281 research outputs found

    COCAM: a cooperative video edge caching and multicasting approach based on multi-agent deep reinforcement learning in multi-clouds environment

    Get PDF
    The evolution of the Internet of Things technology (IoT) has boosted the drastic increase in network traffic demand. Caching and multicasting in the multi-clouds scenario are effective approaches to alleviate the backhaul burden of networks and reduce service latency. However, existing works do not jointly exploit the advantages of these two approaches. In this paper, we propose COCAM, a cooperative video edge caching and multicasting approach based on multi-agent deep reinforcement learning to minimize the transmission number in the multi-clouds scenario with limited storage capacity in each edge cloud. Specifically, by integrating a cooperative transmission model with the caching model, we provide a concrete formulation of the joint problem. Then, we cast this decision-making problem as a multi-agent extension of the Markov decision process and propose a multi-agent actor-critic algorithm in which each agent learns a local caching strategy and further encompasses the observations of neighboring agents as constituents of the overall state. Finally, to validate the COCAM algorithm, we conduct extensive experiments on a real-world dataset. The results show that our proposed algorithm outperforms other baseline algorithms in terms of the number of video transmissions

    Multicast Scheduling and Resource Allocation Algorithms for OFDMA-Based Systems: A Survey

    Get PDF
    Multicasting is emerging as an enabling technology for multimedia transmissions over wireless networks to support several groups of users with flexible quality of service (QoS)requirements. Although multicast has huge potential to push the limits of next generation communication systems; it is however one of the most challenging issues currently being addressed. In this survey, we explain multicast group formation and various forms of group rate determination approaches. We also provide a systematic review of recent channel-aware multicast scheduling and resource allocation (MSRA) techniques proposed for downlink multicast services in OFDMA based systems. We study these enabling algorithms, evaluate their core characteristics, limitations and classify them using multidimensional matrix. We cohesively review the algorithms in terms of their throughput maximization, fairness considerations, performance complexities, multi-antenna support, optimality and simplifying assumptions. We discuss existing standards employing multicasting and further highlight some potential research opportunities in multicast systems

    Virtualization of multicast services in WiMAX networks

    Get PDF
    Multicast service is one of the methods used to efficiently manage bandwidth when sending multimedia content. To improve bandwidth utilisation, virtualization is often invoked because of its additional features such as bandwidth sharing and support of services that require high volumes of transactional data. Currently, network providers are concerned with the bandwidth amount for efficient use of the limited wireless network capabilities and the provision of a better quality of service. The virtualization design of a multicast service framework should satisfy several objectives. For example, it should enable the interchange of service delivery between multiple networks with one shareable network infrastructure. Also, it should ensure efficient use of network resources and guarantee users' demands of Quality of Service (QoS). Thus, the design of virtualization of multicast service framework is a complex research study. Due to the bandwidth-related arguments, a strong focus has been put on technical issues that facilitate virtualization in wireless networks. A well-designed virtualized network guarantees users with the required quality service. Similarly, virtualization of multicast service is invoked to improve efficient utilisation of bandwidth in wireless networks. As wireless links prove to be unstable, packet loss is unavoidable when multicast service-oriented virtual artefacts are incorporated in wireless networks. In this thesis, a virtualized multicast framework was modelled by using Generalized Assignment Problem (GAP) methodology. Mixed Integer Linear Programing (MILP) was implemented in MATLAB to solve the GAP model. This was to optimise the allocation of multicast traffic to the appropriate virtual networks. Thus, the developed model allows users to have interchangeable services offered by multiple networks. Furthermore, Network Simulator version 3 (NS-3) was used to evaluate the performance of the virtualized multicast framework. Three applications, namely, voice over IP (VoIP), video streaming, and file download have been used to evaluate the performance of a multicast service virtualization framework in Worldwide Interoperability for Microwave Access (WiMAX) networks using NS-3. The performance evaluation was based on whether MILP is used or not used. The results of experimentation have revealed that there is good performance of virtual networks when multicast traffic is sent over one single virtual network instead of sending it over multiple virtual networks. Similarly, the results show that the bandwidth is efficiently used because the multicast traffic is not delivered through multiple virtual networks. Overall, the concepts, the investigations and the model presented in this thesis can enable mobile network providers to achieve efficient use of bandwidth and provide the necessary means to support services for QoS differentiations and guarantees. Also, the multicast service virtualization framework provides an excellent tool that can enable network providers to interchange services. The developed model can serve as a basis for further extension. Specifically, the extension of the model can boost load balancing in the flow allocation problem and activate a virtual network to deliver traffic. This may rely on the QoS policy between network providers. Therefore, the model should consider the number of users in order to guarantee improved QoS

    Layering as Optimization Decomposition: Questions and Answers

    Get PDF
    Network protocols in layered architectures have historically been obtained on an ad-hoc basis, and much of the recent cross-layer designs are conducted through piecemeal approaches. Network protocols may instead be holistically analyzed and systematically designed as distributed solutions to some global optimization problems in the form of generalized Network Utility Maximization (NUM), providing insight on what they optimize and on the structures of network protocol stacks. In the form of 10 Questions and Answers, this paper presents a short survey of the recent efforts towards a systematic understanding of "layering" as "optimization decomposition". The overall communication network is modeled by a generalized NUM problem, each layer corresponds to a decomposed subproblem, and the interfaces among layers are quantified as functions of the optimization variables coordinating the subproblems. Furthermore, there are many alternative decompositions, each leading to a different layering architecture. Industry adoption of this unifying framework has also started. Here we summarize the current status of horizontal decomposition into distributed computation and vertical decomposition into functional modules such as congestion control, routing, scheduling, random access, power control, and coding. We also discuss under-explored future research directions in this area. More importantly than proposing any particular crosslayer design, this framework is working towards a mathematical foundation of network architectures and the design process of modularization

    Quality of Service improvements for real time multimedia applications using next generation network architectures and blockchain in Internet Service Provider cooperative scenario

    Get PDF
    Real time communications are becoming part of our daily life, requiring constrained requisites with the purpose of being enjoyed in harmony by end users. The factors ruling these requisites are Quality of Service parameters of the users' Internet connections. Achieving a satisfactory QoS level for real time communications depends on parameters that are strongly influenced by the quality of the network connections among the Internet Service Providers, which are located in the path between final users and Over The Top service providers that are supplying them with real time services. Final users can be: business people having real time videoconferences, or adopting crytpocurrencies in their exchanges, videogamers playing online games together with others residing in other countries, migrants talking with their relatives or watching their children growing up in their home countries, people with disabilities adopting tecnologies to help them, doctors performing remote surgeries, manufacturers adopting augmented reality devices to perform dangerous tasks. Each of them performing their daily activities are requiring specific QoS parameters to their ISPs, that nowadays seem to be unable to provide them with a satisfactory QoS level for these kinds of real time services. Through the adoption of next generation networks, such as the Information Centric Networking, it would be possible to overcome the QoS problems that nowadays are experienced. By adopting Blockchain technologies, in several use cases, it would be possible to improve those security aspects related to the non-temperability of information and privacy. I started this thesis analyzing next generation architectures enabling real time multimedia communications. In Software Defined Networking, Named Data Networking and Community Information Centric Networking, I highlighted potential approaches to solve QoS problems that are affecting real time multimedia applications. During my experiments I found that applications able to transmit high quality videos, such as 4k or 8k videos, or to directly interact with devices AR/VR enabled are missing for both ICN approaches. Then I proposed a REST interface for the enforcing of a specific QoS parameter, the round trip time (RTT) taking into consideration the specific use case of a game company that connects with the same telecommunication company of the final user. Supposing that the proposed REST APIs have been deployed in the game company and in the ISP, when one or more users are experiencing lag, the game company will try to ask the ISP to reduce the RTT for that specific user or that group of users. This request can be done by performing a call to a method where IP address(es) and the maximum RTT desired are passed. I also proposed other methods, through which it would be possible to retrieve information about the QoS parameters, and exchange, if necessary, an exceeding parameter in change of another one. The proposed REST APIs can also be used in more complex scenarios, where ISPs along the path are chained together, in order to improve the end to end QoS among Over The Top service provider and final users. To store the information exchanged by using the proposed REST APIs, I proposed to adopt a permissioned blockchain, analizying the ISPs cooperative use case with Hyperledger Fabric, where I proposed the adoption of the Proof of Authority consensus algorithm, to increase the throughput in terms of transactions per second. In a specific case that I examined, I am proposing a combination of Information Centric Networking and Blockchain, in an architecture where ISPs are exchanging valuable information regarding final Users, to improve their QoS parameters. I also proposed my smart contract for the gaming delay use case, that can be used to rule the communication among those ISPs that are along the path among OTT and final users. An extension of this work can be done, by defining billing costs for the QoS improvements

    Enabling Multipath and Multicast Data Transmission in Legacy and Future Internet

    Get PDF
    The quickly growing community of Internet users is requesting multiple applications and services. At the same time the structure of the network is changing. From the performance point of view, there is a tight interplay between the application and the network design. The network must be constructed to provide an adequate performance of the target application. In this thesis we consider how to improve the quality of users' experience concentrating on two popular and resource-consuming applications: bulk data transfer and real-time video streaming. We share our view on the techniques which enable feasibility and deployability of the network functionality leading to unquestionable performance improvement for the corresponding applications. Modern mobile devices, equipped with several network interfaces, as well as multihomed residential Internet hosts are capable of maintaining multiple simultaneous attachments to the network. We propose to enable simultaneous multipath data transmission in order to increase throughput and speed up such bandwidth-demanding applications as, for example, file download. We design an extension for Host Identity Protocol (mHIP), and propose a multipath data scheduling solution on a wedge layer between IP and transport, which effectively distributes packets from a TCP connection over available paths. We support our protocol with a congestion control scheme and prove its ability to compete in a friendly manner against the legacy network protocols. Moreover, applying game-theoretic analytical modelling we investigate how the multihomed HIP multipath-enabled hosts coexist in the shared network. The number of real-time applications grows quickly. Efficient and reliable transport of multimedia content is a critical issue of today's IP network design. In this thesis we solve scalability issues of the multicast dissemination trees controlled by the hybrid error correction. We propose a scalable multicast architecture for potentially large overlay networks. Our techniques address suboptimality of the adaptive hybrid error correction (AHEC) scheme in the multicast scenarios. A hierarchical multi-stage multicast tree topology is constructed in order to improve the performance of AHEC and guarantee QoS for the multicast clients. We choose an evolutionary networking approach that has the potential to lower the required resources for multimedia applications by utilizing the error-correction domain separation paradigm in combination with selective insertion of the supplementary data from parallel networks, when the corresponding content is available. Clearly both multipath data transmission and multicast content dissemination are the future Internet trends. We study multiple problems related to the deployment of these methods.Internetin nopeasti kasvava käyttäjäkunta vaatii verkolta yhä enemmän sovelluksia ja palveluita. Samaan aikaan verkon rakenne muuttuu. Suorituskyvyn näkökulmasta on olemassa selvä vuorovaikutussovellusten ja verkon suunnittelun välillä. Verkko on rakennettava siten, että se pystyy takaamaan riittävän suorituskyvyn halutuille palveluille. Tässä väitöskirjassa pohditaan, miten verkon käyttökokemusta voidaan parantaa keskittyen kahteen suosittuun ja resursseja vaativaan sovellukseen: tiedonsiirtoon ja reaaliaikaiseen videon suoratoistoon. Esitämme näkemyksemme tekniikoista, jotka mahdollistavat tarvittavien verkkotoiminnallisuuksien helpon toteuttavuuden sekä kiistatta parantavat sovelluksien suorityskykyä. Nykyaikaiset mobiililaitteet monine verkkoyhteyksineen, kuten myös kotitietokoneet, pystyvät ylläpitämään monta internet-yhteyttä samanaikaisesti. Siksi ehdotamme monikanavaisen tiedonsiirron käyttöä suorituskyvyn parantamiseksi ja etenkin vaativien verkkosovelluksien, kuten tiedostonsiirron, nopeuttamiseksi. Tässä väitöskirjassa suunnitellaan Host Identity Protocol (mHIP) -laajennus, sekä esitetään tiedonsiirron vuorotteluratkaisu, joka hajauttaa TCP-yhteyden tiedonsiirtopaketit käytettävissä oleville kanaville. Protokollamme tueksi luomme myös ruuhkautumishallinta-algoritmin ja näytämme sen pystyvän toimimaan yhteen nykyisien verkkoprotokollien kanssa. Tämän lisäksi tutkimme peliteoreettista mallinnusta käyttäen, miten monikanavaiset HIP-verkkopäätteet toimivat muiden kanssa jaetuissa verkoissa. Reaaliaikaisten sovellusten määrä kasvaa nopeasti. Tehokas ja luotettava multimediasisällön siirto on olennainen vaatimus nykypäivän IP-verkoissa. Tässä työssä ratkaistaan monilähetyksen (multicast) jakelustruktuurin skaalautuvuuteen liittyviä ongelmia. Ehdotamme skaalautuvaa monilähetysarkkitehtuuria suurille peiteverkoille. Ratkaisumme puuttuu adaptiivisen virhekorjauksen (Adaptive Hybrid Error Correction, AHEC) alioptimaalisuuteen monilähetystilanteissa. Luomme hierarkisen monivaiheisen monilähetyspuutopologian parantaaksemme AHECin suorituskykyä, sekä taataksemme monilähetysasiakkaiden palvelun laadun. Valitsimme evoluutiomaisen lähestymistavan, jolla on potentiaalia keventää multimediasovelluksien verkkoresurssivaatimuksia erottamalla virhekorjauksen omaksi verkkotunnuksekseen, sekä käyttämällä valikoivaa täydentävää tiedonlisäystä rinnakkaisverkoista vastaavan sisällön ollessa saatavilla. Sekä monikanava- että monilähetystiedonsiirto ovat selvästi osa internetin kehityssuuntaa. Tässä väitöskirjassa tutkimme monia ongelmia näiden tekniikoiden käyttöönottoon liittyen
    corecore