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1 Introduction

The study of quantum field theory (QFT) on curved space has a long history, and has

revealed numerous interesting insights. From Hawking radiation to cosmological particle

production, many interesting phenomena are tied to curved backgrounds, which makes

Minkowski space appear as only a very special case. Minkowski space is also artificial

from a more conceptual point of view, as in our universe it only arises as an approximate

description on length scales which are short compared to those associated with curvature.

From that perspective, QFT should in general be understood in curved backgrounds, and

only be specialized to Minkowski space where appropriate, as opposed to the other way

around. Conceptually attractive as that approach may be, it is technically challenging, at

best, for conventional methods. Nicely enough, though, many interesting phenomena in

curved space arise already in free field theory, which often is as far as one can get with

direct methods.

The non-trivial nature of even free field theory in curved space makes one suspect

interesting things to happen if curved backgrounds are combined with strong interactions,

as already on flat space physics at strong coupling can likewise be qualitatively different

from the more easily accessible physics at weak coupling. For traditional QFT methods,

combining strong coupling with curved backgrounds certainly is challenging. But from the

AdS/CFT perspective, which has become one of the few established tools to quantitatively

access strongly-coupled QFTs, the increase in difficulty is not that dramatic after all. Go-

ing from Minkowski space to curved space QFT in the simplest cases just corresponds to

choosing a different conformal compactification of AdS. That certainly makes it interesting

and worthwhile to study strongly-coupled QFTs in curved spacetimes. Some early holo-

graphic investigations of QFT on (A)dS4 were already initiated in [1–3], and more recent

and comprehensive work can be found e.g. in [4, 5]. Spacetimes of constant curvature are

certainly the natural starting point for departure from Minkowski space, and we will focus

on AdS4 in the main part of this work.

When it comes to the choice of theory, N = 4 SYM is a natural starting point for holo-

graphic investigations, and detailed studies on AdS4 and dS4 were initiated in [6, 7]. But

by itself, N = 4 SYM also is a rather special theory, with its conformal (super)symmetry

and all fields in the adjoint representation. As in flat space, it is desirable to bridge the

gap to the theories we actually find realized in nature. One aspect of that is adding

fundamental matter, which can be done holographically by adding D7-branes [8]. The

resulting theory is N = 2 supersymmetric and has a non-trivial UV fixed point in the

quenched approximation, where the rank of the gauge group is large compared to the

number of “quarks”. For massless quenched flavors, the theory is actually conformal, and

the AdS4 discussion could just as well be carried out on flat space. The primary focus

of this work will be to add massive N = 2 flavors and thereby explicitly break confor-

mal symmetry. We will also employ the quenched or probe approximation throughout,

such that the D7-branes on the holographic side can be described by a classical action,

with Dirac-Born-Infeld (DBI) and Wess-Zumino (WZ) terms, and backreaction effects

are small.

– 2 –



J
H
E
P
1
1
(
2
0
1
5
)
1
1
2

A holographic study of N = 4 SYM coupled to massive flavor hypermultiplets on

AdS4 can be found already in [9, 10]. In those works, interesting embeddings were found

by solving the non-linear field equation for the brane embedding numerically, which yields

embeddings that generically break all supersymmetries. It is desirable, however, to preserve

the N = 2 supersymmetry that the theory has on flat space. Besides the general argu-

ment that a larger amount of symmetry makes the theory more tractable, supersymmetry

actually offers a chance to make quantitative statements on the field theory side, using,

for example, localization [11]. Formulating supersymmetric field theories in curved space

needs some care, however, as just minimally coupling a flat-space supersymmetric theory

to a curved metric does in general not result in a supersymmetric theory. Non-minimal

curvature couplings may be needed, and can be understood systematically by consistently

coupling to supergravity and then restricting to a fixed background [11, 12]. The desire

to include supersymmetry makes AdS the preferred curved space to look at in Lorentzian

signature, as the formulation of supersymmetric QFTs on dS faces additional issues with

unitarity unless the theory is conformal [13].

On the holographic side, preserving supersymmetry for flavored N = 4 SYM on AdS4

also adds a new aspect to the discussion. Instead of just straightforwardly solving the field

equations resulting from the D7-brane action, we now have to deal with κ-symmetry [14–

16]. This extra fermionic gauge symmetry projects out part of the fermionic modes, to

obtain matching numbers of bosonic and fermionic brane degrees of freedom, as required

by supersymmetry. Demanding some amount of supersymmetry to be preserved then

amounts to preserving κ-symmetry, which can be further translated into a set of neces-

sary conditions for the embedding and worldvolume fluxes. Extracting these conditions,

however, is technically challenging. The extra terms needed on the field theory side to

preserve supersymmetry suggest that varying the slipping mode alone will not be enough

to get massive supersymmetric embeddings. So we will also have to include worldvolume

flux, which additionally complicates the discussion. Once the step of extracting necessary

conditions for the embedding and worldvolume gauge field is carried out, however, the

κ-symmetry condition promises 1st-order BPS equations, as opposed to the 2nd-order field

equations. This will allow us to find analytic solutions, and so is well worth the trouble.

We systematically analyze the constraint imposed by κ-symmetry on the embeddings

and extract necessary conditions for the slipping mode and worldvolume flux in section 2.

From the resulting conditions we will be able to extract analytic supersymmetric D7-brane

embeddings in a nice closed form, which are given in section 2.5, with the conventions laid

out in 2.1. The solutions we find allow to realize a surprisingly rich set of supersymmetric

embeddings, which we categorize into short, long and connected embeddings. We study

those in more detail in section 3. In section 4 we focus on implications for flavored N =

4 SYM. We carry out the holographic renormalization, compute the chiral and scalar

condensates, and attempt an interpretation of the various embeddings found in section 3

from the QFT perspective. This raises some interesting questions, and we close with a

more detailed summary and discussion in section 5.

In appendix B we similarly construct supersymmetric D7-brane embeddings into S4-

sliced and dS4-sliced AdS5×S5, so we end up with a comprehensive catalog of D7-brane

– 3 –
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embeddings to holographically describe massive N = 2 supersymmetric flavors on spaces

of constant curvature. These will be used in a companion paper to compare the free energy

obtained from the holographic calculation for S4 to a QFT calculation using supersymmetric

localization.

2 Supersymmetric D7 branes in AdS4-sliced AdS5×S5

In this section we evaluate the constraint imposed by κ symmetry to find supersymmetric

D7-brane embeddings into AdS4-sliced AdS5×S5. The κ-symmetry constraint for embed-

dings with non-trivial fluxes has a fairly non-trivial Clifford-algebra structure, and the

explicit expressions for AdS5×S5 Killing spinors are themselves not exactly simple. That

makes it challenging to extract the set of necessary equations for the embedding and flux

from it, and this task will occupy most of the next section. On the other hand, the

non-trivial Clifford-algebra structure will allow us to separate the equations for flux and

embedding. Once the κ-symmetry analysis is done, the pay-off is remarkable. Instead of

heaving to solve the square-root non-linear coupled differential equations resulting from

variation of the DBI action with Wess-Zumino term, we will be able to explicitly solve for

the worldvolume gauge field in terms of the slipping mode. The remaining equation then is

a non-linear but reasonably simple differential equation for the slipping mode alone. As we

verified explicitly to validate our derivation, these simple equations indeed imply the full

non-linear DBI equations of motion. We set up the background, establish conventions and

motivate our choices for the embedding ansatz and worldvolume flux in section 2.1. Gen-

eralities on κ-symmetry are set up in section 2.2, and infinitesimally massive embeddings

are discussed in section 2.3. The finite mass embeddings are in section 2.4. To find the

solutions, we take a systematic approach to the κ-symmetry analysis, which is also nec-

essary to show that the solutions we find are indeed supersymmetric. Readers interested

mainly in the results can directly proceed from section 2.1 to the the embeddings given in

section 2.5.

2.1 Geometry and embedding ansatz

Our starting point will be Lorentzian signature and the AdS4 slices in Poincaré coordinates.

For the global structure, it does make a difference whether we choose global AdS4 or the

Poincaré patch as slices, and the explicit expressions for the metric, Killing spinors etc.

are also different. However, the field equations and the κ-symmetry constraint are local

conditions, and our final solutions will thus be valid for both choices.

We choose coordinates such that the AdS5×S5 background geometry has a metric

gAdS5
= dρ2 + cosh2ρ

[
dr2 + e2r(−dt2 + d~x2)

]
, gS5 = dθ2 + cos2θ dψ2 + sin2θ dΩ2

3 , (2.1)

where dΩ2
3 = dχ2

1 + sin2χ1(dχ2
2 + sin2 χ2dχ

2
3). We use the AdS5×S5 Killing spinor equation

in the conventions of [17]

Dµε =
i

2
ΓAdSΓµε , µ = 0 . . . 4 , Dµε =

i

2
ΓS5Γµε , µ = 5 . . . 9 , (2.2)

– 4 –
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and we have ΓAdS := Γ01234 = −Γ01234 along with ΓS5 := Γ56789. Generally, we follow

the usual convention and denote coordinate indices by Greek letters from the middle of

the alphabet and local Lorentz indices by latin letters from the beginning of the alphabet.

We will use an underline to distinguish Lorentz indices from coordinate indices whenever

explicit values appear. The ten-dimensional chirality matrix is Γ11 = ΓAdSΓS5 .

For the κ-symmetry analysis we will need the explicit expressions for the Killing spinors

solving (2.2). They can be constructed from a constant chiral spinor ε0 with Γ11ε0 = ε0 as

ε = RS5 ×RAdS × ε0 . (2.3)

The matrices RAdS, RS5 denote products of exponentials of even numbers of Γ-matrices

with indices in AdS5 and S5, respectively. For the S5 part we find1

RS5 = e
θ
2
iΓψΓ~χ e

ψ
2
iΓ~χΓθ e

1
2
χ1Γ

θχ1
e

1
2
χ2Γ

χ1χ2
e

1
2
χ3Γ

χ2χ3
, (2.4)

where we have defined Γ~χ := Γχ1Γχ2Γχ3 . The exponent in all the exponentials is the

product of a real function f and a matrix A which squares to −1. We will also encounter

the product of a real function and a matrix B which squares to +1 in the exponential.

The explicit expansions are

efA = cos f · 1 + sin f ·A , efB = cosh f · 1 + sinh f ·B . (2.5)

The corresponding R-matrix for AdS4-sliced AdS5 can be constructed easily, starting from

the AdS Killing spinors given in [18, 19]. With the projectors Pr± = 1
2(1± iΓrΓAdS), the

AdS5 part reads

RAdS = e
ρ
2
iΓρΓAdSRAdS4 , RAdS4 = e

r
2
iΓrΓAdS + ier/2xµΓxµΓAdSPr− . (2.6)

For the D7 branes we explicitly spell out the DBI action and WZ term to fix conven-

tions. For the κ-symmetry analysis we will not actually need it, but as a consistency check

we want to verify that our final solutions solve the equations of motion derived from it.

We take

SD7 = −T7

∫
Σ8

d8ξ
√
− det (g + 2πα′F ) + 2(2πα′)2T7

∫
Σ8

C4 ∧ F ∧ F , (2.7)

with g denoting the pullback of the background metric and the pullback on the four-form

gauge field C4 is understood. We absorb 2πα′ by a rescaling of the gauge field, so it is

implicit from now on. To fix conventions on the five-form field strength we use [20]: to get

Rµν = 4L−2gµν , we need F5 = L−1(1 + ?) vol(AdS5). So we take

C4 = L−1ζ(ρ) vol(AdS4) + . . . , ζ ′(ρ) = cosh4 ρ . (2.8)

The dots in the expression for C4 denote the part producing the volume form on S5 in F5,

which will not be relevant in what follows. As usual, C4 is determined by F5 only up to

gauge transformations, and we in particular have an undetermined constant in ζ, which

will not play any role in the following.

1For ψ = 0 our (2.4) agrees with the S4 Killing spinors constructed in [18]. But this is different from

(86) of [17] by factors of i in the S3 part.
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2.1.1 Embedding ansatz

We will be looking for D7-brane embeddings to holographically describe N = 4 SYM

coupled to massive N = 2 flavors on AdS4. So we in particular want to preserve the AdS4

isometries. The ansatz for the embedding will be such that the D7-branes wrap entire

AdS4×S3 slices in AdS5×S5, starting at the conformal boundary and reaching into the

bulk possibly only up to a finite value of the radial coordinate ρ. The S3 is parametrized

as usual by the “slipping mode” θ as function of the radial coordinate ρ only. We choose

static gauge such that the entire embedding is characterized by θ.

To gain some intuition for these embeddings, we recall the Poincaré AdS analysis of [8].

From that work we already know the θ ≡ π/2 embedding, which is a solution regardless of

the choice of coordinates on AdS5. So we certainly expect to find that again, also with our

ansatz. This particular D3/D7 configuration preserves half of the background supersym-

metries, corresponding to the breaking from N = 4 to N = 2 superconformal symmetry

in the boundary theory.2 For Poincaré AdS5 with radial coordinate z, turning on a non-

trivial slipping mode θ = arcsinmz breaks additional, but not all supersymmetries. The

configuration is still 1/4 BPS [8], corresponding to the breaking of N = 2 superconformal

symmetry to just N = 2 supersymmetry in the boundary theory on Minkowski space.

Our embedding ansatz, on the other hand, is chosen such that it preserves AdS4

isometries, and the slipping mode depends non-trivially on a different radial coordinate.

These are, therefore, geometrically different embeddings. As we will see explicitly below,

supersymmetric embeddings can not be found in that case by just turning on a non-trivial

slipping mode. From the field-theory analyses in [11, 12], we know that in addition to the

mass term for the flavor hypermultiplets we will have to add another purely scalar mass

term to preserve some supersymmetry on curved backgrounds. This term holographically

corresponds to a certain mode of the worldvolume gauge field on the S3 ⊂ S5, an ` = 1,−
mode in the language of [21]. Including such worldvolume flux breaks the SO(4) isometries

of the S3 to SU(2)×U(1). The same indeed applies to the extra scalar mass term on the

field theory side: it breaks the R-symmetry from SU(2) to U(1). The SU(2) acting on the

N = 2 adjoint hypermultiplet coming from the N = 4 vector multiplet is not altered by

the flavor mass term (see e.g. [22]). The bottom line for our analysis is that we should not

expect to get away with a non-trivial slipping mode only.

For the analysis below we will not use the details of these arguments as input. Our

ansatz is a non-trivial slippling mode θ(ρ) and a worldvolume gauge field A = f(ρ)ω, where

ω is a generic one-form on S3. This ansatz can be motivated just by the desire to preserve

the AdS4 isometries.3 Whether the supersymmetric embeddings we will find reflect the

field-theory analysis will then be a nice consistency check, rather than input. As we will

see, the κ-symmetry constraint is enough to determine ω completely, and the result is

indeed consistent with the field-theory analysis.

2The preserved conformal symmetry is a feature of the quenched approximation with Nf/Nc � 1 only.
3A generalization which we will not study here is to also allow for non-trivial ρ-dependence in ψ.
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2.2 κ-symmetry generalities

The κ-symmetry condition projecting on those Killing spinors which are preserved by a

given brane embedding was derived in [14–16]. We follow the conventions of [14]. The

pullback of the ten-dimensional vielbein Ea to the D7 worldvolume is denoted by ea =

Eaµ(∂iX
µ)dxi, and the Clifford algebra generators pulled back to the worldvolume are

denoted by γi = eai Γa. We follow [14] and define Xi
j := gikFkj . The κ-symmetry condition

then is Γκε = ε, where

Γκ =
1√

det(1 +X)

∞∑
n=0

1

2nn!
γj1k1...jnknXj1k1 . . . XjnknJ

(n)
(p) , (2.9a)

J
(n)
(p) = (−1)n (σ3)n+(p−3)/2 iσ2 ⊗ Γ(0) , (2.9b)

Γ(0) =
1

(p+ 1)!
√
− det g

εi1...ip+1γi1...ip+1
. (2.9c)

For embeddings characterized by a non-trivial slipping mode as described above, the in-

duced metric on the D7-branes reads

g =
(
1 + θ′

2)
dρ2 + cosh2ρ ds2

AdS4
+ sin2θ dΩ2

3 . (2.10)

The pullback of the ten-bein to the D7 worldvolume is given by

ea = Ea , a = 0 . . . 7 , e8 = θ′dρ , e9 = 0 . (2.11)

The κ-symmetry condition (2.9) for type IIB supergravity is formulated for a pair of

Majorana-Weyl spinors. We will find it easier to change to complex notation, such that we

deal with a single Weyl Killing spinor without the Majorana condition.

2.2.1 Complex notation

Eq. (2.9) is formulated for a pair of Majorana-Weyl Killing spinors (ε1, ε2), and it is the

index labeling the two spinors on which the Pauli matrices act. To switch to complex

notation we define a single Weyl spinor ε = ε1 + iε2. With the Pauli matrices

σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (2.12)

we then find that iσ2(ε1, ε2) translates to −iε and σ3(ε1, ε2) to Cε?. With these replacements

the action of σ2/3 commutes with multiplication by Γ-matrices, as it should (the Γ-matrices

in (2.9) should be understood as 12 ⊗ Γ). We thus find

J
(n)
(7)

(
ε1
ε2

)
→ −iΓ(0)ε for n even , J

(n)
(7)

(
ε1
ε2

)
→ −iC

(
Γ(0)ε

)?
for n odd . (2.13)

Note that Γκ contains an involution and does not act as a C-linear operator. To fix

conventions, we choose the matrix B1 defined in the appendix of [23], and set C = B1. C

then is the product of four Hermitian Γ-matrices that square to 1, so we immediately get

C† = C and C2 = 1. Furthermore, we have

CΓµ = (Γµ)?C , C?C = 1 . (2.14)

With (2.13) it is straightforward now to switch to complex notation in (2.9).

– 7 –
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2.2.2 Projection condition for our embedding ansatz

We now set up the κ-symmetry condition in complex notation for our specific ansatz for

embedding and worldvolume flux. As explained above, for our analysis we do not make

an a priori restriction on the S3 gauge field to be turned on. So we set A = f(ρ)ω, with

ω a generic one-form on the S3. The field strength is F = df ∧ ω + fdω, and we find

the components Fρα = f ′ωα and Fαβ = ∂αωβ − ∂βωα. We only have 4 non-vanishing

components of F , which means that the sum in (2.9a) terminates at n = 2. We thus find

Γκε =
−i√

det(1 +X)

[(
1 +

1

8
γijklFijFkl

)
Γ(0)ε+

1

2
γijFijC

(
Γ(0)ε

)?]
. (2.15)

The pullback of the vielbein to the D7 branes has been given in (2.11) above, and we have

Γ(0) =
−1√

1 + θ′2
Γ̂ , Γ̂ =

[
1 + θ′ΓθΓρ

]
ΓAdSΓ~χ . (2.16)

The equations (2.15) and (2.16) are the starting point for our analysis in the next subsec-

tions.

2.3 Infinitesimally massive embeddings

Our construction of supersymmetric embeddings will proceed in two steps. We first want

to know what exactly the preserved supersymmetries are and what the general form of the

S3 gauge field is. These questions can be answered from a linearized analysis, which we

carry out in this section. With that information in hand, the full non-linear analysis will

be easier to carry out, and we come to that in the next section.

So, for now, want to solve the κ-symmetry condition in a small-mass expansion, starting

from the θ ≡ π/2, F ≡ 0 massless configuration which we know as solution from the flat

slicing. We expand θ = π
2 + δθ + . . . and analogously for f . We use f without explicit

δ, though, as it is zero for the massless embedding and there should be no confusion.

The κ-symmetry condition Γκε = ε can then be expanded up to linear order in δm. The

leading-order equation reads

Γ(0)
κ ε(0) = ε(0) , Γ(0)

κ = iΓAdSΓ~χ , ε(0) = ε|θ=π/2 , (2.17)

where we use the superscript to indicate the order in the expansion in δm. For the next-

to-leading order we need to take into account that not only the projector changes, but also

the location where the Killing spinor is evaluated — the κ-symmetry condition is evaluated

on the D7s. This way we get

Γ(0)
κ ε(1) + Γ(1)

κ ε(0) = ε(1) , ε(1) =
i

2
δθ ΓψΓ~χ ε

(0) . (2.18)

To see which supersymmetries can be preserved, if any, we need to find out under

which circumstances the projection conditions (2.17), (2.18) can be satisfied. To work this

out, we note that we can only impose constant projection conditions on the constant spinor

ε0 that was used to construct the Killing spinors in (2.3): any projector with non-trivial

– 8 –
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position dependence would only allow for trivial solutions when imposed on a constant

spinor. For the massless embedding we can straightforwardly find that projector on ε0, by

acting on the projection condition in (2.17) with inverse R-matrices. This gives

ε0 = R−1
AdSR

−1
S5 Γ(0)

κ RS5RAdSε0 = −ΓAdSΓψε0 . (2.19)

We have used the fact that ΓAdS commutes with all the Γ-matrices in the AdS5 part, and

also with RS5 . The last equality holds only when the left hand side is evaluated at θ = π/2.

Using that Γ11ε0 = ε0, this can be written as a projector involving S5 Γ-matrices only

P0ε0 = ε0 , P0 =
1

2

(
1 + ΓθΓ~χ

)
. (2.20)

This is the desired projection condition on the constant spinor: those AdS5×S5 Killing

spinors constructed from (2.4) with ε0 satisfying (2.20) generate supersymmetries that are

preserved by the D3/D7 configuration. We are left with half the supersymmetries of the

AdS5×S5 background.

2.3.1 Projection condition at next-to-leading order

For the small-mass embeddings we expect that additional supersymmetries will be bro-

ken, namely those corresponding to the special conformal supersymmetries in the bound-

ary theory. We can use the massless condition, (2.17), to simplify the projection condi-

tion (2.18) before evaluating it. With {Γ(0)
κ ,ΓψΓ~χ} = 0 and Γ

(0)
κ ε(0) = ε(0), we immediately

see that Γ
(0)
κ ε(1) = −ε(1). The next-to-leading-order condition given in (2.18) therefore

simply becomes

Γ(1)
κ ε(0) = 2ε(1) (2.21)

The determinants entering Γκ in (2.15) contribute only at quadratic order, so we find

Γ(1)
κ = θ′ΓθΓρΓ

(0)
κ −

1

2
γijFijC

(
Γ(0)
κ ·

)?
. (2.22)

We use that in (2.21) and multiply both sides by ΓψΓ~χ. With Γ
(0)
κ ε(0) = ε(0) and ΓS5ε(0) =

−ΓAdSε
(0), we find the explicit projection condition[

δθ′ΓρΓAdS − iδθ1
]
ε(0) =

1

2
ΓψΓ~χγ

ijFijCε
(0)? . (2.23)

The left hand side has no Γ-structures on S5, except for those implicit in the Killing spinor.

We turn to evaluating the right hand side further, and note that

1

2
γijFij = f ′ωαγ

ρα + f∂αωβγ
αβ . (2.24)

For the perturbative analysis, the pullback to the D7 brane for the γ-matrices is to be

evaluated with the zeroth-order embedding, i.e. for the massless θ ≡ π/2 one. Then (2.23)

becomes[
δθ′ΓρΓAdS − iδθ1

]
ε(0) = ΓψΓ~χ

[
f ′ωαΓρΓχα + f∂αωβΓχαχβ

]
Cε(0)? . (2.25)

Note that some of the S3 Γ-matrices on the right hand side include non-trivial dependence

on the S3 coordinates through the vielbein.
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2.3.2 Next-to-leading order solutions: projector and S3 harmonic

We now come to evaluating (2.25) more explicitly, starting with the complex conjugation

on ε(0). Commuting RAdS and RS5 through C acts as just complex conjugation on the

coefficients in (2.4) and (2.6). We define R-matrices with a tilde such that R̃AdSC = CR?AdS

and analogously for R̃S5 . Acting on (2.25) with R−1
S5 , we then find[

δθ′ΓρΓAdS − iδθ1
]
RAdSε0 = R−1

S5 ΓψΓ~χ
[
f ′ωαΓρΓχα + f∂αωβΓχαχβ

]
R̃S5R̃AdSCε

?
0 , (2.26)

The noteworthy feature of this equation is that the left hand side has no more dependence

on S3 directions. To have a chance at all to satisfy this equation, we therefore have to

ensure that any S3 dependence drops out on the right hand side as well. Since f and f ′

are expected to be independent as functions of ρ, this has to happen for each of the two

terms individually. We start with the first one, proportional to f ′, and solve for an ω s.t.

the dependence on S3 coordinates implicit in the Γχα matrices drops out. The Clifford-

algebra structure on S5 is dictated by the terms we get from evaluating R−1
S5 ΓψΓ~χΓχαR̃S5 ,

but we want to solve for the coefficients to be constants. That is, with three constants ci
we solve for

ωαR
−1
S5 ΓψΓ~χΓχαR̃S5P0 = ciΓ

χiΓψΓθP0 . (2.27)

We only need this equation to hold when acting on ε(0), i.e. only when projected on P0.

This fixes ω. We can find a solution for arbitrary ci, and the generic solution satisfies

?S3dω = −(`+1)ω with ` = 1. The S3 one-form ω thus is precisely the ` = 1,−mode we had

speculated to find in section 2.1.1 when we set up the ansatz, and the bulk analysis indeed

reproduces the field-theory results. This is a result solely about matching symmetries and

may not be overly surprising, but it is a nice consistency check anyway. The solutions

parametrized by ci are equivalent for our purposes, and we choose a simple one with c1 = 1,

c2 = c3 = 0. This yields

ω = − cosχ2dχ1 + sinχ1 cosχ1 sinχ2dχ2 + sin2χ1 sin2χ2dχ3 . (2.28)

The explicit expressions for the S3 Killing vectors leaving ω invariant are rather bulky. The

preserved symmetries are more explicit in Hopf coordinates (ϕ, φ1, φ2), where the ` = 1,−
mode can be written as ω = cosϕdφ1 + dφ2 and the metric on S3 takes the form gS3 =
1
4(dϕ2 +sin2ϕdφ2

1 +ω2). The preserved symmetries are then the U(1) generated by ∂φ2 and

the SU(2) leaving the S2 with metric 1
4(dϕ2 +sin2ϕdφ2

1) invariant.4 The second term on the

right hand side of (2.26) can easily be evaluated using that (∂αωβ)γαβ = −2 csc θ ωαΓ~χγ
α,

for ω as given in (2.28). The κ-symmetry condition becomes[
δθ′ΓρΓAdS − iδθ1

]
RAdSε0 =

[
f ′ΓρΓAdS + 2if1

]
ΓθΓχ1R̃AdSCε

?
0 . (2.29)

There are no more S5 Γ-matrices on the left hand side, so to have solutions those on

the right hand side have to drop out as well. We expected to find at most one fourth of

4The corresponding S3 Killing vector fields are ∂φ1 , cosφ1∂ϕ−sinφ1 cscϕ (cosϕ∂φ1 − ∂φ2) and sinφ1∂ϕ+

cosφ1 cscϕ (cosϕ∂φ1 − ∂φ2).
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the background supersymmetries preserved, and now indeed see that we can not get away

without demanding an additional projection condition on ε0. We will demand that

Γ̃Cε?0 = λε0 , Γ̃ = ΓρΓAdSΓχ1Γθ , (2.30)

where λ?λ = 1. We can achieve that by setting ε0 = η + λ?Γ̃Cη?, noting that Γ̃2 = 1 and

CΓ̃? = Γ̃C. We also see that, due to [ΓAdSΓψ, Γ̃] = 0, ε0 satisfies (2.19) if η does. So the

two conditions are compatible. Note that in Majorana-Weyl notation (2.30) relates the

two spinors to each other, rather than acting as projection condition on each one of them

individually. This is different from the flat slicing. With (2.30), eq. (2.29) then becomes[
δθ′ΓρΓAdS − iδθ1

]
RAdSε0 = λ

[
2ifΓAdS − f ′Γρ

]
R̃AdSΓρε0 . (2.31)

There is no dependence on the S5 Γ-matrices anymore. As a final step we just act with

R−1
AdS on both sides. To evaluate the result we use the following relation between R̃AdS and

RAdS, and define a short hand Γ̃ρA as

ΓρR̃AdSΓρ = e−ρ iΓρΓAdSRAdS , Γ̃ρA := R−1
AdSΓρΓAdSRAdS . (2.32)

We then find that acting with R−1
AdS on (2.31) yields[

δθ′ − iλ
(
2f cosh ρ+ f ′ sinh ρ

)]
Γ̃ρAε0 =

(
iδθ − λf ′ cosh ρ− 2f sinh ρ

)
ε0 . (2.33)

These are independent Γ-matrix structures on the left and on the right hand side, so the

coefficients have to vanish separately.

The main results for this section are the massive projector (2.30) and the one-form on

the S3 given in (2.28). They will be the input for the full analysis with finite masses in the

next section. To validate our results so far, we still want to verify that the κ-symmetry

condition (2.33) for small masses can indeed be satisfied with the linearized solutions for θ

and f . The solutions to the linearized equations of motion resulting from (2.7) with (2.28)

(or simply (2.51) below) read

f = µ sech2 ρ (1− ρ tanh ρ) , θ = m sech ρ
(
ρ sech2 ρ+ tanh ρ

)
. (2.34)

We find that both conditions encoded in (2.33) are indeed satisfied exactly if iλµ = m. To

get a real gauge field, λ should be chosen imaginary, which is compatible with consistency

of (2.30).

Before coming to the finite mass embeddings, we want to better understand the pro-

jector (2.30). The massive embedding is expected to break what acts on the conformal

boundary of AdS5 as special conformal supersymmetries, leaving only the usual supersym-

metries intact. Now, what exactly the usual supersymmetries are depends on the boundary

geometry. To explain this point better, we view the N = 4 SYM theory on the bound-

ary as naturally being in a (fixed) background of N = 4 conformal supergravity. How

the conformal supergravity multiplet and its transformations arise from the AdS super-

gravity fields has been studied in detail for N = 1, 2 subsectors in [24, 25]. The Q- and
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S-supersymmetry transformations of the gravitino in the N = 4 conformal supergravity

multiplet schematically take the form

δQψµ = DµεQ + . . . , δSψµ = iγµεS + . . . , (2.35)

where the dots denote the contribution from other fields in the multiplet. Holographically,

these transformations arise as follows: for a local bulk supersymmetry transformation

parametrized by a bulk spinor ε, the two classes of transformations arise from the two chiral

components of ε with respect to the operator we called ΓρΓAdS above [24, 25]. A quick

way to make our point is to compare this to the transformation for four-dimensional (non-

conformal) Poincaré and AdS supergravities. They take the form δψµ = Dµε for Poincaré

and δψµ = Dµε − iγµε for AdS supergravities. If we now break conformal symmetry

on Minkowski space, we expect to preserve those conformal supergravity transformations

which correspond to the former, for AdS4 those corresponding to the latter. From (2.35)

we see that the Poincaré supergravity transformations arise purely as Q-supersymmetries.

So holographically we expect a simple chirality projection on the bulk Killing spinor, of

the form ΓρΓAdSε = ε, to give the supersymmetries preserved by a massive D7-brane

embedding, and this is indeed the case. For an AdS4 background, on the other hand,

the transformations arise as a particular combination of Q- and S-supersymmetries of

the background N = 4 conformal supergravity multiplet. That means we need both

chiral components of the bulk spinor, with specific relations between them. This is indeed

reflected in our projector (2.30).5

2.4 Finite mass embeddings

We now turn to the full non-linear κ-symmetry condition, i.e. with the full non-linear

slipping mode and gauge field dependence. From the linearized analysis we will take the

precise form of ω given in (2.28), and the projection conditions on the constant spinors

ε0, (2.20), (2.30). We will assume that ψ is constant, and then set ψ = 0 w.o.l.g. whenever

explicit expressions are given.

We have two overall factors in the definition of Γ(0) and Γκ, and we pull those out by

defining

h(ρ) :=
√

1 + θ′2
√

det(1 +X) =
√

1 + 4f2 csc4 θ

√
1 + θ′2 + f ′2 csc2 θ . (2.36)

For the explicit evaluation we used (2.28). Note that there is no dependence on the S3

coordinates in h. We can then write the κ-symmetry condition (2.15) as(
1 +

1

8
γijklFijFkl

)
Γ̂ε+

1

2
γijFijΓ̂Cε

? = −ihε , (2.37)

5The global fermionic symmetries of N = 4 SYM actually arise from the conformal supergravity trans-

formations as those combinations of Q- and S-supersymmetries which leave the background invariant. A

more careful discussion should thus be phrased in terms of the resulting (conformal) Killing spinor equations

along similar lines. For a nice discussion of (conformal) Killing spinor equations on curved space we refer

to [26].
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where we have used CΓ̂? = Γ̂C since θ is supposed to be real. This compact enough

expression will be our starting point, and we now evaluate the individual terms more

explicitly. With the expression for ω in (2.28), the F 2-term evaluates to

1

8
γijklFijFklΓ̂ =

1

2
γργχ1χ2χ3Γ̂εijkF

ρχiFχjχk = −2f ′f csc3θΓρΓAdS . (2.38)

For the last equality we used γρΓ~χΓ̂ = ΓρΓAdS. To evaluate Cε? in (2.37), we recall the

definition of R̃AdS by CRAdS = R̃AdSC and analogously for RS5 (see above (2.26)), and

use (2.30). With (2.38) we then find

Γ̂ε+
λ

2
γijFijΓ̂R̃S5R̃AdSΓ̃ε0 = 2f ′f csc3θ ΓρΓAdSε− ihε . (2.39)

There are no more S5 Γ-matrices except for those implicit in ε due to RS5 on the right

hand side, and also no explicit dependence on the S3 coordinates. So the remaining task is

to find out whether we can dispose of all the non-trivial S3 dependence and S5 Γ-matrices

on the left hand side with just the projectors we already have derived in section 2.3 — the

amount of preserved supersymmetry and the form of the Killing spinors are not expected

to change when going from infinitesimally small to finite masses.

2.4.1 Explicit S3 dependence

To evaluate the left hand side of (2.39) further, we have to work out the term linear in

F . With the specific form of ω given in (2.28), we find (∂αωβ)γαβ = −2 csc θ ωαΓ~χγ
α.

From (2.24) we then get

1

2
γijFijΓ̂ =

[
f ′γρ − 2f csc θΓ~χ

]
ωαγ

αΓ̂ = −
[
f ′ΓρΓAdS + 2f csc θ Γ̂

]
Γ~χωαγ

α . (2.40)

For the last equality we have used
[
Γ~χΓχi , Γ̂

]
= 0 and γργαΓ̂ = −ΓρΓAdSΓ~χγ

α. With (2.28)

we easily find the generalization of (2.27) to generic θ, and this allows us to eliminate all

explicit S3 dependence. We have

ωαγ
αR̃S5P0 = − csc θ ΓψΓ~χRS5ΓθΓψΓχ1P0 . (2.41)

Since P0 commutes with RS5 and Γ̃, we can pull it out of ε0 in (2.39) and use it when

applying (2.41). When acting on ε0 as in (2.39), we thus find

1

2
γijFijΓ̂R̃S5 = csc θ

[
f ′ΓρΓAdS + 2f csc θ Γ̂

]
ΓψRS5ΓθΓψΓχ1 . (2.42)

As desired, the right hand side does not depend on the S3 coordinates anymore. Using

the explicit expression for Γ̃ and the massless projector (2.19), we find ΓθΓψΓχ1R̃AdSΓ̃ε0 =

R̃AdSΓρε0. So we get

1

2
γijFijΓ̂R̃S5R̃AdSΓ̃ε0 = csc θ

[
f ′ΓρΓAdS + 2f csc θ Γ̂

]
ΓψRS5R̃AdSΓρε0 (2.43)

= csc θ
[
f ′ΓρΓAdSΓψ − 2f csc θ

(
Γθ − θ′Γρ

)]
RS5R̃AdSΓρε0 . (2.44)
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For the second equality we have used Γ̂Γψ =
(
Γθ − θ′Γρ

)
Γ11. The second term in round

brackets does not have any S5 Γ-matrices, and can go to the right hand side of (2.39). So

combining (2.39) with (2.44), we find

l.h.s. := Γ̂ε+ λ csc θ
[
f ′ΓρΓAdSΓψ − 2f csc θ Γθ

]
RS5R̃AdSΓρε0

= − ihε+ 2f ′f csc3θ ΓρΓAdSε− 2λfθ′ csc2θ ΓρRS5R̃AdSΓρε0 =: r.h.s. .
(2.45)

Nicely enough, the left hand side is linear in the gauge field and its derivative — it appears

non-linearly only on the right hand side.

2.4.2 Solving the κ-symmetry condition

The κ-symmetry condition (2.45) still has coordinate dependences implicit in ε, through

RAdS and RS5 . To eliminate those, we want to act with R−1
S5 R

−1
AdS on both sides, and eval-

uate the result. That is cumbersome, and we derive the required identities in appendix A.

For notational convenience, we define the operator R[Γ] := R−1
S5 ΓRS5 . With (A.1), (A.2)

and (A.5), we can then evaluate (2.45) explicitly. For the left hand side we find

R−1
AdSR

−1
S5 l.h.s. =

(
i cot θ + λ csc θf ′ cosh ρ+ 2fλ csc3 θ sinh ρ

)
R[ΓθΓ~χ]ε0

+
(
θ′ − iλ csc θf ′ sinh ρ− 2ifλ csc3 θ cosh ρ

)
R[ΓθΓ~χ]Γ̃ρAε0

− i csc θε0 + 2fλ csc2 θ cot θ
(
i cosh ρ Γ̃ρA − sinh ρ1

)
ε0 ,

(2.46)

where Γ̃ρA was defined in (2.32). Note that the r.h.s. in (2.45) has no dependence on the

S3-directions, but R[ΓθΓ~χ] in (2.46) does. So the coefficients of the two terms involving

R[ΓθΓ~χ] in (2.46) have to vanish. Moreover, they have to vanish separately, since they

multiply different AdS5 Γ-matrix structures. So we find the two conditions

i cot θ + λ csc θf ′ cosh ρ+ 2fλ csc3 θ sinh ρ = 0 , (2.47a)

θ′ − iλ csc θf ′ sinh ρ− 2ifλ csc3 θ cosh ρ = 0 . (2.47b)

The non-trivial Clifford-algebra structure of the κ-symmetry condition has thus given us

two independent 1st-order differential equations. Moreover, since f and f ′ only appear

linearly, we can actually solve (2.47) for f and f ′. This yields

f =
i

2λ
sin3 θ

(
sinh ρ cot θ − θ′ cosh ρ

)
, f ′ =

i

λ

(
θ′ sin θ sinh ρ− cosh ρ cos θ

)
. (2.48)

Note that the expression for f ′ does not contain second-order derivatives of θ, which we

would get if we just took the expression for f and differentiate. Comparing the expressions

for f and f ′, we can thus derive a second-order ODE for θ alone. It reads

θ′′ + 3θ′
2

cot θ + 4 tanh ρ θ′ − cot θ
(
1 + 2 csc2 θ

)
= 0 . (2.49)

With the solutions for f and f ′ s.t. the first two lines of (2.46) vanish, the κ-symmetry

condition (2.45) simplifies quite a bit. Collecting the remaining terms according to their

Γ-matrix structure gives

0 =
[
ih− i csc θ + 2fλ csc2 θ

(
θ′ cosh ρ− cot θ sinh ρ

)]
ε0

− 2f csc2 θ
[
f ′ csc θ + iλ

(
θ′ sinh ρ− cot θ cosh ρ

)]
Γ̃ρAε0 .

(2.50)
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With the solution for f ′ in terms of θ given in (2.48), we see that the term in square brack-

ets in the second line vanishes exactly if λ is purely imaginary, s.t. λ−1 = −λ. So we are

left with the first line only. This once again vanishes when plugging in the explicit expres-

sions of (2.36) and (2.48), and using imaginary λ. So any solution for the slipping mode

satisfying (2.49), which is accompanied by the gauge field (2.48), gives a supersymmetric

D7-brane embedding into AdS4-sliced AdS5. These equations are our first main result.

As a consistency check, one wants to verify that each such combination of slipping

mode satisfying (2.49) with gauge field (2.48) indeed satisfies the highly non-linear and

coupled equations of motion resulting from the D7-brane action. To derive those, we first

express (2.7) explicitly in terms of θ and f . That is, we use A = fω with ω given in (2.28),

but not any of the other κ-symmetry relations. Also, for ω we only use that our ω satisfies

?S3dω = −2ω, i.e. that we found an ` = 1,− mode in the language of [21]. The combination

of DBI action and WZ term then becomes

SD7 = −T7VS3

∫
d5ξ
√
gAdS4

[
ζ ′
√

sin4 θ + 4f2

√
f ′2 + (1 + θ′2) sin2 θ + 8ζf ′f

]
, (2.51)

where ζ ′ = cosh4 ρ as defined in (2.8), and we have integrated over the S3. Working out

the resulting equations of motion gives two coupled second-order non-linear equations. In

the equation for the slipping mode one can at least dispose of the square root, by a suitable

rescaling of the equation. But for the gauge field even that is not possible, due to the WZ

term. The resulting equations are bulky, and we will not spell them out explicitly. Finding

an analytic solution to these equations right away certainly seems hopeless. But we do find

that using (2.48) to replace f , along with replacing θ′′ using (2.49), actually solves both of

the equations of motion resulting from (2.51).

2.5 Solutions

We now have a decoupled equation for the slipping mode alone in (2.49), and an immediate

solution for the accompanying f in (2.48). So it does not seem impossible to find an explicit

solution for the embedding in closed form. To simplify (2.49), we reparametrize the slipping

mode as cos θ(ρ) = 2 cos
(

1
3 cos−1 τ(ρ)

)
, which turns it into a simple linear equation for τ .

Namely,

τ ′′ + 4 tanh ρ τ ′ + 3τ = 0 . (2.52)

This can be solved in closed form, and as a result we get three two-parameter families of

solutions for θ, corresponding to the choice of branch for the cos−1. Restricting cos−1 to

the principle branch, where it takes values in [0, π], we can write them as

θ = cos−1

(
2 cos

2πk + cos−1 τ

3

)
, τ =

6(mρ− c) + 3m sinh(2ρ)

4 cosh3 ρ
, (2.53)

with k ∈ {0, 1, 2}. Only k = 2 gives real θ, though: to get real θ, we need | cos 2πk+cos−1 τ
3 | ≤

1
2 . This translates to cos−1 τ ∈ [π, 2π] + (3n− 2k)π. Since we have chosen the branch with

cos−1 τ ∈ [0, π] in (2.53), this only happens for k = 2. For ρ→∞ we then have τ → 0 and
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θ → π
2 , so the branes wrap an equatorial S3 in the S5. As ρ is decreased, τ increases and

the branes potentially cap off — we need |τ | ≤ 1 to have real θ. The remaining constant c

may then be fixed from regularity constraints, and we will look at this in more detail below.

These are finally the supersymmetric embeddings we were looking for: the slipping mode

θ given in (2.53) with k = 2, accompanied by the gauge field A = fω, with f given (2.48)

and ω in (2.28). The naming of the constants is anticipating our results for the one-point

functions in (4.13) below: m will be the flavor mass in the boundary theory and c will

appear in the chiral condensate.

3 Topologically distinct classes of embeddings

In the previous section we have obtained the general solution to the κ-symmetry condition,

giving the two-parameter family of embeddings in (2.53) with the accompanying gauge

field (2.48). In this section we will study the parameter space (m, c), and whether and

where the branes cap off depending on these parameters. A crucial part in that discussion

will be demanding regularity of the configurations, e.g. that the worldvolume of the branes

does not have a conical singularity and a similar condition for the worldvolume gauge field.

To cover either of global or Poincaré AdS5 with AdS4 slices, we need two coordinate

patches with the corresponding choice of global or Poincaré AdS4 slices, as illustrated in

figure 1. They can be realized by just letting ρ run through the entire R. The figure

illustrates global AdS, but we do not need to commit to one choice at this point. For

the massless embeddings in Poincaré AdS, where θ ≡ π/2 is the known supersymmetric

solution, the D7 branes wrap all of the AdS5 part. For the massive case, again from

Poincaré-AdS5 intuition, we naively expect this to be different. However, that discussion

will turn out to be more nuanced for AdS4-sliced AdS5.

The two options for the branes to cap off are the (arbitrarily assigned) north and

south poles of the S5, which we take as θ = 0 or τ = −1 and θ = π or τ = 1, respectively.

With (2.53), the condition for the branes to cap off at the north/south pole at ρ = ρ? then

becomes

c = mρ? +
1

2
m sinh(2ρ?)±

2

3
cosh3 ρ? =: cn/s(ρ?) . (3.1)

There is no a priori relation between the masses we choose for the two patches, so we start

the discussion from one patch, say the one with ρ ≥ 0. For ρ→∞ we have θ → π/2, and

what happens as we move into the bulk depends on whether and what sort of solutions ρ?
there are to (3.1). Depending on m and c, we can distinguish 3 scenarios:

(i) There is a ρ? ≥ 0 such that either c = cn(ρ?) or c = cs(ρ?). In that case, the branes

cap off in the patch in which they started, and we call this a short embedding.

(ii) There is no ρ? ≥ 0 as above, but there is a ρ? < 0 such that c = cn(ρ?) or c = cs(ρ?).

In that case, the branes cover the entire ρ > 0 patch and part of the ρ < 0 patch.

We call this a long embedding.
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(a) (b) (c)

ρ→∞-ρ→−∞�

Figure 1. The left hand side illustrates how global AdS5 is sliced by AdS4 slices. The vertical

lines are slices of constant ρ, the horizontal ones correspond to constant AdS4 radial coordinate.

Connected embeddings cover the entire AdS5 and stretch out to the conformal boundary in both

patches. The figure in the middle illustrates what we call a short embedding, where the branes,

wrapping the shaded region, stretch out to the conformal boundary in one patch and then cap off

at a finite value of the radial coordinate in the same patch. On the right hand side is what we call

a long embedding, where the branes stretch out to one half of the conformal boundary, cover the

entire patch and cap off in the other one.

(iii) We have c 6= cn(ρ?) and c 6= cs(ρ?) for all ρ? ∈ R. In that case the branes never reach

either of the poles and do not cap off at all. They cover all of AdS5, connecting both

parts of the conformal boundary. We call these connected embeddings.

The types of embeddings are illustrated in figure 1, and we will study them in more detail

below. If the branes do cap off, demanding regularity at the cap-off point imposes an

additional constraint, and we find one-parameter families. However, the masses in the two

patches can then be chosen independently, and one can also combine e.g. a long embedding

in one patch with a short one in the other. For the connected embeddings there is no such

freedom, and the flavor masses on the two copies of AdS4 are related.

3.1 Cap-off points

If a cap-off point exists at all, the branes should cap off smoothly. The relevant piece of

the induced metric to check for a conical singularity is g = (1 + θ′2)dρ2 + sin2 θdΩ2
3 + . . . .

Expanding around ρ = ρ? with (2.53) and (3.1) gives

sin θ
∣∣
c=c?

n/s
(ρ?)

= αn/s(ρ− ρ?)1/4 +O(
√
ρ− ρ?) , αn/s = 4

√
8 sech ρ?(sinh ρ? ±m) . (3.2)

The induced metric with that scaling is smooth without a conical singularity. To examine

the regularity of the gauge field A = fω, we fix χ1 = χ2 = π/2, s.t. we look at a plane

around ρ = ρ?. The pullback of the gauge field to the plane is A = fdχ1, and regularity

at the origin, ρ = ρ?, demands f(ρ?) = 0. For small sin θ, we see from (2.48) that

f = − i

2λ
cosh ρ θ′ sin3 θ +O(sin2 θ) . (3.3)
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From the expansion (3.2), we then find that f(ρ?) = 0 for branes capping off at the

north/south pole translates to

θ′ sin3 θ
∣∣
ρ=ρ?

= ±1

4
α4

n/s
!

= 0 ⇐⇒ ρ? = ρn/s , ρn/s = ∓ sinh−1m. (3.4)

We thus find that for any given m there are in principle two options for the branes to cap

off smoothly. For positive m they can potentially cap off smoothly at the south pole in the

ρ > 0 patch and at the north pole in the ρ < 0 patch, and for negative m the other way

around. With αn/s fixed like that, the slipping mode shows the usual square root behavior

as it approaches the north/south pole.

The constraint (3.4) can also be obtained from the on-shell action. From the κ-

symmetry discussion we know that the combination in square brackets in the first line

of (2.50) vanishes, which implies that on shell

h = csc θ
(
1− 4λ2f2 csc4θ

)
. (3.5)

This allows us to eliminate the square root in the on-shell DBI Lagrangian, which will

also be useful for the discussions below. The DBI Lagrangian of (2.7) expressed in terms

of h reads

LDBI = −T7 cosh4ρ sin3θ · h ·√gAdS4

√
g

S3 , (3.6)

where
√
gAdS4

and
√
g

S3 are the standard volume elements on AdS4 and S3 of unit curvature

radius, respectively. For the full D7-brane action (2.7), we then find

SD7 = −T7

∫
d7ξdρ

√
gAdS4

√
g

S3

[
h cosh4ρ sin3θ + 8ζ f ′f

]
. (3.7)

To have the first term in square brackets finite at ρ = ρ? we once again need f(ρ?) = 0,

leading to (3.4). We will look at the two options for the branes to cap off smoothly in more

detail now.

3.2 Short embeddings

The first option we want to discuss are the short embeddings illustrated in figure 1(b),

where the branes cap off in the same patch in which they reach out to the conformal

boundary. This kind of embedding can be realized for arbitrary m: for the ρ > 0 patch,

we simply take ρs/n from (3.4) and fix

c = cs(ρs) for m > 0 , c = cn(ρn) for m < 0 , (3.8)

with cn/s defined in (3.1). This gives a smooth cap-off point at ρ = ρs/n ≥ 0 — in the

same patch where we assumed the D7 branes to extend to the conformal boundary. For

the other patch the choices are simply reversed.

There is a slight subtlety with that, though, which gives us some useful insight into the

curves cs/n(ρ?). For the embeddings to actually be smooth, there must be no additional

cap-off points between the conformal boundary and the smooth cap-off point at ρs/n. This
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Figure 2. The plot on the left hand side shows cn and cs, as defined in (3.1), as the family of

red upper and blue lower curves, respectively. The symmetric curves are m = 0 for both, and as

m is increased the curves tilt. For m = 0 and |c| ≤ 2
3 , there is no solution ρ? to (3.1), and the

branes do not cap off. As m is increased, the maximum value taken on the lower curve increases

and the minimum taken on the upper curve decreases. So the window for c to get continuous

embeddings shrinks. The plot on the right hand side shows the smooth brane embeddings in the

(m, c) plane. For large m these are given by the thick blue curve only, which corresponds to

the disconnected embeddings. For lower m the blue-shaded region is possible and corresponds to

connected embeddings. On the dashed lines the embedding covers all of one patch and caps off

smoothly in the other one. The θ ≡ π
2 embedding corresponds to c = m = 0. Z2-symmetric

connected embeddings correspond to the axes, i.e. c = 0 or m = 0 in this plot.

is indeed not the case, which can be seen as follows. For given (m, c), the cap-off points

are determined as solutions ρ? to (3.1), so we want to look at cn/s as functions of ρ?. The

specific values ρn/s, found from regularity considerations above, are also the only extrema

of the curves cn/s. That is, cn has a minimum at ρn and cs has a maximum at ρs. That

means we only get that one smooth cap-off point from the curve we used to set c in (3.8).

Moreover, in the patch where cn/s take their minimum/maximum, cs/n is always strictly

smaller/greater than cn/s. This ensures that there are no cap-off points in between coming

from the other curve either. See figure 2(a) for an illustration.

In the (m, c)-plane, these short embeddings correspond to the thick solid lines in fig-

ure 2(b). Let us see what happens when we depart from the choice (3.8) for large masses.

Already from figure 2(a) we see that for large enough masses Im cn ∪ Im cs = R. So there

will be solutions ρ? to (3.1) for any real c. But these cap-off points with ρ? different from

ρn/s will not be regular in the sense discussed around (3.4). So for large masses the short

embeddings with (3.8) are also the only regular ones. They are the only generic embed-

dings, in the sense that they exist for any m, and sample plots of the slipping mode and

gauge field can be found in figure 3.

3.3 Long embeddings

As seen in the previous section, there is at least one smooth D7-brane embedding for any

m. In this section we start to look at less generic configurations, which are possible for

– 19 –



J
H
E
P
1
1
(
2
0
1
5
)
1
1
2

2 4 6 8

Ρ

0.5

1.0

1.5

Θ

(a)

2 4 6 8

Ρ

0.05

0.10

0.15

0.20

0.25

f

(b)

Figure 3. Slipping mode on the left hand side and the accompanying gauge field on the right

hand side for short embeddings with masses m in [0, 5], as function of the radial coordinate ρ. The

smaller the mass, the deeper the branes extend into the bulk. For m = 0 we find an embedding

which caps off at ρ = 0, which is the boundary to the other patch. So we already see that, with

θ ≡ π/2, there are at least two massless embeddings.

small enough masses only. Figure 2(a) already indicates that small m is special, and we

study this in more detail now.

For small enough mass, the maximum of the lower curve in figure 2(a), which is cs, is

strictly smaller than the minimum of the upper curve, which is cn. We denote the critical

value of the mass, below which this happens, by m`. It can be characterized as the mass

for which the maximum of cs is equal to the minimum of cn, which translates to

cs(ρs) = cn(ρn) ⇐⇒
√
m2
` + 1

(
m2
` − 2

)
+ 3m` sinh−1m` = 0 , (3.9)

or m` ≈ 0.7968. For m < m` we can make the opposite choice for c as compared to (3.8),

and still get a smooth cap-off point. As discussed above, if we were to reverse the choice

of c for larger mass, the branes would hit a non-smooth cap-off point before reaching the

other patch. But for m < m` we can fix

c = cn(ρn) for m > 0 , c = cs(ρs) for m < 0 . (3.10)

There is no cap-off point in the patch in which we start, so the branes wrap it entirely.

In the second patch they do not stretch out to the conformal boundary, but rather cap

off smoothly at ρn/s for positive/negative m. This is what we call a long embedding, as

illustrated in figure 1(c). The maximal mass m` translates to a maximal depth up to which

the branes can extend into the second patch, as shown in figure 4. In figure 2(b) the

long embeddings correspond to the dashed thick lines, and for cs(ρs)<c<cn(ρn) we get

connected embeddings which we discuss in the next section.

For holographic applications, this offers interesting possibilities to add flavors in both

patches. In addition to the short-short embeddings discussed above, which can be realized

for arbitrary combinations of masses, we now get the option to combine a short embedding

in one patch with a long one in the other. Figure 5 shows as thick black lines particular

long-short combinations with the same value of m in the two patches, which corresponds to

flavor masses of opposite sign in each of the two copies of AdS4 on the boundary. Moreover,
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Figure 4. The left hand side shows the slipping mode for long embeddings, from top to bottom

corresponding to the mass m increasing from 0 to m`, as function of the radial coordinate ρ. The

right hand side shows the accompanying gauge field. As compared to the short embeddings with

the same mass, the long ones cap off at the other pole, and there is a maximal depth up to which the

long embeddings can extend into the second patch. The sharp feature developing for the bottom

curve on the left hand side turns into a cap-off for a short embedding as m→ m`, as given in (3.9).

This way the plot connects to figure 1(b). In the (m, c) plane of figure 2(b), this corresponds to

following one of the thick solid lines coming from large |m|, and then at m` switching to the dashed

line instead of further following the solid one.

we could also combine two long embeddings, which would realize partly overlapping stacks

of D7-branes from the AdS5 perspective. Whether the branes actually intersect would

depend on the chosen m in each of the patches: for m of the same sign they can avoid

each other, as they cap off at different poles on the S5. But for m of opposite sign they

would intersect.

3.4 Connected embeddings

The last class of embeddings we want to discuss are the connected ones, which cover all

of AdS5, including both parts of the conformal boundary. In contrast to Poincaré AdS5,

where finite-mass embeddings always cap off, such embeddings exist for non-zero masses.

The critical value is the same m` given in (3.9) for the long embeddings. As discussed in

the section above, for m < m` there are choices of c for which there is no ρ? to satisfy (3.1),

and thus no cap-off points. These are given by

cs(ρs) < c < cn(ρn) , (3.11)

where cn/s were defined in (3.1) and ρn/s in (3.4). With no cap-off points there are no

regularity constraints either, and these are accepted as legitimate embeddings right away.

Due to the very fact that the embeddings are connected, we immediately get a relation

between the masses in the two patches: they have the same modulus but opposite signs.

An open question at this point is how the massive embeddings for AdS4-sliced AdS5

connect to the massless θ ≡ π/2 embedding with f ≡ 0, which we know as solution from

Poincaré-AdS5. So far, we have only seen massless embeddings capping off at either of

the poles (see figure 3 and 4). The θ ≡ π/2 embedding is at the origin in figure 2(b),
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Figure 5. Connected, long and short embeddings with m = 1
2 . The shown configurations corre-

spond to a vertical section through the phase diagram shown in figure 2(b). The thick blue lines

are a family of embeddings with values of c satisfying (3.11). The solid black lines show the dis-

connected limiting embeddings: the upper/lower ones correspond to positive/negative c saturating

the inequalities in (3.11). The gray dashed lines correspond to embeddings with irregular cap off.

For the limiting case where the branes cap off, we get to choose among short/short, long/short,

short/long and long/long embeddings. We see how the branes do not intersect for this choice of

masses, even for the long/long embedding.

and the blue-shaded region around it are the connected embeddings. The embeddings

corresponding to a vertical section through figure 2(b) are shown in figure 5, where we chose

m = 1
2 , such that the connected embeddings exist. As m is decreased, the embeddings

become more and more symmetric around ρ = 0, and we eventually find the θ ≡ π/2

embedding with m = c = 0. This will be seen more explicitly in the next section.

For each m, one can ask which embedding among those with different c has the minimal

action. The on-shell action as given in (3.7) is divergent, as common for this quantity on

asymptotically-AdS spaces. But the divergences do not depend on c, and so a simple

background subtraction will be sufficient to renormalize when m is held fixed. We come

back to the holographic renormalization with all the bells and whistles in section 4. For

now we simply define the finite quantity

δSD7(m, c) = SD7(m, c)− SD7(m, 0) . (3.12)

Strictly speaking, δSD7 is still divergent due to the infinite volume of the AdS4 slices. But

this is a simple overall factor and we can just look at the “action density”, with the volume

of AdS4 divided out. Using λ2 = −1, the explicit expression for h in (3.5) and integration

by parts, we can further simplify the action (3.7) to

SD7 = −T7

∫
d7ξ
√
g

AdS4×S3

[[
4ζf2

]
+

∫
dρ cosh4 ρ

(
sin2 θ + 4f2 cot2 θ

)]
. (3.13)

We introduce σ = cos θ, such that σ = 2 cos 4π+cos−1 τ
3 . This isolates the volume divergence,
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Figure 6. The plot shows −δSD7 defined in (3.12), as function of the parameter c controlling the

chiral condensate. This corresponds to the free energy with the c = 0 value subtracted off. The

quantity δSD7 then is independent of the chosen renormalization scheme. From top to bottom the

curves correspond to increasing |m|. For m = 0, corresponding to the top curve, the θ ≡ π/2

embedding with c = 0 is the one with lowest energy. As |m| is increased, this changes, seemingly

through a 1st-order phase transition, and the “marginal” embeddings with maximal allowed c

become the ones with minimal free energy.

which is independent of m and c, and we find

SD7 = −T7

∫
d7ξ
√
g

AdS4×S3

[[
ζ(1 + 4f2)

]
−
∫
dρ ζ ′σ2

(
1−

(
1− σ2

)
(σ cosh ρ)′

2
)]
. (3.14)

The prime in the last term denotes a derivative with respect to ρ. δSD7 as defined in (3.12)

is then easily evaluated numerically, and the results are shown in figure 6.

3.5 Z2-symmetric configurations

In the last section for this part we look at a special class of configurations with an extra Z2

symmetry relating the two patches. The slipping mode may be chosen either even or odd

under the Z2 transformation exchanging the two patches, and we can see from (2.48) that

the gauge field f consequently will have the opposite parity, i.e. odd and even, respectively.

For the disconnected embeddings, the extra symmetry simply fixes how the embeddings

have to be combined for the two patches. It narrows the choices down to either short/short

or long/long, and depending on the parity the long/long embeddings will be intersecting or

not. For the connected embeddings, we use that for the k = 2 solutions in (2.53) we have

θ(ρ) = θ(−ρ)
∣∣
m→−m = π − θ(−ρ)

∣∣
c→−c , f(ρ) = f(−ρ)

∣∣
c→−c = −f(−ρ)

∣∣
m→−m . (3.15)

So imposing even Z2 parity fixes m = 0, and imposing odd Z2 parity implies c = 0. From

the connected Z2-even configurations we therefore get an entire family of massless solutions.

They correspond to the vertical axis in figure 2(b). The Z2-odd solutions with c = 0 loosely

correspond to vanishing chiral condensate in N = 4 SYM, but that statement depends on

the chosen renormalization scheme, as we will see below.

We can now understand how the connected embeddings connect to the short or long

disconnected embeddings discussed above. Say we assume Z2 symmetry for a start, which

for the connected embeddings confines us to the axes in figure 2(b). That still leaves various
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Figure 7. Embeddings with Z2-even slipping mode on the left hand side and the accompanying

Z2-odd gauge field on the right hand side, as function of the radial coordinate ρ. The θ ≡ π
2 solution

corresponds to the flat slipping mode and f ≡ 0. The lower the curve on the left hand side, the

larger c. On the right hand side larger c corresponds to a larger peak. We have restricted to c > 0

for the plot, the c < 0 embeddings are obtained by a reflection on the equator of the S5 for the

embedding and a sign flip on the gauge field. Note how the solutions interpolate between θ ≡ π
2

and the massless solution capping off at ρ? = 0 discussed in section 3.2, which is shown as thick

black line in both plots.

possible trajectories through the (m, c) diagram. For even slipping modes we are restricted

to the vertical axis for connected embeddings. Starting out from large mass and the short

embeddings, one could follow the thick lines in figure 2(b) all the way to m = 0, where

the cap-off point approaches ρ? = 0. Another option would be to change to the dashed

line at m = m`, corrsponding to a long embedding. In either case, once we hit the vertical

axis in figure 2(b), this corresponds to the massless embedding with maximal |c|. From

there one can then go along the vertical axis to the θ ≡ π/2 embedding at the origin. This

last interpolation is shown in figure 7. For odd slipping modes, we are restricted to the

horizontal axis in figure 2(b) for connected embeddings. Coming in again from large mass

and a short embedding, the thick line eventually hits c = 0 as the mass is decreased. From

there the branes can immediately go over to a connected embedding, which corresponds to

going over from the thick black line in figure 8(a) to the blue ones. These connect to the

θ ≡ π/2 embedding along the horizontal axis in figure 2(b). Another option would be to

make the transition to a long/long embedding. If we decide to not impose parity at all,

the transition to the θ ≡ π/2 embedding does not have to proceed along one of the axes.

The transition from connected to disconnected embeddings may then happen at any value

of m, small enough to allow for connected embeddings. Figure 5 shows an example for the

transition, corresponding to following a vertical line in figure 2(b) at m = 1
2 .

4 Flavored N = 4 SYM on (two copies of) AdS4

In the previous section we studied the various classes of brane embeddings, to get a catalog

of allowed embeddings and of how they may be combined for the two coordinate patches

needed to cover AdS5. In this section we take first steps to understanding what these

results mean for N = 4 SYM on two copies of AdS4. In section 4.1 we discuss relevant
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Figure 8. Embeddings with Z2-odd slipping mode on the left hand side and the accompanying

Z2-even gauge field on the right hand side, as function of the radial coordinate ρ. m = 0 corresponds

to θ ≡ π
2 and the further the embedding departs from that, the larger is m. The θ ≡ π

2 solution

has f = 0, and the higher the peak of the curves on the right hand side, the larger is m. Note

how these curves interpolate between the θ ≡ π
2 solution and the massive embedding capping off

at ρ? = sinh−1m`, shown as thick black line. The critical mass m` was defined in (3.9), and

corresponds to ρ? ≈ 0.73.

aspects of supersymmetry on curved space and how these are reflected in our embeddings.

We also discuss the boundary conditions that are available to link the two copies of AdS4.

In section 4.2 and 4.3 we carry out the holographic renormalization and compute the one

point functions for the chiral and scalar condensates. With these results in hand, we come

back to the question of boundary conditions and attempt an interpretation of the various

embeddings in section 4.4.

4.1 Supersymmetric field theories in curved space

While it is well understood how to construct supersymmetric Lagrangians on Minkowski

space, for example using superfields, the study of supersymmetric gauge theories on curved

spaces needs a bit more care. Generically, supersymmetry is completely broken by the

connection terms in the covariant derivatives when naively formulating the theory on a

curved background. One simple class of supersymmetric curved space theories is provided

by superconformal field theories on spacetimes that are conformal to flat space. That is,

once we have constructed a superconformal field theory on flat space, such as N = 4 SYM

without any flavors or with massless quenched flavors, we can simply obtain the same

theory on any curved space with metric

ds2 = Ω(t, ~x)
(
−dt2 + d~x2

)
. (4.1)

The crucial ingredient for this extension to work is that all fields need to have their confor-

mal curvature couplings. These can be constructed systematically by consistently coupling

to a conformal supergravity background (see [27] for a nice review). For N = 4 SYM this

boils down to adding the usual conformal coupling for the scalars.

For Ω = z−2, where z is one of the spatial directions, the resulting metric is locally

AdS4 in Poincare coordinates. In fact, the resulting geometry is two copies of AdS4, one
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for z > 0 and one for z < 0. The two AdS4 spaces are linked with each other along

their common boundary at z = 0 via boundary conditions, which we can derive from

the conformal transformation. In Minkowski space, z = 0 is not a special place. All

fields as well as their z-derivatives, which we denote by primes, have to be continuous at

this codimension one locus. Denoting the fields at positive (negative) values of z with a

subscript R (L), the boundary conditions for a massless scalar field X therefore read

XL(z = 0) = XR(z = 0) , X ′L(z = 0) = X ′R(z = 0) . (4.2)

The generalization to fermions and vector fields is straightforward. Under a conformal

transformation, the left and right hand sides of these conditions change in the same way,

and so these boundary conditions have to be kept in place when studying the same field

theory on the conformally related two copies of AdS. These “transparent” boundary con-

ditions were discussed as very natural from the point of view of holography in [1] and many

subsequent works. They preserve the full supersymmetry of the field theory, as is obvious

from their flat space origin. From the point of view of the field theory on AdS they are

unusual. For physics to be well defined on one copy of AdS4, we need one boundary condi-

tion on (say) XL and X ′L alone. Typical examples are the standard Dirichlet or Neumann

boundary conditions. For two separate copies of AdS4 we do need two sets of boundary

conditions in total, what is unusual is that the transparent boundary conditions relate L

and R fields to each other. A different set of boundary conditions would for example be

XL(z = 0) = XR(z = 0) = 0 with no restrictions on the derivatives. With these double

Dirichlet boundary conditions the two copies of AdS4 are entirely decoupled, and these

are the boundary conditions typically used for field theories on AdS4. Generic boundary

conditions will break all supersymmetries, but it is well known how to impose boundary

conditions on N = 4 SYM on a single AdS4 space in a way that preserves half of the su-

persymmetries. These boundary conditions follow from the analysis in [28] and correspond

to the field theory living on D3 branes ending on stacks of NS5 or D5 branes. The de-

tailed choice of boundary conditions dramatically changes the dynamics of field theory on

AdS4, as comprehensively discussed in [7]. While [7, 28] completely classified the boundary

conditions preserving at least half of the supersymmetries for a single copy of AdS4, more

general supersymmetry preserving boundary conditions are possible on two copies. We al-

ready saw one example, the transparent boundary conditions above, which preserve the full

supersymmetry. It is straightforward to formulate boundary conditions that interpolate

between transparent and double Dirichlet boundary conditions, even though we have not

yet attempted a complete classification of supersymmetric boundary conditions for N = 4

SYM on two copies of AdS4.

While conformal theories are the simplest supersymmetric field theories to formulate

on curved space, one can also formulate non-conformal supersymmetric field theories, e.g.

with masses for at least some of the fields, on curved spaces. The non-invariance of the

connection terms can be compensated by adding additional terms to the Lagrangian. In the

simple case of the 4-sphere, it was shown in [11] that for an N = 2 supersymmetric gauge

theory with massive hypermultiplets a simple scalar mass can act as a compensating term.

Denoting the two complex scalars in a hypermultiplet by Q and Q̃, which in a common
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abuse of notation we also use for the entire chiral multiplet they are part of, one recalls

that the superpotential term

W = MQQ̃ (4.3)

gives rise to a fermion mass m as well as an F-term scalar mass term in the potential,

Vm = |M |2
(
|Q|2 + |Q̃|2

)
. (4.4)

This theory as it stands is not supersymmetric, but can be made supersymmetric by adding

a particular dimension-2 operator to the Lagrangian. The full scalar mass term then reads

V = Vm + V S4

c , with

V S4

c = i
M

R

(
QQ̃+ c.c.

)
, (4.5)

where R is the curvature radius of the sphere. Since the compensating mass term is imag-

inary, the resulting action is not real. We construct supersymmetric D7-brane embeddings

to holographically realize this supersymmetric combination of mass terms on S4 in ap-

pendix B, and correspondingly find an imaginary gauge field. The compensating terms

have been understood systematically in [12]. Again, the natural way to construct super-

symmetric field theories in curved space is to couple to a background supergravity multiplet.

One then obtains a supersymmetric field theory for every supersymmetric configuration of

the background supergravity. To have a non-trivial curved-space configuration preserving

supersymmetry, the supergravity background has not just the metric turned on but also

additional dynamical or auxiliary fields. The expectation values of these extra fields then

appear as the desired compensating terms in the field theory Lagrangian. Following this

logic, the simple compensating term (4.5) for the S4 can easily be generalized to AdS4,

which now yields a real coefficient

V AdS4
c =

M

R

(
QQ̃+ c.c.

)
. (4.6)

Including the superpotential mass term, the conformal curvature coupling, as well as the

supersymmetry restoring compensating term, the full scalar mass matrix for a field theory

in AdSd+1 with 8 supercharges reads

MQQ̃ =

(
−1

4(d2 − 1) +M2 M

M −1
4(d2 − 1) +M2

)
. (4.7)

For this work we are of course most interested in the AdS4 case, that is d = 3. The

eigenvalues of this mass matrix are given by

M± =
1

4
(1− d2 + 4M2 ± 4M) . (4.8)

The full spectrum is symmetric under M → −M with the two branches being exchanged,

and the minimal eigenvalue ever reached is Mmin = −d2/4 for M = ±1/2. This is exactly

the BF bound in d dimensions [29, 30]. So, reassuringly, the supersymmetric theory never
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Figure 9. Eigenvalues of the scalar mass matrix as a function of superpotential mass M for flavored

N = 4 SYM on AdS4. Alternative quantization is possible for eigenvalues in the gray-shaded region.

becomes unstable. The full scalar mass spectrum is depicted in figure 9. From this dis-

cussion we also see that the embeddings we found and studied in section 2, 3 exhaust the

entire scalar mass spectrum corresponding to stable theories. This is despite m2 always

being positive — the stable negative-mass theories that are possible for AdS4 arise from

the combination of all mass-like terms as we have just seen. We should note, however, that

m is related to the field theory mass M via M =
√
λ

2πm [21], so in the limit where classical

supergravity is a good approximation we always deal with large M and positive eigenvalues.

While the compensating term restores supersymmetry, it breaks some of the global

symmetries. Let us discuss this in detail for the case of N = 4 SYM with Nf flavors. The

massless theory has a global SU(2)Φ×SU(2)R×U(1)R×U(Nf ) symmetry. Holographically,

the first 3 manifest themselves as the preserved SO(4)×U(1) isometry of the D7-brane

embedding with θ ≡ π/2, whereas the U(Nf ) global symmetry corresponds to the world-

volume gauge field. All flavor fields are invariant under SU(2)Φ, which acts only on the

adjoint hypermultiplet that is part of the N = 4 Lagrangian written in N = 2 language. So

this symmetry will not play a role in the discussion below. Under SU(2)R the fundamental

scalars transform as a doublet, but the fundamental fermions are neutral. A superpotential

mass breaks the U(1)R. In the holographic dual, U(1)R corresponds to shifts in ψ, and

these are manifestly broken by the massive D7-brane localized at a fixed value of ψ. The

superpotential mass term, however, preserves the full SO(4) symmetry since |Q|2 + |Q̃|2

is the SU(2) invariant combination. Not so for the compensating term, which explicitly

breaks SU(2)R down to a U(1) subgroup [12]. This pattern mirrors exactly the symmetry

breaking pattern we found in our supersymmetric probe branes.

The structure of supersymmetry being restored by a compensating term is reminiscent

of supersymmetric Janus solutions, that is field theories with varying coupling constants.

Since under a supersymmetry variation the Lagrangian typically transforms into a total

derivative, position-dependent coupling constants generically break supersymmetry. It was

found in [31, 32] that supersymmetry can again be restored by compensating terms. This

discussion is in fact related to field theories on AdS by a conformal transformation. We will

find this picture useful for some of our analysis, so we briefly introduce it. We start with

a massive theory on AdS. In the presence of a mass term, the conformal transformation

from AdS to flat space is not a symmetry, but is explicitly broken by the mass term. If,
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however, the mass is the only source of conformal symmetry breaking (as is the case in

N = 2∗ or flavored N = 4 SYM), we can restore the conformal symmetry by treating the

mass M as a spurion. That is, by letting it transform explicitly. This way a field theory

with constant M on AdS can be mapped to a field theory on flat space with a position-

dependent superpotential mass M ∼ 1/z. Correspondingly, the fermion mass goes as

1/z, whereas the superpotential induced scalar mass as 1/z2. Such a position-dependent

M(z)QQ̃ superpotential is precisely the framework discussed in [31]. It was shown that

supersymmetry can be restored by a compensating term proportional to M ′(z)QQ̃. This

1/z2 compensating term is exactly the conformally transformed AdS compensating term

from (4.6). So supersymmetric field theories on AdS are indeed conformally related to

Janus like configuration with 1/z mass terms.

4.2 Holographic renormalization

A puzzling aspect of our supersymmetric probe configurations is that for a given leading

term, that is for a given mass M in the field theory, we found families of solutions that

differed in the subleading term (see again (4.13) below). Similar ambiguities were previously

found in numerical studies in [10]. Holographic intuition suggests that this corresponds to

different allowed vacuum expectation values for a given mass, and we map that out in

detail before attempting an interpretation.

The D7-brane action (2.7) is divergent as usual, and we have to carry out its holo-

graphic renormalization before extracting information about the flavor sector of the dual

theory [33, 34]. The counterterms for the slipping mode θ have been given in [35], so we

only need to construct those for the gauge field. In many regards, f can be seen as a scalar

at the BF bound, and it is tempting to just take those counterterms from [34]. There

are some subtleties, however, as we will discuss momentarily. The counterterms for the

slipping mode as given in [35] are

Lct,θ =− 1

4

[
1− 1

12
R

]
+

1

2
θ̃2 − log ε

[
1

32

(
RijR

ij − 1

3
R2

)
+

1

2
θ̃�W θ̃

]
+ α1θ̃

4 + α2θ̃�W θ̃ +
α3

32

(
RijR

ij − 1

3
R2

)
.

(4.9)

Note that gε denotes the metric on the cut-off surface induced from the background metric,

as opposed to the worldvolume metric, and R denotes the curvature of gε. �W is the Weyl-

covariant Laplacian, �W = � + 1
6R. We have also defined θ̃ := θ − π

2 , since our θ is

shifted by π
2 compared to the coordinates used in [35]. In the curvature conventions of [35],

the AdS4 slices have Rij = 3gε ij . The coefficients of the finite counterterms αi are not

determined by the renormalization and reflect a scheme dependence. For α1, demanding

the free energy to vanish for Poincaré AdS, as required by supersymmetry, fixes [35]

α1 = − 5

12
. (4.10)

The holographic counterterms are universal, in the sense that they should be fixed once

and for all, regardless of the background. So the same argument for a supersymmetry-

preserving scheme in Poincaré AdS also fixes α1 for us — it is still the same theory, just
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evaluated on a different background. That leaves the scheme dependence coming from

α2 and α3, which can not be fixed from flat-space considerations since the counterterms

vanish then.

We now come back to the extra terms for the S3 gauge field. There are two possible

ways to look at it. The first one is the approach taken in [35] to deal with the slipping mode.

For fixed ω as given in (2.28), the gauge field A = fω from the AdS perspective reduces

to the radial profile f , which can be treated as a scalar field. The other one is to take

the 6 + 1-dimensional boundary introduced by the bulk radial cut-off on the worldvolume

of the D7-branes for what it is. We would then only allow covariant and gauge-invariant

counterterms like
√
gεF (A?)

2 etc., where the star denotes pullback to the cut-off surface,

and determine their coefficients. Since we already have ω and the two approaches are

equivalent for our purposes, we follow the first one.

The radial profile of the S3 gauge field f is almost like a scalar at the BF bound.

After integrating the WZ term in (2.7) by parts, the bulk action takes exactly the same

form. But due to this integration by parts, the action picks up an extra boundary term as

compared to a scalar at the BF bound. Such boundary terms can not be ignored on AdS,

and here the extra boundary term cancels a log2 divergence usually expected for scalars

at the BF bound. The counterterms are therefore slightly different from those given e.g.

in [25, 34, 35], and we find

Lct,f = −λ2f2

(
1

2 log ε
+

α4

(log ε)2

)
. (4.11)

This introduces an additional scheme-dependent counterterm with coefficient α4. For the

κ-symmetric embeddings, where θ and f are related by (2.48), these finite counterterms

are related as well. So if one stays within this family of supersymmetric embeddings, α4

could be absorbed in a redefinition of α2. But we will not do that. For the renormalized

D7-brane action corresponding to (2.7) we then have

SD7,ren = SD7 − T7

∫
ρ=− log(ε/2)

d7ξ
√
gε [Lct,θ + Lct,f ] . (4.12)

To transform to Fefferman-Graham coordinates where the boundary metric is AdS4 with

unit curvature radius, we have set ρ = − log(z/2). The cut-off surface is then given by

ρ = − log(ε/2). For the covariant counterterms it does not matter how we parametrize the

cut-off surface, but for those involving explicit logarithms a change in the parametrization

results in a change of the finite counterterms. The log-terms in (4.9), (4.11) are chosen

such that the coefficients of the finite counterterms agree with the usual Fefferman-Graham

gauge conventions.

4.3 One-point functions

With the holographic renormalization carried out we can now compute the renormalized

one-point functions for the chiral and scalar condensates in N = 4 SYM. To get the

near-boundary expansion for the embedding (2.53) and gauge field (2.48), we change to
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FG gauge. As explained above, this amounts to setting ρ = − log(z/2). Expanding then

in small z yields

θ =
π

2
+mz −mz3 log(z) + z3

[m
4

(
2m2 + 4 log 2− 3

)
− c
]

+O
(
z5 log z

)
, (4.13a)

f =
m

iλ
z2 log z +

3c−m3 + 3m(1− log 2)

3iλ
z2 +O(z4 log z) . (4.13b)

The O(z) term of the slipping mode as usual sets the mass, while the O(z3) term loosely

corresponds to the chiral condensate. The leading term of the gauge field expansion sets the

extra scalar mass, and is related to the O(z) term in the slipping mode. This reflects the

relation between the superpotential mass and compensating mass terms discussed in 4.1.

The O(z2) term encodes the corresponding scalar condensate.

To actually get the one-point functions, we have to compute the variation of the ac-

tion (2.7) and evaluate it on shell. Going on shell and varying does not necessarily commute,

so we will not use any of the κ-symmetry relations to simplify the action. The starting point

will be (3.7), where h was computed in (2.36). We can, however, use relations like (3.5)

after the variation. That gives

δθSD7 = −T7VS3

∫
d5ξ ∂ρ

[√
gAdS4

ζ ′θ′ sin4 θ δθ
]

+ EOM , (4.14a)

δfSD7 = −T7VS3

∫
d5ξ ∂ρ

[√
gAdS4

(
ζ ′ sin2 θf ′ + 8ζf

)
δf
]

+ EOM , (4.14b)

where EOM denotes contributions which vanish when evaluated on shell. Combining that

with the variation of the counterterms yields

〈Oθ〉 = − 1√
−gAdS4

δSD7,ren

δθ(0)
= T7VS3

[
2c+ (1 + 4α1)m3 +

5 + 8α2 − 4 log 2

2
m

]
, (4.15a)

〈Of 〉 = − 1√
−gAdS4

δSD7,ren

δf (0)
= T7VS3iλ

[
c− m

3

(
m2 − 3 + log(8)− 6α4

)]
, (4.15b)

where θ(0) and f (0) denote the leading coefficients in the near-boundary expansion, i.e.

θ = π/2 + θ(0)z+ . . . and f = z2 log z f (0) + . . . . As expected, the scheme-dependent terms

only contribute parts proportional to m, and for m = 0 there is no scheme dependence.

The precise value of c depends on the embedding we choose. We recall the explicit values

for m ≥ 0 in the ρ > 0 patch. For the short and long embeddings, we find from (3.8)

and (3.10)

cshort =
m2 − 2

3

√
m2 + 1 +m sinh−1(m) , clong = −cshort . (4.16)

Recall that the long embeddings are possible only for m < m`, with m` given in (3.9). For

the connected embeddings, which also only exist in this mass range, c is free to vary within

the ranges given by (3.11), that is between cshort and clong.
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4.4 Interpretation

We found that, for a range of masses, a one-parameter family of solutions exists with

different values of the chiral and scalar condensates for one and the same mass. We now

attempt to interpret what these solutions mean in the field theory. Our interpretation will

be somewhat similar to the one offered in [10] for the case of non-supersymmetric flavors on

AdS4. The family of massless solutions should be easiest to understand. Recall that there

is one solution among this family that is singled out: the m = c = 0 connected solution,

which is the only massless solution where chiral symmetry is not spontaneously broken.

This solution can be conformally mapped to massless flavors on flat space, as described at

the beginning of this section. Correspondingly, this particular solution should correspond

to flavored N = 4 SYM with transparent boundary conditions.

Under the same conformal transformations our other solutions also map into massless

flavors on all of flat space, but now with a position dependent chiral condensate that falls of

as 1/z3 as a function of distance to the plane at z = 0. Our basic suggestion is that these

other embeddings should correspond to supersymmetric flavors in the field theory with

different boundary conditions imposed on the flavor fields at z = 0. Only the standard

transparent boundary conditions will yield a vanishing chiral condensate. This case is

easiest to make for the other extreme case: the disconnected embedding with m = 0 and

c = −2/3, shown as thick black line in figure 7(a). In this case, we can decide to only study

flavors in one of the two asymptotic AdS spaces (or, alternatively, on one half of Minkowski

space). The disconnected embedding at positive ρ is perfectly smooth and well behaved

without the second disconnected embedding at negative ρ. Since we now only added flavors

in the z > 0 half of Minkowski space, this embedding can not correspond to a field theory

with transparent boundary conditions. In the notation introduced above (4.2), only the R

fields exist, there are no L fields we could relate them to at z = 0. So one has to impose

boundary conditions at z = 0 on the R flavor fields alone, presumably either Dirichlet or

Neumann conditions. Either of these choices is expected to give rise to a position dependent

condensate, just as we observed in our brane embedding. This happens already in the free

field theory, as can be seen by employing the standard method of images, as was e.g. done in

this context in [31]. For simplicity, let us consider the case of a scalar field. The propagator

of a scalar field on half space is given by

G(x, y) =
1

4π

(
1

(x− y)2
± 1

(x−Ry)2

)
, (4.17)

where (Ry)µ = (ty, xy, yy,−zy) for yµ = (ty, xy, yy, zy) and upper/lower sign corresponds to

Neumann/Dirichlet boundary conditions. To calculate the expectation value 〈X2(x)〉, we

simply need to evaluate G(x, x). The first term gives rise to a divergent contribution that

needs to be subtracted in order to properly define the composite operator X2. In N = 4

SYM, the corresponding divergence was even shown to cancel between contributions from

different fields in [31]. We get a non-vanishing expectation value from the mirror charge

term that goes as 1/z2, as appropriate for a dimension-2 operator. For a fermion a similar

calculation gives 1/z3, and these are indeed the expectation values as we found here. So

in principle, at least for this special configuration, the behavior we found holographically
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makes qualitative sense. It would be nice to see whether non-renormalization theorems

could allow a quantitative comparison between free and strongly coupled field theories, as

was done in the context of Janus solutions in [31].

For the other embeddings, that is the connected embeddings with m = 0, c 6= 0

and the disconnected embeddings with m = 0 in both halves of spacetime, we have no

strong argument for what the field theory boundary conditions should be. But we suspect

that they interpolate between the transparent boundary conditions at m = c = 0 and

Dirichlet (or Neumann) boundary conditions for the maximal c. It is straightforward to

formulate such interpolating boundary conditions that give a 1/z3 condensate with growing

coefficient, but the choice is not unique. Potentially, a careful study of supersymmetry

together with our results for the expectation values could help pin this down. But at least

our results for the massless embeddings appear to be consistent with this interpretation.

For massive embeddings there is no such simple argument. Mapping to flat space

gives position-dependent masses that diverge at z = 0, and so any discussion of boundary

conditions is more involved. But it is tempting to relate the presence of connected and

long embeddings for small mass to boundary conditions in a similar way. In the window

m2
BF ≤ m2 < m2

BF + 1 we can do standard and alternative quantization for scalar fields

on AdS4 [29, 30]. That similarly allows for a family of boundary conditions, and hence

presumably a family of expectation values. But which mass is it that approaches m2
BF + 1

when we dial m from zero to its critical value given in (3.9)? Note that, for a given leading

coefficient m in our expansion of the fluctuating field θ in the bulk, the field theory mass M

is actually given by M =
√
λ/(2π)m [21]. Since this M is thus much larger than 1 except

for infinitesimally small values of m, we find that both mass eigenvalues in (4.8) are large

and positive for any finite m. So none of the fundamental fields is even close to the window

in which two different boundary conditions are allowed. However, while the fundamental

fields have masses of order
√
λ in all our embeddings, the gauge invariant meson fields

actually have order one masses [21, 36]. This makes the mesons a natural candidate for

a field that obeys different boundary conditions in our different embeddings for one and

the same mass. We can indeed see directly from the geometry that the meson spectrum is

strongly affected by the difference of embeddings. Corresponding to the different classes

of brane embeddings, we get different classes of mesons: those built from pairs of L quarks

and R quarks separately (again in the notation introduced above (4.2)), and those with

mixed content. Denoting the mesons by their quark content, we see that for connected

embeddings both LL, RR as well as LR and RL mesons are light, as they all correspond to

fluctuations of the brane. For disconnected embeddings, only LL and RR mesons can be

light, whereas LR and RL mesons correspond to semi-classical strings stretched between the

two disconnected branes, and hence to order
√
λ masses. A more quantitative discussion

of this suggestion requires an analysis of the meson spectrum, encoded in the spectrum of

linearized fluctuations around our embeddings, and is beyond the scope of the present work.
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5 Discussion

The main result of this work is a class of supersymmetric D7-brane embeddings into

AdS5×S5, which allow to holographically describe N = 4 SYM coupled to massive N = 2

supersymmetric flavor hypermultiplets on spaces of constant curvature. For AdS4-sliced

AdS5×S5, which corresponds to a field theory on two copies of AdS4, the embeddings are

given in section 2.5, and for S4 and dS4 slices in appendix B. Preserving supersymmetry in

the transition from flat to curved space needs additional care for non-conformal theories,

and in particular requires extra compensating terms to make mass terms supersymmet-

ric [12]. This has to be taken into account in the construction of holographic duals as well,

and translates to non-trivial profiles for some of the matter fields in the corresponding solu-

tions. For the D7-branes the compensating mass term on the field theory side translates to

non-trivial worldvolume flux. Finding supersymmetric probe brane embeddings translates

to solving for the constraint imposed by κ-symmetry on the background Killing spinors to

have non-trivial solutions, and we went through that discussion systematically in section 2.

Isolating necessary conditions for supersymmetric embeddings from the κ-symmetry anal-

ysis, although technically cumbersome, allowed us to decouple the slipping mode and the

gauge field, and find analytic solutions.

We then focused on a more detailed analysis of AdS4-sliced AdS5. AdS is a preferred

choice among the constant-curvature spaces in Lorentzian signature, as the corresponding

supergroups have unitary representations and realizing supersymmetric QFTs consequently

is more straightforward than on dS. Holographically we naturally get two copies of AdS4 as

boundary geometries, each one being the boundary in of the two coordinate patches needed

to cover AdS5 with AdS4 slices. In section 3 we discussed in detail the families of regular

massive D7-brane embeddings, and how they can be combined for the two patches. That

revealed a surprisingly rich set of options for small masses. For generic large masses, the

D7-branes cap off in the coordinate patch where they extend to the conformal boundary,

much like they do on Poincaré AdS. This feature of the “short” embeddings reflects that

the massive flavors do not affect the deep IR of the QFT, as they are simply gapped out. On

Poincaré AdS this is the generic behavior, regardless of the value of the mass [8]. For the

AdS4 slices, on the other hand, we found that for small masses there are also “long” brane

embeddings, which cover all of the patch in which they extend to the conformal boundary.

They extend into the second patch and cap off at a finite value of the radial coordinate there,

as illustrated in figure 1. In addition to that, we found families of connected embeddings,

which cover both copies of AdS4 on the conformal boundary. Similar, although non-

supersymmetric embeddings had been found numerically in [10] before. The connected

embeddings become available below the same critical mass as the long embeddings. They

then come in one-parameter families for each fixed mass, corresponding to different values

for the chiral and scalar condensates. Generically, that family of connected embeddings

interpolates between long and short embeddings, as shown in figure 5. For the particular

case of massless flavors, the one-parameter family of connected embeddings includes the

one conformally related to massless flavors on flat space as special case. A phase diagram

summarizing the embeddings can be found in figure 2(b).
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The embeddings stretching all through at least one of the coordinate patches, which

are available for low enough values of the mass, suggest that those flavors can indeed af-

fect also the deep IR regime of the dual QFT, despite their non-zero mass. A natural

candidate feature of QFT on AdS4, that is suggestive of this behavior, is the possibility

of having stable negative-mass scalars. We turned to a more detailed discussion focussing

on the QFT side in section 4. After a general discussion of how precisely the embeddings

encode the flavor mass and of the relation to supersymmetric Janus solutions, we carried

out the holographic renormalization and computed the one-point functions. For the mass-

less embeddings we found that the one familiar from Poincaré AdS is the only one where

chiral symmetry is not spontaneously broken. The others have non-vanishing (constant)

chiral and scalar condensates. We also gave a simple field theory toy model to explain the

one-parameter family of massless embeddings, based on the possible choices of boundary

conditions at the conformal boundary for each of the AdS4 spaces. For the massless em-

beddings we could employ a conformal map to two halves of Minkowski space, mapping the

constant condensates on AdS4 to position-dependent condensates on Minkowski space. For

a family of free theories with boundary conditions interpolating between transparent and

either Dirichlet or Neumann boundary conditions, we found exactly the position-dependent

scalar condensates that came out of our holographic calculation. This suggests that going

through the different embeddings available at zero mass might be a holographic analog of

the transitions studied in [37]. As discussed in section 4.4, the meson spectrum could give

crucial insights into whether this interpretation can also explain the one-parameter families

of massive embeddings.

Our results open up a number of additional directions for future research. In a compan-

ion paper we use the S4 embeddings to conduct a precision test for probe brane holography

using supersymmetric localization. In the same spirit, following through the κ-symmetry

analysis laid out in section 2 should allow to find similar supersymmetric embeddings into

S1×S3-sliced AdS5×S5, and thus to compute the superconformal index. Another direc-

tion can be seen by noting that topological twisting [38] can also be seen as an example

where compensating terms restore supersymmetry. One can think of topological twisting

as turning on the background R-charge gauge field. If it is chosen to be equal to the

spin connection,6 some supercharges can be made to transform as scalars under parallel

transport in the gravitational and R-charge background. Turning on the background gauge

fields adds extra terms to the Lagrangian, proportional to the R-current, and these serve as

the compensating terms that restore supersymmetry. This twisting procedure puts no con-

straints on the geometry of the background space, and in principle it will be straightforward

to implement it in the dual bulk description. The R-charge gauge field is now dynamical,

and the topological twisting implies that its leading (radially independent) piece at the

boundary no longer is taken to vanish, but is set equal to the spin connection. It would

be very interesting to construct the corresponding supergravity solutions. As compared

to the compensating terms of the topologically twisted N = 4 theory, the implementation

6More precisely, for N = 4 SYM one picks [39] a SU(2) subgroup of the SU(4)R symmetry and sets

the corresponding gauge field equal to the SU(2)r part of the spin connection, which transforms in the

(1, 3)⊕ (3, 1) representation of the Spin(4)=SU(2)l×SU(2)r Euclidean Lorentz group.
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of the compensating terms of [11, 12, 31] is easier to accomplish holographically, since we

only need to turn on a single extra scalar field. For N = 2∗ this was done in [40], for super

Janus in [41, 42] and for flavored N = 4 SYM in this work.
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A Clifford algebra identities

In this appendix we derive the technical identities needed to explicitly evaluate the κ-

symmetry condition in section 2.4, and specifically R−1
S5 R

−1
AdS(2.45). We use Γ̃ρA defined

in (2.32), and define the operator R[Γ] := R−1
S5 ΓRS5 . With Γ̂ε =

[
ΓψΓθ + θ′ΓθΓ~χΓρΓAdS

]
ε,

we then find

R−1
S5 R

−1
AdSΓ̂ε = R[ΓψΓθ]ε0 + θ′R[ΓθΓ~χ] Γ̃ρAε0

= R[ΓθΓ~χ]
[
i cot θ · 1 + θ′Γ̃ρA

]
ε0 − i csc θε0 . (A.1)

For the second line we used R[ΓψΓθ] = i cot θR[ΓθΓ~χ]− i csc θΓθΓ~χ. This will allow us to

evaluate the first term on the left hand side in (2.45). For the second term we use the

relation for R̃AdS of (2.32), to find

R−1
S5 R

−1
AdSΓρΓAdSΓψRS5R̃AdSΓρε0 = R[ΓθΓ~χ]

[
cosh ρ · 1− i sinh ρ Γ̃ρA

]
ε0 . (A.2)

This will allow us to evaluate the first term in the brackets of the second term on the left

hand side in (2.45). For the last term we note that

ΓθRS5R̃AdSΓρε0 = ΓψΓ~χRS5

[
cosh ρΓρΓAdS + i sinh ρ · 1

]
RAdSε0 . (A.3)

So we find

R−1
S5 R

−1
AdSΓθRS5R̃AdSΓρε0 = R[ΓψΓ~χ]

[
cosh ρ Γ̃ρA + i sinh ρ · 1

]
ε0 . (A.4)

We will now use R[ΓψΓ~χ] = i csc θR[ΓθΓχ] ΓθΓ~χ − i cot θ · 1, which gives us

R−1
S5 R

−1
AdSΓθRS5R̃AdSΓρε0 =

[
csc θR[ΓθΓ~χ]− cot θ 1

]
×
[
i cosh ρΓ̃ρA − sinh ρ · 1

]
ε0 . (A.5)

These are the tools needed in section 2.4 to identify the parts with non-trivial dependence

on the internal space on the left hand side of (2.45).
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B Supersymmetric D3/D7 for massive flavors on S4

We now go through the derivation of κ-symmetric D7 embeddings into AdS5×S5, where

AdS5 is Euclidean and in global coordinates. The result will allow us to holographically

describe N = 4 SYM coupled to (massive) flavor hypermultiplets on S4. For the metric

we take g = gAdS5 + gS5 , with the S5 metric given in (2.1). For the S4 part of AdS5 we

use conformally flat coordinates to simplify the explicit computations, but note that the

resulting embeddings are independent of the chosen S4 coordinates. The AdS5 metric then

takes the form

gAdS5
= dR2 + sinh2RdΩ2

4 , dΩ2
4 = W−2d~x2 , W = 1 + ~x2 . (B.1)

The Killing-spinor equation for Euclidean AdS differs by a factor of i from the Lorentzian

one, and there is a sign convention to be fixed. For the analytic continuation to be discussed

momentarily, we have

Dµε =
1

2
ΓAdSΓµε , µ = 0 . . . 4 . (B.2)

We have denoted by Γ (as opposed to Γ) the Euclidean Clifford-algebra generators. The

conventions for the Euclidean Clifford algebra will be laid out in more detail along with

the analytic continuation below. The Killing spinor equation for the S5 part stays the

same, and is given in (2.2). The AdS5×S5 Killing spinors are again of the form (2.3), i.e.

ε = RAdSRS5ε0, with RS5 given in (2.4) and

RAdS = W−1/2e
1
2
ρΓρΓAdS

[
1 + xiΓρΓ

xi
]
. (B.3)

For the embedding and gauge field we choose the same ansatz as before and motivated

in section 2.1.1. That is, we take a non-trivial slipping mode as function of the radial

coordinate ρ and a worldvolume gauge field A = fω. Note that although we have used

the same name for the radial coordinate, ρ, it does not have the same geometric meaning

as in the AdS4-sliced case, and consequently the embeddings are geometrically different.

The ten-bein pulled back to the worldvolume is again given by (2.11), and the induced

metric reads

g =
(
1 + θ′

2)
dρ2 + sinh2ρ dΩ2

4 + sin2θ dΩ2
3 . (B.4)

B.1 Analytic continuation

For the S3 mode ω appearing in the gauge field we again take (2.28). Evaluating the κ-

symmetry projection conditions (2.9) then proceeds almost in the same way as for the AdS4

slicing in Lorentzian signature all the way up to (2.37). To make this more precise, we will

have to set up the analytic continuation to Euclidean signature. The metric quantities as

we set them up are already in Euclidean signature, and the more subtle step is to implement

the analytic continuation on the Clifford algebra and spinors. The Killing spinors we have

given in (B.3) also assume a Euclidean-signature Clifford algebra already. But we have to
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implement the continuation in the κ-symmetry condition (2.9). To reflect the change in

signature we set

Γx0 → Γx0 = iΓx0 , Γx0 → Γ x0 = −iΓx0 . (B.5)

With this continuation, we note that CΓ ?x0 = −Γx0C. The S5 part is not affected by the

analytic continuation, and for the AdS part we define ΓAdS using the same expressions as

before below (2.2). That is, with indices up but Γs replaced by Γ s. This gives ΓAdS =

−iΓAdS (lowering the indices, however, does not produce a sign for ΓAdS). This is the matrix

we have used in (B.3). For the chirality projector we define Γ11 = −iΓAdSΓS5 = Γ11.

We can now take a closer look at the matrix R̃AdS, defined by CRAdS = R̃AdSC as

before. We follow [43] (extending earlier work in [44]), in including a time reflection in

the complex structure on Euclidean space to be compatible with analytic continuation, i.e.

x?0 = −x0. The charge conjugation matrix is kept as the Lorentzian one. Noting that now

CΓAdS = −ΓAdSC, we then find

R̃AdS = eρΓAdSΓρRAdS . (B.6)

Comparing to (2.32), we note that this relation is different from the one we found for the

AdS4 slicing in Lorentzian signature. That means we will also have to change the projection

condition (2.30) to solve the κ-symmetry constraint.

B.2 κ-symmetry

Although we did not have to explicitly unpack the AdS4-slice Γ-matrices in section 2, the

analytic continuation still has implications. We start with the κ-symmetry condition as

spelled out in (2.9). The lowercase γ’s are now defined as γi = eai Γa, i.e. with the Euclidean

Γ -matrices, and we have

Γ(0) =
i

(p+ 1)!
√

det g
εi1...ip+1γi1...ip+1

. (B.7)

The extra i is due to the change in sign for the metric determinant. Since our embedding

ansatz is formally the same as for the AdS4 slicing, we get to an analog of (2.15) in just

the same way, and find

Γκε =
−i√

det(1 +X)

[(
1 +

1

8
γijklFijFkl

)
Γ(0)ε+

1

2
γijFijC

(
Γ(0)ε

)?]
. (B.8)

Since F does not have timelike components, its continuation is trivial. The matrices ap-

pearing in (B.8) are now

Γ(0) =
i√

1 + θ′2
Γ̂ , Γ̂ =

[
1 + θ′ΓθΓρ

]
ΓAdSΓ~χ . (B.9)

As compared to the Lorentzian case, there is now no relative sign between (B.9) and (B.7),

since ΓAdS is equal to the product of all AdS5 Γ -matrices with indices down. To proceed

to the analog of (2.37), we note that the function h again evaluates to (2.36). Since now
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C(iΓAdS)? = iΓAdSC, we get the same sign in the term with the charge conjugation matrix

as before in (2.37), and find(
1 +

1

8
γijklFijFkl

)
Γ̂ ε+

1

2
γijFijΓ̂Cε

? = hε . (B.10)

B.2.1 Explicit evaluation

Since we kept the S3 mode (2.28), we again find (2.38) for the F 2-term. As pointed out

above (B.6), we define R-matrices with a tilde analogously to section 2. Since RS5 does not

contain any AdS5 Γ-matrices, it is not affected by the Wick rotation and this procedure

results in the same matrix as in section 2. Instead of the projection condition (2.30), we

now use

Γ̃Cε?0 = λε0 , Γ̃ = Γχ1Γ θ . (B.11)

We then find that (B.10) evaluates to

Γ̂ ε+
λ

2
γijFijΓ̂ R̃S5R̃AdSΓ̃ ε0 = 2f ′f csc3θ ΓρΓAdSε+ hε . (B.12)

We first evaluate the γ · F term. With the definitions above we find that on the spinor

subspace singled out by P0 (which stays the same as in Lorentzian signature) and (1+Γ11),

1

2
γijFijΓ̂ R̃S5Γ θΓχ1 = csc θ

[
if ′ΓρΓ

ψ − 2f csc θ
(
Γ θ − θ′Γρ

)
ΓAdS

]
RS5 . (B.13)

With that in hand we can evaluate (B.12), for which we find

LHS := Γ̂ ε− λ csc θ
[
if ′ΓρΓ

ψ − 2f csc θΓ θΓAdS

]
RS5R̃AdSε0

= 2λfθ′ csc2θ RS5ΓρΓAdSR̃AdSε0 + 2f ′f csc3 θΓρΓAdSε+ hε =: r.h.s. .
(B.14)

The left hand side once again is linear in f and its derivative, and the right hand side

does not involve explicit S5 Γ-matrices. To proceed, we need the analogues of (A.1), (A.2)

and (A.5). With Γ̃ρA = R−1
AdSΓρΓAdSRAdS, we find

R−1
S5 R

−1
AdSΓ̂ ε = R[Γ θΓ~χ]

[
θ′Γ̃ρA − cot θ · 1

]
ε0 + csc θ ε0 , (B.15)

R
[
R−1

AdSΓρΓ
ψ
]
R̃AdSε0 = iR[Γ θΓ~χ]

[
sinh ρ · 1− cosh ρ Γ̃ρA

]
ε0 , (B.16)

R
[
R−1

AdSΓ
θΓAdS

]
R̃AdSε0 =

[
csc θR[ΓθΓ~χ]− cot θ 1

]
×
[
cosh ρ · 1− sinhρ Γ̃ρA

]
ε0 . (B.17)

We now come back to the left hand side of (B.14). Since the right hand side does not

involve S5 Γ-matrices, any terms involving those will have to vanish on the left hand side.

We find

R−1
S5 R

−1
AdS l.h.s. =

(
θ′ − λf ′ csc θ cosh ρ− 2λf csc3θ sinh ρ

)
R[Γ θΓ~χ]Γ̃ρA

−
(
cot θ − λf ′ csc θ sinh ρ− 2λf csc3θ cosh ρ

)
R[Γ θΓ~χ]

+ csc θε0 − 2λf csc2θ cot θ
(

cosh ρ · 1− sinh ρΓ̃ρA

)
ε0 .

(B.18)
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Just like in the AdS4-sliced case, the round brackets of the upper two lines on the right hand

have to vanish separately, since they multiply linearly independent Γ-matrix structures and

nothing on the right hand side of (B.14) can cancel them. Since f and f ′ appear linearly,

we can solve for them and find

f =
1

2λ
sin3θ

(
cot θ cosh ρ− θ′ sinh ρ

)
, f ′ =

1

λ

(
θ′ sin θ cosh ρ− cos θ sinh ρ

)
. (B.19)

Since both of these are functions of θ and θ′ only, we can derive a second-order ODE for

θ, which reads

θ′′ + 3θ′
2

cot θ + 4θ′ coth ρ− cot θ
(
1 + 2 csc2 θ

)
= 0 . (B.20)

These will once again be our main results. With (B.19), we can simplify (B.14) — after

applying R−1
S5 R

−1
AdS — to find the remaining condition[

csc θ − h+ 2λf csc2θ
(
θ′ sinh ρ− cot θ cosh ρ

)]
ε0

+ 2f csc2 θ
[
f ′ csc θ + λ

(
θ′ cosh ρ− cot θ sinh ρ

)]
Γ̃ρAε0 = 0 .

(B.21)

The terms in brackets mutltiply independent Γ -matrix structures and have to vanish sep-

arately. Thanks to (B.19) they do indeed vanish separately if λ2 = −1. To complete the

analysis, we once again checked that (B.19) and (B.20) together imply that the equations

of motion for f and θ resulting from the DBI action are satisfied.

B.2.2 Solutions

The solutions to (B.20) again come in 3 branches, and the one which gives real slipping

mode is

θ = cos−1

(
2 cos

2πk + cos−1 τ

3

)
, τ =

3m sinh(2ρ)− 6c− 6mρ

4 sinh3 ρ
, (B.22)

with k = 2. The function τ is related to that in (2.53) by a simple analytic continuation

ρ → ρ + iπ/2 along with a redefinition of the parameters m and c, and the same applies

for the accompanying gauge field. The gauge field is now imaginary, which had to be

expected from the discussion of the field-theory side in section 4.1, and specifically the

results of [11, 12]. We note that even though the final embeddings could have been obtained

by a simple analytic continuation from the AdS solutions, the evaluation of the κ-symmetry

constraint differs from the AdS case by more than that, due to the change in the Killing

spinors and projectors.

Finally, we note that the same embeddings are solutions for D7-brane embeddings into

dS4-sliced AdS5 with metric

gAdS5
= dρ2 + sinh2ρ gdS4 . (B.23)

The reason is simple: once the S3-mode ω is fixed, the field equations are only sensitive

to radial dependences and warp factors, and not to the metric on the slices. Since these

parts are the same for global Euclidean and dS4-sliced Lorentzian AdS, the solutions found
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here work on dS4-sliced AdS5 just as well. We have not gone through the κ-symmetry

analysis for that case in detail, but clearly expect them to also be supersymmetric. As

far as geometries where AdS5 is sliced by spaces of constant curvature are concerned, that

only leaves hyperbolic space H4 (or Euclidean AdS4) as slice geometry. But that can be

obtained by simply Wick-rotating t → it in (2.1). By the same arguments as above, the

embeddings found in section 2.5 are still solutions with that analytic continuation. We

thus have a comprehensive catalog of analytic, supersymmetric D7-brane embeddings to

describe N = 4 SYM with massive flavors on spacetimes of constant curvature.
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any medium, provided the original author(s) and source are credited.

References

[1] A. Karch and L. Randall, Locally localized gravity, JHEP 05 (2001) 008 [hep-th/0011156]

[INSPIRE].

[2] A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes

with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [INSPIRE].

[3] A. Buchel, Gauge/gravity correspondence in accelerating universe, Phys. Rev. D 65 (2002)

125015 [hep-th/0203041] [INSPIRE].

[4] D. Marolf, M. Rangamani and T. Wiseman, Holographic thermal field theory on curved

spacetimes, Class. Quant. Grav. 31 (2014) 063001 [arXiv:1312.0612] [INSPIRE].

[5] M. Rangamani, M. Rozali and M. Van Raamsdonk, Cosmological Particle Production at

Strong Coupling, JHEP 09 (2015) 213 [arXiv:1505.03901] [INSPIRE].

[6] D. Marolf, M. Rangamani and M. Van Raamsdonk, Holographic models of de Sitter QFTs,

Class. Quant. Grav. 28 (2011) 105015 [arXiv:1007.3996] [INSPIRE].

[7] O. Aharony, D. Marolf and M. Rangamani, Conformal field theories in anti-de Sitter space,

JHEP 02 (2011) 041 [arXiv:1011.6144] [INSPIRE].

[8] A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236]

[INSPIRE].

[9] A. Karch, A. O’Bannon and L.G. Yaffe, Critical Exponents from AdS/CFT with Flavor,

JHEP 09 (2009) 042 [arXiv:0906.4959] [INSPIRE].

[10] A.B. Clark, N. Crossette, G.M. Newman and A. Rommal, AdS-Sliced Flavor Branes and

Adding Flavor to the Janus Solution, Phys. Rev. D 89 (2014) 026014 [arXiv:1309.7872]

[INSPIRE].

[11] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,

Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

[12] G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP

06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

[13] T. Anous, D.Z. Freedman and A. Maloney, de Sitter Supersymmetry Revisited, JHEP 07

(2014) 119 [arXiv:1403.5038] [INSPIRE].

– 41 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1088/1126-6708/2001/05/008
http://arxiv.org/abs/hep-th/0011156
http://inspirehep.net/search?p=find+EPRINT+hep-th/0011156
http://dx.doi.org/10.1088/1126-6708/2001/06/063
http://arxiv.org/abs/hep-th/0105132
http://inspirehep.net/search?p=find+EPRINT+hep-th/0105132
http://dx.doi.org/10.1103/PhysRevD.65.125015
http://dx.doi.org/10.1103/PhysRevD.65.125015
http://arxiv.org/abs/hep-th/0203041
http://inspirehep.net/search?p=find+EPRINT+hep-th/0203041
http://dx.doi.org/10.1088/0264-9381/31/6/063001
http://arxiv.org/abs/1312.0612
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.0612
http://dx.doi.org/10.1007/JHEP09(2015)213
http://arxiv.org/abs/1505.03901
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.03901
http://dx.doi.org/10.1088/0264-9381/28/10/105015
http://arxiv.org/abs/1007.3996
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3996
http://dx.doi.org/10.1007/JHEP02(2011)041
http://arxiv.org/abs/1011.6144
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.6144
http://dx.doi.org/10.1088/1126-6708/2002/06/043
http://arxiv.org/abs/hep-th/0205236
http://inspirehep.net/search?p=find+EPRINT+hep-th/0205236
http://dx.doi.org/10.1088/1126-6708/2009/09/042
http://arxiv.org/abs/0906.4959
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.4959
http://dx.doi.org/10.1103/PhysRevD.89.026014
http://arxiv.org/abs/1309.7872
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.7872
http://dx.doi.org/10.1007/s00220-012-1485-0
http://arxiv.org/abs/0712.2824
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2824
http://dx.doi.org/10.1007/JHEP06(2011)114
http://dx.doi.org/10.1007/JHEP06(2011)114
http://arxiv.org/abs/1105.0689
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0689
http://dx.doi.org/10.1007/JHEP07(2014)119
http://dx.doi.org/10.1007/JHEP07(2014)119
http://arxiv.org/abs/1403.5038
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.5038


J
H
E
P
1
1
(
2
0
1
5
)
1
1
2

[14] E. Bergshoeff and P.K. Townsend, Super D-branes, Nucl. Phys. B 490 (1997) 145

[hep-th/9611173] [INSPIRE].

[15] M. Cederwall, A. von Gussich, B.E.W. Nilsson and A. Westerberg, The Dirichlet super

three-brane in ten-dimensional type IIB supergravity, Nucl. Phys. B 490 (1997) 163

[hep-th/9610148] [INSPIRE].

[16] M. Cederwall, A. von Gussich, B.E.W. Nilsson, P. Sundell and A. Westerberg, The Dirichlet

super p-branes in ten-dimensional type IIA and IIB supergravity, Nucl. Phys. B 490 (1997)

179 [hep-th/9611159] [INSPIRE].

[17] M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and goliath, JHEP 08 (2000) 040

[hep-th/0008015] [INSPIRE].
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