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Abstract

We characterize trade-offs between the end-to-end communication delay and the energy in

urban vehicular communications with infrastructure assistance. Our study exploits the self-similarity

of the location of communication entities in cities by modeling them with an innovative model

called “hyperfractal”. We show that the hyperfractal model can be extended to incorporate road-side

infrastructure and provide stochastic geometry tools to allow a rigorous analysis. We compute theoretical

bounds for the end-to-end communication hop count considering two different energy-minimizing goals:

either total accumulated energy or maximum energy per node. We prove that the hop count for an end-

to-end transmission is bounded by O(n1−α/(dF−1)) where α < 1 and dF > 2 is the fractal dimension

of the mobile nodes process. This proves that for both constraints the energy decreases as we allow

choosing routing paths of higher length. The asymptotic limit of the energy becomes significantly small

when the number of nodes becomes asymptotically large. A lower bound on the network throughput

capacity with constraints on path energy is also given. We show that our model fits real deployments

where open data sets are available. The results are confirmed through simulations using different fractal

dimensions in a Matlab simulator.
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I. INTRODUCTION

A. Motivation and Background

Vehicular communications, V2V (vehicle-to-vehicle), V2I (vehicle to infrastructure) or

V2X (vehicle to everything), are a key component of the 5th Generation (5G) and beyond

communications. These ‘verticals’ represent one major focus of the telecommunication industry

nowadays. Yet like many innovation opportunities on the horizon they arrive with significant

challenges. As the vehicular networks continue to scale up to reach tremendous network sizes

with diverse hierarchical structures and node types, and as vehicular interactions become more

complex with entities having hybrid functions and levels of intelligence and control, it is

paramount to provide an effective integration of vehicular networks within the complex urban

environment. Automated and autonomous driving in such a complex and evolving environment

requires sensors that generate a huge amount of data demanding high bandwidth and data rates

[1]. Furthermore, an effective integration of these new types of communication in the new radio

“babbling" created by the other 5G actors such as evolved mobile broadband, ultra-reliable low

latency communications and massive machine-type communications, requires a careful design

for optimal connectivity, low interference, and maximum security.

5G NR (5th Generation New Radio) is essentially a multi-beam system, with high-frequency

ranges generated by millimeter-wave (mmWave) technology [2]. With many GHz of spectrum

to offer, millimeter-wave bands are the key for attaining the high capacity and services diversity

of the NR. For a long time these frequencies have been disregarded for cellular communications

due to their large near-field loss, and poor penetration (blocking) through common material, yet

recent research and experiments have shown that communications are feasible in ranges of 150-

200 meters dense urban scenarios with the use of such high gain directional [3]. Furthermore, the

tight requirements (e.g, line of sight, short-range) are easily answered as the embedding space

of vehicular networks leads to a highly directive topology (as much as it is possible, roads are

built as straight lines) [4].

Given the numerous challenges of mmWave [5] and the important place the vehicular

communications hold in the new communications era, realistic modeling of the topology for

accurate estimation of network metrics is mandatory. The research community has proposed

stochastic models that usually fit with high precision cellular networks or ad hoc networks. Yet

for vehicles, and more importantly, for vehicles using mmWave technology, this cannot be done



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

without taking into account the crucial fact that the effectiveness of the communications are

influenced by the environmental topology. Cars are located on streets and streets are conditioned

by a world-wide common urban architecture that has interesting features. One major feature of

the urban architecture that we exploit in this work is self-similarity.

While it has been extensively studied in diverse research fields such as biology and chemistry,

self-similarity has been only recently introduced to wireless communications, after understanding

that the device-to-device communication topologies follow the social human topology. Self-

similarity is present in every aspect of the surrounding environment but is particularly emphasized

in the urban environment. The hierarchic organization with different degrees of scaling of cities

is a perfect illustration of the fractal structure of human society [6]. Figure 1 presents a snapshot

of the traffic in a neighborhood of Minneapolis. Common patterns and hierarchical organizations

can easily be identified in the traffic measurements and shall be further explained in this paper.

Figure 1: Minneapolis traffic snapshot

In this paper, we extend the "hyperfractal" model that we have introduced in [7], [8] to

better capture the impact of the network topology on the fundamental performance limits of

end-to-end communications over vehicular networks in urban settings. The model consists of

assigning decaying traffic densities to city streets, thus avoiding the extremes of regularity (e.g.

Manhattan grid) and uniform randomness (e.g. Poisson point process), the fitting of the model

with traffic data of real cities having been showcased in [9]. The hyperfractal model exploits

the self-similarity: e.g., it is characterized by a dimension that is larger than the dimension of
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the euclidean dimension of the embedding space, that is larger than 2 when the whole network

lays in a 2-dimensional plane.

Our previous results in [7] revealed that, for nodes, the number of hops in a routing path

between an arbitrary source-destination pair increases as a power function of the population n of

nodes when n tends to infinity. However, we showed that the exponent tends to zero when the

fractal dimension tends to infinity. An initial observation for this model is that the optimal path

may have to go through streets of low density where inter-vehicle distance can become large,

therefore the transmission becomes expensive in terms of energy cost. Hence, in this paper, the

focus will be on the study of the relationship between efficient communications and energy costs.

B. Contributions and paper organization:

Our goal is to characterize trade-offs between the end-to-end communication delay and the

energy in urban vehicular communications with infrastructure assistance in modern cities.

Our first contribution is to exploit the self-similarity of the location of the traffic and vehicles in

cities by modeling the communication entities and relationships with an innovative model called

“hyperfractal” (to avoid extremes of classical Poisson distribution or uniform distribution tools)

and to show that the hyperfractal model can be extended to incorporate road-side infrastructure,

as relays. This provides fundamental properties and tools in the framework of stochastic geometry

that allow for a rigorous analysis (and are of independent interest for other studies).

Our main contributions are theoretical bounds for the end-to-end communication hop count.

We will consider two different energy-minimizing goals: (i) total accumulated energy or (ii)

maximum energy per node. We will prove that the hop count for an end-to-end transmission

is bounded by O(n1−α/(dF−1)) where α < 1 and dF > 2 is the fractal dimension of the mobile

nodes process, thus proving that for both constraints the energy decreases as we allow choosing

routing paths of higher length. We will also show that the asymptotic limit of the energy

becomes significantly small when the number of nodes becomes asymptotically large. This is

also completed with a lower bound on the network throughput capacity with constraints on path

energy. Finally we will show that our model fits real deployments where open data sets are

available. The results are confirmed through simulations using different fractal dimensions and

path loss coefficients, using a discrete-event simulator in Matlab.

The paper is organized as follows:
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• In Section III, we first enhance the hyperfractal model by taking into account mmWave

communication range variations as well as the energy costs of transmission. In addition,

we enrich the model by incorporating road-side infrastructure with communication relays

(with radio communication range variations). We exploit the self-similarity of intersection

locations in urban settings.

• in Section IV, theoretical properties of the hyperfractal model are obtained to allow the

characterization of bounds within the communication model. These properties are developed

within a classic stochastic geometric framework and are of interest on their own.

• In Section V, we prove that for an end-to-end transmission in a hyperfractal setup, the

energy (either accumulated along the path or bounded for each node) decreases if we allow

the path length to increase. In fact, we show that the asymptotic limit of the energy tends

to zero when n, the number of nodes, tends to infinity. We also prove a lower bound on

the network throughput capacity with constraints on path energy.

• In Section VI, we further provide a fitting procedure that allows computing the fractal

dimension of the relay process using traffic lights data sets.

• Finally, Section VII validates our analytical results using a discrete-time event-based

simulator developed in Matlab.

II. RELATED WORKS

Millimeter-wave is a key technological brick of the 5G NR networks, as foreseen in the ground-

breaking work done in [10] and already proved by ongoing deployments. The research community

has been already investigating challenges that may appear and proposing innovative solutions.

Vehicular communications are one of the areas that are to benefit from the high capacity offered

by the mmWave technology. In [11], the authors propose an information-centric network (ICN)-

based mmWave vehicular framework together with a decentralized vehicle association algorithm

to realize low-latency content disseminations. The study shows that the proposed algorithm can

improve the content dissemination efficiency yet there are no consideration about the energy.

The purpose of [12] is optimizing energy efficiency in a cellular system with relays with D2D

(device-to-device) communications using mmWave.

As mmWave is highly directional and blockages raise concerns, the authors of [13] propose

an online learning algorithm addressing the problem of beam selection with environment-

awareness in mmWave vehicular systems. The sensitivity to blockages is generally solved with
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the assistance of the relaying infrastructure. The authors of [14] attempt to solve the dependency

of infrastructure for relaying in vehicular communications by exploiting social interactions. In

[15], the problem of relay selection and power is solved using a centralized hierarchical deep

reinforcement learning based method. Yet the authors us a simplified highway scenario, which

would not scale for a city structure.

Stochastic geometry studies have shown results on the interactions between vehicles on the

highways or in the street intersections [16], [17]. The work in [18] performs statistical studies on

traces of taxis to identify a planar point process that matches the random vehicle locations. The

authors find that a Log Gaussian Cox Process provides a good fit for particular traces. In [19]

propose a novel framework for performance analysis and design of relay selections in mmWave

multi-hop V2V communications. More precisely, the distance between adjacent cars is modeled

as shifted-exponential distribution.

Self-similarity for urban ad hoc networks has been introduced in [7], [8], where the hyperfractal

model exploits the fractal features of urban ad hoc networks with road-side infrastructure. In [9],

we presented an analysis of the propagation of information in a vehicular network where the

cars (the only communication entities) are modeled using the hyperfractal model. As there are

no relays in the intersections, as in the current study, in [9] we are in a disconnected network

scenario where, as the nodes are allowed to move, the network becomes connected over time

with mobility. The packets are being broadcast and results on typical metrics for delay tolerant

networks are presented. There is no investigation on power or energy. The study in [7] provides

results on the minimal path routing using the hyperfractal model for static nodes to model

the road-side infrastructure and assumes an infinite radio range. This is a concern for allowed

transmission power and network energy consumption. In contrast to this first study, in this paper

we add constraints on these quantities to provide insights on the achievable trade-offs between

the end-to-end transmission energy and delay.

III. SYSTEM MODEL

In this section, we recall the necessary definitions of Hyperfractal model and enhance it to be

able to formalise urban settings in matter of vehicles (as mobile users) as well as communication

relays (as fixed infrastructures), both supported by a deterministic structure (called the support)

on which various Poisson processes are sampled.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

A. Hyperfractals for vehicular networks

Cities are hierarchically organized [6]. The main parts of the cities have many elements

in common (in functional terms) and repeat themselves across several spatial scaling. This is

reminiscent of a fractal, described by Lauwerier [20] as an object that consists of an identical

motif repeating itself on an ever-reduced scale. The hyperfractal model has been introduced and

exploited in [7], [8] under static settings and in [9] under mobile settings.

To represent the reality while being able to analyse various features, the map model lays in the

unit square embedded in the 2-dimensional Euclidean space where various processes are sampled.

Basically, we introduce a support of the intensity measure as a deterministic set (or structure)

on which respective Poisson processes are sampled (the set where this intensity measure is not

null). In this paper, the support of the population of n nodes is a grid of streets. Let us denote

this structure by X = ⋃∞
l=0Xl with

Xl := {(b2−(l+1), y), b = 1, 3, . . . , 2l+1−1, y ∈ [0, 1]}∪{(x, b2−(l+1)), b = 1, 3, . . . , 2l+1−1, x ∈ [0, 1]},

where l denotes the level and l starts from 0, and b is an odd integer. Three first levels, l = 0, 1, 2,

are displayed in Figure 2a. Observe that the central "cross" X0 splits
⋃∞

l=1Xl in 4 "quadrants"

which all are homothetic to X with the scaling factor 1/2.

B. Mobile users

Following [7], we consider the Poisson point process Φ of (mobile) users on X with total

intensity (mean number of points) n (0 < n < ∞) having 1-dimensional intensity

λl = n(p/2)(q/2)l (1)

on Xl , l = 0, . . . ,∞, with q = 1 − p for some parameter p (0 ≤ p ≤ 1). Note that Φ can be

constructed in the following way: one samples the total number of mobiles users Φ(X) = n from

Poisson distribution; each mobile is placed independently with probability p on X0 according

to the uniform distribution and with probability q/4 it is recursively located in a similar way in

one the four quadrants of
⋃∞

l=1Xl .

The process Φ is neither stationary nor isotropic. However, it has the following self-similarity

property: the intensity measure of Φ on X is hypothetically reproduced in each of the four

quadrants of
⋃∞

l=1Xl with the scaling of its support by the factor 1/2 and of its value by q/4.
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Figure 2: (a) Hyperfractal support; (b) Relays process construction

The fractal dimension is a scalar parameter characterizing a geometric object with repetitive

patterns. It indicates how the volume of the object decreases when submitted to an homothetic

scaling. When the object is a convex subset of an euclidian space of finite dimension, the fractal

dimension is equal to this dimension. When the object is a fractal subset of this euclidian space

as defined in [21], it is a possibly non integer but positive scalar strictly smaller than the euclidian

dimension. When the object is a measure defined in the euclidian space, as it is the case in this

paper, then the fractal dimension can be strictly larger than the euclidian dimension. In this case

we say that the measure is hyper-fractal.

Remark 1. The fractal dimension dF of the intensity measure of Φ satisfies(
1
2

)dF
=

q
4

thus dF =
log( 4q )
log 2

≥ 2.

The fractal dimension dF is greater than 2, the Euclidean dimension of the square in which it

is embedded, thus the model was coined hyperfractal in [7]. Notice that when p = 1 the model

reduces to the Poisson process on the central cross, while for p→ 0, dF → 2 it corresponds to

the uniform measure in the unit square.

C. Relays

Not surprisingly, the locations of communication infrastructures in urban settings also display

a self-similar behavior: their placement is dependent on the traffic density. Hence we apply

another hyperfractal process for selecting the intersections where a road-side relay is installed

or the existing traffic light is used as road-side unit. This process has been introduced in [7].
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We denote the relay process by Ξ. To define Ξ it is convenient to consider an auxiliary Poisson

process Φr with both processes supported by a 1-dimensional subset of X namely, the set of

intersections of segments constituting X. We assume that Φr has discrete intensity

p(h, v) = ρpr
2
(
1 − pr

2

)h+v

(2)

at all intersections Xh∩Xv for h, v = 0, . . . ,∞ for some parameter pr , 0 ≤ pr ≤ 1 and ρ > 0. That

is, at any such intersection the mass of Φr is Poisson random variable with parameter p(h, v)
and ρ is the total expected number of points of Φr in the model. The self-similar structure of

Φr is explained by its construction: we first sample the total number of points from a Poisson

distribution of intensity ρ and given Φr(X) = M , each point is independently placed with

probability pr
2 in the central crossings of X0, with probability pr

1−pr
2 on some other crossing of

one of the four segments forming X0 and, with the remaining probability
(

1−pr
2

)2
, in a similar

way, recursively, on some crossing of one of the four quadrants of
⋃∞

l=1Xl . This is illustrated in

Figure 2b. The Poisson process Φr is not simple: we define the relay process Ξ as the support

measure of Φr , i.e., only one relay is installed at crossings where Φr has at least one point.

Remark 2. Note that the relay process Ξ forms a non-homogeneous binomial point process (i.e.

points are placed independently) on the crossings of X with a given intersection of two segments

from Xh and Xv occupied by a relay point with probability 1 − exp(−ρp(h, v)).

Similarly to the process of users, we can define the fractal dimension of the relay process.

Remark 3. The fractal dimension dr of the probability density of Ξ is equal to the fractal

dimension of the intensity measure of the Poisson process Φr and verifies

dr = 2
log(2/(1 − pr))

log 2
.

A complete hyperfractal map with mobile nodes and relays is illustrated in Figure 3.

IV. HYPERFRACTAL PROPERTIES AND COMMUNICATION MODEL

In this section we extract the relevant properties of the Hyperfractal model and relate them to

our communication model. We also provide some additional insights into these models via the

framework of the stochastic geometry and point process. These latter results are of independent

interest and allow to lay foundations for other works.
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Figure 3: Complete hyperfractal map with mobile nodes ("+") and relays ("o")

A. Number of relay nodes and asymptotic estimate

We shall now provide the proof for the average number of relays in the map, this time,

exploiting the "fractal-like" properties of our model and providing useful asymptotic estimates.

Theorem IV.1. The average total number of relays R(ρ) in the map is:

R(ρ) =
∑
H,V

2H+V (1 − exp(−ρp(H,V))) = O(ρ2/dr log ρ) (3)

Proof. The probability that a crossing of two lines of level H and V is selected to host a relay

is exactly 1 − exp(−ρp(H,V)).
The average number of relays on a street of level H is LH(ρ) and satisfies:

LH(ρ) =
∑
V≥0

2V (1 − exp(−p(H,V)ρ)) .

We notice that LH(ρ) = L0((1−pr
2 )Hρ) and that L0(ρ) satisfies the functional equation:

L0(ρ) = 1 − exp(−pr
2ρ) + 2L0

(
ρ

1 − pr

2

)
.

It is known from [22] and [23] that this classic equation has a solution such as L0(ρ) = O(ρ2/dr ).
The average total number of relays R(ρ) in the city is obtained by summing the average number

of relays over all streets parallel to a given direction, e.g. the West-East direction (summing on

all streets would count twice each relay). Since there are 2H West-East streets at level H:

R(ρ) =
∑

H

2H LH(ρ) =
∑

H,V≥0
2H+V (1 − exp(−p(H,V)ρ)) =

∞∑
k=0
(k+1)2k(1−exp(−ρp2

r ((1−pr)/2)k)

(4)
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and satisfies the functional equation

R(ρ) = L0(ρ) + 2R(ρ1 − pr

2
).

From the same references ([22], [23]), one gets

R(ρ) = O(ρ2/dr log ρ)

Since 2/dr < 1, the number of relays is much smaller than ρ when ρ→∞. �

Let us verify numerically the claim of Theorem IV.1. We generate the hyperfractal maps with

several values of n, ρn = n and dF = 3. Let us remind the reader that the theorem gives the

expression (4) of R(ρ) as a sum with k →∞. In reality, a limited number of terms of the sums

suffice to approximate R(ρ) with acceptable accuracy. We denote by kmax the number of terms

used to compute in the sum. Figure 4 shows that the computed values of the number of relays

approach the measured value for kmax = 40. The precision is further enhanced when kmax = 60.
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Figure 4: Measured versus computed number of relays in the map for increasing values of kmax

B. Communication model

As we primarily seek to understand the relationship between end-to-end communications and

energy costs, we do not consider detailed aspects of the communication protocol that impact

these (e.g., the distributed aspects needed to gather position information and construct routing

tables in every node). The transmission is done in a half-duplex way, a node is not allowed to

transmit and receive during the same time-slot. The received signal is affected by additive white

Gaussian noise (AWGN) noise N and path-loss with pathloss exponent δ ≥ 2.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

As a consequence of the high directivity and low permeability of the waves in high frequency

(6GHz, 28GHz, 73 GHz as candidates for 5G NR), the next hop is always the next neighbor

on a street, i.e. there exists no other node between the transmitter and the receiver. Indeed,

while a lot of work is still dedicated to characterising the exact overall network connectivity

for mmWave communications V2V in urban setting [24], it is known that intermediate vehicles

create significant blockage and a severe attenuation of the received power for vehicles past near

neighbours [25], [26]. Thus the routing strategy considered is a nearest neighbor routing. In fact,

we can show that, under reasonable assumptions, this strategy is optimal.

Lemma 1. If the noise conditions are the same around each node, then the nearest neighbor

routing strategy is optimal in terms of energy.

Proof. To simplify this proof we ignore the signal attenuation due to the mobile users positioned

as radio obstacles between the sender and the receiver of one hop packet transmission, although

this will have an important impact on energy. Consider the packet transmission from a node at

a location x to a node at location y on the same street. If N is the noise level and K is the

required SNR, then the transmitter must use a signal of power |y − x |δNK . Assume that there

is a node at position z between x and y. Transmitting from x to z and then from z to y would

require a cumulated energy (|z− x |δ + |y − z |δ)NK which is smaller than the required energy for

the direct transmission, since |x − z |δ + |z − y |δ ≤ (|x − z | + |z − y |)δ. �

Let us make the simplifying assumption that all nodes on a street transmit with the same

nominal power Pm which depends only on the number m of nodes on the street. We argue that

a good approximation is to suppose that:

Pm =
Pmax

mδ
(5)

where Pmax is the transmitting power necessary for a node at one end of the street to transmit a

packet directly to a node at the other end of the street. In other words, assume a road of infinite

length where the nodes are regularly spaced by intervals of length L is the length of our street. If

in this configuration every node has a nominal power of Pmax, then the nominal power to achieve

the same performance with a density m times larger but with the same noise values should be

Pmaxm−δ in order to cope with the loss effect. Thus would give expression (5) if the nodes

were regularly spaced by intervals of length L/m. But since the spacing intervals are irregular,

one should cope with the largest gap Lm/m, this brings a small complication in the evaluation
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of Pm. But the probability that there exists a spacing larger than a given value x/m is smaller

than m(1− x
mL )m ≤ mx/L . Thus we have Lm = O(log m/m) (asymptotically almost surely, and in

fact as soon as lim infm Lm/log m > 1), and consequently Pm = O(Pmax logδ m/mδ). To help the

reader, we focus on the expression (5) as we are mainly interested in the order of magnitude.

Definition 1. The end-to-end transmission delay is represented by the total number of hops the

packet takes in its path towards the destination.

As the energy to transmit a packet is the transmission power per unit of time, we consider

the time necessary to send a packet as being equal to the length of a time-slot. We thus do not

consider any MAC protocol for re-transmission and acknowledgment of the reception (e.g., we

do not consider CSMA-like protocols). In any case, as it will be later observed throughout our

derivations, varying the MAC protocol would just change some constants but not the overall

scaling. Therefore, from now on, we will refer to Pmax as the nominal power. Following this

reasoning, the accumulated energy to cover a whole street containing m nodes with uniform

distribution via nearest neighbor routing is mPm =
Pmax
mδ−1 . In this case, the larger the population

of the street the smaller the nominal power and the smaller the energy to cover the street.

Relays stand in intersections, and thus on two streets with different values of m. We consider

a relay to use two different radio interfaces, each with a transmission power according to the

previously mentioned rule for each of the streets. This is a perfectly valid assumption, in line

with 5G devices specifications for dual connectivity [27].

C. Fundamental properties of the Poisson processes Φ, Φr , and Ξ

In the following, we shall provide some fundamental tools that allow one to handle our model

in a typical stochastic geometric framework. This section gives insights about the theoretical

foundations of hyperfractal point process which is of independent interest to our main results

and can be used in other works.

Let L + 1 be a geometric random variable with parameter p (i.e., P(L = l) = p(1 − p)l ,
l = 0, 1, . . .) and given L, let x0 be the random location uniformly chosen on XL . We call x0 the

typical mobile user of Φ. More precisely, we shall consider the point process Φ ∪ {x0} where

x0 is sampled as described above and independently of Φ.

Similarly, let U+1 and W +1 be two independent geometric random variables with parameter

pr and given (U,W), let x∗ be a crossing uniformly sampled from all the intersections of XU∩XW .
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We call x∗ the typical auxiliary point of Φr . More precisely, we shall consider point process

Φr ∪ {x∗} where x∗ is sampled as described above and independently of Φr .

Finding the definition of the typical relay node ξ0 is less explicit yet similar to the typical

point definition. Informally, the conditional distribution of points “seen” from the origin given

that the process has a point there is exactly the same as the conditional distribution of points of

the process “seen” from an arbitrary location given the process has a point at that location.

We define it as the random location on the set of the crossings of X involving the following

biasing of the distribution of x∗ by the inverse of the total number of the auxiliary points co-

located with x∗

P(ξ0 = x) = E
[

1(x∗ = x)
1 + Φr({x∗})

]
/E

[
1

1 + Φr({x∗})

]
.

More precisely we consider Ξ′ ∪ {ξ0} (which distribution is given for any intersection x of

segments in X and a possible configuration φ of relays) by considering

P( ξ0 = x,Ξ′ = φ ) = E
[
1(x∗ = x)1(supp(Φr) \ {x} = φ)

1 + Φr({x∗})

]
/E

[
1

1 + Φr({x∗})

]
where Φr and x∗ are independent (as defined above). Note that, in contrast to the typical points

of Poisson processes Φ and Φr , the typical relay ξ0 is not independent of remaining relays Ξ′.

In what follows, we shall prove that our typical points support the Campbell-Mecke formula

(see [28], [29]) thus justifying our definition and also providing an important tool for future

exploiting the model in a typical stochastic geometric framework.

Theorem IV.2 (Campbell-Mecke formula). For all measurable functions f (x, φ) where x ∈ X
and φ is a realization of a point process on X

E

[∑
xi∈Φ

f (xi,Φ)
]
= nE [ f (x0,Φ ∪ {x0})] (6)

E

[ ∑
xi∈Φr

f (xi,Φr)
]
= ρE [ f (x∗,Φr ∪ {x∗})] (7)

and

E

[∑
xi∈Ξ

f (xi,Ξ)
]
= E [Ξ(X)]E [ f (ξ0,Ξ

′ ∪ {ξ0})] (8)

where the total expected number of relay nodes E [Ξ(X)] admits the following representation

given by Theorem IV.1

E[Ξ(X)] = R(ρ) =
∞∑

k=0
(k + 1)2k(1 − exp(−ρp2

r ((1 − pr)/2)k). (9)
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Proof of Theorem IV.2. First, consider the process of users Φ. The Campbell-Mecke formula

and the Slivnyak theorem [30] for the non-stationary Poisson point processes Φ give

E

[∑
xi∈Φ

f (xi,Φ)
]
=

∫
X

E [ f (x,Φ ∪ {x})] µ(dx), (10)

where µ(dx) is the intensity measure of the process Φ. Specifying this intensity measures the

right-hand side term of (10), thus this becomes
∞∑

l=0

∫
Xl

E [ f (x,Φ ∪ {x})] n(1 − p)l pdx.

In the above expression, one can recognize E [ f (x0,Φ ∪ {x0})] which concludes the proof of (6).

The proof of (7) follows the same lines. Consider now the relay process Ξ. By the definition

of Ξ, one can express the left-hand side of (8) in the following way:

E

[∑
xi∈Ξ

f (xi,Ξ)
]
= E

[ ∑
xi∈Φr

f (xi, supp(Φr))
Φr({xi})

]
,

where supp(Φr) denotes the support of Φr . Using (7), we thus obtain:

E

[∑
xi∈Ξ

f (xi,Ξ)
]
= ρE

[
f (x∗, supp(Φr ∪ {x∗}))

1 + Φr({x∗})

]
. (11)

By the definition of the joint distribution of x∗ and supp(Φr ∪ {x∗}) the right-hand side of (11)

is equal to

ρE
[

1
1 + Φr({x∗})

]
E [ f (ξ0,Ξ

′ ∪ {ξ0})] .

This completes the proof of (7) with

E [Ξ(X)] = ρE
[

1
1 + Φr({x∗})

]
.

�

V. MAIN RESULTS

We now provide our theoretical bounds for the end-to-end communication hop count. The

number of mobile nodes is exactly n, where n is an integer which runs to infinity.
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A. Energy vs Delay

Given that the transmitting power is dependent on the average density of the nodes on the

streets and that the transmission power per node is limited by the protocols to a value of Pmax,

the connectivity is restricted. We introduce the following notions and notations. Let t be a node

and let P(t) be the nominal transmission energy of this node.

Definition 2. Let T be a sequence of nodes that constitutes a routing path. The path length is

D(T) = |T |. The relevant energy quantities related to the paths are:

• The path accumulated energy is the quantity C(T) = ∑
t∈T P(t).

• The path maximum energy is the quantity M(T) = maxt∈T P(t).

The path accumulated energy is of interest as we want to optimize the quantity of energy

expended in the-end-to-end communication, and respectively, the path maximum power as we

want to find the path which maximum power does not exceed a given threshold depending on

the energy sustainability of the nodes or the protocol. For example, it is unlikely that a node can

sustain a nominal power of Pmax equal to the power needed to transmit in a range corresponding

to the entire length of a street. In this case it is necessary to find a path that uses streets with

enough population to reduce the node nominal power and communication range (due to the

mmWave technology limitations).

Definition 3.

• Let G(n,E) be the set of all nodes connected to the central cross with a path accumulated

energy not exceeding E.

• Let Gk(n,E) be the subset of G(n,E), where the path to the central cross should not go

through more than k fixed relays.

Definition 4. Let G′(n,E) and G′k(n,E) be the respective equivalents of G(n,E) and Gk(n,E)
but with the consideration of the path maximum power instead of accumulated energy.

B. Path accumulated energy

The following theorem gives the asymptotic connectivity properties of the hyperfractal in

function of the accumulated energy and in function of the path maximum power. This shows

that for n large, even for some sequences of energy thresholds En tending to zero, the sets

G1(n,En) asymptotically dominate the network. The same holds for the sets sequence G′1(n,En).



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

Theorem V.1. In an urban network with n mobile nodes following a hyperfractal distribution,

the following holds:

lim
n→∞
E

{
|G1(n, n−γPmax)|

n

}
= 1 (12)

for γ < δ − 1

and

lim
n→∞
E

{ |G′1(n, n−γPmax)|
n

}
= 1 (13)

for γ < δ

where δ is the pathloss coefficient.

The following lemma ensures the existence of nodes in a street (with proof in the Appendix).

Lemma 2. There exists a > 0 such that, for all integers H and n, the probability that a street of

level H contains less than nλH/2 nodes or more than 2nλH nodes is smaller than exp(−anλH).

The following corollary gives a result on the scaling of the number of nodes in a segment of

street and the accumulated energy, getting us one step closer to the results we are looking for.

Corollary 1. Let 0 < φ ≤ 1, assume an interval corresponding to a fraction φ of the street

length. If the interval is on a street of level H, the probability that it contains less than φλHn/2
nodes and it is covered with accumulated energy greater than φ(nλH)1−δPmax is smaller than

e−aφλHn.

Proof. This is a slight variation of the previous proof. If we denote by NH(n, φ) the number of

nodes on the segment, we have E[etNH (n,φ)] = (1 + λHφ(ez − 1))n. The previous proof applies by

replacing λH by φλH . The accumulated energy has the expression Pmax
NH (n,φ)
Nδ
H (n)

. Further applying

the previous reasoning to each of the random variables NH(n) and NH(n, φ) gets the result. �

Throughout the rest of the paper, we only consider the cases where dF > 3 and dr < dF − 1,

i.e. (2/q)2 < 2/(1 − pr).
The following theorem is the main result of our paper and shows that increasing the path

length decreases the accumulated energy. In fact, for n→∞, the limiting energy goes to zero.

Theorem V.2. In a hyperfractal with n nodes, with nodes of fractal dimension dF and relays

of fractal dimension dr , the shortest path of accumulated energy En = cEn(1−δ)(1−α)Pmax, where
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cE > 0 and α < 1, between two nodes belonging to the giant component G1(n, En), passes

through a number of hops :

Dn = O(n1−α/(dF−1)) (14)

Although the source and the destination belong to G1(n, En), it is not necessary that all the

nodes constituting the path also belong to G1(n, En), i.e., the path may include nodes that are

more than one hop from the central cross.

Remark 4. We have the identity(
En

Pmax

)1/(δ−1)
DdF−1

n = O(ndF−2). (15)

Let us now prove the theorem.

Proof. The main part of our proof is to consider the case when the source, denoted by mH , and

the destination, mV , both stand on two different segments of the central cross. In this case, we

consider the energy constraint 1
3 En. We can easily extend the result to the case when the source

and the destination stand anywhere in the giant component G1(n, En) by taking En as energy

constraint and the theorem follows.

When mH and mV are on the central cross, there exists a direct path that takes the direct route by

staying on the central cross, more specifically, in Figure 5 a), the segments [SA],[AO],[OC],[CD].
Then, the path length is of order Θ(n) while the accumulated energy of order Θ(n1−δ)Pmax.

In order to significantly reduce the order of magnitude of the path hop length, one must

consider a diverted path with three fixed relays, as indicated in Figure 5 a). The diverted path

proceeds into two streets of level x. Let T be the path. It is considered that x = α log n
log(2/(1−pr )) for

α < 1. The path is made of two times two segments: the segment of street [SA] on the central

cross which corresponds to the distance from the source to the first fixed relay to a street of

level x, and then the segment [AB] between this relay and the fixed relay to the crossing street

of level x. The second part of the path is symmetric and corresponds to the connection between

this relay and the destination through segment [BC] and [CD].
Denote by L(x, y) the distance from an arbitrary position on a street of level y to the first

fixed relay to a street of level x. The probability that a fixed relay exists at a crossing of two
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Figure 5: a) Diverted path with three fixed relays (left), b) five fixed relays (right).

streets of respective level x and y is 1 − exp(−ρnp(x, y)). Since the spacing between the streets

of level x is 2−x , it is known from [7] that

L(x, y) ≤ 2−x

1 − exp(−ρnp(x, y))
where ρn is the effective number of relays in the map (reminding that ρn = n to simplify). The

probability that the two streets of level x have a fixed relay at their crossing is 1−exp(−ρnp(x, x)).
With the condition ρ = n, one gets ρnp(x, x) = n1−2α log(2/q)/log(2/(1−pr )) > n1−α since 2 log(2/q) <
log(2/(1− pr)). Therefore the probability that the relay does not exist decays exponentially fast.

Since the accumulated energy of the path, E(T), satisfies with high probability

E(T) = O(L(x, 0)n1−δPmax) +O((nλx)1−δPmax)

and the average number of nodes of the path, D(T), satisfies with probability tending to 1,

exponentially fast:

D(T) = O(L(x, 0)n) +O(nλx).

Then, with the value x = α log n
log(2/(1−pr )) , we detect that the main contributor of the accumulated

energy are the segments [AB] and [BC], namely E(T) = O
(
n(1−δ)(1−α)

)
. and let cE such that

E(T) ≤ cE
3 n(1−δ)(1−α). The main contributor in hop count in the path is in fact in the parts which

stands on the central cross, namely [mH A] and [mVC]: D(T) = O
(
n1−α/(dF−1)

)
. �

In Theorem V.2, it is always assumed that En → 0, since α < 1. In this case, Dn spans from

O(n1−1/(dF−1)) to O(n) (corresponding to a path staying on the central cross). When the fractal

dimension dF is large it does not make a large span. In fact, if En is assumed to be constant,
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i.e. α = 1, then we can have a substantial reduction in the number of hops, as described in the

following theorem.

Theorem V.3. In a hyperfractal with n nodes, with nodes of fractal dimension dF and relays of

fractal dimension dr , the shortest path of accumulated energy En = vE Pmax with vE > 6, between

two nodes belonging to the giant component G1(n, En), passes through a number of hops :

Dn = O
(
n1− 2

dr (1+1/dF )
)

The theorem shows the achievable limits of number of hops when the constraint on the path

energy is let loose. In fact, this allows taking the path with five fixed relays (Figure 5). The

condition on vE > 6 comes from the 5 relays plus the step required to escape the giant component.

Remark 5. When dr → 2 then Dn = O(n1/(dF+1)), and the hyperfractal model is behaving like

a hypercube of dimension dF + 1. Notice that in this case Dn tends to be O(1) when dF →∞.

Proof. In the proof of Theorem V.2, it is assumed that x <
log n

log(2/(1−pr )) in order to ensure that

the number of hops on the route of level x tends to infinity. However, we can rise the parameter

x in the range log n
log(2/(1−pr )) ≤ x < log n

2 log(2/q) .

We have nλx → 0. In this case, E(T) → 2Pmax since the streets of level x are empty

of nodes with probability tending to 1. Let us denote x = β
log n

2 log(2/q) with β < 1. We have

D(T) = O(L(x, 0)n) = O(n1−β/dr ). Clearly, β cannot be greater than 1 as, in this case, the two

streets of level x will not hold a fixed relay with high probability and the packet will not turn

at the intersection. Therefore the smallest order that one can obtain on the diverted path with

three relays is limited to n1−1/dr , which is not the claimed one.

To obtain the claimed order, one must use the diverted path with five fixed relays, as shown

in figure 5 b). The diverted path is composed by the segments: [SA′],[A′E],[EF],[FG],[GC′]
and [C′D′]. It is shown in [7] that the order can be decreased to n1−2/((1+1/dF )dr ). �

C. Path maximum power

The next results revisit the previous theorems on the path accumulated energy in the

corresponding case of the imposed constraint on the path maximum power.
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Theorem V.4. The shortest path of maximum power less than Mn = n−δ(1−α)Pmax with α < 1,

between two nodes belonging to the giant component G′1(n, Mn), passes through a number of

hops:

Dn = O
(
n1−α/(dF−1)

)
It is important to note that although the orders of magnitude of path length Dn are the same

in both Theorem V.2 and Theorem V.4, the results consider two different giant components:

(accumulated) G1(n, En) and (maximum) G′1(n, Mn).

Remark 6. We have the identity(
Mn

Pmax

)1/δ
DdF−1

n = O(ndF−1−δ). (16)

Theorem V.5. Let the maximum path transmitting power between two points belonging to the

giant component, G′1(n, Mn) be Mn = Pmax. The number of hops Dn on the shortest path is

O
(
n1−2/(dr (1+1/dF )

)
.

This theorem gives the path length when no constraint on transmitting power exists (the

maximum transmitting power allowed is the highest power for a transmission between two

neighbors in the hyperfractal map). We obtain here the same results of [7], where an infinite

radio range is considered, which is not a feasible result for mmWave technology deployments.

D. Remarks on the network throughput capacity

Let us consider the scaling of the network throughput capacity with constraints on the energy.

In [31], the authors express the throughput capacity of random wireless networks as:

ζ(n) = Θ
(
n2 ∑

i∈G ωi(n)∑
i, j∈G ri j

)
. (17)

where ζ(n) is the throughput capacity, defined as the expected number of packets delivered to

their destinations per slot, ωi(n) is the expected transmission rate of each node i among all the

nodes n and G is the giant component. In the following, denote by C the transmission rate of

each node.

Using our results of Theorems V.2 and V.4 and substituting them in (17), we obtain the

following corollary on a lower bound of the network throughput capacity with constraints on

path energy.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 22

Corollary 2. In a hyperfractal with n nodes, fractal dimension of nodes dF , and α < 1 and C

the transmission rate of each node when either

• En = O
(
n(1−δ)(1−α)Pmax

)
is the maximum accumulated energy of the minimal path between

any pair of nodes in the giant component G1(n, En)

or

• Mn = O(n−δ(1−α)Pmax) is the maximum path power of the minimal path between any pair

of nodes in the giant component G′1(n, Mn),

a lower bound on the network throughput is:

ζ(n) = Ω
(
Cn

α
dF−1

)
(18)

Remark 7. We notice that with α < 1 and dF > 3 we have ζ(n) of order which can be smaller

than n1/2 which is less than the capacity in a random uniform network with omni-directional

propagation as described in [32].

Remark 8. When α = 1, i.e. with no energy constraint En = cE Pmax the path length can drop

down to Dn = O
(
n1−2/((1+1/dF )dr )

)
and, in this case, we have ζ(n) = Ω(n2/((1+1/dF )dr )) which

tends to be in O(n) when dF →∞ and dr → 2. In this situation the capacity is of optimal order

since Dn tends to be O(1).

VI. FITTING THE HYPERFRACTAL MODEL FOR MOBILE NODES AND RELAYS TO DATA

The hyperfractal models for mobile nodes and for relays have been derived by making

observations on the scaling of traffic densities and the scaling of the infrastructures, with road

lengths, distances between intersections which allow rerouting of packets, etc. Let us emphasize

again that in the definition of the hyperfractal model, there is neither an assumption nor a

condition on geometric properties (in the sense of geometric shape, strait lines, intersection

angles, etc). Our description of a hyperfractal starting from the support X0 splitting the space

into four quadrants is an example, (e.g., split by three to fit a Koch snowflake).

In our previous works [9], we have introduced a procedure which allows transforming traffic

flow maps into hyperfractal by computing the fractal dimension dF of each traffic flow map then

quantify the metrics of interest. We shall revisit the theoretical foundation of this procedure in

order to compute the fractal dimension dr of the relay placement since as observed from Section

III, the placement of relays is dependent on the density of mobile nodes.
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A. Theoretical Foundation: computation of the fractal dimension of the relays

In this work, we state that the relaying infrastructure placement also follows a distribution

with parameter of a fractal dimension, dr . We thus now present a procedure for the computation

of the fractal dimension of the road-side infrastructure in a city.

The criteria for computing the fractal dimension of the road-side infrastructure are similar

to the criteria used for computing the fractal dimension of the traffic flow map. The fitting

procedure exploits the scaling between the length of different levels of the support Xl and the

scaling of the 1-dimensional intensity per level, λl . The difficulty is that the roads rarely have

an explicit level hierarchy since the data we have about cities are in general about road segment

lengths and average mobile nodes densities. To circumvent this problem, we do a ranking of

the road segments in the decreasing order of their mobile density. If S is a segment we denote

η(S) its density and Cl(S) the accumulated length of the segment ranked before S (i.e. of larger

density than η(S)). For ξ > 0 we denote µ(ξ) = η(C−1
l (ξ)). Formally C−1

l (ξ) is the road segment

S with the smallest density such that Cl(S) ≤ ξ. The hyperfractal dimension will appear in the

asymptotic estimate of µ(ξ) when ξ →∞ via the following property:

µ(ξ) = Θ
(
ξ1−dF

)
. (19)

The procedure for the computation of the fractal dimension of the relays is similar to the

fitting procedure for mobile nodes, [9] and has the following steps. First, we consider the set of

road intersection I defined by the pair of segments (S1,S2) such that S1 and S2 intersect. Let

ξ1, ξ2 be two real numbers we define p(ξ1, ξ2) as the probability that two intersecting segments

S1 and S2 such that Cl(S1) ≤ ξ1 and Cl(S2) ≤ ξ2 contains a relay. The hyperfractality of the

distribution of the relay distribution implies when ξ1, ξ2 →∞:

p(ξ1, ξ2) = Θ
(
(ξ1ξ2)−dr/2

)
. (20)

Since the probability is not directly measurable we have to estimate it via measurable samples.

Indeed let N(ξ1, ξ2) be the number of intersections (S1,S2) ∈ I such that Cl(S1) ≤ ξ1 and

Cl(S2) ≤ ξ2 and let R(ξ1, ξ2) be the number of relays between segments (S1,S2) such that

Cl(S1) ≤ ξ1 and Cl(S2) ≤ ξ2. One should have:

R(ξ1, ξ2)
N(ξ1, ξ2)

= Θ
(
(ξ1ξ2)−dr/2

)
(21)
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Figure 6: Data fitting for Adelaide

and from here get the fractal dimension of the relay process.

B. Data Fitting Examples

Using public measurements [33], we show that the data validates the hyperfractal scaling of

relays repartition with density and length of streets. While traffic data is becoming accessible,

the exact length of each street is difficult to find, therefore the fitting has been done manually.

Figure 6a shows a snapshot of the traffic lights locations in a neighborhood of Adelaide,

together with traffic densities on the streets, when available. As the roadside infrastructure for

V2X communications has not been deployed yet or not at a city scale, we will use traffic light

data as an example for RSU location. It is acceptable to assume the RSUs will have similar

placement, as, themselves, traffic lights are considered for the location of the RSUs on having

radio devices mounted on top of them [34]. By applying the described fitting procedure and

using equation (21) the estimated fractal dimension of the traffic lights distribution in Adelaide

is dr = 3.5. In Figures 6b we show the fitting of the data for the density repartition function.

Note that it is the asymptotic behavior of the plots that are of interest (i.e., the increasing

accumulated distance with decreasing density therefore decreasing the probability of having

a relay installed) since the scaling property comes from the roads with low density, thus the

convergence towards the rightmost part of the plot is of interest.
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Figure 7: Minimum accumulated end-to-end energy versus hops for a transmitter-receiver pair

(fixed and allowed number of hops in red circles, and maximum number of hops in black stars).

VII. NUMERICAL EVALUATION

We evaluate the accuracy of the theoretical findings in different scenarios by comparing them to

results obtained by simulating the events in a two-dimensional network. We developed a MatLab

discrete time event-based simulator following the model presented in Section III. The length of

the map is 1000 and, therefore, Pmax is just 1000δ, where δ is the pathloss coefficient that will be

chosen to be 2, 3 or 4, in line with millimeter-wave propagation characteristics. Figure 7 shows the

trade-offs between accumulated end-to-end energy and hop count for a transmitter-receiver pair

by selecting randomly pairs of vehicles in a hyperfractal map with n = 800, pathloss coefficient

δ = 4, fractal dimension of nodes dF = 4.33 and fractal dimension of relays dr = 3. The plot

shows the minimum accumulated energy for the end-to-end transmission for a fixed and allowed

number of hops, k, in red circle markers. Note that the energy does not decrease monotonically

as forcing to take a longer path may not allow to take the best path. However when considering

the minimum accumulated energy of all paths up to a number of hops, the black star markers

in Figure 7, the energy decreases and exhibits the behavior claimed in Theorem V.2. That is,

the minimum accumulated energy is indeed decreasing when the number of hops is allowed to

grow (and the end-to-end communication is allowed to choose longer, yet cheaper, paths).

Let us further validate Theorem V.2 through simulations performed for 100 randomly chosen

transmitter-receiver pairs in hyperfractal maps with various configurations. We run simulations

for different values of the number of nodes, n = 800 nodes and 1000 nodes respectively, different

values of pathloss, δ = 2 and δ = 3 and different configurations of the hyperfractal map. The

setups of the hyperfractal maps are: node fractal dimension dF = 4.33 and relay fractal dimension

dr = 3.3 for the first setup and dF = 3.3 and dr = 2.3 for the second setup.
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Figure 8: Minimum accumulated end-to-end energy versus hops, averaging over 100 transmitter-

receiver pairs, δ = 2, linear scale left side of sub-figures, logarithmic scale right side of sub-

figures

The results exhibited in Figure 8 are obtained by computing, for each of the transmitter-

receiver pair, the minimum accumulated end-to-end energy for a path smaller than k, then

averaging over the 100 results. The left-hand sides of the Figures 8 (a) and 8 (b) show the

variation of the minimum path accumulated energy for the path with the increase of the number

of hops in a hyperfractal setup of dF = 4.33 and dr = 3 for n = 800 in 8 (a) and n = 1000 in

8 (b). The figures illustrate that, indeed, allowing the hop count to grow decreases the energy

considerably. The decay of the maximum accumulated energy with the allowed number of hops

is even more visible in logarithmic scale in the right side of the same figures.

The decays remain substantial when changing the hyperfractal setup to dF = 3.2, dr = 2.3.

Figures 8 (c) and 8 (d) show the results for n = 800 and n = 1000 in the new setup. The decay

is dramatic when looking in logarithmic scale. Even though there can be oscillations around

the linearly decreasing characteristic, as seen in Figure 8 (d), left-hand side, the global behavior

stays the same, decreasing, as better noticed in logarithmic scale in Figure 8 (d), right-hand side.
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(b) Logarithmic scale

Figure 9: Minimum accumulated end-to-end energy versus hops, averaging over 100 transmitter-

receiver pairs, δ = 3
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Figure 10: Path Maximum Energy trade-off with delay (i.e. path length)

When changing the pathloss coefficient to δ = 3, the effect of Theorem V.2 remains, as

illustrated in Figure 9 for a hyperfractal setup of dF = 4.33, dr = 3, n = 800 nodes.

To validate the results of Theorem V.4 on the variation of path length with the imposed

constraint on maximum energy per node, we choose randomly 100 transmitter-receiver pairs

belonging to the central cross and compute the shortest path by applying a constraint on the

maximum transmission energy of nodes belonging to the path. The hyperfractal setups are: nodes

fractal dimension dF = 3.3, relays fractal dimension dr = 2.3, pathloss coefficient δ = 3 and we

vary the number of nodes, n to be either n = 500 or n = 800. For both values of n, Figure 10 (a)

confirms that decreasing the constraint of path maximum energy increases the path length.

Changing the fractal dimensions does not change the behavior, as illustrated in Figure 10 (b).

The hyperfractal configurations are: nodes fractal dimension dF = 4.33, relays fractal dimension

dr = 3, pathloss coefficient δ = 4 and we vary the number of nodes, n to be either n = 500 or
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n = 800. Again, making a tougher constraint on the path maximum energy leads to the increase

of the path length, showing that achievable trade-offs in hyperfractal maps of nodes with RSU.

VIII. CONCLUSION

This paper presented results on the trade-offs between the end-to-end communication delay

and energy spent on completing a transmission in millimeter-wave vehicular communications in

urban settings by exploiting the “hyperfractal” model. This model captures self-similarity as an

environment characteristic. The self-similar characteristic of the road-side infrastructure has also

been incorporated.

Analytical bounds have been derived for the end-to-end communication hop count under

the constraints of total accumulated energy, and maximum energy per node, exhibiting the

achievable trade-offs in a hyperfractal network. The work presented a lower bound on the network

throughput capacity with constraints on path energy. Further examples of model fitting with data

have been given. The analytical results have been validated using a discrete-time event-based

simulator developed in Matlab.

APPENDIX A

PROOFS

A. Proof of Lemma 2

Proof. Let NH(n) be the number of nodes contained in the street of level H.

Let z be a real number. By Chebyshev’s inequality, we have:

E[ezNH (n)] = (1 + (ez − 1)λH)n

If z > 0:

P
(
NH(n) <

nλH

2

)
= P

(
e−zNH (n) > eznλH/2

)
≤ E[e

−zNH (n)]
e−znλH/2

Therefore
E[e−zNH (n)]
e−znλH/2 = exp (n (log (1 + (e−z − 1)λH) + zλH/2)) .

For |z | bounded there exists b > 0 such that |ez − 1| ≤ b|z | and there exists c such that

ez − 1 ≤ z + cz2. For |x | bounded there exists d such that log(1+ x) ≤ x − cx2. From these steps

we obtain that, for sufficiently small |z |, one has:

log (1 + (e−z − 1)λH)+ z λH2 ≤ −z λH2 + bλH z2 − cλ2
H z2 ≤ −aλH .
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which settles that
E[e−zNH (n)]

e−znλH/2
≤ e−anλH . (22)

The proof of the second part of the lemma proceeds via similar reasoning, by using the inequality:

P (NH(n) > 2nλH) ≤
E[ezNH (n)]

e2znλH
. (23)

�
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