We consider quantum key distribution (QKD) and entanglement distribution
using a single-sender multiple-receiver pure-loss bosonic broadcast channel. We
determine the unconstrained capacity region for the distillation of bipartite
entanglement and secret key between the sender and each receiver, whenever they
are allowed arbitrary public classical communication. A practical implication
of our result is that the capacity region demonstrated drastically improves
upon rates achievable using a naive time-sharing strategy, which has been
employed in previously demonstrated network QKD systems. We show a simple
example of the broadcast QKD protocol overcoming the limit of the
point-to-point strategy. Our result is thus an important step toward opening a
new framework of network channel-based quantum communication technology.Comment: 9 pages, 5 figure