6,443 research outputs found

    An eco-friendly hybrid urban computing network combining community-based wireless LAN access and wireless sensor networking

    Get PDF
    Computer-enhanced smart environments, distributed environmental monitoring, wireless communication, energy conservation and sustainable technologies, ubiquitous access to Internet-located data and services, user mobility and innovation as a tool for service differentiation are all significant contemporary research subjects and societal developments. This position paper presents the design of a hybrid municipal network infrastructure that, to a lesser or greater degree, incorporates aspects from each of these topics by integrating a community-based Wi-Fi access network with Wireless Sensor Network (WSN) functionality. The former component provides free wireless Internet connectivity by harvesting the Internet subscriptions of city inhabitants. To minimize session interruptions for mobile clients, this subsystem incorporates technology that achieves (near-)seamless handover between Wi-Fi access points. The WSN component on the other hand renders it feasible to sense physical properties and to realize the Internet of Things (IoT) paradigm. This in turn scaffolds the development of value-added end-user applications that are consumable through the community-powered access network. The WSN subsystem invests substantially in ecological considerations by means of a green distributed reasoning framework and sensor middleware that collaboratively aim to minimize the network's global energy consumption. Via the discussion of two illustrative applications that are currently being developed as part of a concrete smart city deployment, we offer a taste of the myriad of innovative digital services in an extensive spectrum of application domains that is unlocked by the proposed platform

    Magnopark, Smart Parking Detection Based on Cellphone Magnetic Sensor

    Get PDF
    We introduce a solution that uses the availability of heavy crowds and their smart devices, to gain more result as to where potential parking is possible. By leveraging the raw magnetometer, gyroscope, and accelerometer data, we are able to detect parking spots through the natural movement exerted by the walking pedestrians on the sidewalks beside the streets. Dating back as far as 2013, a very large portion of pedestrians composing the crowds on the sidewalk, possessed at least one smart device in their hand or pocket14]. It is this statistic that fuels our application, in which we depend on crowds or even a steady rate of pedestrians, telling others around them where unoccupied parking sport are, without making a single bit of noise. In other words, we use the walking pedestrians’ cellphone sensors to classify the sidewalk parking spots as occupied and vacant. The more pedestrians walking on the sidewalk, the more accurate our application works. As the years and technological advances both increase, we predict that the number of smart devices will only increase, allowing our solution to become much more precise and useful. The biggest contribution of our study can be summarized as follows: • Implementation of Magnopark; a high accuracy parking spot localization system using internal smart phone sensors • Evaluation and test of Magnopark in different situations and places • Test of Magnopark for different users with different walking habits and speed • Development of an algorithm to detect the users’ stride, speed, and direction change • Building a classification model based on the features extracted from the cellphone sensors • Pushing the classified data to the cloud for the drivers’ us

    Exploiting Recurring Patterns to Improve Scalability of Parking Availability Prediction Systems

    Get PDF
    Parking Guidance and Information (PGI) systems aim at supporting drivers in finding suitable parking spaces, also by predicting the availability at driver’s Estimated Time of Arrival (ETA), leveraging information about the general parking availability situation. To do these predictions, most of the proposals in the literature dealing with on-street parking need to train a model for each road segment, with significant scalability issues when deploying a city-wide PGI. By investigating a real dataset we found that on-street parking dynamics show a high temporal auto-correlation. In this paper we present a new processing pipeline that exploits these recurring trends to improve the scalability. The proposal includes two steps to reduce both the number of required models and training examples. The effectiveness of the proposed pipeline has been empirically assessed on a real dataset of on-street parking availability from San Francisco (USA). Results show that the proposal is able to provide parking predictions whose accuracy is comparable to state-of-the-art solutions based on one model per road segment, while requiring only a fraction of training costs, thus being more likely scalable to city-wide scenarios

    Smart Cities for Real People

    Get PDF
    Accelerating urbanization of the population and the emergence of new smart sensors (the Internet of Things) are combining in the phenomenon of the smart city. This movement is leading to improved quality of life and public safety, helping cities to enjoy economies that help remedy some budget overruns, better health care, and is resulting in increased productivity. The following report summarizes evolving digital technology trends, including smart phone applications, mapping software, big data and sensor miniaturization and broadband networking, that combine to create a technology toolkit available to smart city developers, managers and citizens. As noted above, the benefits of the smart city are already evident in some key areas as the technology sees actual implementation, 30 years after the creation of the broadband cable modem. The challenges of urbanization require urgent action and intelligent strategies. The applications and tools that truly benefit the people who live in cities will depend not on just the tools, but their intelligent application given current systemic obstacles, some of which are highlighted in the article. Of course, all the emerging technologies mentioned are dependent on ubiquitous, economical, reliable, safe and secure networks (wired and wireless) and network service providers

    Caraoke: An E-Toll Transponder Network for Smart Cities

    Get PDF
    Electronic toll collection transponders, e.g., E-ZPass, are a widely-used wireless technology. About 70% to 89% of the cars in US have these devices, and some states plan to make them mandatory. As wireless devices however, they lack a basic function: a MAC protocol that prevents collisions. Hence, today, they can be queried only with directional antennas in isolated spots. However, if one could interact with e-toll transponders anywhere in the city despite collisions, it would enable many smart applications. For example, the city can query the transponders to estimate the vehicle flow at every intersection. It can also localize the cars using their wireless signals, and detect those that run a red-light. The same infrastructure can also deliver smart street-parking, where a user parks anywhere on the street, the city localizes his car, and automatically charges his account. This paper presents Caraoke, a networked system for delivering smart services using e-toll transponders. Our design operates with existing unmodified transponders, allowing for applications that communicate with, localize, and count transponders, despite wireless collisions. To do so, Caraoke exploits the structure of the transponders' signal and its properties in the frequency domain. We built Caraoke reader into a small PCB that harvests solar energy and can be easily deployed on street lamps. We also evaluated Caraoke on four streets on our campus and demonstrated its capabilities.National Science Foundation (U.S.

    Motion Hub, the implementation of an integrated end-to-end journey planner

    Get PDF
    © AET 2018 and contributorsThe term “eMobility” and been brought into use partly to encourage use of electric vehicles but more especially to focus on the transformation from electric vehicles as products to electrified personal transport as a service. Under the wider umbrella of Mobility-as-a-Service (MaaS) this has accompanied the growth of car clubs in general. The Motion Hub project has taken this concept a step further to include not just the car journey but the end-to-end journey. The booking of multifaceted journeys is well established in the leisure and business travel industries, where flights, car hire and hotels are regularly booked with a single transaction on a website. To complete an end-to-end scenario Motion Hub provides integration of public transport with electric vehicle and electric bike use. Building on a previous InnovateUK funded project that reviewed the feasibility of an integrated journey management system, the Motion Hub project has brought together a Car Club, a University, and EV infrastructure company, a bicycle hire company with electric bicycle capabilities and a municipality to implement a scheme and test it on the ground. At the heart of the project has been the development of a website that integrates the public transport booking with the hire of electric vehicles or bicycles. Taking the implementation to a fully working system accessible to members of the public presents a number of significant challenges. This paper identifies those challenges, details the progress and success of the Motion Hub and sets out the lessons learnt about end-to-end travel. The project was fortunate to have as its municipal partner the Council of a sizeable South East England town, Southend-on-Sea. With a population of 174,800 residents with good road, rail and air links there is considerable traffic in and out of the town. The Council has already shown its commitment to sustainable transport. In the previous six years it had installed a number of electric vehicle charging points for use by the public and latterly had trialled car club activity. An early challenge in the project was the location of physical infrastructure in an already crowded municipal space in order to provide the local ‘spokes’ of the system. In addition to its existing charging points, Southend now has four locations where electric cars can be hired, five where electric bikes are available and the local resources to maintain these assets. Combining a number of web-based services and amalgamating their financial transactions is relatively straightforward. However, introducing the potential for public transport ticketing as well raises additional security, scale and financial constraints. The project has engaged with major players and regulators across the public transport industry.Peer reviewe
    • …
    corecore