23,758 research outputs found

    On-the-Fly Adaptation of Source Code Models using Meta-Learning

    Full text link
    The ability to adapt to unseen, local contexts is an important challenge that successful models of source code must overcome. One of the most popular approaches for the adaptation of such models is dynamic evaluation. With dynamic evaluation, when running a model on an unseen file, the model is updated immediately after having observed each token in that file. In this work, we propose instead to frame the problem of context adaptation as a meta-learning problem. We aim to train a base source code model that is best able to learn from information in a file to deliver improved predictions of missing tokens. Unlike dynamic evaluation, this formulation allows us to select more targeted information (support tokens) for adaptation, that is both before and after a target hole in a file. We consider an evaluation setting that we call line-level maintenance, designed to reflect the downstream task of code auto-completion in an IDE. Leveraging recent developments in meta-learning such as first-order MAML and Reptile, we demonstrate improved performance in experiments on a large scale Java GitHub corpus, compared to other adaptation baselines including dynamic evaluation. Moreover, our analysis shows that, compared to a non-adaptive baseline, our approach improves performance on identifiers and literals by 44\% and 15\%, respectively.Comment: This paper has been withdrawn because we found a bug in the FOMAML implementation that invalidates some of the key claims in the pape

    DoShiCo Challenge: Domain Shift in Control Prediction

    Full text link
    Training deep neural network policies end-to-end for real-world applications so far requires big demonstration datasets in the real world or big sets consisting of a large variety of realistic and closely related 3D CAD models. These real or virtual data should, moreover, have very similar characteristics to the conditions expected at test time. These stringent requirements and the time consuming data collection processes that they entail, are currently the most important impediment that keeps deep reinforcement learning from being deployed in real-world applications. Therefore, in this work we advocate an alternative approach, where instead of avoiding any domain shift by carefully selecting the training data, the goal is to learn a policy that can cope with it. To this end, we propose the DoShiCo challenge: to train a model in very basic synthetic environments, far from realistic, in a way that it can be applied in more realistic environments as well as take the control decisions on real-world data. In particular, we focus on the task of collision avoidance for drones. We created a set of simulated environments that can be used as benchmark and implemented a baseline method, exploiting depth prediction as an auxiliary task to help overcome the domain shift. Even though the policy is trained in very basic environments, it can learn to fly without collisions in a very different realistic simulated environment. Of course several benchmarks for reinforcement learning already exist - but they never include a large domain shift. On the other hand, several benchmarks in computer vision focus on the domain shift, but they take the form of a static datasets instead of simulated environments. In this work we claim that it is crucial to take the two challenges together in one benchmark.Comment: Published at SIMPAR 2018. Please visit the paper webpage for more information, a movie and code for reproducing results: https://kkelchte.github.io/doshic

    Obvious: a meta-toolkit to encapsulate information visualization toolkits. One toolkit to bind them all

    Get PDF
    This article describes “Obvious”: a meta-toolkit that abstracts and encapsulates information visualization toolkits implemented in the Java language. It intends to unify their use and postpone the choice of which concrete toolkit(s) to use later-on in the development of visual analytics applications. We also report on the lessons we have learned when wrapping popular toolkits with Obvious, namely Prefuse, the InfoVis Toolkit, partly Improvise, JUNG and other data management libraries. We show several examples on the uses of Obvious, how the different toolkits can be combined, for instance sharing their data models. We also show how Weka and RapidMiner, two popular machine-learning toolkits, have been wrapped with Obvious and can be used directly with all the other wrapped toolkits. We expect Obvious to start a co-evolution process: Obvious is meant to evolve when more components of Information Visualization systems will become consensual. It is also designed to help information visualization systems adhere to the best practices to provide a higher level of interoperability and leverage the domain of visual analytics

    Generalizing Supervised Deep Learning MRI Reconstruction to Multiple and Unseen Contrasts using Meta-Learning Hypernetworks

    Full text link
    Meta-learning has recently been an emerging data-efficient learning technique for various medical imaging operations and has helped advance contemporary deep learning models. Furthermore, meta-learning enhances the knowledge generalization of the imaging tasks by learning both shared and discriminative weights for various configurations of imaging tasks. However, existing meta-learning models attempt to learn a single set of weight initializations of a neural network that might be restrictive for multimodal data. This work aims to develop a multimodal meta-learning model for image reconstruction, which augments meta-learning with evolutionary capabilities to encompass diverse acquisition settings of multimodal data. Our proposed model called KM-MAML (Kernel Modulation-based Multimodal Meta-Learning), has hypernetworks that evolve to generate mode-specific weights. These weights provide the mode-specific inductive bias for multiple modes by re-calibrating each kernel of the base network for image reconstruction via a low-rank kernel modulation operation. We incorporate gradient-based meta-learning (GBML) in the contextual space to update the weights of the hypernetworks for different modes. The hypernetworks and the reconstruction network in the GBML setting provide discriminative mode-specific features and low-level image features, respectively. Experiments on multi-contrast MRI reconstruction show that our model, (i) exhibits superior reconstruction performance over joint training, other meta-learning methods, and context-specific MRI reconstruction methods, and (ii) better adaptation capabilities with improvement margins of 0.5 dB in PSNR and 0.01 in SSIM. Besides, a representation analysis with U-Net shows that kernel modulation infuses 80% of mode-specific representation changes in the high-resolution layers. Our source code is available at https://github.com/sriprabhar/KM-MAML/.Comment: Accepted for publication in Elsevier Applied Soft Computing Journal, 36 pages, 18 figure
    • …
    corecore