18 research outputs found

    On-line regression competitive with reproducing kernel Hilbert spaces

    Get PDF
    We consider the problem of on-line prediction of real-valued labels, assumed bounded in absolute value by a known constant, of new objects from known labeled objects. The prediction algorithm's performance is measured by the squared deviation of the predictions from the actual labels. No stochastic assumptions are made about the way the labels and objects are generated. Instead, we are given a benchmark class of prediction rules some of which are hoped to produce good predictions. We show that for a wide range of infinite-dimensional benchmark classes one can construct a prediction algorithm whose cumulative loss over the first N examples does not exceed the cumulative loss of any prediction rule in the class plus O(sqrt(N)); the main differences from the known results are that we do not impose any upper bound on the norm of the considered prediction rules and that we achieve an optimal leading term in the excess loss of our algorithm. If the benchmark class is "universal" (dense in the class of continuous functions on each compact set), this provides an on-line non-stochastic analogue of universally consistent prediction in non-parametric statistics. We use two proof techniques: one is based on the Aggregating Algorithm and the other on the recently developed method of defensive forecasting.Comment: 37 pages, 1 figur

    Online Learning with Multiple Operator-valued Kernels

    Full text link
    We consider the problem of learning a vector-valued function f in an online learning setting. The function f is assumed to lie in a reproducing Hilbert space of operator-valued kernels. We describe two online algorithms for learning f while taking into account the output structure. A first contribution is an algorithm, ONORMA, that extends the standard kernel-based online learning algorithm NORMA from scalar-valued to operator-valued setting. We report a cumulative error bound that holds both for classification and regression. We then define a second algorithm, MONORMA, which addresses the limitation of pre-defining the output structure in ONORMA by learning sequentially a linear combination of operator-valued kernels. Our experiments show that the proposed algorithms achieve good performance results with low computational cost

    Separability of reproducing kernel Hilbert spaces

    Get PDF
    We demonstrate that a reproducing kernel Hilbert or Banach space of functions on a separable absolute Borel space or an analytic subset of a Polish space is separable if it possesses a Borel measurable feature map

    Prediction with Expert Advice under Discounted Loss

    Full text link
    We study prediction with expert advice in the setting where the losses are accumulated with some discounting---the impact of old losses may gradually vanish. We generalize the Aggregating Algorithm and the Aggregating Algorithm for Regression to this case, propose a suitable new variant of exponential weights algorithm, and prove respective loss bounds.Comment: 26 pages; expanded (2 remarks -> theorems), some misprints correcte

    Online Nonparametric Regression

    Get PDF
    We establish optimal rates for online regression for arbitrary classes of regression functions in terms of the sequential entropy introduced in (Rakhlin, Sridharan, Tewari, 2010). The optimal rates are shown to exhibit a phase transition analogous to the i.i.d./statistical learning case, studied in (Rakhlin, Sridharan, Tsybakov 2013). In the frequently encountered situation when sequential entropy and i.i.d. empirical entropy match, our results point to the interesting phenomenon that the rates for statistical learning with squared loss and online nonparametric regression are the same. In addition to a non-algorithmic study of minimax regret, we exhibit a generic forecaster that enjoys the established optimal rates. We also provide a recipe for designing online regression algorithms that can be computationally efficient. We illustrate the techniques by deriving existing and new forecasters for the case of finite experts and for online linear regression
    corecore