922 research outputs found

    On transparent embeddings of point-line geometries

    Get PDF
    We introduce the class of transparent embeddings for a point-line geometry Γ=(P,L)\Gamma = ({\mathcal P},{\mathcal L}) as the class of full projective embeddings Δ\varepsilon of Γ\Gamma such that the preimage of any projective line fully contained in Δ(P)\varepsilon({\mathcal P}) is a line of Γ\Gamma. We will then investigate the transparency of Pl\"ucker embeddings of projective and polar grassmannians and spin embeddings of half-spin geometries and dual polar spaces of orthogonal type. As an application of our results on transparency, we will derive several Chow-like theorems for polar grassmannians and half-spin geometries.Comment: 28 Pages/revised version after revie

    Grassmann embeddings of polar Grassmannians

    Get PDF
    In this paper we compute the dimension of the Grassmann embeddings of the polar Grassmannians associated to a possibly degenerate Hermitian, alternating or quadratic form with possibly non-maximal Witt index. Moreover, in the characteristic 22 case, when the form is quadratic and non-degenerate with bilinearization of minimal Witt index, we define a generalization of the so-called Weyl embedding (see [I. Cardinali and A. Pasini, Grassmann and Weyl embeddings of orthogonal Grassmannians. J. Algebr. Combin. 38 (2013), 863-888]) and prove that the Grassmann embedding is a quotient of this generalized "Weyl-like" embedding. We also estimate the dimension of the latter.Comment: 25 pages/revised version after revie

    Supersymmetric D3/D7 for holographic flavors on curved space

    Get PDF
    We derive a new class of supersymmetric D3/D7 brane configurations, which allow to holographically describe N=4 SYM coupled to massive N=2 flavor degrees of freedom on spaces of constant curvature. We systematically solve the Îș\kappa-symmetry condition for D7-brane embeddings into AdS4_4-sliced AdS5×_5\timesS5^5, and find supersymmetric embeddings in a simple closed form. Up to a critical mass, these embeddings come in surprisingly diverse families, and we present a first study of their (holographic) phenomenology. We carry out the holographic renormalization, compute the one-point functions and attempt a field-theoretic interpretation of the different families. To complete the catalog of supersymmetric D3/D7 configurations, we construct analogous embeddings for flavored N=4 SYM on S4^4 and dS4_4.Comment: 37 pages, 9 figure

    Geometry of Schroedinger Space-Times II: Particle and Field Probes of the Causal Structure

    Full text link
    We continue our study of the global properties of the z=2 Schroedinger space-time. In particular, we provide a codimension 2 isometric embedding which naturally gives rise to the previously introduced global coordinates. Furthermore, we study the causal structure by probing the space-time with point particles as well as with scalar fields. We show that, even though there is no global time function in the technical sense (Schroedinger space-time being non-distinguishing), the time coordinate of the global Schroedinger coordinate system is, in a precise way, the closest one can get to having such a time function. In spite of this and the corresponding strongly Galilean and almost pathological causal structure of this space-time, it is nevertheless possible to define a Hilbert space of normalisable scalar modes with a well-defined time-evolution. We also discuss how the Galilean causal structure is reflected and encoded in the scalar Wightman functions and the bulk-to-bulk propagator.Comment: 32 page

    Emergent Geometry and Gravity from Matrix Models: an Introduction

    Full text link
    A introductory review to emergent noncommutative gravity within Yang-Mills Matrix models is presented. Space-time is described as a noncommutative brane solution of the matrix model, i.e. as submanifold of \R^D. Fields and matter on the brane arise as fluctuations of the bosonic resp. fermionic matrices around such a background, and couple to an effective metric interpreted in terms of gravity. Suitable tools are provided for the description of the effective geometry in the semi-classical limit. The relation to noncommutative gauge theory and the role of UV/IR mixing is explained. Several types of geometries are identified, in particular "harmonic" and "Einstein" type of solutions. The physics of the harmonic branch is discussed in some detail, emphasizing the non-standard role of vacuum energy. This may provide new approach to some of the big puzzles in this context. The IKKT model with D=10 and close relatives are singled out as promising candidates for a quantum theory of fundamental interactions including gravity.Comment: Invited topical review for Classical and Quantum Gravity. 57 pages, 5 figures. V2,V3: minor corrections and improvements. V4,V5: some improvements, refs adde

    Riemannian Geometry of Noncommutative Surfaces

    Get PDF
    A Riemannian geometry of noncommutative n-dimensional surfaces is developed as a first step towards the construction of a consistent noncommutative gravitational theory. Historically, as well, Riemannian geometry was recognized to be the underlying structure of Einstein's theory of general relativity and led to further developments of the latter. The notions of metric and connections on such noncommutative surfaces are introduced and it is shown that the connections are metric-compatible, giving rise to the corresponding Riemann curvature. The latter also satisfies the noncommutative analogue of the first and second Bianchi identities. As examples, noncommutative analogues of the sphere, torus and hyperboloid are studied in detail. The problem of covariance under appropriately defined general coordinate transformations is also discussed and commented on as compared with other treatments.Comment: 28 pages, some clarifications, examples and references added, version to appear in J. Math. Phy

    Covariant Field Equations, Gauge Fields and Conservation Laws from Yang-Mills Matrix Models

    Full text link
    The effective geometry and the gravitational coupling of nonabelian gauge and scalar fields on generic NC branes in Yang-Mills matrix models is determined. Covariant field equations are derived from the basic matrix equations of motions, known as Yang-Mills algebra. Remarkably, the equations of motion for the Poisson structure and for the nonabelian gauge fields follow from a matrix Noether theorem, and are therefore protected from quantum corrections. This provides a transparent derivation and generalization of the effective action governing the SU(n) gauge fields obtained in [1], including the would-be topological term. In particular, the IKKT matrix model is capable of describing 4-dimensional NC space-times with a general effective metric. Metric deformations of flat Moyal-Weyl space are briefly discussed.Comment: 31 pages. V2: minor corrections, references adde

    On the Plants Leaves Boundary, "Jupe \`a Godets" and Conformal Embeddings

    Full text link
    The stable profile of the boundary of a plant's leaf fluctuating in the direction transversal to the leaf's surface is described in the framework of a model called a "surface \`a godets". It is shown that the information on the profile is encoded in the Jacobian of a conformal mapping (the coefficient of deformation) corresponding to an isometric embedding of a uniform Cayley tree into the 3D Euclidean space. The geometric characteristics of the leaf's boundary (like the perimeter and the height) are calculated. In addition a symbolic language allowing to investigate statistical properties of a "surface \`a godets" with annealed random defects of curvature of density qq is developed. It is found that at q=1q=1 the surface exhibits a phase transition with critical exponent α=1/2\alpha=1/2 from the exponentially growing to the flat structure.Comment: 17 pages (revtex), 8 eps-figures, to appear in Journal of Physics
    • 

    corecore