5,199 research outputs found

    Coloring triangle-free rectangle overlap graphs with O(loglogn)O(\log\log n) colors

    Get PDF
    Recently, it was proved that triangle-free intersection graphs of nn line segments in the plane can have chromatic number as large as Θ(loglogn)\Theta(\log\log n). Essentially the same construction produces Θ(loglogn)\Theta(\log\log n)-chromatic triangle-free intersection graphs of a variety of other geometric shapes---those belonging to any class of compact arc-connected sets in R2\mathbb{R}^2 closed under horizontal scaling, vertical scaling, and translation, except for axis-parallel rectangles. We show that this construction is asymptotically optimal for intersection graphs of boundaries of axis-parallel rectangles, which can be alternatively described as overlap graphs of axis-parallel rectangles. That is, we prove that triangle-free rectangle overlap graphs have chromatic number O(loglogn)O(\log\log n), improving on the previous bound of O(logn)O(\log n). To this end, we exploit a relationship between off-line coloring of rectangle overlap graphs and on-line coloring of interval overlap graphs. Our coloring method decomposes the graph into a bounded number of subgraphs with a tree-like structure that "encodes" strategies of the adversary in the on-line coloring problem. Then, these subgraphs are colored with O(loglogn)O(\log\log n) colors using a combination of techniques from on-line algorithms (first-fit) and data structure design (heavy-light decomposition).Comment: Minor revisio

    Triangle-free geometric intersection graphs with large chromatic number

    Get PDF
    Several classical constructions illustrate the fact that the chromatic number of a graph can be arbitrarily large compared to its clique number. However, until very recently, no such construction was known for intersection graphs of geometric objects in the plane. We provide a general construction that for any arc-connected compact set XX in R2\mathbb{R}^2 that is not an axis-aligned rectangle and for any positive integer kk produces a family F\mathcal{F} of sets, each obtained by an independent horizontal and vertical scaling and translation of XX, such that no three sets in F\mathcal{F} pairwise intersect and χ(F)>k\chi(\mathcal{F})>k. This provides a negative answer to a question of Gyarfas and Lehel for L-shapes. With extra conditions, we also show how to construct a triangle-free family of homothetic (uniformly scaled) copies of a set with arbitrarily large chromatic number. This applies to many common shapes, like circles, square boundaries, and equilateral L-shapes. Additionally, we reveal a surprising connection between coloring geometric objects in the plane and on-line coloring of intervals on the line.Comment: Small corrections, bibliography updat

    Conflict-Free Coloring of Intersection Graphs of Geometric Objects

    Full text link
    In FOCS'2002, Even et al. introduced and studied the notion of conflict-free colorings of geometrically defined hypergraphs. They motivated it by frequency assignment problems in cellular networks. This notion has been extensively studied since then. A conflict-free coloring of a graph is a coloring of its vertices such that the neighborhood (pointed or closed) of each vertex contains a vertex whose color differs from the colors of all other vertices in that neighborhood. In this paper we study conflict-colorings of intersection graphs of geometric objects. We show that any intersection graph of n pseudo-discs in the plane admits a conflict-free coloring with O(\log n) colors, with respect to both closed and pointed neighborhoods. We also show that the latter bound is asymptotically sharp. Using our methods, we also obtain a strengthening of the two main results of Even et al. which we believe is of independent interest. In particular, in view of the original motivation to study such colorings, this strengthening suggests further applications to frequency assignment in wireless networks. Finally, we present bounds on the number of colors needed for conflict-free colorings of other classes of intersection graphs, including intersection graphs of axis-parallel rectangles and of \rho-fat objects in the plane.Comment: 18 page

    Optimality program in segment and string graphs

    Full text link
    Planar graphs are known to allow subexponential algorithms running in time 2O(n)2^{O(\sqrt n)} or 2O(nlogn)2^{O(\sqrt n \log n)} for most of the paradigmatic problems, while the brute-force time 2Θ(n)2^{\Theta(n)} is very likely to be asymptotically best on general graphs. Intrigued by an algorithm packing curves in 2O(n2/3logn)2^{O(n^{2/3}\log n)} by Fox and Pach [SODA'11], we investigate which problems have subexponential algorithms on the intersection graphs of curves (string graphs) or segments (segment intersection graphs) and which problems have no such algorithms under the ETH (Exponential Time Hypothesis). Among our results, we show that, quite surprisingly, 3-Coloring can also be solved in time 2O(n2/3logO(1)n)2^{O(n^{2/3}\log^{O(1)}n)} on string graphs while an algorithm running in time 2o(n)2^{o(n)} for 4-Coloring even on axis-parallel segments (of unbounded length) would disprove the ETH. For 4-Coloring of unit segments, we show a weaker ETH lower bound of 2o(n2/3)2^{o(n^{2/3})} which exploits the celebrated Erd\H{o}s-Szekeres theorem. The subexponential running time also carries over to Min Feedback Vertex Set but not to Min Dominating Set and Min Independent Dominating Set.Comment: 19 pages, 15 figure

    Coloring intersection graphs of arc-connected sets in the plane

    Get PDF
    A family of sets in the plane is simple if the intersection of its any subfamily is arc-connected, and it is pierced by a line LL if the intersection of its any member with LL is a nonempty segment. It is proved that the intersection graphs of simple families of compact arc-connected sets in the plane pierced by a common line have chromatic number bounded by a function of their clique number.Comment: Minor changes + some additional references not included in the journal versio

    Coloring curves that cross a fixed curve

    Get PDF
    We prove that for every integer t1t\geq 1, the class of intersection graphs of curves in the plane each of which crosses a fixed curve in at least one and at most tt points is χ\chi-bounded. This is essentially the strongest χ\chi-boundedness result one can get for this kind of graph classes. As a corollary, we prove that for any fixed integers k2k\geq 2 and t1t\geq 1, every kk-quasi-planar topological graph on nn vertices with any two edges crossing at most tt times has O(nlogn)O(n\log n) edges.Comment: Small corrections, improved presentatio
    corecore