144,456 research outputs found

    An Epitome of Multi Secret Sharing Schemes for General Access Structure

    Full text link
    Secret sharing schemes are widely used now a days in various applications, which need more security, trust and reliability. In secret sharing scheme, the secret is divided among the participants and only authorized set of participants can recover the secret by combining their shares. The authorized set of participants are called access structure of the scheme. In Multi-Secret Sharing Scheme (MSSS), k different secrets are distributed among the participants, each one according to an access structure. Multi-secret sharing schemes have been studied extensively by the cryptographic community. Number of schemes are proposed for the threshold multi-secret sharing and multi-secret sharing according to generalized access structure with various features. In this survey we explore the important constructions of multi-secret sharing for the generalized access structure with their merits and demerits. The features like whether shares can be reused, participants can be enrolled or dis-enrolled efficiently, whether shares have to modified in the renewal phase etc., are considered for the evaluation

    Privacy-Preserving Secret Shared Computations using MapReduce

    Full text link
    Data outsourcing allows data owners to keep their data at \emph{untrusted} clouds that do not ensure the privacy of data and/or computations. One useful framework for fault-tolerant data processing in a distributed fashion is MapReduce, which was developed for \emph{trusted} private clouds. This paper presents algorithms for data outsourcing based on Shamir's secret-sharing scheme and for executing privacy-preserving SQL queries such as count, selection including range selection, projection, and join while using MapReduce as an underlying programming model. Our proposed algorithms prevent an adversary from knowing the database or the query while also preventing output-size and access-pattern attacks. Interestingly, our algorithms do not involve the database owner, which only creates and distributes secret-shares once, in answering any query, and hence, the database owner also cannot learn the query. Logically and experimentally, we evaluate the efficiency of the algorithms on the following parameters: (\textit{i}) the number of communication rounds (between a user and a server), (\textit{ii}) the total amount of bit flow (between a user and a server), and (\textit{iii}) the computational load at the user and the server.\BComment: IEEE Transactions on Dependable and Secure Computing, Accepted 01 Aug. 201

    Unconstrained Capacities of Quantum Key Distribution and Entanglement Distillation for Pure-Loss Bosonic Broadcast Channels

    Get PDF
    We consider quantum key distribution (QKD) and entanglement distribution using a single-sender multiple-receiver pure-loss bosonic broadcast channel. We determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. A practical implication of our result is that the capacity region demonstrated drastically improves upon rates achievable using a naive time-sharing strategy, which has been employed in previously demonstrated network QKD systems. We show a simple example of the broadcast QKD protocol overcoming the limit of the point-to-point strategy. Our result is thus an important step toward opening a new framework of network channel-based quantum communication technology.Comment: 9 pages, 5 figure
    • …
    corecore