4 research outputs found

    Nighttime Lights as a Proxy for Economic Performance of Regions

    Get PDF
    Studying and managing regional economic development in the current globalization era demands prompt, reliable, and comparable estimates for a region’s economic performance. Night-time lights (NTL) emitted from residential areas, entertainment places, industrial facilities, etc., and captured by satellites have become an increasingly recognized proxy for on-ground human activities. Compared to traditional indicators supplied by statistical offices, NTLs may have several advantages. First, NTL data are available all over the world, providing researchers and official bodies with the opportunity to obtain estimates even for regions with extremely poor reporting practices. Second, in contrast to non-standardized traditional reporting procedures, the unified NTL data remove the problem of inter-regional comparability. Finally, NTL data are currently globally available on a daily basis, which makes it possible to obtain these estimates promptly. In this book, we provide the reader with the contributions demonstrating the potential and efficiency of using NTL data as a proxy for the performance of regions

    Remote sensing of night lights: a review and an outlook for the future

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordRemote sensing of night light emissions in the visible band offers a unique opportunity to directly observe human activity from space. This has allowed a host of applications including mapping urban areas, estimating population and GDP, monitoring disasters and conflicts. More recently, remotely sensed night lights data have found use in understanding the environmental impacts of light emissions (light pollution), including their impacts on human health. In this review, we outline the historical development of night-time optical sensors up to the current state of the art sensors, highlight various applications of night light data, discuss the special challenges associated with remote sensing of night lights with a focus on the limitations of current sensors, and provide an outlook for the future of remote sensing of night lights. While the paper mainly focuses on space borne remote sensing, ground based sensing of night-time brightness for studies on astronomical and ecological light pollution, as well as for calibration and validation of space borne data, are also discussed. Although the development of night light sensors lags behind day-time sensors, we demonstrate that the field is in a stage of rapid development. The worldwide transition to LED lights poses a particular challenge for remote sensing of night lights, and strongly highlights the need for a new generation of space borne night lights instruments. This work shows that future sensors are needed to monitor temporal changes during the night (for example from a geostationary platform or constellation of satellites), and to better understand the angular patterns of light emission (roughly analogous to the BRDF in daylight sensing). Perhaps most importantly, we make the case that higher spatial resolution and multispectral sensors covering the range from blue to NIR are needed to more effectively identify lighting technologies, map urban functions, and monitor energy use.European Union Horizon 2020Helmholtz AssociationNatural Environment Research Council (NERC)Chinese Academy of ScienceLeibniz AssociationIGB Leibniz Institut

    On-Orbit Radiance Calibration of Nighttime Sensor of LuoJia1-01 Satellite Based on Lunar Observations

    No full text
    The high-resolution nighttime light (NTL) data of the LuoJia1-01 NTL remote sensing satellite has enriched the available data of NTL remote sensing applications. The radiance calibration used as a reference to convert the digital number (DN) recorded by the nighttime sensor into the radiance of the corresponding ground object is the basic premise to the effective application of the NTL data. Owing to the lack of on-board calibration equipment and the absence of an absolute radiometric calibration light source at night, it is difficult for LuoJia1-01 to carry out on-orbit radiance calibration. The moon, as an exoatmospheric stable radiation source, is widely used for the radiometric calibration of remote sensing satellite sensors and to monitor the stability of the visible and near-infrared sensors. This study, based on lunar observation of the LuoJia1-01 NTL sensor, focused on on-orbit radiometric calibration and included monitoring changes in the nighttime sensor radiometric response for nearly a year by using the Robotic Lunar Observatory (ROLO) lunar irradiance model (Version 311 g). The results showed that: (1) the consistency of the radiometric calibration results based on the ROLO model and the laboratory calibration results of LuoJia1-01 exceeded 90%; (2) the nighttime sensor of LuoJia1-01 radiometric response underwent approximately 6% degradation during the observation period of nearly one year (353 days)
    corecore