
Aspect-Oriented Programming

Runtime-Enforcement of Temporal Properties in

Security-Critical Software

Christian Colombo and Gordon J. Pace

Department of Computer Science, University of Malta
{gordon.pace|ccol002}@um.edu.mt

Abstract. The Aspect-Oriented Programming paradigm has been ad-
vocated for modularisation of cross-cutting concerns in large systems.
Various applications of this approach have been explored in the liter-
ature, one of which is that of runtime-verification based on assertions
or temporal properties. Manually weaving temporal properties to en-
sure correct execution into a large code base is difficult to achieve in a
clean, modular fashion, and AOP techniques enable independent spec-
ification of the properties to be automatically woven into the code. In
this paper, we explore a number of applications of AOP-based runtime-
verification with an emphasis on security-critical system development.
Apart from weaving properties into existing programs, we show how re-
lated techniques can be used to approach security issues separately from
the functionality of a module, allowing for better design of the actual
system. Also, we explore AOP as a way of automatically ensuring that
reusable code in a library is temporally correctly employed. An area in
which not much work has yet been done is that of the use of AOP for
runtime-verification of real-time properties. In our case studies we ex-
plore real-time issues and outline a proposal for automatic translation
from real-time properties into code using AOP techniques.

1 Introduction

In designing software systems we would like to separate all different concerns into
different modules, making the system easier to understand and maintain, makinf
the code more reusable and more manageable for developers [KLM+97,BS06] —
all advantages of good modular design. However, a problem sometimes encoun-
tered when using commonly used programming paradigms, is that a number
of our concerns may not be possible modularised with the rest of the system
[KLM+97,KHH+01,MKL97]. For example consider the design of a server appli-
cation shown in Figure 1.

It is natural to choose to split the server into two main modules: one which
validates the incoming connections and one which serves the existing connec-
tions. It may also also natural to split further the module serving requests into
sub-modules, where each module would be responsible for the servicing of a
particular type of requests. One may also envisage a separate module which

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/132619419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Christian Colombo and Gordon J. Pace

Server

Service Connect
Requests

Service Other
Client Requests

Download Data Download File

Fig. 1. A server application design.

caters for the accounting of the server application. However, usually, statistics
are gathered for accounting from all the modules of the system, spreading out
use of the accounting module across the whole code. A more serious concern,
is that changes to what information is logged will require maintenance of code
across the whole system, and not just the accounting module. Similarly, security
concerns usually cut across various of the modules of the system. With security
concerns, the situation is worse than with most logging requirements, since one
usually wants to identify not single events and function calls, but sequences of
events which may originate from separate modules. Hence, one is faced with the
same problems of unstructured code. These concerns, called aspects in AOP jar-
gon, are said to cross-cut the system’s underlying functionality. The motivation
behind AOP, lies in providing modular means of introducing such aspects into
a system. Subsequently, the aspect code is automatically woven into the other
modules at the points at which they cross-cut.

In this paper, we explore applications of AOP-based runtime-verification with
an emphasis on security-critical system development. Using a simple server ap-
plication case study, we show how AOP can be used for explicitly stating the
properties of an existing system without modifying the system itself, and running
these property monitors automatically together with the system, thus assuring
that the properties are adhered to at runtime. Another technique we explore
is the separation of security features from the functional core which may as-
sume well-behaved communicating partners. We show how the development of
a security-aware system can be split into (i) the development of a näıve system
which presumes non-malevolent users; and (ii) the independent identification of
security features which are then woven automatically into the functionality of
the näıve module, thus allowing for better design of the complete system. Fi-
nally, we also explore AOP as a means to automatically ensure that reusable
code in a library is employed correctly by having a separate contract specifying
the correct use of the code in the library, including temporal dependencies. We
start by exploring these different applications looking at temporal dependencies
— with properties such as ‘method connect cannot happen twice in a row with-

AOP for Temporal Properties in Security-Critical Software 3

out a call to disconnect in between’. We then extend this reasoning to deal
with real-time properties, such as ‘no more than 10 calls to connect can appear
every minute’. In both cases, we review and propose techniques using which such
properties can be automatically incorporated using AOP techniques.

In Section 2 we give a brief review of AOP together with an overview of
AspectJ as a prominent AOP technology. Furthermore, we give an overview of
runtime verification and various flavours of temporal properties. Thus we explain
the motivation behind the proposed AOP approaches. In Section 3 we describe
three case studies in AspectJ, illustrating the use of AOP techniques for verifying
various temporal properties at runtime. Similarly, in Section 4 we give another
three case studies but this time with real-time properties. In Section 5 we give
an outline of the proposed framework for specifying real-time properties using
two examples from the case studies. Finally, in section 6 we conclude the work
and propose future work.

2 Background

2.1 Aspect-Oriented Programming

As already briefly mentioned, AOP enables the programming of cross-cutting
features in a system in a modular fashion. The AOP modules can be seen simply
as other system modules but whose semantics corresponds not to actual code,
but essentially as functions transforming, or modifying the rest of the code.

Different variations to AOP have appeared in the literature, depending on the
different level of abstraction at which the aspect code is meant to be inserted
in the code. For example some applications may need to work on low level
information of method calling [MKL97] while in many other cases a higher level
abstraction is more appropriate [SB06,KLM+97].

AspectJ is one of the more popular AOP languages [SB06]. It is an aspect-
oriented extension to JAVA [KHH+01] originally developed by Xerox PARC to
be a general purpose AOP language [SB06,LK98]. AspectJ provides a number
of constructs which allow the developer to specify a variety of joinpoints within
the code. For example joinpoints (where aspect code can be inserted) can be
specified at the beginning or ending of method calls. Similarly, we can specify
joinpoints just before or after a field access in a class. There are also other inter-
esting constructs such as cflow(). This particular construct allows the developer
to program interesting code such as do something when a particular recursive
method is called but not when it is called within itself [KHH+01,SB06].

Of particular interest is that AspectJ offers two types of crosscutting: dy-
namic crosscutting and static crosscutting. While dynamic crosscutting allows
the user to alter the execution of a system through the use of aspects, static
crosscutting allows the changing of the class definitions themselves [KHH+01].

2.2 Runtime-Verification

Model checking has the power to assert that a property holds along any pos-
sible execution path of a system (whatever inputs it receives, and whatever

4 Christian Colombo and Gordon J. Pace

non-deterministic choices are made inside the system) [UT02,ZKTR07], making
it a very desirable objective. However, model checking depends on having a de-
cidable domain, and for the algorithm to be tractable when applied to systems
of the magnitude one wants to analyse. Various abstraction and reduction tech-
niques have been proposed to scale up model checking, but full verification of
large-scale software systems is still largely unattainable [GH05,ZKTR07,FS01].
In contrast with model checking, in runtime-verification, one checks that a given
system property holds along a particular execution path [ZKTR07]. This is par-
ticularly useful to ensure that at no time during the execution of the system,
are any of the system properties violated. Conversely, it can also identify exe-
cutions paths taken at runtime, and along which the properties to be verified
are not satisfied [ZKTR07]. Essentially, runtime-verification links the abstract
specification and the actual concrete implementation [LBAK+98,STY03]. Thus,
runtime-verification can be used as a protection from potential faults at run-
time, by implementing monitors to react to any property violations encountered
[GH05].

In general, a runtime-verification specification consists of (i) identification
of the properties which are to be satisfied by the system; (ii) identification of
the points during the execution when these properties are to hold; and (iii)
identification of actions which should be taken when these properties fail.

Clearly, the logic chosen to write such specifications should enable straight-
forward expression of such properties, so as to avoid potential errors being in-
troduced in the specification. Furthermore, the modification of the code in the
concrete system to insert check for such a specification should be largely (or com-
pletely) automated, also to avoid potential errors being introduced in translating
the properties into actual monitors. Finally, the properties should be cheap to
verify at runtime, avoiding heavy overheads which substantially alter the real-
time behaviour of a program. These two constraints limit one’s choice of logics,
with the latter also being motivation for adopting AOP for automatic inser-
tion of monitors in the code. AOP offers the advantage of specifying all such
properties in separate modules (aspects) which contain all the logic concern-
ing these properties [UT02]. Thus one avoids having the properties written as
dispersed code throughout the system checking for property violations. Further-
more, it has been observed that other runtime-verification approaches for object-
oriented systems, usually break the encapsulation principle from object-oriented
programming [Bod05].

2.3 Expressing Temporal Properties

Most of the properties one would like to verify at runtime are temporal proper-
ties, in that they specify properties about the order of events in the underlying
system. Examples of such properties are ‘ensure that initialisation takes place
before other methods execute’, or ‘ensure that no more than three sequential
bad logins are allowed’. Using such properties, the developer can reason about
the order of and dependencies in the control flow of a system [SB06]. Unlike
atemporal, or global assertions, temporal properties are concerned not only with

AOP for Temporal Properties in Security-Critical Software 5

the current state of the system but also with its history — the sequence of states
which led to the current state [SB06]. The logic to be used should thus enable
the expression of properties on sequences of states.

Considerable work has appeared exploring the use of Linear Temporal Logic
(LTL) as the way to express such temporal constraints for runtime verifica-
tion [SB06,Bod05,BS06,SH05]. Bodden and Stolz [SB06,Bod05,BS06], use LTL
for the specification, and translate it into AOP code expressing the weaving
of monitors of the original LTL property into the concrete system. Sammapun
and Sokolsky [SS03] use a similar approach but based on the description of the
temporal properties through the use of regular expressions. Alternatives to such
logics explored in the literature, are the use automata for the expression of tem-
poral constraints — for example alternating finite state automata have been used
in [SB06,Dru06,FS01], and timed automata were used in [Bou06,STY03,FH06]
to reason about temporal properties. Although most logics can be naturally
translated to and from automata, it is interesting to compare and contrast the
complexity of expressing typical properties using the two approaches.

Sometimes, the sort of temporal reasoning one requires goes beyond the the
ordering of events, adding operators to enable reasoning about the actual timing
of the events. Such specifications would enable expressing properties like ‘no more
than three bad logins can appear in any 30 minute period during the execution
of the system’, or ‘after 30 minutes of inactivity, the server will automatically
disconnect the user’. Certain temporal logics allow for the specification of such
real-time properties. Adding real-time constraints to an existing system can be
extremely complex, and usually it is much simpler to redevelop the system from
scratch rather than adding reactivity, even if the underlying functionality is
already there. Gal et al. [GSSP02] show how AOP can be used to allow the
developers to separate the functional from the real-time concerns thus making
code easier to develop and more reusable.

Another consideration in real-time systems is that upon instrumentation of
the aspect code, the timing constraints are not violated through the introduction
of the property monitors. Furthermore, one other important aspect one should
keep in mind when introducing runtime monitors is memory usage. Excessive
memory usage by the verification code may cause undesired effects on the system
being considered, including timing violations. However, little research has been
done on this issue of guaranteeing memory usage and timing performance after
the instrumentation of aspect code.

3 Case Studies

In this section, we will present a number of simple case studies to illustrate the
use of AOP techniques for security-critical systems. The technology employed for
these case studies is AspectJ. The implemented server is a trivial one for illus-
tration purposes, and receives requests from clients and if the requests are valid,
these are served. If the server does not have a profile of a client with a particular
ip address, then the client must first notify the server and then login using the

6 Christian Colombo and Gordon J. Pace

password set during the first notification. Once the client has successfully logged
in, other services are available. The client can choose from the available services
by specifying a request number, where each number corresponds to a particular
type of request. Finally, the user can log out. Once logged out, the user only
request a login while any other requests will not be granted. This is the basic
specification of the server. However, on top of these properties, we would like
to specify an extra property for security reasons: if a client with a certain ip
address sequentially makes a number of invalid requests which exceeds a certain
limit, then no more request of this client will be considered. The first two case
studies give a description of two possible approaches of using AOP to secure this
property.

3.1 Specifying Temporal Security Properties on an Existing System

In this first case study, we assume that the developer of the server has attempted
to cater for the specified security property of blocking a user whose ip address
has appeared repeatedly issuing invalid requests. The server code handling this
condition is shown in Listing 1.1.

Listing 1.1. Client-blocking in the server code

1 if (htBlackList .containsKey (c.ip) && ((Integer) htBlackList .

get(c.ip)).intValue () > limit)

2 {System.out.println ("You are blocked ");}

3 else

4 {serve(c,reqNum);}

Since one would typically not want to look into the server code to verify that
it is correctly implemented, we would like to independently implement the prop-
erty as an aspect, which when woven into the server code will provide runtime
verification of the specified property. The purpose of the aspect in this case is
to act as a double check that the system is correctly implemented. Typically,
in practice, the property would be concisely expressed in a temporal logic and
automatically translated into an aspect. One would thus trust the property more
than the underlying code.

During implementation, it was noted that if the implemented system was not
well structured, then it would have been much more difficult to implement using
AOP, since AOP code needs to be injected at specified joinpoints. A frequently
used joinpoint is the method call. Therefore, if the system code is not well
structured into methods, there would be many less jointpoints available. The
main advice which can block a client is shown in Listing 1.2.

Listing 1.2. Client-blocking in AOP

1 void around (Client cl , int r):(execution (* Server.serve (..))

&& args (cl ,r)) {

2 if (ht.containsKey (cl.ip)) {

3 if (((Integer)ht.get(cl.ip)).intValue () > limit)

4 System.out.println(cl+" :: Property violation

detected . User will be blocked.");

AOP for Temporal Properties in Security-Critical Software 7

5 else proceed(cl ,r);

6 } else proceed(cl ,r);

7 }

The around advice employed in this case is a construct which allows the
developer to receive control before the actual method is executed, thus enabling
him or her to do anything before and/or after the actual method is called. This
includes changing the parameters by which it is called and even stopping it from
being called at all. In this example, the method serve is only instructed to go
ahead (using the proceed construct) if the client is not blocked.

3.2 Specifying Temporal Security Properties as a Separate Module

A different approach from the previous scenario would be to separate the under-
lying functionality in the case of non-malicious users completely from the code
handling security concerns. The problem in doing so using typical modularity
offered by programming paradigms other than AOP is that the security features
and the code expressing the ‘correct’ functionality are tightly knit together, pass-
ing control back and forth across the code. In the approach we present here, the
implementation of the security features appear as AOP code, reaching into the
design of the näıve server and weaving the features. Modularity is achieved since
through AOP directives we can actually modify, as opposed to simply use, other
code. The blocking mechanism in this case is not simply a double check, but the
actual check itself.

The advantage of such a configuration is that the server code is left totally
clean without any additional checks for ensuring security properties. Further-
more, all the security related code (part of which is shown in Listing 1.2) is
now in one module (aspect) while in the previous case, there were two classes
(apart from the AOP aspect) which contained code related to the security checks.
Adding additional properties requires adding them to one module without hav-
ing to understand the potentially complex logic of the server code riddled with
runtime checks. Furthermore, one could imagine scenarios where the properties
may be applied to different vanilla-servers, thus enabling reuse of the runtime
properties.

During the design of these case studies it was noted that the decision of
which properties are part of the actual server and which other properties are to
be considered as extraneous, is totally arbitrary (for the developer to decide).
For example, we could have decided that checking that the login is correct is not
a part of the server’s functionality and implemented it as a separate aspect.

3.3 Specifying Temporal Security Properties on a Code Library

In the third case study we will present the use of AOP for runtime-verification
in a library to stop (or warn) users of library in the case of wrong usage. Such
inappropriate use of the code may lead to undesirable faults in the user’s ap-
plications. We use AOP techniques to weave temporal properties inside library

8 Christian Colombo and Gordon J. Pace

code, to handle incorrect usage going beyond traditional pre- and post-condition
checking. The advantage of this approach is that the properties specified will
not only hold for the currently implemented methods in the library, but also
for extensions which can possibly be added in the future. In the simple example
suggested here, we consider a scenario where the library should be initialised
before any other method is used. Furthermore, once initialised, the library can
be reset to return the library to an uninitialised state. The code which blocks
any method call before initialisation is shown in Listing 1.3.

Listing 1.3. Library checking advice

1 Object around ():(execution (* Library .*(..)) && ! execution (*

Library .initialization (..))) {

2 if (initialized)

3 return proceed ();

4 else

5 return "LIBRARY : Library must be initialized .";

6 }

Using the “*” wildcard, we have managed to check for initialisation before the
execution of any possible method apart from the one whose name is initialization.
One should note the efficiency of implementing such logic in a few line of code
rather than inserting a condition at the start of all the methods in the library.
Furthermore, adding further methods to the library does not necessitate any
modifications to the code handling the property.

4 Case Studies with Real-Time Security Properties

In this section we will reconsider the previous examples with additional real-time
constraints.

4.1 Specifying Real-Time Security Properties on an Existing

System

In the case of the server, the added constraint was that after a certain period
of time, a blocked client will now be unblocked once more and allowed to make
requests. Therefore, the time at which a client was blocked is stored in a hash
table. Then, each time a request is received from a blocked client, the time
elapsed (since the denial of service) is checked and is unblocked if the time
limit was exceeded. Given that our server implementation is very simply it was
relatively easy to add the necessary logic for the newly introduced real-time
constraint. However, in a real scenario, the consequence of adding new code in
the actual server implementation may prove to be much more cumbersome. The
AOP aspect was also updated to cater for the new real-time constraint. This
was done by storing the time at which each client was blocked from the system.
Subsequently, when a client sends a request, the current time is compared to the
stored time so that if enough time has elapsed, the client is unblocked. This is
shown in Listing 1.4.

AOP for Temporal Properties in Security-Critical Software 9

Listing 1.4. AOP checking advice with real-time constraint

1 pointcut request(Client cl , int r): execution (* Server.serve

(..)) && args (cl ,r);

2 void around (Client cl , int r) :request (cl ,r) {

3 if (htBlacklist . containsKey (cl.ip)) {

4 long currentTime = System. currentTimeMillis ();

5 if (currentTime - ((Long) htBlacklist .get(cl.ip)).get

() < release)

6 System.out.println(cl+" :: You are BLOCKED ");

7 else {

8 System.out.println(cl+" :: You are UNBLOCKED ");

9 htBlacklist .remove(cl.ip);

10 if (ht. containsKey (cl.ip)) {

11 ht.remove(cl.ip);

12 ht.put(cl.ip , new Integer (0));

13 }

14 proceed(cl ,r);

15 }

16 }

17 else proceed(cl ,r);

18 }

4.2 Specifying Real-Time Security Properties as a Separate Module

Adding the additional real-time constraint to the system with security as a
separate module proved to be much easier than the previous scenario. Basically,
the server code remained intact while the extra logic (the same as that in Listing
1.4) was simply added in the single module (aspect) which handles the security.

4.3 Specifying Real-Time Security Properties on a Code Library

The added real-time constraint in the library scenario was that after a certain
time period the initialised library automatically returns to an uninitialised state.
The implementation was done by storing the time at which the library was
initialised and adding an extra check (Line 3 in Listing 1.5) to ensure that the
initialisation is still valid when a user requires a method execution from the
library.

Listing 1.5. Library checking advice including real-time constraint

1 Object around ():(execution (* Library .*(..)) && ! execution (*

Library .initialization (..))) {

2 long currentClock = System. currentTimeMillis ();

3 if (initialized && currentClock -clock < limit)

4 return proceed ();

5 else if (initialized) {

6 initialized = false;

7 return "LIBRARY : Time expired ";

10 Christian Colombo and Gordon J. Pace

8 }

9 else

10 return "LIBRARY : First you must initialize ";

11 }

5 Proposed Framework for Real-Time Properties

Although demonstrated in the case studies, the use of AOP may seem straight-
forward, in other cases it may be much more difficult to translate from the
conceptual security property into the actual aspect code. We are currently ex-
ploring the use of different formal techniques for specifying real-time security
properties in a natural way. The aim is to explore the use of decidable temporal
notations, such as timed automata to describe properties which would then be
automatically compiled to AOP code.

Timed automata, use timers, which can be used to specify when particular
actions which will be performed if the system is within a certain state. To il-
lustrate the approach we are exploring, we will present the real-time properties
presented in the case studies and show how they would be represented using
timed automata.

Unblocked Blocked

Br>20

T := 0

T >= 1000

Br<=20

T < 1000

Fig. 2. A timed automaton representing the real-time property implemented in the
server case study.

The server property is shown in Figure 2. The process of keeping count of
the number of bad requests per client is hidden and the condition to enter into
blocking mode is represented by the boolean input Br. Once the system enters
into blocking mode, the timer is reset to zero (represented by T:=0). Eventually,
the system only returns to unblocked mode when the timer reaches the desired
amount (in this case 1000).

Figure 3 depicts the real-time property implemented in the library case study.
In this example, the timer is reset when the initial input is set to true. Subse-
quently, when the timer reaches the threshold (also set to 1000), the system
reverts back to an uninitialised state. However, this time, the system will also

AOP for Temporal Properties in Security-Critical Software 11

UnInitialised Initialised

Initialise=true

T := 0

T >= 1000

Initialise=false

T < 1000

Reset=true

Fig. 3. A timed automaton representing the real-time property implemented in the
library case study.

return to an uninitialised state if the reset input becomes true while in the
initialised state.

6 Conclusion and Future Work

In this paper we have presented ways of employing AOP for ensuring temporal
security properties in a modular and succinct manner. Furthermore, we have
shown how the same framework can be further modified to additionally include
real-time properties. To allow for such real-time properties to be specified more
easily we proposed a framework based on time automata.

We are currently exploring the use of variants of symbolic timed automata for
the expression of real-time properties which can be automatically translated into
aspects. In particular, we would like to explore their use, on real-time security
properties in security-critical systems. One interesting challenge to address, is
memory usage of the monitoring code. One approach we believe could be fruitful,
is the use of techniques developed for reactive systems such as Lustre [HCRP91].

References

[Bod05] Eric Bodden. Efficient and expressive runtime verification for Java. Grand
Finals of the ACM Student Research Competition, 2004/2005.

[Bou06] Patricia Bouyer. Weighted timed automata: Model-checking and games.
Electr. Notes Theor. Comput. Sci., 158:3–17, 2006.

[BS06] Eric Bodden and Volker Stolz. Tracechecks: Defining semantic interfaces
with temporal logic. In Software Composition, pages 147–162, 2006.

[Dru06] D. Drusinsky. On-line monitoring of metric temporal logic with time-series
constraints using alternating finite automata. J. UCS, 12(5):482–498, 2006.

[FH06] P. Fradet and S. Hong Tuan Ha. Systèmes de gestion de ressource et
aspects de disponibilité. Revue francophone l’objet, 12(2), 2006.

[FS01] B. Finkbeiner and H. Sipma. Checking finite traces using alternating au-
tomata. In Proceedings of the First International Workshop on Runtime

12 Christian Colombo and Gordon J. Pace

Verification, volume 55 of Electronic Notes in Theoretical Computer Sci-
ence. Elsevier, 2001.

[GH05] Allen Goldberg and Klaus Havelund. Automated runtime verification with
eagle. In MSVVEIS, 2005.

[GSSP02] Andreas Gal, Olaf Spinczyk, and Wolfgang Schrder-Preikschat. On aspect-
orientation in distributed real-time dependable systems. In WORDS, pages
261–270, 2002.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The syn-
chronous dataflow programming language Lustre. Proceedings of the IEEE,
79(9):1305–1320, 1991.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of AspectJ. Lecture Notes in
Computer Science, 2072:327–355, 2001.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier,
and J. Irwin. Aspect-oriented programming. In ECOOP’97—Object-
Oriented Programming, 11th European Conference, LNCS 1241, 1997.

[LBAK+98] I. Lee, H. Ben-Abdallah, Sampath Kannan, Moonjoo Kim, Oleg Sokol-
sky, and Mahesh Viswanathan. A monitoring and checking framework for
run-time correctness assurance. In Korea-U.S. Technical Conference on
Strategic Technologies, 1998.

[LK98] C. Lopes and G. Kiczales. Recent developments in AspectJ. In Proceedings
of the European Conference on Object–Oriented Programming (ECOOP
98), 1998.

[MKL97] A. Mendhekar, G. Kiczales, and J. Lamping. Rg: A case-study for
aspect-oriented programming. Technical Report SPL97-009P9710044, Xe-
rox PARC, 1997.

[SB06] Volker Stolz and Eric Bodden. Temporal assertions using aspectj. Electr.
Notes Theor. Comput. Sci., 144(4):109–124, 2006.

[SH05] Volker Stolz and Frank Huch. Runtime verification of concurrent Haskell
programs. Electr. Notes Theor. Comput. Sci., 113:201–216, 2005.

[SS03] Usa Sammapun and Oleg Sokolsky. Regular expressions for run-time ver-
ification. In Proceedings of the 1st International Workshop on Automated
Technology for Verification and Analysis (ATVA’03), 2003.

[STY03] J. Sifakis, S. Tripakis, and S. Yovine. Building models of real-time systems
from application software. Proceedings of the IEEE, 91:100–111, 2003.

[UT02] Naoyasu Ubayashi and Tetsuo Tamai. Aspect-oriented programming with
model checking. In AOSD ’02: Proceedings of the 1st international confer-
ence on Aspect-oriented software development, pages 148–154, New York,
NY, USA, 2002. ACM Press.

[ZKTR07] Karen Zee, Viktor Kuncak, Michael Taylor, and Martin Rinard. Runtime
checking for program verification. In Workshop on Workshop on Runtime
Verification (collocated with AOSD), 2007.

