44,020 research outputs found

    Learning Representations from Persian Handwriting for Offline Signature Verification, a Deep Transfer Learning Approach

    Full text link
    Offline Signature Verification (OSV) is a challenging pattern recognition task, especially when it is expected to generalize well on the skilled forgeries that are not available during the training. Its challenges also include small training sample and large intra-class variations. Considering the limitations, we suggest a novel transfer learning approach from Persian handwriting domain to multi-language OSV domain. We train two Residual CNNs on the source domain separately based on two different tasks of word classification and writer identification. Since identifying a person signature resembles identifying ones handwriting, it seems perfectly convenient to use handwriting for the feature learning phase. The learned representation on the more varied and plentiful handwriting dataset can compensate for the lack of training data in the original task, i.e. OSV, without sacrificing the generalizability. Our proposed OSV system includes two steps: learning representation and verification of the input signature. For the first step, the signature images are fed into the trained Residual CNNs. The output representations are then used to train SVMs for the verification. We test our OSV system on three different signature datasets, including MCYT (a Spanish signature dataset), UTSig (a Persian one) and GPDS-Synthetic (an artificial dataset). On UT-SIG, we achieved 9.80% Equal Error Rate (EER) which showed substantial improvement over the best EER in the literature, 17.45%. Our proposed method surpassed state-of-the-arts by 6% on GPDS-Synthetic, achieving 6.81%. On MCYT, EER of 3.98% was obtained which is comparable to the best previously reported results

    Signature Verification Approach using Fusion of Hybrid Texture Features

    Full text link
    In this paper, a writer-dependent signature verification method is proposed. Two different types of texture features, namely Wavelet and Local Quantized Patterns (LQP) features, are employed to extract two kinds of transform and statistical based information from signature images. For each writer two separate one-class support vector machines (SVMs) corresponding to each set of LQP and Wavelet features are trained to obtain two different authenticity scores for a given signature. Finally, a score level classifier fusion method is used to integrate the scores obtained from the two one-class SVMs to achieve the verification score. In the proposed method only genuine signatures are used to train the one-class SVMs. The proposed signature verification method has been tested using four different publicly available datasets and the results demonstrate the generality of the proposed method. The proposed system outperforms other existing systems in the literature.Comment: Neural Computing and Applicatio

    Affinity proteomics reveals elevated muscle proteins in plasma of children with cerebral malaria

    Get PDF
    Systemic inflammation and sequestration of parasitized erythrocytes are central processes in the pathophysiology of severe Plasmodium falciparum childhood malaria. However, it is still not understood why some children are more at risks to develop malaria complications than others. To identify human proteins in plasma related to childhood malaria syndromes, multiplex antibody suspension bead arrays were employed. Out of the 1,015 proteins analyzed in plasma from more than 700 children, 41 differed between malaria infected children and community controls, whereas 13 discriminated uncomplicated malaria from severe malaria syndromes. Markers of oxidative stress were found related to severe malaria anemia while markers of endothelial activation, platelet adhesion and muscular damage were identified in relation to children with cerebral malaria. These findings suggest the presence of generalized vascular inflammation, vascular wall modulations, activation of endothelium and unbalanced glucose metabolism in severe malaria. The increased levels of specific muscle proteins in plasma implicate potential muscle damage and microvasculature lesions during the course of cerebral malaria
    • …
    corecore