
min −∆

(l)
min)/(M (l+1) −

M (l)), which is approximately 0.07 in the small interval ε < ∆min ≤ η. Since we

have chosen β = 5, hence 0 < βB = 0.35 < 1 and d = 1
log10 1/(1−βB)

= 5.3, and the

required stages in phase 2 is in the order of a fixed multiple of d log10(η/ε) = 5.3.

In the simulations, phase 1 actually consists of 5 stages before convergence. Note

that a smaller β could be used to guarantee βB < 1, however, it also increases

d and hence requires more stages for convergence. Finally, the total number of

iterations required in the Stackelberg game is O(1/ξ) · (O(1/φ) + O(d log10(η/ε))),

which is in the order of 100 · (6 + 5.3) = 1130. In the simulations, the Stackelberg

game actually converges in around 1000 iterations, which is in the same order as

the above prediction.
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7.4.3 Effect of Parameter rmax

In the above simulations, we have used the parameter rmax = 3, and obtained the

optimal price M opt that maximizes the total throughput g(M) for the 8 users in

Fig. 7.4 with heterogeneous rate requirements. As is discussed at the end of Section

7.3.2, by introducing the rmax constraint, the feasible throughput region will shrink

into a subset of the original one. In this subsection, we apply different values of

rmax to the network and obtain the optimal price M opt that maximizes the total

throughput g(M) for the 8 users in Fig. 7.4a. To see the effect of parameter rmax

only, we assume that the 8 users are homogeneous in their rate requirements, i.e.,

γi = 0.05, πi = 0.55, bi = 0.0125,mi = 50,∀i ∈ N .

The optimal price M opt and the corresponding total throughput g(M opt) under

each value of the parameter rmax are plotted in Fig. 7.7. From Fig. 7.7 we can

see that, as the value of rmax increases, the achievable total throughput g(M opt)

also increases, moreover, the rate of increase gradually slows down. In particular,

when rmax = 3, the achievable total throughput is 2.39. For rmax > 3, the total

throughput curve becomes almost flat and approaches the upper bound 2.65 when

rmax tends to infinity, under which the shrunken capacity region stretches back to

the original feasible throughput region C̄. The corresponding bound on the optimal

price is M opt = 27.5. In other words, we cannot further reduce the price M below

27.5 to increase the target rate θ̃, as it is already on the boundary of the feasible
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throughput region C̄.
It is observed from Fig. 7.7 that a larger rmax value leads to a larger capacity

region, but this also allows for longer transmission durations. However, the trans-

mission duration should not be too long in practice, otherwise it would lead to large

access delay (where the access delay refers to the time between the onset of two

consecutive successful transmissions of a link) and large variations of the delay. The

readers are referred to [95, Sec. IV] for more discussions. As a result of the above

observations, we have adopted rmax = 3 in the above two subsections.

7.4.4 Performance Comparison with Generalized Aloha Game

under BS Pricing

We have studied the generalized Aloha game in Chapter 3. Here we compare the

performance with the Stackelberg game for spatial CSMA under the same setup.

In the CSMA setting the BS assists in the resource allocation by controlling

the service price of the D2D users. If slotted Aloha is used by the D2D users

under the same pricing framework, we can compare the performance difference of

these two techniques. Here we assume that the BS does not know the contention

graph and cannot predict the optimal price by centralized computation. Instead,

the BS receives feedback from the users about the convergence results of the CSMA

subgame or slotted Aloha subgame (i.e., the generalized Aloha game with a profile

of target rates controlled by the service price), and then tunes the price to maximize

the total D2D throughput.

For the 8 users’ example in Fig. 7.4a, to focus on the performance comparison,

we assume that the users have the same target rate requirements, as given in Section

7.4.3. The results in Fig. 7.7 plot the maximum total throughput in the CSMA

setting under different rmax parameter values. In particular, when rmax = 8, the

maximum total throughput approaches the upper bound 2.65. The corresponding

optimal price is M opt = 27.5.

In the slotted Aloha setting, to achieve the target rate y under a given network

price M , the users play the generalized Aloha game in Chapter 3. Recall that the

MAP of player i in the (m+ 1)-th iteration is given in (3.3), where yi is the target

rate:

q
(m+1)
i = min{ yi∏

aij=1(1− q
(m)
j )

, 1}, ∀i ∈ N . (7.25)

Since in the CSMA subgame each player updates its transmission parameter TA
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based on measured throughput, we also update the MAP in the generalized Aloha

game based on measured throughput. Suppose each iteration in the generalized

Aloha game consists of 2000 slots and each slot takes 0.1ms. Then each iteration

takes 200ms, which is the same as in the CSMA subgame. In them-th iteration, each

Aloha player i counts the number of successful packets and estimates its throughput

θ̂
(m)
i . Then the channel idle rate in the m-th iteration can be estimated as:

x
(m)
i :=

∏

aij=1

(1− q(m)
j ) ≈ θ̂

(m)
i /q

(m)
i , ∀i ∈ N . (7.26)

Then the iteration dynamics in (7.25) becomes:

q
(m+1)
i = min{ yi∏

aij=1(1− q
(m)
j )

, 1} = min{ yi

x
(m)
i

, 1}, ∀i ∈ N . (7.27)

If the target rate y under a given network price M is within the feasible target

rate region of the generalized Aloha game, then the generalized Aloha game will

converge to a throughput equal to the target rate y. To detect whether the game

has converged, each player needs to analyze the characteristics of its measured

throughput. First, it applies a simple averaging filter to obtain a smoothed version

θ̄
(m)
i of the measured throughput θ̂

(m)
i :

θ̄
(m)
i = 0.95 · θ̄(m−1)i + 0.05 · θ̂(m)

i , ∀i ∈ N . (7.28)

Then player i keeps a record of θ̄
(m)
i in the recent 40 iterations. If the average

value and standard deviation of these θ̄
(m)
i values are below a certain threshold

respectively, then it suggests that the game converges. On the other hand, if all

players are dead-locked in a situation with q = 1, then the game diverges.

The BS can then tune the price M to maximize the total throughput of all

players. Such a price tuning process along with the generalized Aloha game as a

subgame can be seen as a Stackelberg game similar to that in this chapter. Here

we demonstrate a simple pricing strategy. We can start with a high price (e.g.,

M = 50) so that the network starts with low load. Then we gradually decrease

the price by a constant step size δM = 1 until the generalized Aloha game cannot

achieve the corresponding target rate and diverges to q = 1. Then we reset the price

M to previously feasible price M and gradually decrease the price by a smaller step

size δM = 0.1 until the refined price is no longer achievable. We can continue to

refine the optimal price by using even smaller step size. For illustration purpose,
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we refine the price up to the precision of δM = 0.1.

The Stackelberg game with spatial Aloha converges in around 600 iterations,

shown in Fig. 7.8. There are 10 pricing stages (M= 50, 49, 48, 47, 46, 45, 46,

45.9, 45.8, 45.9) until the optimal price M opt = 45.9 is found. The maximum

total throughput achieved is 0.81. The distance to Pareto front is dPareto = 1.01,

suggesting that achieved target rate is very close to the Pareto front (the residue is

due to the step size of pricing and the effect of estimation errors on the stability).

The throughput ratio between Stackelberg game with slotted Aloha and Stackelberg

game with CSMA is 0.81/2.65 ≈ 0.305.

7.5 Conclusions

We study a group of D2D links which share a dedicated inband overlay channel via

CSMA. The ICN model is leveraged on to analyze their behaviors and interactions

under spatial reuse. We further assume that the D2D links have heterogeneous

rate requirements and different willingness to pay, and they act non-altruistically

to achieve their target rates and maximize their own payoffs. To manage such non-

cooperative user dynamics, we propose a Stackelberg game in which the BS in the

cellular network acts as a Stackelberg leader to regulate the D2D link transmissions

by modifying the service price, so that the total throughput is maximized while

140



the heterogeneous target rates of the D2D links can all be satisfied. The problem

is shown to be quasi-convex and can be solved by a sequence of equivalent convex

optimization problems. The pricing strategies are designed so that the network

always operates within the capacity region. The results are verified by simulations.

The joint optimization of D2D link scheduling and cellular data off-loading is our

future work.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions of the Thesis

This thesis focuses on the spectrum sharing problems among a group of spatially

distributed Tx-Rx user pairs in a spectrum commons. The users are equipped with

built-in intelligence and are able to make intelligent decisions on choosing trans-

mission parameters by learning the spectrum dynamics and their competitors’ deci-

sions. As a result of their autonomous interactions, stability issues arise concerning

whether the whole network would converge to an equilibrium solution. We there-

fore study how to manage the spectrum access problem for such autonomous and

spatially distributed Tx-Rx pairs with the objective to achieve efficient spectrum

sharing with fairness and scalability.

As an initial attempt to solve these challenges, we first investigate slotted-Aloha-

type random access with spatial reuse. We propose the generalized Aloha games

and obtain the stability conditions for the unique NE in terms of MAPs. Based

on the stability conditions, we first develop a fully autonomous algorithm for the

distributed users to heuristically search for a fair and close-to-Pareto-front operat-

ing point. Then we further design a control theoretic scheme to approach global

optimization of network throughput through limited local information and yet can

achieve quick convergence and operational stability. After investigating the single-

channel scenario, we then extend to multi-channel spatial Aloha networks and pro-

pose a multi-leader Stackelberg game to solve the joint MAP tuning and spatial

channel selection problem. Finally, we leverage on the ICN model in the context

of overlay D2D communications, and investigate how the commons spectrum can

be efficiently and fairly shared among the self-interested spatial CSMA users with

heterogeneous rate requirements.
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In summary, this thesis provides theoretical guidance for managing the shared

access to a spectrum commons, with insights into how the spatially distributed Tx-

Rx pairs can share the commons spectrum with stability, efficiency, fairness and

scalability.

8.2 Future Work

8.2.1 Apply PI Controller in Multi-Channel Spatial Aloha

In the single channel case, the PI controller is used to control the MAPs of the

Aloha users, which is more ready for implementation since the users stay on the

same channel and can exchange local information with neighbors via piggy-backing

with low overhead. The addition dimension of channel selection in the multi-channel

case makes the problem more challenging. The control theoretic approach has the

potential to be applied in the multi-channel case. In this thesis we first look for an

efficient and reliable mechanism to search for a stable solution, which is the focus

of Chapter 6. The use of control theoretic approach is an implementation issue.

While it will still work at each of the updates, the controlling process is a two-

parameter adjusting process and the approach might not be so direct and requires

future investigations.

8.2.2 Exact Characterization of Throughput in Spatial CSMA

Networks

Due to the simplicity of slotted Aloha, the throughput performance of spatial Aloha

networks can be exactly characterized by the MAPs of the users, as given in (2.1).

The major challenges lie in the modeling of the self-interested strategic interac-

tions among the heterogeneous users, and the investigation of the properties of the

equilibrium solutions, e.g., existence, uniqueness, convergence, stability, efficiency,

fairness, etc. Moreover, since the users are spatially distributed and have only local

information, it is worth designing distributed algorithms to approach global opti-

mization of network throughput through limited spread of local information and

realize the model’s quick convergence and stability.

However, in the presence of spatial reuse, it is extremely difficult to exactly

characterize the throughput performance of CSMA users. We have adopted the

ICN model in Chapter 7 to compute the user throughputs. Although the ICN
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model captures the essence of CSMA and indeed yields good approximation of the

user throughputs, an exact throughput characterization for spatial CSMA is still

lacking. The idealized assumption made in ICN is that the backoff countdown

process is in “continuous-time” and carrier sensing is instantaneous. As a result,

there is no collision in ICN. In practical CSMA protocols such as IEEE 802.11,

the users count down in “mini-timeslot” and the process is hence a “discrete-time”

process. In [94], Kai and Liew proposed a generalized ICN model for a perturbation

analysis that tries to capture the effects of backoff collisions. However, they still

rely on some strong assumptions, e.g., the transmission time is of the same fixed

length for all users. Therefore, the exact characterization of user throughputs in

spatial CSMA networks still awaits future work.

8.2.3 Non-Saturated Throughput

In the system model in Section 2.1, we have assumed that every user’s transmission

queue is continuously backlogged, i.e., the transmitter of every user always has a

packet to transmit to its designated receiver. In other words, we have only con-

sidered the saturated throughput performance, which well models the behavior of

links that always have traffic to send, e.g., Transmission Control Protocol (TCP)

traffic arising from long-lasting peer-to-peer (P2P) file downloads.

For networks with unsaturated links, there are two possible extremes. The first

is the bursty traffic case in which each link becomes saturated and idle alternatively,

with the saturated and idle periods each lasting a long time. This case can be viewed

as one in which the network topology changes dynamically. At any instance, the

network consists only those links with saturated traffic. As time progresses, there is

a sequence of effective network topologies. The second is the intermittent traffic case

in which the input traffic of links (i.e., their offered load) is below their saturated

throughputs, but the traffic arrives to the links intermittently. This case is more

challenging, particularly if we are interested in not just the access delay, but also the

overall queuing delay which includes the buffer delay at a link. These challenging

issues would require further investigations.

8.2.4 Quality of Service

In this thesis we have mainly focused on throughput as the performance metric.

Future work could consider other Quality-of-Service (QoS) metrics such as packet

loss, delay, jitter, retry rates, etc.
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In particular, for spatial CSMA, beyond the throughput optimality, designing a

CSMA algorithm which is optimal in both throughput and delay remains quite open.

In [157], the authors show that the task is very difficult for arbitrary interference

topology. However, the interference topology arising in practice is not arbitrary, but

has certain geometric properties [158] or bounded degrees [159]. Therefore, design-

ing and analyzing CSMA algorithms toward delay optimality is still a challenging

subject to be further investigated.

Based on future improvements of design and analysis on the medium access

characterizations, we can further consider the incorporation of the QoS require-

ments into the users’ utility functions to provide service differentiation and better

contention control. A proper utility function should take system parameters into

account, including QoS requirements, user’s priority, user’s queues status, channel

conditions, power limitations, priorities of packets, etc. Therefore, it is still a chal-

lenging issue to propose a general framework to design utility and cost functions

for the heterogeneous users, which are convergent toward optimal equilibrium point

that meets different users’ QoS requirements.

8.2.5 Implementation Issues

Theories depend on a mathematical crystallization of the engineering system under

study. For the mathematical tractability, we have made simplifying assumptions in

the system models, which in turn deserve a closer look during implementation.

In this thesis, we have not considered detailed physical channel conditions, such

as ambient noise or time-varying channels. In particular, time-varying channels

would cause perturbations to the interference relationship among the wireless links.

Time-varying channels also generate packet loss induced by channel degradation,

which is not considered by the current theory. Stability issues of perturbations

caused by ambient noise, measurement errors or time-varying channels are impor-

tant in practice and will be the subject of future study.

In the system models, we have assumed that both link channel conditions and

link interference relationship are symmetric and fixed. However, wireless links are

often asymmetric in practice because signals propagate differently between two

links. Furthermore, link asymmetry can be also time-varying. These issues would

need to be further investigated.

Other implementation issues also deserve a closer look, such as asynchronism

of device operations, overhead within the protocol stacks, retry limit and retrans-
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mission schemes, packet designs, etc. Implementation studies should also bridge

the gap between theory and practice, and bring a sharper understanding of what

theory has assumed away or analyzed only loosely so far, e.g., granularity of control

parameters, convergence speed, transient behavior like queue buildup, etc.

147





Bibliography

[1] Q. Zhao and B. Sadler, “A Survey of Dynamic Spectrum Access,” IEEE Signal
Process. Mag., vol. 24, no. 3, pp. 79–89, May 2007.

[2] J. Lyu, Y. H. Chew, and W.-C. Wong, “Aloha Games with Spatial Reuse,”
IEEE Trans. Wireless Commun., vol. 12, no. 8, pp. 3932–3941, 2013.

[3] S. Haykin, “Cognitive radio: brain-empowered wireless communications,”
IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201–220, 2005.

[4] D. Hatfield and P. Weiser, “Property rights in spectrum: taking the next
step,” in IEEE Int. Symp. New Frontiers in Dynamic Spectrum Access Net-
works (DySPAN), 2005, pp. 43–55.

[5] L. Xu, R. Tonjes, T. Paila, W. Hansmann, M. Frank, and M. Albrecht, “Drive-
ing to the internet: Dynamic radio for ip services in vehicular environments,”
in IEEE Conf. Local Computer Networks (LCN), 2000, pp. 281–289.

[6] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next genera-
tion/dynamic spectrum access/cognitive radio wireless networks: A survey,”
Computer Networks, vol. 50, no. 13, pp. 2127 – 2159, 2006.

[7] L. B. Le and E. Hossain, “Resource allocation for spectrum underlay in cog-
nitive radio networks,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp.
5306–5315, 2008.

[8] S. Roy, J. Foerster, V. Somayazulu, and D. Leeper, “Ultrawideband radio
design: the promise of high-speed, short-range wireless connectivity,” IEEE
Proc., vol. 92, no. 2, pp. 295–311, 2004.

[9] Y. Benkler, “Overcoming agoraphobia: building the commons of the digitally
networked environment,” Harv. JL & Tech., vol. 11, p. 287, 1997.

[10] B. Eli Noam, “Spectrum auctions: Yesterday’s heresy, today’s orthodoxy, to-
morrow’s anachronism. taking the next step to open spectrum access,” Jour-
nal of Law and Economics, vol. 41, no. S2, pp. pp. 765–790, 1998.

[11] K. Werbach, “Open spectrum: The new wireless paradigm,” New America
Foundation Spectrum Policy Program, 2002.

149



[12] D. P. Reed, “How wireless networks scale: the illusion of spectrum scarcity,” in
International Symposium on Advanced Radio Technology, Boulder, Colorado,
2002.

[13] W. Lehr and J. Crowcroft, “Managing shared access to a spectrum commons,”
in IEEE Int. Symp. New Frontiers in Dynamic Spectrum Access Networks
(DySPAN), 2005, pp. 420–444.

[14] A. S. Tanenbaum and D. J. Wetherall, “The Medium Access Control,” in
Computer Networks, Fifth International Edition. Prentice Hall, 2011, ch. 4.

[15] G. Hardin, “The tragedy of the commons,” Science, vol. 162, no. 3859, pp.
1243–1248, 1968. [Online]. Available: http://www.sciencemag.org/content/
162/3859/1243.abstract

[16] J. Brito, “The spectrum commons in theory and practice,” Stanford Technol-
ogy Law Review, 2006.

[17] R. V. Andelson, Commons without tragedy. Shepheard-Walwyn, 1991.

[18] R. Etkin, A. Parekh, and D. Tse, “Spectrum sharing for unlicensed bands,”
in IEEE Int. Symp. New Frontiers in Dynamic Spectrum Access Networks
(DySPAN), 2005, pp. 251–258.

[19] M. J. Osborne and A. Rubinstein, “Terminology and Notation,” in A Course
in Game Theory. The MIT Press, 1994, ch. 1.7.

[20] X. Wang and K. Kar, “Distributed algorithms for max-min fair rate allocation
in aloha networks,” in Annual Allerton Conf. Communication, Control, and
Computing (Allerton), 2004.

[21] K. Kar, S. Sarkar, and L. Tassiulas, “Achieving proportional fairness using
local information in aloha networks,” IEEE Trans. Autom. Control, vol. 49,
no. 10, pp. 1858–1863, 2004.

[22] C. Raman, R. Yates, and N. B. Mandayam, “Scheduling variable rate links via
a spectrum server,” in IEEE Int. Symp. New Frontiers in Dynamic Spectrum
Access Networks (DySPAN), 2005, pp. 110–118.

[23] O. Ileri, D. Samardzija, and N. Mandayam, “Demand responsive pricing and
competitive spectrum allocation via a spectrum server,” in IEEE Int. Symp.
New Frontiers in Dynamic Spectrum Access Networks (DySPAN), 2005, pp.
194–202.

[24] S. T. Chung, S.-J. Kim, J. Lee, and J. Cioffi, “A game-theoretic approach
to power allocation in frequency-selective gaussian interference channels,” in
IEEE Int. Symp. Information Theory, 2003, pp. 316–316.

[25] J. Huang, R. Berry, and M. Honig, “Spectrum sharing with distributed in-
terference compensation,” in IEEE Int. Symp. New Frontiers in Dynamic
Spectrum Access Networks (DySPAN), 2005, pp. 88–93.

150

http://www.sciencemag.org/content/162/3859/1243.abstract
http://www.sciencemag.org/content/162/3859/1243.abstract


[26] Y. Wu, B. Wang, K. J. R. Liu, and T. Clancy, “Repeated open spectrum
sharing game with cheat-proof strategies,” IEEE Trans. Wireless Commun.,
vol. 8, no. 4, pp. 1922–1933, 2009.

[27] X. Chen and J. Huang, “Evolutionarily stable open spectrum access in
a many-users regime,” in IEEE Global Telecommunications Conference
(GLOBECOM), 2011, pp. 1–5.

[28] Z. Ji and K. J. R. Liu, “Cognitive radios for dynamic spectrum access -
dynamic spectrum sharing: A game theoretical overview,” IEEE Commun.
Mag., vol. 45, no. 5, pp. 88–94, 2007.

[29] M. Wooldridge, An Introduction to Multiagent Systems. John Wiley and
Sons, Ltd, 2002.

[30] Y. Shoham and K. L. Brown, Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press, 2008.

[31] X. Wang, K. Kar, and J.-S. Pang, “Lexicographic max–min fairness in a
wireless ad-hoc network with random access,” in IEEE Conf. Decision and
Control (CDC). Citeseer, 2006.

[32] A. Nedic and A. Ozdaglar, “Cooperative distributed multi-agent optimiza-
tion,” in Convex Optimization in Signal Processing and Communications.
Cambridge University Press, 2010, ch. 10.

[33] D. Fudenberg and J. Tirole, Game Theory. The MIT Press, 1993.

[34] J. Nash, “Non-Cooperative Games,” Annals of Mathematics, 1951.

[35] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley and Sons, Inc., 2005.

[36] S. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, second
edition. Cambridge University Press, 2009.

[37] L. S. Shapley, “Stochastic games,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 39, no. 10, pp. 1095–1100, 1953.

[38] A. MacKenzie and S. Wicker, “Selfish users in Aloha: a game-theoretic ap-
proach,” in IEEE Vehicular Technology Conference (VTC), vol. 3, 2001.

[39] A. MacKenzie and S. Wicker, “Game theory and the design of self-configuring,
adaptive wireless networks,” IEEE Commun. Mag., vol. 39, no. 11, pp. 126–
131, Nov 2001.

[40] I. L. Glicksberg, “A further generalization of the kakutani fixed point theorem,
with application to nash equilibrium points,” Proceedings of the American
Mathematical Society, vol. 3, no. 1, pp. 170–174, 1952.

151



[41] K. Fan, “Fixed-point and minimax theorems in locally convex topological
linear spaces,” Proceedings of the National Academy of Sciences of the United
States of America, vol. 38, no. 2, pp. 121–126, 1952.

[42] A. MacKenzie and S. Wicker, “Stability of multipacket slotted Aloha with
selfish users and perfect information,” in IEEE Conf. Computer and Commu-
nications (INFOCOM), vol. 2, April 2003.

[43] H. K. Khalil, “Lyapunov Stability,” in Nonlinear Systems, Third Edition.
Upper Saddle River, NJ 07458: Prentice Hall, 2002, ch. 4, p. 122.

[44] J.-J. E. Slotine and W. Li, “Fundamentals of Lyapunov Theory,” in Applied
Nonlinear Control. Prentice Hall, 1991, ch. 3, pp. 83–87.

[45] T. Cui, L. Chen, and S. Low, “A game-theoretic framework for medium access
control,” IEEE J. Sel. Areas Commun., vol. 26, no. 7, pp. 1116–1127, 2008.

[46] D. Topkis, “Equilibrium points in nonzero-sum n-person submodular games,”
SIAM Journal on Control and Optimization, vol. 17, no. 6, pp. 773–787, 1979.

[47] S. D. FLM, “Equilibrium, evolutionary stability and gradient dynamics,” In-
ternational Game Theory Review, vol. 04, no. 04, pp. 357–370, 2002.

[48] R. La and V. Anantharam, “Charge-sensitive TCP and rate control in the In-
ternet,” in IEEE Conf. Computer and Communications (INFOCOM), vol. 3,
mar 2000, pp. 1166 –1175 vol.3.

[49] Y. Jin and G. Kesidis, “Equilibria of a noncooperative game for heterogeneous
users of an ALOHA network,” IEEE Commun. Lett., vol. 6, no. 7, pp. 282–
284, 2002.

[50] K. Akkarajitsakul, E. Hossain, D. Niyato, and D. I. Kim, “Game Theoretic
Approaches for Multiple Access in Wireless Networks: A Survey,” IEEE Com-
mun. Surv. Tut., vol. 13, no. 3, 2011.

[51] Q. Du and X. Zhang, “Game-theoretic approach for QoS-aware resource com-
petition in wireless networks,” in IEEE Military Communications Conference
(MILCOM), Oct 2009, pp. 1–7.

[52] A. T. Hoang and Y.-C. Liang, “Dynamic spectrum allocation with second-
price auctions: When time is money,” in Int. Conf. Cognitive Radio Oriented
Wireless Networks and Communications (CrownCom), May 2008, pp. 1–6.

[53] J. Sun, E. Modiano, and L. Zheng, “Wireless channel allocation using an
auction algorithm,” IEEE J. Sel. Areas Commun., vol. 24, no. 5, pp. 1085–
1096, May 2006.

[54] F. Wu, S. Zhong, and C. Qiao, “Globally Optimal Channel Assignment for
Non-Cooperative Wireless Networks,” in IEEE Conf. Computer and Commu-
nications (INFOCOM), April 2008, pp. –.

152



[55] Z. Han, Z. Ji, and K. Liu, “Non-cooperative resource competition game by
virtual referee in multi-cell OFDMA networks,” IEEE J. Sel. Areas Commun.,
vol. 25, no. 6, pp. 1079–1090, August 2007.

[56] H. Kwon and B. G. Lee, “Distributed Resource Allocation through Noncoop-
erative Game Approach in Multi-cell OFDMA Systems,” in IEEE Int. Conf.
Communications (ICC), vol. 9, June 2006, pp. 4345–4350.

[57] F. Meshkati, M. Chiang, H. Poor, and S. Schwartz, “A game-theoretic ap-
proach to energy-efficient power control in multicarrier CDMA systems,”
IEEE J. Sel. Areas Commun., vol. 24, no. 6, pp. 1115–1129, June 2006.

[58] C. St Jean and B. Jabbari, “Bayesian game-theoretic modeling of transmit
power determination in a self-organizing CDMA wireless network,” in IEEE
Vehicular Technology Conference (VTC), vol. 5, Sept 2004, pp. 3496–3500.

[59] S. Koskie and Z. Gajic, “A nash game algorithm for SIR-based power control
in 3G wireless CDMA networks,” IEEE/ACM Trans. Netw., vol. 13, no. 5,
pp. 1017–1026, Oct 2005.

[60] Y. Jin and G. Kesidis, “A pricing strategy for an ALOHA network of hetero-
geneous users with inelastic bandwidth requirements,” in Proc. CISS 2002,
Princeton, March 2002.

[61] G. Kesidis, Y. Jin, A. Azad, and E. Altman, “Stable Nash equilibria of
ALOHA medium access games under symmetric, socially altruistic behav-
ior,” in IEEE Conf. Decision and Control (CDC), dec. 2010.

[62] Y. Jin and G. Kesidis, “Nash equilibria of a generic networking game with ap-
plications to circuit-switched networks,” in IEEE Conf. Computer and Com-
munications (INFOCOM), vol. 2, March 2003, pp. 1242–1249.

[63] I. Menache and N. Shimkin, “Rate-Based Equilibria in Collision Channels
with Fading,” IEEE J. Sel. Areas Commun., vol. 26, no. 7, pp. 1070 –1077,
september 2008.

[64] K. Son, S. Chong, and G. Veciana, “Dynamic association for load balanc-
ing and interference avoidance in multi-cell networks,” IEEE Trans. Wireless
Commun., vol. 8, no. 7, pp. 3566 –3576, july 2009.

[65] D. Lopez-Perez, I. Guvenc, G. de la Roche, M. Kountouris, T. Quek, and
J. Zhang, “Enhanced intercell interference coordination challenges in hetero-
geneous networks,” IEEE Wireless Commun., vol. 18, no. 3, pp. 22 –30, june
2011.

[66] G. Xingang, S. Roy, and W. Conner, “Spatial reuse in wireless ad-hoc net-
works,” in IEEE Vehicular Technology Conference (VTC), vol. 3, oct. 2003,
pp. 1437 – 1442.

153



[67] F. Ye, S. Yi, and B. Sikdar, “Improving spatial reuse of IEEE 802.11 based
ad hoc networks,” in IEEE Global Telecommunications Conference (GLOBE-
COM), vol. 2, dec. 2003, pp. 1013 – 1017.

[68] A. Hasan and J. Andrews, “The Guard Zone in Wireless Ad hoc Networks,”
IEEE Trans. Wireless Commun., vol. 6, no. 3, pp. 897 –906, march 2007.

[69] P. Li, Q. Shen, Y. Fang, and H. Zhang, “Power controlled network protocols
for Multi-Rate ad hoc networks,” IEEE Trans. Wireless Commun., vol. 8,
no. 4, pp. 2142 –2149, april 2009.

[70] X. Chen and J. Huang, “Distributed Spectrum Access with Spatial Reuse,”
IEEE J. Sel. Areas Commun., vol. 31, no. 3, pp. 593–603, March 2013.

[71] D. Monderer and L. S. Shapley, “Potential Games,” Games and Economic
Behavior, vol. 14, no. 1, pp. 124 – 143, 1996.

[72] W. H. Sandholm, “Potential games with continuous player sets,” Journal of
Economic Theory, vol. 97, no. 1, pp. 81–108, 2001.

[73] K. Cohen, A. Leshem, and E. Zehavi, “Game Theoretic Aspects of the Multi-
Channel ALOHA Protocol in Cognitive Radio Networks,” IEEE J. Sel. Areas
Commun., vol. 31, no. 11, November 2013.

[74] H. D. Sherali, “A Multiple Leader Stackelberg Model and Analysis,” Opera-
tions Research, vol. 32, no. 2, pp. 390–404, 1984.

[75] M. Ghazvini, N. Movahedinia, K. Jamshidi, and N. Moghim, “Game Theory
Applications in CSMA Methods,” IEEE Commun. Surv. Tut., vol. 15, no. 3,
pp. 1062–1087, Third 2013.

[76] N. BenAmmar and J. S. Baras, “Incentive Compatible Medium Access Con-
trol in Wireless Networks,” in Proc. Game Theory for Communications and
Networks (GameNets). New York, NY, USA: ACM, 2006.

[77] J.-W. Lee, M. Chiang, and A. Calderbank, “Utility-Optimal Medium Access
Control: Reverse and Forward Engineering,” in IEEE Conf. Computer and
Communications (INFOCOM), April 2006, pp. 1–13.

[78] J.-W. Lee, A. Tang, J. Huang, M. Chiang, and A. Calderbank, “Reverse-
Engineering MAC: A Non-Cooperative Game Model,” IEEE J. Sel. Areas
Commun., vol. 25, no. 6, pp. 1135–1147, August 2007.

[79] Y. Xiao, X. Shan, and Y. Ren, “Game theory models for IEEE 802.11 DCF in
wireless ad hoc networks,” IEEE Commun. Mag., vol. 43, no. 3, pp. S22–S26,
March 2005.

[80] “IEEE Standard for Information Technology- Telecommunications and Infor-
mation Exchange Between Systems- Local and Metropolitan Area Networks-
Specific Requirements- Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications,” ANSI/IEEE Std 802.11,
1999 Edition (R2003), pp. i–513, 2003.

154



[81] L. Chen, S. Low, and J. Doyle, “Contention control: A game-theoretic ap-
proach,” in IEEE Conf. Decision and Control (CDC), Dec 2007, pp. 3428–
3434.

[82] L. Chen, S. Low, and J. Doyle, “Random access game and medium access
control design,” IEEE/ACM Trans. Netw., vol. 18, no. 4, pp. 1303–1316, Aug
2010.

[83] L. Chen and J. Leneutre, “Efficient medium access control design for au-
tonomous wireless networks - a game theoretic approach,” in IEEE Conf.
Local Computer Networks (LCN), Oct 2009, pp. 376–383.

[84] Y. Jin and G. Kesidis, “Distributed Contention Window Control for Selfish
Users in IEEE 802.11 Wireless LANs,” IEEE J. Sel. Areas Commun., vol. 25,
no. 6, pp. 1113–1123, August 2007.

[85] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordina-
tion function,” IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp. 535–547,
March 2000.

[86] S.-C. Liew, C. H. Kai, H. C. Leung, and P. Wong, “Back-of-the-Envelope
Computation of Throughput Distributions in CSMA Wireless Networks,”
IEEE Trans. Mobile Comput., vol. 9, no. 9, pp. 1319–1331, Sept 2010.

[87] K. Ghaboosi, B. H. Khalaj, Y. Xiao, and M. Latva-aho, “Modeling IEEE
802.11 DCF Using Parallel Space-Time Markov Chain,” IEEE Trans. Veh.
Technol., vol. 57, no. 4, pp. 2404–2413, July 2008.

[88] P. Venkata Krishna, S. Misra, M. Obaidat, and V. Saritha, “Virtual Backoff
Algorithm: An Enhancement to 802.11 Medium-Access Control to Improve
the Performance of Wireless Networks,” IEEE Trans. Veh. Technol., vol. 59,
no. 3, pp. 1068–1075, March 2010.

[89] I. Tinnirello, G. Bianchi, and Y. Xiao, “Refinements on IEEE 802.11 Dis-
tributed Coordination Function Modeling Approaches,” IEEE Trans. Veh.
Technol., vol. 59, no. 3, pp. 1055–1067, March 2010.

[90] R. Boorstyn, A. Kershenbaum, B. Maglaris, and V. Sahin, “Throughput Anal-
ysis in Multihop CSMA Packet Radio Networks,” IEEE Trans. Commun.,
vol. 35, no. 3, pp. 267–274, Mar 1987.

[91] X. Wang and K. Kar, “Throughput modelling and fairness issues in
CSMA/CA based ad-hoc networks,” in IEEE Conf. Computer and Commu-
nications (INFOCOM), vol. 1, March 2005, pp. 23–34.

[92] L. Jiang and J. Walrand, “A Distributed CSMA Algorithm for Throughput
and Utility Maximization in Wireless Networks,” IEEE/ACM Trans. Netw.,
vol. 18, no. 3, pp. 960–972, June 2010.

[93] C. Kai and S.-C. Liew, “Applications of Belief Propagation in CSMA Wireless
Networks,” IEEE/ACM Trans. Netw., vol. 20, no. 4, pp. 1276–1289, Aug 2012.

155



[94] C. Kai and S. C. Liew, “Throughput computation in CSMA wireless
networks with collision effects,” CoRR, vol. abs/1107.1633, 2011. [Online].
Available: http://arxiv.org/abs/1107.1633

[95] L. Jiang and J. Walrand, “Approaching Throughput-Optimality in Dis-
tributed CSMA Scheduling Algorithms With Collisions,” IEEE/ACM Trans.
Netw., vol. 19, no. 3, pp. 816–829, June 2011.

[96] M. Cagalj, S. Ganeriwal, I. Aad, and J.-P. Hubaux, “On selfish behavior in
CSMA/CA networks,” in IEEE Conf. Computer and Communications (IN-
FOCOM), vol. 4, March 2005, pp. 2513–2524.

[97] D. Kuptsov, B. Nechaev, A. Lukyanenko, and A. Gurtov, “How penalty leads
to improvement: A measurement study of wireless backoff in IEEE 802.11
networks,” Computer Networks, vol. 75, Part A, no. 0, pp. 37 – 57, 2014.

[98] A. Asadi, Q. Wang, and V. Mancuso, “A Survey on Device-to-Device Com-
munication in Cellular Networks,” CoRR, vol. abs/1310.0720, 2013.

[99] X. Lin, J. Andrews, and A. Ghosh, “Spectrum sharing for device-to-
device communication in cellular networks,” IEEE Trans. Wireless Commun.,
vol. 13, no. 12, pp. 6727–6740, Dec 2014.

[100] L. Song, D. Niyato, Z. Han, and E. Hossain, “Game-theoretic resource alloca-
tion methods for device-to-device communication,” IEEE Wireless Commun.,
vol. 21, no. 3, pp. 136–144, June 2014.

[101] Y. Cai, H. Chen, D. Wu, W. Yang, and L. Zhou, “A distributed resource
management scheme for D2D communications based on coalition formation
game,” in IEEE Int. Conf. Communications (ICC), June 2014, pp. 355–359.

[102] D. Wu, J. Wang, R. Hu, Y. Cai, and L. Zhou, “Energy-efficient resource shar-
ing for mobile device-to-device multimedia communications,” IEEE Trans.
Veh. Technol., vol. 63, no. 5, pp. 2093–2103, Jun 2014.

[103] S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic, Mobile ad hoc net-
working. John Wiley & Sons, 2004.

[104] P. Thulasiraman, J. Chen, and X. Shen, “Multipath Routing and Max-Min
Fair QoS Provisioning under Interference Constraints in Wireless Multihop
Networks,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 5, pp. 716–728,
May 2011.

[105] W. Xu, J. Chen, Y. Zhang, Y. Xiao, and Y. Sun, “Optimal Rate Rout-
ing in Wireless Sensor Networks with Guaranteed Lifetime,” in IEEE Global
Telecommunications Conference (GLOBECOM), Nov 2008, pp. 1–5.

[106] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE Trans.
Inf. Theory, vol. 46, no. 2, pp. 388–404, Mar 2000.

156

http://arxiv.org/abs/1107.1633


[107] Y. Shi, Y. Hou, S. Kompella, and H. Sherali, “Maximizing capacity in mul-
tihop cognitive radio networks under the sinr model,” IEEE Trans. Mobile
Comput., vol. 10, no. 7, pp. 954–967, July 2011.

[108] Y. Zhang, S. He, and J. Chen, “Data gathering optimization by dynamic
sensing and routing in rechargeable sensor networks,” in Annual IEEE Conf.
Sensor, Mesh and Ad Hoc Communications and Networks (SECON), June
2013, pp. 273–281.

[109] Y. Zhang, S. He, and J. Chen, “Data gathering optimization by dynamic
sensing and routing in rechargeable sensor networks,” IEEE/ACM Trans.
Netw., to appear.

[110] J. Chen, Q. Yu, P. Cheng, Y. Sun, Y. Fan, and X. Shen, “Game theoretical
approach for channel allocation in wireless sensor and actuator networks,”
IEEE Trans. Autom. Control, vol. 56, no. 10, pp. 2332–2344, Oct 2011.

[111] J. Chen, Q. Yu, B. Chai, Y. Sun, Y. Fan, and X. Shen, “Dynamic channel
assignment for wireless sensor networks: A regret matching based approach,”
IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 1, pp. 95–106, Jan 2015.

[112] Y. Shi and Y. Hou, “Optimal power control for multi-hop software defined ra-
dio networks,” in IEEE Conf. Computer and Communications (INFOCOM),
May 2007, pp. 1694–1702.

[113] Y. Shi, Y. Hou, and H. Zhou, “Per-node based optimal power control for
multi-hop cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 8,
no. 10, pp. 5290–5299, October 2009.

[114] Y. Shi, Y. T. Hou, J. Liu, and S. Kompella, “How to correctly use the protocol
interference model for multi-hop wireless networks,” in Proc. ACM Int. Symp.
on Mobile Ad Hoc Networking and Computing (MobiHoc). New York, NY,
USA: ACM, 2009, pp. 239–248.

[115] Y. Shi, Y. Hou, J. Liu, and S. Kompella, “Bridging the gap between protocol
and physical models for wireless networks,” IEEE Trans. Mobile Comput.,
vol. 12, no. 7, pp. 1404–1416, July 2013.

[116] L. Yang, L. Cao, and H. Zheng, “Physical interference driven dynamic spec-
trum management,” in IEEE Int. Symp. New Frontiers in Dynamic Spectrum
Access Networks (DySPAN), Oct 2008, pp. 1–12.

[117] J. Lyu, Y. H. Chew, and W.-C. Wong, “An Autonomous Pareto Optimality
Achieving Algorithm beyond Aloha Games with Spatial Reuse,” in IEEE Int.
Symp. Personal Indoor and Mobile Radio Communications (PIMRC), 2013,
pp. 2689–2693.

[118] X. Zhou, Z. Zhang, G. Wang, X. Yu, B. Y. Zhao, and H. Zheng, “Practical
Conflict Graphs for Dynamic Spectrum Distribution,” SIGMETRICS Per-
form. Eval. Rev., vol. 41, no. 1, pp. 5–16, Jun. 2013.

157



[119] L. B. Jiang and S. C. Liew, “Hidden-Node Removal and Its Application in
Cellular WiFi Networks,” IEEE Trans. Veh. Technol., vol. 56, no. 5, pp.
2641–2654, Sept 2007.

[120] L. Fu, S. C. Liew, and J. Huang, “Effective Carrier Sensing in CSMA Networks
under Cumulative Interference,” IEEE Trans. Mobile Comput., vol. 12, no. 4,
pp. 748–760, 2013.

[121] A. Granas and J. Dugundji, “Theorems of Brouwer and Borsuk,” in Fixed
Point Theory. Springer, 2003, ch. 5, p. 95.

[122] A. Baranga, “The contraction principle as a particular case of kleene’s fixed
point theorem,” Discrete Mathematics, vol. 98, no. 1, pp. 75 – 79, 1991.

[123] P. Hitzler and A. K. Seda, “Multivalued Mappings, Fixed-Point Theorems
and Disjunctive Databases,” in Proc. Irish Workshop on Formal Methods
(IWFM’99), Electronic Workshops in Computing, British Computer Society,
May 1999.

[124] R. A. Horn and C. R. Johnson, “Positive definite matrices,” in Matrix Anal-
ysis. Cambridge University Press, 1990, ch. 7, pp. 396–405.

[125] Y. A. Kuznetsov, “One-Parameter Bifurcations of Equilibria in Continuous-
Time Dynamical Systems,” in Elements of Applied Bifurcation Theory, 2nd
Edition. Springer-Verlag New York, Inc, 1998, ch. 3, 5, pp. 80–86, 157–160.

[126] F. Baccelli, B. Blaszczyszyn, and P. Muhlethaler, “Stochastic analysis of spa-
tial and opportunistic Aloha,” IEEE J. Sel. Areas Commun., vol. 27, no. 7,
pp. 1105–1119, 2009.

[127] J. Yu and P. Chong, “A survey of clustering schemes for mobile ad hoc net-
works,” IEEE Commun. Surv. Tut., vol. 7, no. 1, pp. 32–48, First 2005.

[128] S. Mehta, P. Sharma, and K. Kotecha, “A survey on various cluster head
election algorithms for manet,” in Nirma University Int. Conf. on Engineering
(NUiCONE), Dec 2011, pp. 1–6.

[129] A. A. Abbasi and M. Younis, “A survey on clustering algorithms for wireless
sensor networks,” Computer Communications, vol. 30, no. 1415, pp. 2826 –
2841, 2007.

[130] S. Sen, D. Dorsey, R. Guerin, and M. Chiang, “Analysis of slotted aloha with
multipacket messages in clustered surveillance networks,” in IEEE Military
Communications Conference (MILCOM), Oct 2012, pp. 1–6.

[131] J. Hoydis, M. Petrova, and P. Mahonen, “Effects of topology on local
throughput-capacity of ad hoc networks,” in IEEE Int. Symp. Personal In-
door and Mobile Radio Communications (PIMRC), Sept 2008, pp. 1–5.

[132] P. Patras, A. Banchs, P. Serrano, and A. Azcorra, “A Control-Theoretic
Approach to Distributed Optimal Configuration of 802.11 WLANs,” IEEE
Trans. Mobile Comput., vol. 10, no. 6, pp. 897–910, 2011.

158



[133] A. Garcia-Saavedra, A. Banchs, P. Serrano, and J. Widmer, “Distributed op-
portunistic scheduling: A control theoretic approach,” in IEEE Conf. Com-
puter and Communications (INFOCOM), March 2012, pp. 540–548.

[134] A. Banchs, A. Garcia-Saavedra, P. Serrano, and J. Widmer, “A game-
theoretic approach to distributed opportunistic scheduling,” IEEE/ACM
Trans. Netw., vol. 21, no. 5, pp. 1553–1566, Oct 2013.

[135] J. Chen, Q. Yu, Y. Zhang, H.-H. Chen, and Y. Sun, “Feedback-based clock
synchronization in wireless sensor networks: A control theoretic approach,”
IEEE Trans. Veh. Technol., vol. 59, no. 6, pp. 2963–2973, July 2010.

[136] J. Lyu, Y. H. Chew, and W.-C. Wong, “Efficient and Scalable Distributed
Autonomous Spatial Aloha Networks via Local Leader Election,” IEEE Trans.
Veh. Technol., accepted with minor revision as a paper.

[137] V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, “Critical points
and critical values of smooth maps,” in Singularities of Differentiable Maps.
Birkhauser Boston, 1985, vol. I, ch. 1.2, p. 5.

[138] N. Abramson, “The Throughput of Packet Broadcasting Channels,” IEEE
Trans. Commun., vol. 25, no. 1, pp. 117–128, 1977.

[139] R. Diestel, Graph theory, 4th edition. Springer-Verlag, 2010.

[140] K. J. Åström and R. M. Murray, Feedback Systems. Princeton University
Press, 2008.

[141] H. K. Khalil, Nonlinear Systems, Third Edition. Prentice Hall, 2002.

[142] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA:
Cambridge University Press, 2004.

[143] T. Glad and L. Ljung, Control Theory: Multivariable and Nonlinear Methods.
Taylor and Francis, 2000.
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