1,839 research outputs found

    Auto Signature Verification Using Line Projection Features Combined With Different Classifiers and Selection Methods

    Get PDF
    : Signature verification plays a role in the commercial, legal and financial fields. The signature continues to be one of the most preferred types of authentication for many documents such as checks, credit card transaction receipts, and other legal documents. In this study, we propose a system for validating handwritten bank check signatures to determine whether the signature is original or forged. The proposed system includes several steps including improving the signature image quality, noise reduction, feature extraction, and analysis. The extracted features depend on the signature line and projection features. To verify signatures, different classification methods are used. The system is then trained with a set of signatures to demonstrate the validity of the proposed signature verification system. The experimental results show that the best accuracy of 100% was obtained by combining several classification methods

    Online Signature Verification: Present State of Technology

    Get PDF
    The way a person signs his or her name is known to be characteristic of that individual. Signatures are influenced by the physical and emotional conditions of a subject. A signature verification system must be able to detect forgeries, and, at the same time, reduce rejection of genuine signatures. Significant research has been conducted in feature extraction and selection for the application of on-line signature verification. All these features may be important for some problems, but for a given task, only a small subset of features is relevant. In addition to a reduction in storage requirements and computational cost, these may also lead to an improvement in general performance. On the other hand, selection of a feature subset requires a multi-criterion optimization function, e.g. the number of features and accuracy of classification. In this paper all these techniques are reviewed

    Classifying sequences by the optimized dissimilarity space embedding approach: a case study on the solubility analysis of the E. coli proteome

    Full text link
    We evaluate a version of the recently-proposed classification system named Optimized Dissimilarity Space Embedding (ODSE) that operates in the input space of sequences of generic objects. The ODSE system has been originally presented as a classification system for patterns represented as labeled graphs. However, since ODSE is founded on the dissimilarity space representation of the input data, the classifier can be easily adapted to any input domain where it is possible to define a meaningful dissimilarity measure. Here we demonstrate the effectiveness of the ODSE classifier for sequences by considering an application dealing with the recognition of the solubility degree of the Escherichia coli proteome. Solubility, or analogously aggregation propensity, is an important property of protein molecules, which is intimately related to the mechanisms underlying the chemico-physical process of folding. Each protein of our dataset is initially associated with a solubility degree and it is represented as a sequence of symbols, denoting the 20 amino acid residues. The herein obtained computational results, which we stress that have been achieved with no context-dependent tuning of the ODSE system, confirm the validity and generality of the ODSE-based approach for structured data classification.Comment: 10 pages, 49 reference

    An investigation of the predictability of the Brazilian three-modal hand-based behavioural biometric: a feature selection and feature-fusion approach

    Get PDF
    Abstract: New security systems, methods or techniques need to have their performance evaluated in conditions that closely resemble a real-life situation. The effectiveness with which individual identity can be predicted in different scenarios can benefit from seeking a broad base of identity evidence. Many approaches to the implementation of biometric-based identification systems are possible, and different configurations are likely to generate significantly different operational characteristics. The choice of implementational structure is, therefore, very dependent on the performance criteria, which is most important in any particular task scenario. The issue of improving performance can be addressed in many ways, but system configurations based on integrating different information sources are widely adopted in order to achieve this. Thus, understanding how each data information can influence performance is very important. The use of similar modalities may imply that we can use the same features. However, there is no indication that very similar (such as keyboard and touch keystroke dynamics, for example) basic biometrics will perform well using the same set of features. In this paper, we will evaluate the merits of using a three-modal hand-based biometric database for user prediction focusing on feature selection as the main investigation point. To the best of our knowledge, this is the first thought-out analysis of a database with three modalities that were collected from the same users, containing keyboard keystroke, touch keystroke and handwritten signature. First, we will investigate how the keystroke modalities perform, and then, we will add the signature in order to understand if there is any improvement in the results. We have used a wide range of techniques for feature selection that includes filters and wrappers (genetic algorithms), and we have validated our findings using a clustering technique

    Genuine Forgery Signature Detection using Radon Transform and K-Nearest Neighbour

    Get PDF
    Authentication is very much essential in managing security. In modern times, it is one in all priorities. With the advent of technology, dialogue with machines becomes automatic. As a result, the need for authentication for a variety of security purposes is rapidly increasing. For this reason, biometrics-based certification is gaining dramatic momentum. The proposed method describes an off-line Genuine/ Forgery signature classification system using radon transform and K-Nearest Neighbour classifier. Every signature features are extracted by radon transform and they are aligned to get the statistic information of his signature. To align the two signatures, the algorithm used is Extreme Points Warping. Many forged and genuine signatures are selected in K-Nearest Neighbour classifier training. By aligning the test signature with each and every reference signatures of the user, verification of test signature is done. Then the signature can be found whether it is genuine or forgery. A K-Nearest Neighbour is used for classification for the different datasets. The result determines how the proposed procedure is exceeds the current state-of-the-art technology. Approximately, the proposed system’s performance is 90 % in signature verification system

    Feature Subset Selection in Intrusion Detection Using Soft Computing Techniques

    Get PDF
    Intrusions on computer network systems are major security issues these days. Therefore, it is of utmost importance to prevent such intrusions. The prevention of such intrusions is entirely dependent on their detection that is a main part of any security tool such as Intrusion Detection System (IDS), Intrusion Prevention System (IPS), Adaptive Security Alliance (ASA), checkpoints and firewalls. Therefore, accurate detection of network attack is imperative. A variety of intrusion detection approaches are available but the main problem is their performance, which can be enhanced by increasing the detection rates and reducing false positives. Such weaknesses of the existing techniques have motivated the research presented in this thesis. One of the weaknesses of the existing intrusion detection approaches is the usage of a raw dataset for classification but the classifier may get confused due to redundancy and hence may not classify correctly. To overcome this issue, Principal Component Analysis (PCA) has been employed to transform raw features into principal features space and select the features based on their sensitivity. The sensitivity is determined by the values of eigenvalues. The recent approaches use PCA to project features space to principal feature space and select features corresponding to the highest eigenvalues, but the features corresponding to the highest eigenvalues may not have the optimal sensitivity for the classifier due to ignoring many sensitive features. Instead of using traditional approach of selecting features with the highest eigenvalues such as PCA, this research applied a Genetic Algorithm (GA) to search the principal feature space that offers a subset of features with optimal sensitivity and the highest discriminatory power. Based on the selected features, the classification is performed. The Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used for classification purpose due to their proven ability in classification. This research work uses the Knowledge Discovery and Data mining (KDD) cup dataset, which is considered benchmark for evaluating security detection mechanisms. The performance of this approach was analyzed and compared with existing approaches. The results show that proposed method provides an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates

    Adapted user-dependent multimodal biometric authentication exploiting general information

    Full text link
    This is the author’s version of a work that was accepted for publication in Pattern Recognition Letters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Pattern Recognition Letters 26.16 (2005): 2628 – 2639, DOI: 10.1016/j.patrec.2005.06.008A novel adapted strategy for combining general and user-dependent knowledge at the decision-level in multimodal biometric authentication is presented. User- independent, user-dependent, and adapted fusion and decision schemes are com- pared by using a bimodal system based on ¯ngerprint and written signature. The adapted approach is shown to outperform the other strategies considered in this pa- per. Exploiting available information for training the fusion function is also shown to be better than using existing information for post-fusion trained decisions.This work has been supported by the Spanish Ministry for Science and Tech- nology under projects TIC2003-09068-C02-01 and TIC2003-08382-C05-01

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure
    • …
    corecore