1,380 research outputs found

    On-line Monitoring of Metric Temporal Logic with Time- Series Constraints Using Alternating Finite Automata

    Get PDF
    In this paper we describe a technique for monitoring and checking temporal logic assertions augmented with real-time and time-series constraints, or Metric Temporal Logic Series (MTLS). The method is based on Remote Execution and Monitoring (REM) of temporal logic assertions. We describe the syntax and semantics of MTLS and a monitoring technique based on alternating finite automata that is efficient for a large set of frequently used formulae and is also an on-line technique. We investigate the run-time data-structure size for several interesting assertions taken from the Kansas State specification patterns

    Interestingness of traces in declarative process mining: The janus LTLPf Approach

    Get PDF
    Declarative process mining is the set of techniques aimed at extracting behavioural constraints from event logs. These constraints are inherently of a reactive nature, in that their activation restricts the occurrence of other activities. In this way, they are prone to the principle of ex falso quod libet: they can be satisfied even when not activated. As a consequence, constraints can be mined that are hardly interesting to users or even potentially misleading. In this paper, we build on the observation that users typically read and write temporal constraints as if-statements with an explicit indication of the activation condition. Our approach is called Janus, because it permits the specification and verification of reactive constraints that, upon activation, look forward into the future and backwards into the past of a trace. Reactive constraints are expressed using Linear-time Temporal Logic with Past on Finite Traces (LTLp f). To mine them out of event logs, we devise a time bi-directional valuation technique based on triplets of automata operating in an on-line fashion. Our solution proves efficient, being at most quadratic w.r.t. trace length, and effective in recognising interestingness of discovered constraints

    Dynamic analysis overview and a proposed verification tool for temporal properties in security-critical software

    Get PDF
    The need for correct software is increasing as computers are proliferating in every aspect of our lives. Dynamic analysis is a possible way of increasing the reliability of software by introducing a monitoring and verification mechanism over and above a computer system, so that if under some unprecedented circumstance, any of its specifications are violated, an alarm will be raised. This paper gives an overview of the literature in the subject and also puts forward a proposal of further research and investigation which seems to be very promising.peer-reviewe

    Aspect-oriented programming runtime-enforcement of temporal properties in security-critical software

    Get PDF
    The Aspect-Oriented Programming paradigm has been advocated for modularisation of cross-cutting concerns in large systems. Various applications of this approach have been explored in the literature, one of which is that of runtime-verification based on assertions or temporal properties. Manually weaving temporal properties to en- sure correct execution into a large code base is difficult to achieve in a clean, modular fashion, and AOP techniques enable independent specification of the properties to be automatically woven into the code. In this paper, we explore a number of applications of AOP-based runtime- verification with an emphasis on security-critical system development. Apart from weaving properties into existing programs, we show how related techniques can be used to approach security issues separately from the functionality of a module, allowing for better design of the actual system. Also, we explore AOP as a way of automatically ensuring that reusable code in a library is temporally correctly employed. An area in which not much work has yet been done is that of the use of AOP for runtime-verification of real-time properties. In our case studies we explore real-time issues and outline a proposal for automatic translation from real-time properties into code using AOP techniques.peer-reviewe

    On the expressiveness and monitoring of metric temporal logic

    Get PDF
    It is known that Metric Temporal Logic (MTL) is strictly less expressive than the Monadic First-Order Logic of Order and Metric (FO[<, +1]) when interpreted over timed words; this remains true even when the time domain is bounded a priori. In this work, we present an extension of MTL with the same expressive power as FO[<, +1] over bounded timed words (and also, trivially, over time-bounded signals). We then show that expressive completeness also holds in the general (time-unbounded) case if we allow the use of rational constants q ∈ Q in formulas. This extended version of MTL therefore yields a definitive real-time analogue of Kamp’s theorem. As an application, we propose a trace-length independent monitoring procedure for our extension of MTL, the first such procedure in a dense real-time setting

    Keep It Small, Keep It Real: Efficient Run-Time Verification of Web Service Compositions

    Get PDF
    Abstract. Service compositions leverage remote services to deliver addedvalue distributed applications. Since services are administered and run by independent parties, the governance of service compositions is intrinsically decentralized and services may evolve independently over time. In this context, pre-deployment verification can only provide limited guarantees, while continuous run-time verification is needed to probe and guarantee the correctness of compositions at run time. This paper addresses the issue of efficiency in the run-time verification of service compositions described in BPEL. It considers an existing monitoring approach based on ALBERT, which is a temporal logic language suitable for asserting both functional and non-functional properties, and shows how to obtain the efficient run-time verification of ALBERT formulae. The paper introduces an operational semantics for ALBERT through an extension of alternating automata, and explains how to optimize it to produce smarter, and thus more efficient, encodings of defined formulae. The optimized operational semantics can then be the basis for an efficient implementation of the run-time verification framework

    Model-bounded monitoring of hybrid systems

    Full text link
    Monitoring of hybrid systems attracts both scientific and practical attention. However, monitoring algorithms suffer from the methodological difficulty of only observing sampled discrete-time signals, while real behaviors are continuous-time signals. To mitigate this problem of sampling uncertainties, we introduce a model-bounded monitoring scheme, where we use prior knowledge about the target system to prune interpolation candidates. Technically, we express such prior knowledge by linear hybrid automata (LHAs) - the LHAs are called bounding models. We introduce a novel notion of monitored language of LHAs, and we reduce the monitoring problem to the membership problem of the monitored language. We present two partial algorithms - one is via reduction to reachability in LHAs and the other is a direct one using polyhedra - and show that these methods, and thus the proposed model-bounded monitoring scheme, are efficient and practically relevant.Comment: This is the author (and slightly extended) version of the manuscript of the same name published in the proceedings of the 12th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS 2021

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    IST Austria Thesis

    Get PDF
    This dissertation concerns the automatic verification of probabilistic systems and programs with arrays by statistical and logical methods. Although statistical and logical methods are different in nature, we show that they can be successfully combined for system analysis. In the first part of the dissertation we present a new statistical algorithm for the verification of probabilistic systems with respect to unbounded properties, including linear temporal logic. Our algorithm often performs faster than the previous approaches, and at the same time requires less information about the system. In addition, our method can be generalized to unbounded quantitative properties such as mean-payoff bounds. In the second part, we introduce two techniques for comparing probabilistic systems. Probabilistic systems are typically compared using the notion of equivalence, which requires the systems to have the equal probability of all behaviors. However, this notion is often too strict, since probabilities are typically only empirically estimated, and any imprecision may break the relation between processes. On the one hand, we propose to replace the Boolean notion of equivalence by a quantitative distance of similarity. For this purpose, we introduce a statistical framework for estimating distances between Markov chains based on their simulation runs, and we investigate which distances can be approximated in our framework. On the other hand, we propose to compare systems with respect to a new qualitative logic, which expresses that behaviors occur with probability one or a positive probability. This qualitative analysis is robust with respect to modeling errors and applicable to many domains. In the last part, we present a new quantifier-free logic for integer arrays, which allows us to express counting. Counting properties are prevalent in array-manipulating programs, however they cannot be expressed in the quantified fragments of the theory of arrays. We present a decision procedure for our logic, and provide several complexity results
    • …
    corecore