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Abstract
We introduce the class of transparent embeddings for a point-line geometry Γ = (P,L) as the class
of full projective embeddings ε of Γ such that the preimage of any projective line fully contained
in ε(P) is a line of Γ. We will then investigate the transparency of Plücker embeddings of
projective and polar grassmannians and spin embeddings of half-spin geometries and dual polar
spaces of orthogonal type. As an application of our results on transparency, we will derive several
Chow-like theorems for polar grassmannians and half-spin geometries.
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1. Introduction

Let Γ = (P,L) be a point-line geometry. As usual, we assume that Γ is connected and that
no two distinct lines of Γ have more than one point in common. A (full) projective embedding
of Γ into the projective space Σ = PG(V ) of a vector space V is an injective map ε from the
point-set P of Γ to the point-set of Σ satisfying the following two properties: (E1) the image of
ε spans Σ; (E2) every line of Γ is mapped by ε onto a line of Σ.

The ε-image of Γ is the point-line subgeometry Γε := (Pε,Lε) of Σ, with Pε := {ε(p) : p ∈ P}
as the point-set and Lε := {ε(`) : ` ∈ L} as the set of lines. The point-set Pε will be called the
support of ε and denoted by the symbol |ε| instead of Pε, for short.

We shall denote by Stab(|ε|) and Aut(ε) the set-wise stabilizer of |ε| in the collineation group
Aut(Σ) = PΓL(V ) of Σ and the set-wise stabilizer of Lε in Stab(|ε|), respectively.

In view of (E1), (E2) and the connectedness of Γ, both groups Stab(|ε|) and Aut(ε) act
faithfully on |ε|. Hence Aut(ε) is isomorphic to a subgroup of the automorphism group Aut(Γ)
of Γ, while the same is false for Stab(|ε|) in general. Indeed, in general Stab(|ε|) does not stabilize
Lε; hence it properly contains Aut(ε).

More explicitly, we say that an automorphism g ∈ Aut(Γ) of Γ lifts to Σ through ε (also, g
lifts to Γε, for short) if there exists a collineation gε ∈ Aut(ε) such that gεε = εg. As Aut(ε)
acts faithfully on |ε|, the collineation gε, if it exists, is uniquely determined by g. We call it the
lifting of g to Γε. The automorphisms of Γ that lift to Γε form a subgroup Aut(Γ)ε of Aut(Γ).
Clearly, Aut(ε) ∼= Aut(Γ)ε. We say that ε is homogeneous if Aut(Γ)ε = Aut(Γ).

In general, Lε is a proper subset of the set of projective lines of Σ contained in |ε|. For in-
stance, consider the natural embedding of the symplectic quadrangle W (3,K) in a 3-dimensional
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projective space PG(3,K). The support of this embedding is the whole point-set of PG(3,K),
whence all lines of PG(3,K) are contained in it, but not all of them are lines of W (3,K).

If all lines of Σ contained in |ε| belong to Lε, then we say that the embedding ε is transparent.
Clearly, if ε is transparent then Stab(|ε|) = Aut(ε), hence Stab(|ε|) ∼= Aut(Γ)ε ≤ Aut(Γ).

In this paper, we shall mainly focus on transparency. However, for a better understanding of
this property, it is convenient to place it in a wider context. In view of that, we need to state a
few preliminary conventions.

For any p, q ∈ P, let d(p, q) be the distance between p and q in the collinearity graph of Γ.
Let diam(Γ) be the diameter of this graph. Note that diam(Γ) might be infinite. This would
not change so much of the substance of what we are going to say, but it could cause some
complications in our exposition. Thus, in order to make things easier, from now on we assume
that diam(Γ) < ∞. Under this assumption, we introduce two non-negative integers χ↑

ε and χ↓
ε,

defined as follows:
χ↑
ε + 1 := max{1 ≤ h ≤ diam(Γ) : 〈ε(x), ε(y)〉 ⊆ |ε|, ∀x, y ∈ P with d(x, y) ≤ h},

χ↓
ε + 1 := min{1 ≤ h ≤ diam(Γ) : 〈ε(x), ε(y)〉 6⊆ |ε|, ∀x, y ∈ P with d(x, y) > h}.

 (1)

Needless to say, in the previous definitions the symbol 〈ε(x), ε(y)〉 stands for the line of Σ spanned
by ε(x) and ε(y). Note also that, since the clause d(x, y) > diam(Γ) is empty, the set

{1 ≤ h ≤ diam(Γ) : 〈ε(x), ε(y)〉 6⊆ |ε|, ∀x, y ∈ P with d(x, y) > h}

always contains diam(Γ). Hence the number χ↓
ε is well defined even if Γ contains pairs of points

x, y at maximal distance such that 〈ε(x), ε(y)〉 ⊆ |ε|. If that is the case, then χ↓
ε = diam(Γ)− 1.

Clearly, 0 ≤ χ↑
ε ≤ χ↓

ε ≤ diam(Γ) − 1. We call χ↑
ε and χ↓

ε respectively the lower and upper
degree of opacity of ε and we say that the embedding ε is (χ↑

ε, χ
↓
ε)-opaque. When χ↑

ε = χ↓
ε we

put χε := χ↑
ε = χ↓

ε and we call χε the tight degree of opacity of ε, also saying that ε is tightly
χε-opaque.

It is clear that a projective embedding is transparent if and only if it is tightly 0-opaque. On
the other hand, it follows from condition (E1) of the definition of projective embedding that an
embedding ε is tightly (diam(Γ)− 1)-opaque if and only if |ε| is the full point-set of Σ. If this is
the case and also diam(Γ) > 1, then we say that ε is completely opaque. Note that if diam(Γ) = 1
then 0 = χ↑

ε = χ↓
ε = diam(Γ)− 1. In this case Γ is a projective space and ε is an isomorphism.

The following two theorems, to be proved in Sections 4 and 5 respectively, are the main
results of this paper. They deal with the transparency or opacity of Plücker embeddings of
projective and polar grassmannians and spin embeddings of half-spin geometries and dual polar
spaces of orthogonal type. We refer to Sections 3 and 4 for more details on the geometries and
the embeddings considered in these two theorems.

Theorem 1. Let Gk be the k-grassmannian of a finite dimensional projective geometry G defined
over a field (namely a commutative division ring) and let Sk be the polar k-grassmannian of
a polar space S of rank n associated to an alternating, quadratic or hermitian form of a finite
dimensional vector space defined over a field. Then the following hold:

1. The Plücker embedding of Gk is transparent for any k.

2. If k < n then the Plücker embedding of Sk is transparent, except when S is of symplectic type
(namely, it arises from an alternating form).

3. Let S be of symplectic type. Then the Plücker embedding of S1 is completely opaque. On
the other hand, if 1 < k < n then the Plücker embedding of Sk is (0, 1)-opaque. Finally, the
Plücker embedding of Sn is transparent.
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4. If S arises from a hermitian form in a vector space of dimension 2n, then the Plücker
embedding of Sn is transparent.

Theorem 2. The following hold:

1. The spin embedding of a half-spin geometry is transparent.

2. The spin embedding of the dual polar space associated to the orthogonal group O(2n+1,K) is
tightly 1-opaque.

3. The spin embedding of the dual polar space associated to the orthogonal group O−(2n+ 2,K)
is transparent.

Claim 1 of Theorem 1 has been known since long ago. It appears in Chow [12], for instance.
We will give a new proof of this claim, quite different from that of [12], obtaining it as a corollary
of a general lemma on the degrees of opacity of projective embeddings of a very large class of
point-line geometries (see Section 2, Lemma 2.1). All remaining claims of Theorem 1 follow from
the first one, with some additional work in the case of hermitian dual polar spaces (Claim 4).
Indeed the embeddings considered in Claims 2–4 are induced by the Plücker embedding of a
projective grassmannian.

Similarly, the embeddings considered in Claims 2 and 3 of Theorem 2 are induced by the spin
embedding of a half-spin geometry. The third claim of Theorem 2 will be obtained a consequence
of the first one. Claims 1 and 2 of Theorem 2 will be proved with the help of the above mentioned
Lemma 2.1 and one more statement in the same vein as that lemma (Section 2, Lemma 2.4).

The reader might wonder why in Theorem 1 the dual polar space Sn is considered only when
S is of symplectic type or associated to a hermitian form in a 2n-dimensional vector space. This
is due to the fact that in all remaining cases the Plücker mapping, which can still be defined
for Sn, is not a projective embedding. Indeed it maps lines of Sn onto pairs of points, conics,
quadrics, unitals or other kinds of sets of points, according to the type of S.

The next corollary immediately follows from Theorems 1 and 2 and the fact that the trans-
parency of an embedding ε implies the equality Stab(|ε|) = Aut(ε). This corollary incorporates
and generalizes some results of Chow [12], which correspond to cases (a) and (c) below (but only
dual polar spaces of symplectic type are considered in [12]).

Corollary 3. Let Γ be one of the following point-line geometries:

(a) The k-grassmannian of a finite dimensional projective geometry defined over a field.

(b) The k-grassmannian of a polar space of rank n > k associated to a quadratic or hermitian
form of a finite dimensional vector space over a field.

(c) The dual of a polar space of rank n associated to an alternating or hermitian form of a
2n-dimensional vector space.

(d) The dual polar space associated to the orthogonal group O−(2n+ 2,K).

(e) A half-spin geometry.

Let ε : Γ → Σ be the Plücker embedding if Γ is as in (a), (b) or (c) and the spin embedding in
cases (d) and (e). Then Stab(|ε|) = Aut(ε) ∼= Aut(Γ)ε = Aut(Γ).
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Note that the equality Aut(Γ)ε = Aut(Γ), which says that ε is homogeneous, has nothing to
do with the transparency of ε. It holds in each of the cases considered in Theorems 1 and 2, no
matter if ε is transparent or not (see Section 4).

Case 3 of Theorem 1 with 1 < k < n is not mentioned in Corollary 3. Indeed, if Γ = Sk with
1 < k < n, the polar space S is of symplectic type and ε is its Plücker embedding, then ε is not
transparent. Nevertheless, as we shall prove in Section 6, the equality Stab(|ε|) = Aut(ε) holds
also in this case.

On the other hand, with S as above but k = 1, the Plücker embedding ε : S1 → PG(2n−1,K)
is completely opaque; hence Stab(|ε|) = PΓL(2n,K) > PSp(2n,K) ·Aut(K) = Aut(S).

Finally, let Γ be the dual of the polar space associated to the orthogonal group O(2n+ 1,K)
and let ε : Γ → PG(2n,K) be its spin embedding. Let Γ′ be the half-spin geometry of rank
n+1 associated to O+(2n+2,K) defined over K. Then Γ is a subgeometry (but not a subspace)
of Γ′ and ε is induced by the spin embedding ε′ of Γ′. Moreover |ε| = |ε′| (see Section 4.2).
Consequently, Stab(|ε|) = Stab(|ε′|) = Aut(ε′) > Aut(ε). So, Stab(|ε|) > Aut(ε) in this case too.

Organization of the paper. In Section 2 we shall prove a few general results on opacity
of embeddings, to be exploited in the proof of Theorems 1 and 2. The geometries and the
embeddings considered in those two theorems are described in Sections 3 and 4. Section 5
contains the proofs of Theorems 1 and 2. Section 6 is devoted to the proof of the equality
Stab(|ε|) = Aut(ε) when ε is the Plücker embedding of a symplectic k-grassmannian, k > 1.

2. A few general results on transparency and opacity

Throughout this section ε : Γ → Σ is a projective embedding of a point-line geometry Γ with
finite diameter diam(Γ) < ∞. As stated in the Introduction of this paper, χ↑

ε and χ↓
ε are the

lower and upper degrees of opacity of ε.
As we did in the definition of χ↑

ε and χ↓
ε, given two distinct points p, q of Σ we denote by

〈p, q〉 the line of Σ spanned by p and q. More generally, given a set X of points of Σ, we will
denote by 〈X〉 the subspace of Σ spanned by X.

2.1. A sufficient condition for the equality χ↑
ε = χ↓

ε to hold
The following lemma provides a sufficient condition for ε to admit a tight degree of opacity.
Recall that, as stated in the Introduction, Aut(Γ)ε is the subgroup of Aut(Γ) formed by

all automorphisms g ∈ Aut(Γ) that lift to Γε. Also recall that, given a graph G, a group of
automorphisms of G is said to be distance-transitive if it acts transitively on the set of ordered
pairs of vertices of G at distance k, for every k = 1, 2, . . . , diam(G).

Here and henceforth by a punctured plane we mean a projective plane minus a point.

Lemma 2.1. Assume the following:

(A1) for any positive integer k, every point p and every line ` of Γ, if d(p, x) = d(p, y) = k
for two distinct points x, y ∈ `, then d(p, z) = k − 1 for at most one point z ∈ ` and all
remaining points of ` have distance k from p;

(A2) The group Aut(Γ)ε acts distance-transitively on the collinearity graph of Γ;

(A3) The intersection α ∩ |ε| is not a punctured plane, for any plane α of Σ.

Then χ↑
ε = χ↓

ε.
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Proof. Let d := diam(Γ). When χ↑
ε = d − 1 there is nothing to prove. Thus, we assume that

χ↑
ε < d− 1, namely there are points a, b ∈ Γ such that 〈ε(a), ε(b)〉 is not contained in |ε|. In view

of (A2), the same holds true for any pair of points x, y ∈ Γ with d(x, y) = d(a, b). We shall prove
that the following property holds:

(∗) For any k > χ↑
ε + 1, the line 〈ε(x), ε(y)〉 is not fully contained in |ε|, for any choice of x

and y at distance k.

The equality χ↑
ε = χ↓

ε is a straightforward consequence of (∗) and the definition of χ↓
ε.

We shall prove (∗) by induction on k > χ↑
ε + 1. For k = χ↑

ε + 2 property (∗) immediately
follows from the definition of χ↑

ε and hypothesis (A2).
Assume k > χ↑

ε + 2 and that (∗) holds true for any value χ↑
ε + 2, . . . , k − 1. Take p, q ∈ P

such that d(p, q) = k and suppose, by way of contradiction, 〈ε(p), ε(q)〉 ⊆ |ε|. Let p = p0 ∼
p1 ∼ . . . ∼ pk−1 ∼ pk = q be a shortest path from p to q in the collinearity graph of Γ. Put
r := pk−1, for short. Also, let ` be the line of Γ through r and q and put L := ε(`). Then,
by the inductive hypothesis, the projective line M := 〈ε(p), ε(r)〉 contains at least one point
outside |ε|, while the line joining ε(p) with ε(x) for x ∈ ` and x 6= r is entirely contained in
|ε|, by the hypotheses made on p and q and assumptions (A1) and (A2). It follows that the
points of the plane α := 〈ε(p), ε(q), ε(r)〉 that do not belong to |ε| are on the line M . Thus,
α \ (α ∩ |ε|) = {R1, . . . , Rt} for suitable points R1, . . . , Rt ∈ M = 〈ε(p), ε(r)〉.

Note that t might be infinite but, by assumption (A3), t > 1. Given now a point X =
ε(x) ∈ α \ (L ∪M) and i = 1, 2, . . . , t, let xi be the point of ` such that 〈ε(x), ε(xi)〉 meets M
in Ri. Then χ↑

ε + 1 < d(x, xi) 6= k (by the inductive hypothesis and assumption (A2)) while
d(x, y) ∈ {1, 2, . . . , χ↑

ε +1}∪{k, k+1, k+2, . . .} for any point y ∈ ` \ {x1, . . . , xt}. The latter set
contains at least two points, namely r and at least one more point x′ where ε(x′) ∈ 〈ε(x), ε(p)〉.
Moreover, in view of (A1), there is a number h such that either d(x, z) = h for any z ∈ ` or
d(x, z0) = h− 1 for just one point z0 ∈ ` and d(x, z) = h for any point z ∈ ` \ {z0}.

In the situation we are considering, we have d(x, y) 6= d(x, xi) for any y ∈ `\{x1, . . . , xt} and
i = 1, 2, . . . , t (by (A2)). As both t and |` \ {x1, . . . , xt}| are greater than 1, this implies that
when z ranges in ` the number d(x, z) assumes at least two distinct values and each of them is
taken at least twice. This contradicts hypothesis (A1).

The next two corollaries immediately follow from Lemma 2.1.

Corollary 2.2. If diam(Γ) = 2 and Γ and ε satisfy the hypotheses of Lemma 2.1, then ε is
either transparent or completely opaque.

Corollary 2.3. Let Γ and ε satisfy the hypotheses of Lemma 2.1. Then ε is transparent if and
only if 〈ε(x), ε(y)〉 6⊆ |ε| for at least one pair of points x, y of Γ at distance 2.

As a direct consequence of Corollary 2.2 we get back the following well known fact: if Γ is
a classical polar space and ε embeds Γ in Σ = PG(V ) as the polar space Γε associated to a
sesquilinear or pseudoquadratic form of V , then either ε is transparent or Γε is associated to an
alternating form.

2.2. From local to global transparency
We recall that a subspace of Γ is a set S of points of Γ such that if a line ` of Γ meets S in at

least two points then ` ⊆ S. Subspaces are often regarded as subgeometries, by taking as lines
of a subspace S of Γ the lines of Γ contained in S. A subspace is said to be connected if it is
connected as a point-line geometry.
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Given a connected nonempty subspace S of Γ, let ΣS := 〈ε(S)〉 be the span of ε(S) in Σ and
let εS be the restriction of ε to S, regarded as a mapping from S to ΣS . Then εS : S → ΣS is
an embedding of S, the latter being regarded as a subgeometry of Γ.

Assume that Γ admits a nonempty family S of connected nonempty subspaces of Γ, satisfying
the following two conditions:

(S1) Aut(Γ)ε stabilizes S and acts transitively on it.

(S2) For S ∈ S, we have |εS | = ΣS ∩ |ε|.

In view of (S1), all members of S have the same diameter, say d0. Moreover, still by (S1), for
any choice of S and S′ in the same family S there exists g ∈ Aut(Γ)ε such that S′ = g(S) and
εS′ = gεεS . It follows that εS and εS′ have the same opacity degrees, say χ↑

0 := χ↑
εS = χ↑

εS′ and
χ↓
0 := χ↓

εS = χ↓
εS′ .

Lemma 2.4. Suppose that (S1) and (S2) hold for a nonempty family S of connected nonempty
subspaces of Γ. Assume also the following:

(B1) The group Aut(Γ)ε acts distance transitively on the collinearity graph of Γ.

(B2) The embedding ε admits a tight degree of opacity χε.

(B3) With d0, χ↑
0 and χ↓

0 as above, we have χ↑
0 = χ↓

0 < d0 − 1. In other words, d0 > 1 and the
members of S admits a tight degree of opacity χ0 < d0 − 1.

Then χε = χ0.

Proof. Put χ0 := χ↑
0 = χ↓

0 (see (B3)). Let us firstly prove that χε ≤ χ0. To this goal, we must
check that, for any choice of two points p, q ∈ P at distance χ0 + 1, the line 〈ε(p), ε(q)〉 is not
fully contained in |ε|. Suppose the contrary: let d(p, q) = χ0+1 such that L = 〈ε(p), ε(q)〉 ⊆ |ε|.
Since d0 > χ0 + 1 by (B3) and, according to (B1), the group Aut(Γ)ε acts distance-transitively
on Γ, we can choose p and q in the same subspace S ∈ S. However χ0 = χ↑

εS = χ↓
εS . Hence

L 6⊆ |εS |. On the other hand, L ⊆ |ε| by assumption. So, there exists a point x 6∈ S such that
ε(x) ∈ L. This contradicts hypothesis (S2). The inequality χε ≤ χ0 follows.

In order to prove the converse inequality χε ≥ χ0 we must show that for any d ≤ χ0 + 1 and
at least one pair of points p and q at distance d, the line 〈ε(p), ε(q)〉 is contained in |ε|. By (B3),
this holds for p and q in the same member of S. As Aut(Γ)ε acts distance-transitively on Γ, the
same holds for any two points at distance d.

Lemma 2.4 says that, in order to prove that an embedding ε is transparent, if conditions (S1),
(S2), (B1), (B2) and (B3) are satisfied, we may only check if the embedding εS is transparent
for S ∈ S.

3. Grassmannians and their automorphism groups

In this section we recall some information on Grassmann geometries (also called shadow geo-
metries in the literature) and state some terminology and notation. We only consider Grassmann
geometries obtained from buildings. The reader willing to know more on this topic is referred
to Tits [27, Chapter 11] (also Scharlau [25] and Pasini [22, Chapter 5] for generalizations to
chamber systems and diagram geometries).

Let ∆ be an irreducible building of rank n, with I := {1, 2, . . . , n} as the set of types. We
recall that, given a type k ∈ I, the k-shadow shk(F ) of a flag F of ∆ is the set of k-elements of
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∆ that are incident to F . Let k∼ be the set of types adjacent to k in the Coxeter diagram of
∆. Then the k-grassmannian ∆k of ∆ (also called the k-shadow geometry of ∆) is the point-line
geometry whose points are the k-elements of ∆ and whose lines are the shadows shk(F ) for F a
flag of type k∼. Note that different flags of type k∼ have different k-shadows. So, we can freely
switch from shadows to flags, whenever this is convenient.

The full automorphism group Aut(∆) of ∆ induces a group of permutations on the type-set
I. Let Aut(∆)k be the stabilizer of the type k in Aut(∆). Then Aut(∆)k acts faithfully on ∆k

as a subgroup of Aut(∆k). In all cases we are aware of, actually Aut(∆k) = Aut(∆)k. This is
certainly the case when, as it often happens, there is a way to recover the whole of ∆ from the
point-line geometry ∆k, possibly modulo non-type-preserving automorphisms of ∆.

In the sequel we shall focus on buildings of Coxeter type An, Cn or Dn, since these are the
only ones involved in our Theorems 1 and 2. We recall the corresponding diagrams here. The
types are the integers that label the nodes of the diagram.

(An) • • • ..... • •
1 2 3 n− 1 n

(Cn) • • ..... • • •
1 2 n− 2 n− 1 n

(Dn) • • ..... • •�����

PPPPP

•

•

1 2 n− 3 n− 2

n

n− 1

Further assumptions. Usually, it is assumed that n ≥ 1 in An, n ≥ 2 in Cn and n ≥ 4 in Dn,
but a number of authors also allow n = 3 in Dn. We will also do so, but we warn that D3 is just
the same as A3, except for the way of matching the types with the nodes of the diagram. On
the other hand, in order to avoid the rank 1 case, which is of no interest in the context of this
paper, we assume n ≥ 2 in case An.

In cases An and Dn we also assume that ∆ is thick, namely every flag of type I \ {k} (cotype
k, for short) is incident with at least three k-elements, for every type k ∈ I. In case Cn we only
assume that ∆ is thick at every type k < n, namely every flag of cotype k is incident with at
least three k-elements and, for type n, either ∆ is also thick at n or ∆ is thin at n, namely every
flag of cotype n is incident with just two n-elements.

3.1. Buildings of type An

It is well known that a thick building ∆ of type An is essentially the same object as the
system of nonempty proper subspaces of an ordinary (i.e. irreducible) n-dimensional projective
geometry G, with symmetrized inclusion as the incidence relation. The k-elements of ∆ are
the subspaces of G of rank k (projective dimension k − 1). The 1-grassmannian ∆1 is just the
point-line system of G while ∆n is the point-line system of the dual G∗ of G. For 1 < k < n the
points of ∆k are the subspaces of G of rank k and the lines are the k-shadows of the flags of type
{k − 1, k + 1}, namely the sets of the following form:

`X,Y := {Z : X ⊂ Z ⊂ Y, rank (Z) = k}, (rank (X) = k − 1, rank (Y ) = k + 1).

Henceforth, keeping the letter G to denote ∆, we shall denote ∆k by Gk. Following a well
established custom, we call Gk a projective k-grassmannian.

The collineation group Aut(G) of G is naturally isomorphic to both Aut(G1) and Aut(Gn).
By a little abuse, Aut(G) = Aut(G1) = Aut(Gn). Let 1 < k < n. It has been known since long
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ago that we can always recover G from Gk, except, possibly, when n = 2k + 1 and G admits a
duality (see Chow [12], for instance). However, in the latter case, mistaking G∗ for G is the only
error we can make. Consequently Aut(G) = Aut(Gk) for 1 < k < n, except when n = 2k− 1 and
G admits dualities. In the latter case Aut(Gk) also contains the dualities of G.

Recall that if n > 2 then G = PG(V ) for an (n+ 1)-dimensional vector space V . In this case
the subspaces of G of rank k are the k-dimensional subspaces of V . We also recall that PG(V )
admits a duality if and only if the underlying division ring of V is commutative.

Remark 3.1. We have distinguished between G and G1: the latter is a point-line geometry while
G is the poset of all subspaces of G1. However, this distinction is seldom so relevant and many
authors neglect it. For the sake of pedantry, a distinction should also be drawn between G and
∆. Indeed G is an ordered system while ∆ is not. The set of elements of ∆ gets an ordering
only via the types. So, while G and its dual G∗ are different objects, no true difference exists
between ∆ and its ‘dual’ ∆∗, the latter being the same as ∆ but with types read from right to
left. Accordingly, while the automorphisms of G are its collineations, both the collineations and
the correlations of G are taken as automorphisms of ∆. In other words, Aut(G) is the group of
type-preserving automorphisms of ∆.

Remark 3.2. Only finite dimensional projective geometries have been considered here. Indeed,
infinite dimensional projective geometries do not fit in the framework we have chosen for this
section, since they are not buildings. However, the k-grassmannian Gk of G can also be defined
when G is infinite dimensional, for any positive integer k. We will freely refer to this generalization
in the next subsection, when considering classical polar spaces naturally embedded in possibly
infinite dimensional projective spaces.

3.2. Buildings of type Cn

In this case ∆ is the system of nonempty singular subspaces of a (non-degenerate) polar space
S of rank n, with (symmetrized) inclusion as the incidence relation (See Tits [27, Chapters 7–9],
also Buekenhout and Cohen [6, Chapters 7–10]). Recall that a subspace of a point-line geometry
is called singular if all of its points are pairwise collinear.

The k-elements of ∆ are the singular subspaces of S of rank k (projective dimension k − 1).
The 1-grassmannian ∆1 is the point-line system of S (which many authors regard as the same
object as S itself) while ∆n is a dual polar space, with the maximal and co-maximal singular
subspaces of S as points and lines respectively, the points of a co-maximal subspace being the
maximal subspaces containing it. For 1 < k < n the points of ∆k are the singular subspaces
of S of rank k and the lines are the k-shadows of the flags of type {k − 1, k + 1}. These lines
admit just the same description as the lines of a projective grassmannian, except that singular
subspaces of S are considered instead of subspaces of G.

Henceforth we write Sk instead of ∆k and we call Sk a polar k-grassmannian. Characteriz-
ations of polar k-grassmannians are known for every k (see Cameron [7] and Brouwer–Wilbrink
[3] for the case k = n and Hanssens [17], Hanssens–Thas [18] for the case k < n.). Needless to
say, a way to recover S from Sk is implicit in each of those characterizations. A different way,
closer to the original approach by Chow [12] is offered by Pankov [21, Chapter 4].

So, S can be recovered from Sk, for any choice of k. Consequently, Aut(Sk) = Aut(S) for any
k. Moreover, Aut(∆) = Aut(S) except when n = 2 and S is the generalized quadrangle W (3,K)
associated to an alternating form of V (4,K), with K a perfect field of characteristic 2. In that
particular case, S also admits a duality.

Remark 3.3. As said above, many authors refuse to distinguish between S and S1, while others
(as Tits [27], for instance) prefer to regard S as the poset of singular subspaces of S1, which
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in principle is not the same object as S1. In the sequel we will be a little sloppy on this point,
letting readers free to think of S in the way they prefer.

3.2.1. Polar spaces thin at top
According to our previous assumptions, ∆ is allowed to be thin at n. If this is the case we

say that S is thin at top. As proved in [27, Chapter 7], a polar space S is thin at top if and only
if S1 is either a grid (when n = 2) or the 1-grassmannian of a building of type Dn (when n > 2).
In particular, when S is thin at top each of the lines of the dual polar space Sn has exactly two
points. So, Sn can be regarded as a graph, with its points as the vertices and its lines as the
edges. This graph is bipartite. As it is connected, it admits a unique bipartition. It is customary
to refer to the two classes of this bipartition as the two families of maximal singular subspaces
of S.

3.2.2. Classical polar spaces
A polar space S of rank n is said to be classical if there exists a vector space V and a non-

degenerate sesquilinear form f or a non-singular pseudoquadratic form q such that the singular
subspaces of V are precisely the subspaces of V that are totally isotropic for f or totally singular
for q respectively, the rank of a singular subspace being its dimension as a subspace of V (See
[27], also [6].) Assume moreover that V has finite dimension N and let G = PG(V ). Recall that
N ≥ 2n (see [27] or [6]). Accordingly, dim(G) = N − 1 ≥ 2n − 1. In this case, for every k < n
the lines of Sk are lines of Gk. In short, Sk is a full subgeometry of Gk. Turning to Sn, its lines
can be described as follows:

`X := {Y : X ⊂ Y ⊂ X⊥, rank (Y ) = n}, (rank (X) = n− 1)

where X⊥ is the set of points of S collinear with all points of X. In other words, regarded X as a
subspace of V , X⊥ is the orthogonal of X with respect to the form f (or the sesquilinearization
of q). In general, the lines of Sn are not lines of Gn. They are contained in lines of Gn if and only
if N = 2n since in this case rank (X⊥) = rank (X) + 2.

In the above setting, the inclusion map of S1 in G1 is called a natural embedding of S1.
The natural embedding of S1 is unique (up to isomorphisms) except when S is defined by an
alternating form and the underlying field K of V has characteristic equal to 2. In that case S can
also be regarded as the classical polar space associated to a quadratic form of a vector space V ′

over the same field K as V , but with dim(V ′) > dim(V ), possibly dim(V ′) = ∞ (see De Bruyn
and Pasini [16]). In this case the inclusion map of S1 in PG(V ′) is another natural embedding
of S. However, this will not cause any ambiguity in this paper. Indeed, all polar spaces to
be considered in this paper will be regarded as embedded in a given projective space, via their
unique natural embedding (if this is unique) or one of their two natural embeddings, chosen in
advance (when two natural embeddings exist).

As already noted at the end of Section 2.1, when S does not arise from an alternating form of
V , the lines of G1 fully contained in the point-set of S1 are just the lines of S1, namely the natural
embedding of S1 is transparent. On the other hand, when S is associated to an alternating form,
all points of G1 are points of S1, whence all lines of G1 are fully contained in the point-set of
S1, but, of course, not all of them are lines of S1. In this case the natural embedding of S1 is
completely opaque.

Remark 3.4. As proved by Tits [27, Chapters 7–9] (see also Buekenhout and Cohen [6]), if
n ≥ 4 then S is classical. If n = 3 then S is classical but for two exceptional cases. In one of
them S is thick, with Moufang non-Desarguesian planes. The interested reader is referred to
Tits [27, Chapter 9] for a description of this family of polar spaces. In the other case S is thin
at top and we have S1 = G2 where G = PG(3,K) for a non-commutative division ring K.
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Remark 3.5. When char(K) 6= 2 the 1-grassmannian S1 of a classical polar space S admits just
one projective embedding, namely the natural one. On the other hand, if char(K) = 2 then S1 can
admit many non-natural embeddings, which arise from so-called generalized pseudo-quadratic
forms. We refer the interested reader to Pasini [24] for more on these embeddings.

3.2.3. Classical polar spaces defined over a field
Let S be a classical polar space of rank n associated to a sesquilinear form f or a pseudoquad-

ratic form q of a vector space V . Assume moreover that the underlying division ring K of V is
commutative. Then we can always assume that S arises from an alternating or hermitian form
or a quadratic form (see [27, Chapter 8]). Accordingly, we call S a symplectic, hermitian or
orthogonal polar space, thus referring to its grassmannian as a symplectic, respectively hermitian
or orthogonal, grassmannian.

In the rest of this subsection we recall a few well known facts on each of the above cases and
fix some notation.

1. Symplectic polar spaces. Let S be symplectic. Then dim(V ) = 2n. As remarked in the
previous subsection, all points of G = PG(V ) are points of S1. On the other hand, the
symplectic dual polar space Sn is a subspace of the n-grassmannian Gn of G.
Following a well established custom, we denote S1 by the symbol W(2n − 1,K) and Sn by
DW(2n− 1,K).

2. Hermitian polar spaces. Let S be hermitian. Denoted by σ the involutory automorphism of
K associated to the hermitian form defining S, the field K is a separable quadratic extension
of the subfield Kσ < K fixed by σ. If L is a line of G = PG(V ) not contained in the point-set
P of S1, then either |L ∩ P| ≤ 1 or L ∩ P is a Baer subline of L, defined over Kσ. In general,
no upper bound can be stated in the Hermitian case for N − 2n, where N = dim(V ) ≥ 2n.
However, in this paper we shall mainly focus on the case when dim(V ) is as small as possible,
namely dim(V ) = 2n. Thus, let dim(V ) = 2n. Then the lines of Sn are Baer sublines of those
of Gn. Actually, Sn is a full subgeometry of a Baer subgeometry of Gn defined over Kσ. We
will turn back to this point in Section 4.
As customary, when dim(V ) = 2n we denote S1 and Sn by H(2n− 1,K) and DH(2n− 1,K)
respectively.

3. Orthogonal polar spaces. When S is orthogonal, no upper bound can be stated for dim(V )−2n
in general, as in the Hermitian case. We shall only consider the following three cases, where
N = dim(V ) takes its three smallest values, namely 2n, 2n+ 1 and 2n+ 2. (Note that these
are the only possible values for N when K is quasi-quadratically closed.)

a) N = 2n. In this case S is thin at top (see Subsection 3.2.1). The quadratic form q
associated to S can always be given the following canonical form (modulo a multiplicative
factor and the choice of a suitable basis of V , of course):

q(x1, . . . , x2n) =
n∑

i=1

x2i−1x2i. (2)

If n = 2 then S is a grid. Leaving this case aside, let n > 2. If either n = 3 or n > 4,
then Aut(S) = Aut(O+(2n,K)). By O+(2n,K) we denote the group of all linear mappings
of V (2n,K) preserving the quadratic form q as in (2). If n = 4 then Aut(S) has index
3 in Aut(O+(2n,K)). In any case, Inn(O+(2n,K)) ≤ Aut(S). We say that S is of type
O+(2n,K) and we denote it by the symbol Q+(2n− 1,K).
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b) N = 2n+ 1. In this case q can be given the following canonical form:

q(x1, . . . , x2n, x2n+1) =

n∑
i=1

x2i−1x2i + x2
2n+1. (3)

We have Aut(S) = Aut(O(2n+1,K)). We say that S is of type O(2n+1,K), also adopting
the symbols Q(2n,K) and DQ(2n,K) to denote S1 and Sn respectively.
Note that the lines of Sn appear as conics inside certain projective subspaces of the n-
grassmannian Gn of G = PG(V ). As we shall see in Section 3.4, the dual polar space Sn

can also be realized as a subgeometry of the half-spin geometry HS(2n+ 1,K).
c) N = 2n + 2. Then q can be given the following canonical form, for suitable scalars λ, µ,

where λ and µ are such that the polynomial t2 + λt+ µ is irreducible over K (hence K is
not quadratically closed):

q(x1, . . . , x2n, x2n+1, x2n+2) =

n∑
i=1

x2i−1x2i + x2
2n+1 + λx2n+1x2n+2 + µx2

2n+2. (4)

We now have Aut(S) = Aut(O−(2n+2,K)). We say that S is of type O−(2n+2,K). We
use the symbols Q−(2n+ 1,K) and DQ−(2n+ 1,K) to denote S1 and Sn respectively.
The lines of Sn are elliptic quadrics of projective subspaces of the n-grassmannian of
PG(V ). As we shall see in Section 3.4, the dual polar space Sn can also be realized as a
subgeometry of the half-spin geometry HS(2n + 1,K(ρ)) defined over the extension K(ρ)
of K, where ρ is any of the roots of the polynomial t2 + λt+ µ.

3.2.4. Quads of dual polar spaces
Recall that, given a polar space S of rank n, the set shn(X) of maximal singular subspaces

of S containing a given singular subspace X is a subspace of the point-line geometry Sn. When
rank (X) = n− 2 the subspace shn(X), regarded as a subgeometry of Sn, is called a quad.

The quads of the dual polar space DW(2n − 1,K) are isomorphic to Q(4,K). Conversely,
those of DQ(2n,K) are isomorphic to W(3,K). The quads of DH(2n − 1,K) are isomorphic to
Q−(5,Kσ) while those of DQ−(2n+ 1,K) are isomorphic to H(3,K(ρ)), with K(ρ) as at the end
of paragraph 3.c of Subsection 3.2.3. Finally, the quads of DQ+(2n− 1,K) are dual grids.

3.3. Buildings of type Dn

A building ∆ of type Dn is obtained as follows from a polar space S of rank n ≥ 3 thin at
top (Tits [27, Chapter 7]). Drop the singular subspaces of S of rank n− 1. The elements of ∆ of
type k < n−1 are the singular subspaces of S of rank k. The members of one of the two families
of maximal singular subspaces of S are taken as elements of ∆ type n and those in the other
family as elements of type n − 1. The incidence relation is the same as in S, namely inclusion,
except when two elements of type n and n− 1 are involved. In the latter case, two elements X
and Y of ∆ of types n and n− 1 respectively are declared to be incident in ∆ when X ∩ Y has
rank n− 1 as a singular subspace of S.

3.3.1. Half-spin geometries
Let n > 3. Then the polar space S is of type O+(2n,K) for some field K (Tits [27, Chapter

7]). Accordingly, ∆ is said to be defined over K and denoted by the symbol Dn(K).
For k < n− 1, the k-grassmannian ∆k is just the same as Sk. In particular, S1 = ∆1. Since

we can recover S from Sk, we can also recover ∆ from ∆k.
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The grassmannians ∆n and ∆n−1 have the elements of ∆ of type n or n− 1 respectively as
points and those of type n − 2 as lines. Characterizations of ∆n (equivalently, ∆n−1) are also
known (Cooperstein [13], Shult [26]). Hence ∆ can also be recovered from either ∆n or ∆n−1.
Consequently, Aut(∆)k = Aut(∆k) for any choice of k.

The group Aut(S) = Aut(∆)1 contains elements that swap the two families of maximal
singular subspaces of S, namely permute the types n and n− 1 of ∆. Hence the grassmannians
∆n and ∆n−1 are isomorphic. They are called half-spin geometries and denoted by the symbol
HS(2n− 1,K).

We have Aut(∆) = Aut(O+(2n,K)). If n 6= 4 then Aut(∆) = Aut(∆)k = Aut(∆)1,...,n−2 for
any k ≤ n − 2 while Aut(∆)n = Aut(∆)n−1 is the group of type-preserving automorphisms of
∆. On the other hand, when n = 4 the group Aut(∆) also contains elements (called trialities)
that cyclically permute the types 1, 3 and 4. In this case Aut(∆)2 = Aut(∆) while each of the
groups Aut(∆)k with k ∈ {1, 3, 4} has index 3 in Aut(∆).

Turning back to half-spin geometries, suppose firstly that n > 4 and consider ∆n, to fix ideas.
The lines of ∆n are the n-shadows of the elements of ∆ of type n−2. The geometry ∆n contains
two families of maximal projective subspaces, of projective dimension 3 and n − 1 respectively.
The subspaces of the first family are the n-shadows of the elements of ∆ of type n − 3 while
those of the latter are the n-shadows of the elements of type n−1. Every subspace of the second
family contains 3-subspaces, which correspond to flags of ∆ of type {n− 4, n− 1}. We shall call
the 3-subspaces of the first family projective 3-spaces of type + and those of the latter family,
corresponding to {n− 4, n− 1}-flags, projective 3-spaces of type −. Every projective plane of ∆n

is contained in a number of 3-subspaces of type + and just one 3-subspace of type −.
The same definitions can be given when n = 4, but in this case the projective 3-spaces of

type − are maximal projective subspaces of ∆4 and the two families of 3-spaces are permuted
by those elements of Aut(∆4) = Aut(∆)4 which swap the types 1 and 3.

3.3.2. The case n = 3

Let n = 3. A building ∆ of type D3 is the same as a 3-dimensional projective geometry G,
except that the points, the lines and the planes of G are given the types 2, 1 and 3 respectively
(or 3, 1 and 2) instead of 1, 2 and 3. Assume that the points of G get type 2 in ∆, to fix ideas.
Then the half-spin geometries ∆2 and ∆3 are the same as G and G∗ respectively while the polar
space ∆1 is the line-grassmannian G2 of G.

When the underlying division ring K of G is commutative we denote ∆ by the symbol D3(K).

3.4. From Dn+1(K) to Q(2n,K) and Q−(2n+ 1,Kσ)

It is well known that the polar space Q(2n,K) can be realized as a substructure of the building
Dn+1(K) of type Dn+1 over K. When K admits an involutory automorphism σ we can also obtain
Q−(2n+ 1,Kσ) as a substructure of Dn+1(K).

3.4.1. From Dn+1(K) to Q(2n,K)

Let ∆ = Dn+1(K) be a building of type Dn+1 over the field K. Recall that ∆1 = Q+(2n +
1,K). Let V = V (2n + 2,K) and let H be a hyperplane of PG(V ). Assume that H is non-
degenerate, namelythat the form induced by q on H is non-degenerate. Then ∆1 induces a polar
space S ∼= Q(2n,K) on H.

Explicitly, the singular subspaces of S are the singular subspaces of the polar space ∆1

which are fully contained in H. In particular, those of rank n bijectively correspond to the flags
{X,X ′} of ∆ of type {n, n+1} such that X ∩X ′ ⊆ H. On the other hand, these flags bijectively
correspond to the elements of ∆ of type n + 1, namely the points of the half-spin geometry
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∆n+1. Indeed, dim(X ∩H) = n − 1 for every (n + 1)-element X of ∆ (since H is non-singular
by assumption). Hence there exists a unique n-element X ′ of ∆ such that X ∩X ′ = X ∩H.

By the above statements, we can take the elements of ∆ of type n+ 1 as points of the dual
polar space Sn. The lines of the dual polar space Sn are singular subspaces of S of rank n− 1,
hence they are lines of the spin geometry ∆n+1. Thus, Sn is a full subgeometry (but not a
subspace) of ∆n+1, with just the same points as ∆n+1, but only a few of the lines of ∆n+1 are
lines of Sn. Indeed, an (n − 1)-element X of ∆ (namely a line of ∆n+1) is a line of Sn if and
only if X ⊆ H. When X 6⊆ H, the (n − 2)-element Y := X ∩H of ∆ is a singular subspace of
S of rank n − 2. Hence it defines a quad of Sn, say Q(Y ). As noticed in Subsection 3.2.4, we
have Q(Y ) ∼= W(3,K). On the other hand Y defines a projective 3-space S(Y ) of ∆n+1 of type
+ (see Subsection 3.3.1). The generalized quadrangle Q(Y ) is naturally embedded as W(3,K)
in S(Y ). The line X of ∆n+1 is a line of S(Y ). It appears as a hyperbolic line in Q(Y ).

3.4.2. From Dn+1(K) to Q−(2n+ 1,Kσ)

Our exposition of this construction is a rephrasing of Carter [10, Theorem 14.5.2].
Let ∆ := Dn+1(K) as in the previous subsection, but now we assume that K admits a non-

trivial involutory automorphism σ. Let K0 := Kσ be the subfield of K fixed by σ. Thus K is a
separable quadratic extension of K0, say K = K0(ρ) for ρ ∈ K\K0. The following is the minimal
polynomial of ρ:

Pρ(t) : = t2 + λt+ µ, (λ := −ρ− ρσ ∈ K0, µ := ρρσ ∈ K0).

Let V = V (2n + 2,K). We can assume that ∆1 is associated to the quadratic form q of V
expressed as follows with respect to a suitable basis U = (ui)

2n+2
i=1 of V :

q(x1, . . . , x2n+2) := x1x2 + x3x4 + · · ·+ x2n−1x2n + x2n+1x2n+2.

(Compare Subsection 3.2.3, equation (2).) Let δ be the semilinear transformation of V acting as
follows:

δ : (x1, x2, . . . , x2n, x2n+1, x2n+2) 7→ (xσ
1 , x

σ
2 , . . . , x

σ
2n, x

σ
2n+2, x

σ
2n+1).

Then δ is an involutory automorphism of ∆ fixing all types k < n and permuting n with n+1. In
other words, δ is an automorphism of the polar space ∆1 swapping the two families of maximal
singular subspaces of ∆1.

Introduce now the following basis of V :

U0 := (u1, . . . , u2n, u2n+1 + u2n+2,−ρu2n+1 − ρσu2n+2).

It is easy to see that the points of ∆1 fixed by δ are precisely the points of ∆1 represented
by K0-linear combinations of vectors of U0. They form a Baer subgeometry PG(V0) of PG(V ),
where V0 is the K0-vector space spanned by U0. Note that the form q0 induced by q on V0 admits
the following expression with respect to U0:

q0(y1, . . . , y2n+2) := y1y2 + y3y4 + · · ·+ y2n−1y2n + y22n+1 + λy2n+1y2n+2 + µy22n+2 (5)

where y1, . . . , y2n+2 are coordinates with respect to U0. Comparing (5) with (4) of Subsection
3.2.3, we immediately see that q0 defines in PG(V0) an orthogonal polar space S of type O−(2n+
2,K0). A singular subspace X of ∆1 of rank k is stabilized by δ if and only if X ∩ PG(V0) is a
singular subspace of S of rank k. Thus, S is canonically isomorphic to the poset ∆1,δ of singular
subspaces of ∆1 stabilized by δ. With a harmless abuse, we may assume that S and ∆1,δ are the
same objects.
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The dual polar space Sn can be embedded in the spin geometry ∆n+1 in a natural way.
Indeed the points of Sn, regarded as maximal elements of ∆1,δ, bijectively correspond to the
flags {X,X ′} of ∆ of type {n, n + 1} stabilized by δ, namely such that X ′ = Xδ. An injective
mapping η can be defined from the set of {n, n+1}-flags of ∆ stabilized by δ to the set of points
of ∆n+1 by declaring that, for such a flag F , η(F ) is the (n + 1)-element of F . Thus, we have
defined an injective mapping from the set of points of Sn to the set of points of ∆n+1. By a little
abuse, we also denote the latter mapping by the symbol η. Denoted by Pn the point-set of Sn,
put Pδ := η(Pn). It is immediate to see that an (n− 1)-element X of ∆ is stabilized by δ if and
only if, regarded as a line of ∆n+1, it is fully contained in Pδ. Thus, η is indeed an isomorphism
of point-line geometries from Sn to Pδ, the latter being equipped with the lines of ∆n+1 fully
contained in it.

Given an (n − 2)-element X of ∆ stabilized by δ, namely a singular subspace of S of rank
n− 2, let Q(X) be the quad defined by X in Sn and S(X) the 3-subspace of type + defined by
X in ∆n+1. Then η induces a natural embedding of Q(X) ∼= H(3,K) in S(X) ∼= PG(3,K).

4. Plücker and spin embeddings

4.1. Plücker embeddings
Let G = PG(V ) for a vector space V of finite dimension N over a field K. For 1 ≤ k < N ,

let Gk be the k-grassmannian of G.
The Plücker (or Grassmann) embedding of Gk is the map εGk : Gk → PG(

∧k
V ) sending

every k-dimensional subspace 〈v1, . . . , vk〉 of V to the point 〈v1 ∧ · · · ∧ vk〉 of PG(
∧k

V ). It is
well-known that εGk is a full projective embedding of Gk and its support |εGk | is an algebraic set.
In fact |εGk | can be obtained as the intersection of a number of quadrics of PG(

∧k
V ), namely it

is described by a set of homogeneous equations of degree 2. In the literature the set |εGk | is called
the k-Grassmann variety of G.

It is also well known that Aut(Gk)εGk
= Aut(Gk), namely εGk is homogeneous. As remarked

in Section 3.1, the group Aut(Gk) either coincides with PΓL(V ) or it contains PΓL(V ) as a
subgroup of index 2, the latter being the case if and only if N = 2k.

Let S be a classical polar space of rank n ≤ N/2, naturally embedded in PG(V ). Let k ≤ n.
As said in Subsection 3.2.2, the point-set Pk of the k-grassmannian Sk of S is a subset of the set of
points of Gk. Denoted by ιSk the inclusion map of Pk in Gk, let εSk := εGk ·ιSk and put |εSk | = εSk (Pk).
The map εSk , with the subspace 〈|εSk |〉 of PG(

∧k
V ) as its codomain, will be called the Plücker

map (also Grassmann map) of Sk. The set |εSk | can be described by adding one single tensor
equation to the equations that define |εGk | (Pasini [23]). We call it the k-Grassmann variety of
S.

As recalled in Subsection 3.2.2, if either k < n or k = n, N = 2n and S is a symplectic polar
space, then Sk is a full subgeometry of Gk, namely every line of Sk is a line of Gk. In this case
εSk is a full projective embedding of Sk in 〈|εSk |〉. We call it the Plücker embedding of Sk. The
group Aut(Sk) ∼= Aut(S) is a subgroup of Aut(Gk). Therefore, since εGk is homogeneous, the
embedding εSk is also homogeneous.

When k = n and S is not of symplectic type, the dual polar space Sn is not a full subgeometry
of Gn. In fact, if N > 2n then Sn is not even a subgeometry of Gn. In this case εSn is not a
projective embedding.

Finally, let Sn = DH(2n − 1,K) (Subsection 3.2.3, paragraph 2). Then the lines of Sn are
proper sublines of lines of Gn. So, Sn is a subgeometry of Gn, but not a full subgeometry. However,
recalling that the quads of Sn are isomorphic to Q−(5,Kσ) (where Kσ is as in Subsection 3.2.3,
paragraph 3, (b)), it is easy to see that a line of Gn contains a line of Sn if and only if it contains
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at least three points of Sn. It is also known (see e.g. De Bruyn [15]) that a basis U can be
chosen in

∧n
V in such a way that 〈u〉 ∈ |εSn | for every u ∈ U and, if W is the Kσ-span of U in∧n

V , then |εSn | is contained in PG(W ) (hence it spans PG(W )). Moreover, εSn maps every line
of Sn surjectively onto a line of PG(W ). It follows that εSn is a full projective embedding of Sn

in PG(W ), henceforth called the Plücker embedding of Sn.
With W as above, let G◦

n := (εGn)
−1(PG(W )). Then G◦

n is the n-grassmannian of a Baer
subgeometry G◦ of G defined over Kσ and the restriction of εGn to G◦

n, truncated to PG(W ), is
the Plücker embedding of G◦

n. Clearly, Sn is a full subgeometry of G◦
n (the lines of Sn are lines

of G◦
n). Moreover, since a line of Gn contains a line of Sn if and only if it contains at least three

points of Sn, a line of G◦
n is a line of Sn if and only if it contains at least three points of Sn, if

and only if it is fully contained in Sn. It is also clear that Aut(Sn) ≤ Aut(G◦
n). As the Plücker

embedding of G◦
n is homogeneous, the embedding εSn : Sn → PG(W ) is also homogeneous.

Remark 4.1. Recall that dim(
∧k

V ) =
(
N
k

)
. The codimension ck := cod(〈|εSk |〉) of 〈|εSk |〉 in

PG(
∧k

V ) is known in a few cases. For instance, it is well known that if S ∼= W(2n− 1,K) then
ck =

(
N

k−2

)
(= 0 when k = 1). If S ∼= Q(2n,K) or S ∼= Q+(2n − 1,K) and char(K) 6= 2 then

ck = 0 while if char(K) = 2 then ck =
(

N
k−2

)
(Cardinali and Pasini [8]). If S = H(2n− 1,K) then

ck = 0 (Blok and Cooperstein [2, Theorem 3.1]).

4.2. Spin embeddings
Let ∆ = Dn(K) be the building of type Dn over K and V = V (2n−1,K). The half-spin

geometry ∆n = HS(2n − 1,K) admits a homogeneous full projective embedding ε+spin : ∆n →
PG(V ) (Chevalley [11], also Buekenhout and Cameron [5]), called the spin embedding of ∆n.
The support |ε+spin| of ε+spin is an algebraic set, defined by quadratic equations if char(K) 6= 2
(see Chevalley [11, §III.8.2], also Lichtenstein [19], Manivel [20]). We call it the spinor variety
of PG(V ).

In Subsections 3.4.1 and 3.4.2 we have shown how to embed DQ(2n,K) and DQ−(2n+1,Kσ)
in ∆n+1 = HS(2n+ 1,K), where ∆ now stands for Dn+1(K). Projective embeddings of the dual
polar spaces DQ(2n+1,K) and DQ−(2n+1,Kσ) in PG(2n − 1,K) immediately arise from that.

Explicitly, let ε+spin be the spin embedding of ∆n+1 in PG(V ), V = V (2n,K). Let S =
Q(2n,K) and let ι : Sn → ∆n+1 be the embedding of Sn = DQ(2n,K) in ∆n+1 described in
Subsection 3.4.1. Then εspin := ε+spin · ι is a full projective embedding of Sn in PG(V ), called the
spin embedding of Sn.

As shown in Subsection 3.4.1, the point-set of Sn coincides with the point-set of ∆n+1. Hence
the embeddings ε+spin and εspin have the same support: |εspin| = |ε+spin|.

Let Aut(∆)1,...,n+1 be the group of type-preserving automorphisms of ∆, regarded as a sub-
group of Aut(∆1) = Aut(∆)1. Then Aut(Sn) = Aut(S) is the stabilizer in Aut(∆)1,...,n+1 of
the hyperplane H used to construct S as a substructure of ∆1 (see Subsection 3.4.1). Accord-
ingly, Aut(Sn) can be regarded as a subgroup of Aut(∆n+1). Since ε+spin is homogeneous, the
embedding εspin is homogeneous.

Let now S = Q−(2n+ 1,Kσ), as in Subsection 3.4.2. Let ι− : Sn → ∆n+1 be the embedding
of Sn = DQ−(2n + 1,Kσ) in ∆n+1 described in Subsection 3.4.2. Put ε−spin := ε+spin · ι−. The
support |ε−spin| of ε−spin spans PG(V ) (see e. g. Cooperstein and Shult [14, 2.2]). Hence ε−spin is a
full projective embedding of Sn in PG(V ). It is called the spin embedding of Sn.

The group Aut(Sn) = Aut(S) is the centralizer in Aut(∆)1,n,n+1 of the automorphism δ of ∆
used to construct S as a substructure of ∆1 (see Subsection 3.4.2). Hence Aut(Sn) is a subgroup
of Aut(∆n+1). Since ε+spin is homogeneous, the embedding ε−spin is also homogeneous.
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Remark 4.2. The Plücker embedding εSn of Sn = DQ(2n,K) can be also obtained as the
composition of εspin with a rational transformation, constructed by composing the veronesean
embedding of PG(2n−1,K) in the Veronese variety V of PG(

(
2n+1

2

)
−1,K) with a linear projection

of V into the codomain of εGn (Cardinali and Pasini [9]). This rational transformation induces a
bijection from |εspin| to |εSn |. The set |εSn | is algebraic (Pasini [23]). A description of |εspin| =
|ε+spin| as an algebraic set is implicit in this construction too.

5. Proof of Theorems 1 and 2

5.1. Preliminaries
At the beginning of Section 3 we recalled a few notions from the theory of buildings. That

was enough to introduce grassmannians, but now we need a bit more.
Let ∆ be a thick building of irreducible spherical type over the set of types I = {1, 2, . . . , n}.

Let D(∆) be the diagram of ∆. Regarded D(∆) as a graph, a subset of I is said to be connected
if it is connected as a set of vertices of D(∆). For J ⊆ I we denote by J∼ the set of the types
i ∈ I \ J which are adjacent in D(∆) with at least one j ∈ J .

Before continuing, we must better explain what a building is for us. Indeed different equivalent
definitions of buildings exist in the literature. According to the earliest one (Tits [27]), a building
is a simplicial complex admitting a family of thin subcomplexes (called apartments) satisfying
certain properties (axioms (B2), (B3) and (B4) of [27, Chapter 3]). In this perspective, a building
can also be regarded as a diagram geometry, with the vertices of the complex as elements and the
faces as flags, the maximal simplices (called chambers) being the maximal flags. This diagram-
geometric setting is the one we are adopting in this paper.

That being stated, we can turn to residues. Let τ be the type-function of ∆. Given a non-
maximal flag F of ∆, the residue Res∆(F ) of F in ∆ consists of the elements of ∆ of type
j 6∈ τ(F ) which are incident with F , with the incidence relation inherited from ∆. We call
J := I \ τ(F ) the type of Res∆(F ), also saying that Res∆(F ) is a J-residue of ∆. Note that
F = ∅ is allowed, but Res∆(∅) = ∆.

Residues are thick buildings of spherical type, the diagram of a J-residue R being the diagram
induced by D(∆) on J . Clearly, the building R is irreducible if and only if J is connected. In
general, given a J-residue R, many flags F exists such that Res∆(F ) = R. However, all of these
flags contain a unique flag FR of type J∼. In general, Res∆(FR) properly contains R. If J is
connected then R is an irreducible component of Res∆(FR).

In Section 3 we have defined the k-grassmannian ∆k of ∆. With the terminology stated
above, the lines of ∆k are the residues of ∆ of type {k}.

As residues are buildings, grassmannians can be defined for them too. Given a J-residue R
and a type k ∈ J , we denote by Rk the k-grassmannian of R. We also denote by Pk(R) the set
of points of Rk, namely the set of k-elements of R. In other words, Pk(R) = shk(F ) for any flag
F such that Res∆(F ) = R.

Lemma 5.1. Property (A1) of Lemma 2.1 holds in the point-line geometry ∆k, for any k ∈ I.
Explicitly, if p and ` are a point and a line of ∆k, then either all points of ` have the same
distance from p or ` contains just one point at minimal distance from p, say d, all remaining
points of ` being at distance d+ 1 from p.

Proof. Let F be the flag of type k∼ such that ` = shk(F ). The projection H := prjF (p) (see [27,
paragraph 3.19]) is a flag containing F . If k ∈ τ(H) the k-element of H is the unique point of `
at minimal distance from p. Otherwise, all points of ` have the same distance from p.
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In the sequel we shall sometimes refer to the opposition relation between elements of a build-
ing. We refer the reader to [27, Chapter 3] for this notion. We shall also make use of convex
hulls of subsets of ∆k. We recall this notion here. We could state it for an arbitrary point-line
geometry, but we prefer to stick to ∆k.

A subspace S of the point-line geometry ∆k is said to be convex if, for any two points p, q ∈ S,
every shortest path from p to q in the collinearity graph of ∆k is fully contained in S. Clearly,
the intersection of any family of convex subspaces is a convex subspace. The convex hull [X] of
a set X of points of ∆k is the smallest convex subspace containing X, namely the intersection
of all convex subspaces containing X.

That being stated, let δ := diam(∆k) be the diameter of the collinearity graph of ∆k. Consider
the following conditions:

(C1) There exists a sequence {k} = J1 ⊂ J2 ⊂ · · · ⊂ Jδ ⊆ I of connected subsets of I such
that, for every i = 1, 2, . . . , δ, for any two points p, q of ∆k at distance d(p, q) = i in
the collinearity graph of ∆k and every minimal path γ of ∆k from p to q, there exists a
Ji-residue R containing all points of γ.

(C2) With p, q and R as above, the elements p and q are opposite in the building R.

(C3) With J1, J2, . . . , Jδ as in (C1) and 1 ≤ i ≤ δ, if J is a connected proper subset of Ji contain-
ing k and R is a J-residue, then the k-grassmannian Rk of R has diameter diam(Rk) < i.

Lemma 5.2. Under the hypotheses (C1), (C2) and (C3), given two points p, q of ∆k at distance
i, there exists a unique residue Rp,q of type Ji containing both p and q. Moreover Pk(Rp,q) = [p, q],
where [p, q] stands for the convex hull of {p, q} in ∆k.

Proof. At least one Ji-residue Rp,q containing both p and q exists by (C1). We shall firstly
prove that Rp,q is unique. Let R 6= Rp,q be another such residue. Buildings satisfy the so-called
Intersection Property (Tits [27, Chapter 12], see also Pasini [22, Chapter 6] for several equivalent
formulations of that property). It follows that p and q are contained in a J-residue R′ ⊆ Rp,q∩R
for a suitable connected proper subset J of Ji containing k. Then d(p, q) < i by (C3). This
contradicts the hypotheses made on p and q. The uniqueness of Rp,q is proved and (C1) now
implies that [p, q] ⊆ Pk(Rp,q). The converse inclusion follows from (C2). Indeed, as p and q are
opposite in Rp,q, every element of Pk(Rp,q) is contained in a shortest path of (Rp,q)k from p to
q (see [27, Chapter 3]).

Corollary 5.3. Let (C1), (C2) and (C3) hold. Then Aut(∆)k acts distance-transitively on the
collinearity graph of ∆k, that is Aut(∆)k has Property (A2) of Lemma 2.1.

Proof. Let G := Aut(∆)k. For i = 1, 2, . . . , δ, the group G transitively permutes the residues of
type Ji. Therefore, given two pairs (p, q) and (p′, q′) of points at distance i in ∆k, there exists
an element g ∈ G such that g(p′), g(q′) ∈ Pk(Rp,q). So, we can assume that p′, q′ ∈ Pk(Rp,q). We
have Rp′,q′ = Rp,q by Lemma 5.2. By (C2), the elements p and q are opposite in Rp,q. The same
holds for p′ and q′. The group of type-preserving automorphism of a thick building of spherical
type acts transitively on the set of pairs of opposite elements of the building [27, Chapter 3].
Hence the stabilizer of Rp,q in G contains elements which map (p′, q′) onto (p, q).

It is well known (and straightforward to check) that conditions (C1), (C2) and (C3) hold for
any k when ∆ has type An (projective grassmannians). They also hold when ∆ has type Cn and
k = n (dual polar spaces) and when ∆ is of type Dn and k ∈ {n− 1, n} (half-spin geometries).
Explicitly, the sets J1, J2, . . . , Jδ can be described as follows:
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1) ∆ of type An, 1 ≤ k ≤ n. Then δ = min{k, n− k + 1}. For i = 1, 2, . . . , δ we have

Ji = {k − i+ 1, . . . , k − 1, k, k + 1, . . . , k + i− 1}.

2) ∆ of type Cn and k = n. In this case δ = n and

Ji = {n− i+ 1, . . . , n− 1, n}, for i = 1, 2, ..., n.

3) ∆ of type Dn and k ∈ {n− 1, n}. We now have δ = bn/2c (integral part of n/2). Put k = n,
to fix ideas. Then J1 = {n}, while for i = 2, 3, . . . , δ we have

Ji = {n− 2i+ 1, n− 2i+ 2, . . . , n− 2, n− 1, n}.

Note that if n is even then Jδ = {1, 2, . . . , n} while if n is odd then Jδ = {2, 3, . . . , n}. This
fact is related to the following property of buildings of type Dn: two n-elements of ∆ at
maximal distance in ∆n are opposite in ∆ if and only if n is even. When n is odd, the
elements of ∆ opposite to a given n-element x are the (n−1)-elements y characterized by the
following property: all n-elements of shn(y) have maximal distance from x in ∆n.

5.2. Proof of Theorem 1
Given a vector space V of finite dimension N over a field K, let G = PG(V ) ∼= PG(N − 1,K)

and, for 1 ≤ k < N , let Gk be the k-grassmannian of G and let εGk be the Plücker embedding of
Gk in PG(

∧k
V ). In Chow [12, Lemma 5] it is implicit that εGk is transparent, but we shall offer

a different proof of this fact, exploiting our Lemma 2.1.

Proposition 5.4. The embedding εGk is transparent.

Proof. Property (A1) of Lemma 2.1 holds in Gk, by Lemma 5.1. Put ε := εGk , for short. As
remarked in Section 4.1, we have Aut(G)ε = Aut(G). Moreover, properties (C1), (C2) and
(C3) of Section 5.1 hold in Gk, as remarked at the end of that section. Hence property (A2) of
Lemma 2.1 holds for ε, by Corollary 5.3. Finally, as remarked in Section 4.1, the support |ε| of ε
is the intersection of a family of quadrics of PG(

∧k
V ). No plane section of such an intersection

is a punctured plane. Therefore (A3) of Lemma 2.1 also holds. By that lemma, χ↑
ε = χ↓

ε =: χε.
Let now p and q be two points of Gk at distance 2. By Lemma 5.2, we have [p, q] = Pk(Rp,q)

for a unique residue Rp,q
∼= PG(3,K) of type {k − 1, k, k + 1}. Clearly, (Rp,q)k ∼= Q+(5,K)

and ε induces on [p, q] the natural embedding of Q+(5,K) in 〈ε([p, q])〉 ∼= PG(5,K). Moreover,
ε([p, q]) = 〈ε([p, q])〉 ∩ |ε|. Hence 〈ε(p), ε(q)〉 ∩ |ε| = {ε(p), ε(q)}. It follows that χ↑

ε + 1 = 1.
Equivalently χε = 0, namely ε is transparent.

For the rest of this subsection S is a polar space of rank n ≥ 2 associated to a sesquilinear
(actually, alternating or hermitian) form f or a quadratic form q of V . Recall that N ≥ 2n.

We shall use the symbol ⊥ to denote orthogonality with respect to either the form f or the
bilinearization of q. Given a singular subspace X of S of rank r < n, the upper residue Res+S (X)
of X is the unique residue of S of type {r + 1, . . . , n} contained in ResS(X). It consists of the
singular subspaces of S which properly contain X. Clearly, Res+S (X) is essentially the same as
the polar space of rank n− r induced by f or q on X⊥/X.

For 1 ≤ k ≤ n, let Sk be the k-grassmannian of S and εSk the Plücker map of Sk into
PG(

∧k
V ). As remarked in Section 4.1, if k < n then εSk is a projective embedding of Sk in

〈|εSk |〉. The same is true when k = n and S is of symplectic type.
The embedding εS1 is just the inclusion map of S1 in PG(V ). As remarked at the end of

Section 2.1, the embedding εS1 is transparent except when S is of symplectic type. In the latter
case εS1 is completely opaque.
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Proposition 5.5. Let 1 < k < n. If S is not of symplectic type then εSk is transparent. On the
other hand, if S is a symplectic polar space then εSk is (0, 1)-opaque.

Proof. Put ε := εSk and ε̂ := εGk , for short. Recall that ε̂ induces ε on Sk.
Given two distinct points A,B of Sk, suppose that 〈ε(A), ε(B)〉 ⊆ |ε|. Then 〈ε(A), ε(B)〉 =

〈ε̂(A), ε̂(B)〉 ⊆ |ε̂|. By Proposition 5.4, the points A and B are collinear in Gk. Recalling that A
and B are subspaces of G of rank k, put C := A ∩ B. Then rank (C) = k − 1, as A and B are
collinear in Gk. Moreover, C belongs to S, since both A and B belong to S. Put R := Res+S (C).
Then R is a polar space of rank n − k + 1. The embedding ε induces on R an embedding
isomorphic to the embedding εR of R in PG(C⊥/C) as the polar space associated to the form
induced on C⊥/C by the form associated to S. Indeed the points of PG(

∧k
V ) corresponding to

points of the polar space R are precisely those which correspond to subspaces X ⊆ C⊥ containing
C and totally isotropic (or totally singular) for the sesquilinear form (respectively, the quadratic
form) associated to S.

It follows that, if S is associated with a quadratic or hermitian form, then 〈ε(A), ε(B)〉 ⊆ |ε|
if and only if A and B are collinear as points of R. Equivalently, they are collinear in Sk. In this
case ε is transparent.

Suppose now that S is associated to an alternating form f . Then f induces an alternating
from on C⊥/C. Consequently, PG(C⊥/C) = |εR|. In this case 〈ε(A), ε(B)〉 ⊆ |ε|, no matter if
A and B are collinear or not. However, in any case, A and B have distance ≤ 2 in R. Hence
d(A,B) ≤ 2 in Sk too. Therefore χ↓

ε = 1. Hence χ↑
ε ≤ 1. On the other hand, it is easy to see

that pairs of points A, B of Sk also exist which have distance 2 in Sk as well as in Gk. For such
a pair, we have 〈ε(A), ε(B)〉 = 〈ε̂(A), ε̂(B)〉 6⊆ |ε̂| by Proposition 5.4. It follows that χ↑

ε = 0.
Hence ε is (0, 1)-opaque.

Remark 5.6. Note that Lemma 2.1 is of no use to prove Proposition 5.5. Indeed, two distinct
families of pairs (A,B) of points at distance 2 exist in Sk when 1 < k < n, according to whether
A and B are collinear in Gk or not. The group Aut(S) acts transitively on each of these two
families but, clearly, it cannot fuse them in one. So, condition (A2) of Lemma 2.1 fails to hold.

Proposition 5.7. Assume N = 2n and let k = n. Let S be associated with an alternating or
hermitian form f of V . Then the Plücker embedding εSn is transparent.

Proof. We can obtain the conclusion either by Lemma 2.1 with the help of Lemma 5.1 and
Corollary 5.3, or as a straightforward consequence of Proposition 5.4, by mimicking the proof of
Proposition 5.5. We choose the second way, which is easier.

Suppose firstly that f is alternating. Put ε := εSn . Let A,B be points of Sn such that
〈ε(A), ε(B)〉 ⊆ |ε|. Proposition 5.4 forces A and B to be collinear in Gn, namely rank (A ∩B) =
n− 1. However A ∩B belongs to S. Hence A and B are collinear in Sn too.

The same argument works when f is hermitian, modulo a few minor modifications due to the
fact that in this case the codomain of εSn is a Baer subgeometry of PG(

∧n
V ). Still with ε = εSn ,

put ε̂ := εGn. Suppose that 〈ε(A), ε(B)〉 ⊆ |ε|. Then 〈ε(A), ε(B)〉 is a Baer subline of a line L of
PG(

∧n
V ). On the other hand, |ε| ⊆ |ε̂|. Hence L ∩ |ε̂| contains a Baer subline of L. However

|εGn| is the intersection of a family of quadrics. Therefore, if a line of PG(
∧n

V ) contains at least
three points of |ε̂|, that line is fully contained in |ε̂|. It follows that L ⊆ |ε̂|. Hence A and B are
collinear in Gn, by Proposition 5.4. As above, we obtain that A and B are collinear in Sn.

Propositions 5.4, 5.5 and 5.7 yield all claims of Theorem 1.
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5.3. Proof of Theorem 2
5.3.1. The spin embedding ε+spin of the half-spin geometry HS(2n− 1,K)

Given a field K, let V = V (2n−1,K) and let ε := ε+spin : ∆n → PG(V ) be the spin embedding
of the n-grassmannian ∆n of the building ∆ = Dn(K) of type Dn over K. Recall that Aut(∆n)ε =
Aut(∆n).

Lemma 5.8. If either char(K) 6= 2 or K is infinite, then no plane section of |ε| is a punctured
plane.

Proof. As remarked in Section 4.2, the spinor variety |ε| is an algebraic set. Moreover, if
char(K) 6= 2 then |ε| can be obtained as an intersection of quadrics. A plane section of an
intersection of quadrics is never a punctured plane.

Let char(K) = 2. Perhaps |ε| is an intersection of quadrics also in this case, but we could not
find this information in the available literature on spinor varieties. According to the literature we
are aware of, when char(K) = 2 we can only claim that |ε| is an algebraic set. However, when K
is infinite this is enough to conclude. Indeed, since |ε| is an algebraic set, given a projective plane
α of PG(V ), the intersection α ∩ |ε| is a closed set for the Zariski topology on α. On the other
hand, a punctured plane is the complement of a point. Singletons are closed sets in the Zariski
topology. Theirs complements are open. Thus, if the section α∩ |ε| is a punctured plane then it
is both closed and open in the Zariski topology of α. Consequently, the projective plane α would
not be connected for the Zariski topology. However, it is well known that every projective space
defined over an infinite field is connected for the Zariski topology. It follows that K is finite.

Corollary 5.9. Under the hypotheses of Lemma 5.8, the embedding ε admits a tight degree of
opacity.

Proof. Condition (A1) of Lemma 2.1 holds in ∆n by Lemma 5.1. Conditions (C1), (C2), (C3) of
Section 5.1 hold for ∆n. Hence hypothesis (A2) of Lemma 2.1 also holds, by Corollary 5.3 and
since Aut(∆n)ε = Aut(∆n) = Aut(∆)n, see also [4, Chapter 9]. Hypothesis (A3) of Lemma 2.1
holds by Lemma 5.8. The conclusion follows from Lemma 2.1.

Let S be the family of the n-grassmannians Rn := R ∩ ∆n of the residues R of ∆ of type
{n− 3, n− 2, n− 1, n}. Let S ∈ S. It is clear from the diagram

n− 3 n− 2
n− 1

n

that S ∼= Q+(7,K) and that when εS is the embedding induced by ε on S, 〈|εS |〉 ∼= PG(7,K)
and εS is isomorphic to the natural embedding of Q+(7,K) in PG(7,K). In particular, εS is
transparent.

Lemma 5.10. Properties (S1) and (S2) of Section 2.2 hold for S.

Proof. Property (S1) follows from the flag-transitivity of the type-preserving automorphism
group of ∆. As for (S2), given S ∈ S, the equations that define |εS | as an algebraic subset
of 〈|εS |〉 are the restrictions to 〈|εS |〉 of those that define |ε| (see [11], for instance). The equality
|εS | = 〈|εS |〉 ∩ |ε| follows.
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Proposition 5.11. Under the hypotheses of Lemma 5.8, the embedding ε is transparent.

Proof. This statement immediately follows from Corollary 5.9, Lemma 5.10 and Lemma 2.4, by
recalling that εS is transparent for S ∈ S.

The case where K is a finite field of characteristic 2 is not considered in Proposition 5.11
because, as we have explained in the proof of Lemma 5.8, we could not find in the literature
anything that clearly implies that hypothesis (A3) of Lemma 2.1 holds also in this case. Thus,
in order to settle this case, we shall use a different argument.

Proposition 5.12. Let K = GF(q), with q a power of 2. Then ε is transparent.

Proof. We argue by induction on n. If n = 4 then ε is the natural embedding of ∆n = Q+(7, q)
in PG(7, q). In this case there is nothing to prove.

Let n > 4. As in the last paragraph of Section 5.1, put δ = bn/2c = diam(∆n) and

Ji = {n− 2i+ 1, n− 2i+ 2, . . . , n− 1, n}

for i = 2, 3, . . . , δ. Put also r = δ if n is even and r = δ + 1 if n is odd, with the additional
definition Jr = {1, 2, . . . , n}. For i = 2, 3, . . . , r let Ri be the family of Ji-residues of ∆ and Si

the family of the n-grassmannians R ∩∆n for R ∈ Ri. Note that Rr = {∆} and Sr = {∆n}.
Recall that, for every i = 2, 3, . . . , δ the elements of Si are the convex closures of pairs of

points of ∆n at distance i. If S ∈ Si then S ∼= HS(2ni−1, q) where ni = n−2i and the embedding
εS induced by ε on S is isomorphic to the spin embedding of HS(2ni − 1, q) in PG(2ni−1 − 1, q).
Moreover, |εS | = 〈|εS |〉 ∩ |ε| (see the proof of Lemma 5.10, where the special case i = 2 is
considered.)

By the inductive hypothesis, if i < r then εS is transparent. By way of contradiction, suppose
that 〈ε(P ), ε(P ′)〉 ⊆ |ε| for two non-collinear points P and P ′ of ∆n. As the convex closure of
two points at distance i < r is a member of Si and |εS | = 〈|εS |〉 ∩ |ε| for every S ∈ Si, all points
of ε−1(〈ε(P ), ε(P ′)〉 have mutually maximal distance. In particular, d(P, P ′) = δ. Moreover, as
the convex closure of two points at distance δ is a member of Sδ and δ < r if n is odd, the
integer n must be even. To sum up, the points X of ∆n which are not collinear with P and such
that 〈ε(P ), ε(P ′)〉 ⊆ |ε| are contained in the set Far(P ) of the points of ∆n at distance δ from
P . As n is even, they are the elements of ∆ opposite to P .

Let G be the derived group of Aut(∆)n = Aut(∆)ε and let GP be the stabilizer of P in G. It
is well known that GP is transitive on Far(P ). More explicitly, let U be the unipotent radical of
GP . Then U acts regularly on Far(P ) (see e.g. Weiss [28, Chapter 11]). Thus, |Far(P )| = |U | =
qn(n−1)/2 and the sets ε−1(〈ε(P ), ε(X)〉) \ {P} with X ∈ Far(P ) form a partition π of Far(P )
in qn(n−1)/2−1 classes of size q. The group U is abelian. In fact, with a suitable choice of the

form q and P , U can be described as the group of all matrices of the form
(
In A
0 In

)
where A is

an arbitrary alternating matrix, as the reader can check. So U it is isomorphic to the additive
group AMn(q) of n× n alternating matrices over GF(q).

Let u0 ∈ U be such that ε(P ) ∈ 〈ε(u0(P
′)), ε(P ′)〉 for some P ′ ∈ Far(P ). Given any

X ∈ Far(P ), let u be the element of U mapping P ′ onto X. Then uu0(P
′) = u0u(P

′) = u0(X),
as U is abelian. Therefore

ε(P ) = ε(u(P )) ∈ uε(〈ε(u0(P
′)), ε(P ′)〉) = 〈ε(uu0(P

′)), ε(u(P ′))〉 = 〈ε(u0(X)), ε(X)〉,

where uε is the lifting of u to PG(V ) through ε. In short, if P ′ and u0(P
′) belong to the same

class of π, then the same holds for X and u0(X), for any X ∈ Far(P ). By this and the regularity
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of U on Far(P ) it follows that the stabilizer U0 of all classes of π acts regularly on each of those
classes. Consequently, |U0| = q.

Let now C ∼= GL(n, q) be a Levi complement of U in GP (see Carter [10, Section 8.5]). The
group C also acts on Far(P ) and stabilizes π. Since C normalizes U , it also normalizes the
class-wise stabilizer U0 of π. However, the action of C on U is isomorphic to the adjoint action of
GL(n, q) on AMn(q): for M ∈ GL(n, q) and A ∈ AMn(q), the matrix M maps A onto MAMT .

For 0 ≤ r ≤ bn/2c let Ar be the set of matrices A ∈ AMn(q) such that rank(A) = 2r. It
is well known that Ar is an orbit of GL(n, q) in its adjoint action on AMn(q). Moreover, Ar

generates the additive group of AMn(q), for every r = 1, 2, . . . , bn/2c. It follows that C cannot
normalize any non-trivial proper subgroup U0 of U .

Propositions 5.11 and 5.12 yield claim 1 of Theorem 2.

Remark 5.13. The proof of Proposition 5.12 also works for any field K, modulo a few obvious
minor modifications. Thus, we could fuse Propositions 5.11 and 5.12 in one statement, to be
proved by the same arguments used for Proposition 5.12. However, while the proof of Proposition
5.11 can be recycled so as to work for DQ(2n,K) too (see the next subsection, Proposition 5.14
and its proof), the proof of Proposition 5.12 can be modified for the same purpose only when K
is a finite field of even order (see below, Remark 5.16). That’s why we have preferred to state
and prove Propositions 5.11 and 5.12 separately.

5.3.2. The spin embedding εspin of the dual polar space DQ(2n,K)

Let ∆ = Dn+1(K), V = V (2n,K) and let ε+spin be the spin embedding of ∆n+1 in PG(V ). As
explained in Section 4.2, the embedding ε+spin induces the spin embedding εspin of DQ(2n,K) in
PG(V ). We recall that |εspin| = |ε+spin|.

Proposition 5.14. If either char(K) 6= 2 or K is infinite, then εspin is tightly 1-opaque.

Proof. The proof is similar to that of Proposition 5.11. We only give a sketch of it, leaving most
of the details to the reader.

Put ε := εspin and ε̂ := ε+spin, for short. Also, S := Q(2n,K) and Sn := DQ(2n,K). By the
same arguments used to prove Corollary 5.9 we obtain that ε admits a tight degree of opacity,
say χ. Having proved this, we can exploit Lemma 2.4 to prove that χ = 1.

When n = 2 we have DQ(4,K) ∼= W(3,K) and ε is isomorphic to the natural embedding of
W(3,K) in PG(3,K), which is completely opaque. Clearly, χ = 1 in this case.

Let n > 2 and let S be the family of the n-grassmannians Rn, for R a residue of S of type
{n− 2, n− 1, n}. Both conditions (S1) and (S2) of Section 2.2 hold for this choice of S. In order
to obtain the conclusion by Lemma 2.4 we only must prove that the embedding εS induced by
ε on a member S of S is tightly 1-opaque.

The hypotheses of Lemma 2.1 hold for the embedding εS . Hence εS admits a tight degree of
opacity, say χS . It remains to prove that χS = 1. We shall discuss this issue in some detail.

Note firstly that S is convex and diam(S) = 3 (see Section 5.1). Let A and B be points of
S at distance 2 and let [A,B] be their convex hull. Then [A,B] ∼= W(3,K) and the embedding
εA,B induced by ε on [A,B] is isomorphic to the natural embedding of W (3,K) in PG(3,K).
Hence εA,B is completely opaque. Consequently, 〈εS(A), εS(B)〉 ⊆ |εS |. Therefore χS ≥ 1.

In order to prove that χS = 1 it only remains to prove that if A and B are points of S
at distance 3 then 〈εS(A), εS(B)〉 6⊆ |εS |. Suppose the contrary: 〈εS(A), εS(B)〉 ⊆ |εS |. Then
〈ε̂(A), ε̂(B)〉 ⊆ |ε̂|, since ε̂ induces εS on S. However, ε̂ is transparent (Proposition 5.11).
Therefore A and B are collinear in ∆n+1. Let L be the line of ∆n+1 through A and B and let
H be the hyperplane of PG(2n + 1,K) which we have used to construct the polar space S (see
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Subsection 3.4.1). The line L corresponds to a singular subspace X of ∆1 of rank n− 1 and the
points A and B are the intersections A = H ∩A′ and B = H ∩B′ of H with uniquely determined
singular subspaces A′ and B′ of ∆1 of rank n+ 1 in the family corresponding to the type n+ 1
of ∆. Clearly, rank (X ∩H) = n− 2 and X contains the singular subspace Y of S of rank n− 3
corresponding to the subspace S. Therefore Z := X ∩H is a singular subspace of S of rank n−2
and Y ⊂ Z ⊂ A,B. In other words, A and B are points of the subspace S′ := shn(Z) of Sn.
The latter has diameter 2 and is contained in S. Hence A and B have distance 2 in S too. This
contradicts our choice of A and B. Therefore 〈εS(A), εS(B)〉 6⊆ |εS |, as claimed.

Proposition 5.15. Let K = GF(q), with q a power of 2. Then εspin is tightly 1-opaque.

Proof. Put ε := εspin and S := Q(2n, q). If P, P ′ are points of Sn at distance 2 then their convex
hull [P, P ′] is isomorphic to W(3, q) and ε induces on it its natural embedding in PG(3, q).
Hence 〈ε(P ), ε(P ′)〉 ⊆ |ε|. It remains to prove that if d(P, P ′) > 2 then 〈ε(P ), ε(P ′)〉 6⊆ |ε|.
This conclusion can be obtained by an inductive argument, as in the proof of Proposition 5.12.
Leaving the details for the reader, we only recall the main steps of this argument. Arguing by
contradiction as in the proof of Proposition 5.12, we are reduced to the case where 〈ε(P ), ε(P ′)〉 ⊆
|ε| for any two points P and P ′ at maximal distance. The set Far(P ) of the points of Sn at
maximal distance from P admits a partition π corresponding to the family of lines 〈ε(P ), ε(X)〉
for X ∈ Far(P ). The stabilizer GP of P in the derived group G of Aut(S) permutes the classes of
π. Moreover, the unipotent radical U of GP acts regularly on Far(P ) and it is abelian, of order
|U | = q(n+1)n/2. As in the proof of Proposition 5.12, we can see that the class-wise stabilizer U0

of π in U has order q and acts regularly on each of the classes of π. Obviously, U0 �GP . At this
stage, a contradiction can be obtained. This final step is worthy of a more careful discussion.

The group U is isomorphic to a non-split extension AMn(q) · V (n, q) of the additive group
AMn(q) of alternating matrices of order n over GF(q) by the additive group of V (n, q), which can
be described as follows. The elements of AMn(q) · V (n, q) are the pairs (A, v) with A ∈ AMn(q)
and v ∈ V (n, q) and the multiplication is defined by the following rule: (A, v) · (B,w) = (A +
B+vwT +wvT , v+w). If C is a Levi complement of U in GP , then C ∼= GL(n, q) acts as follows
on U : a matrix M ∈ C maps (A, v) onto (MAMT ,Mv). It is clear from this description that U
admits no subgroup U0 of order q normalized by C. We have reached a final contradiction.

Propositions 5.14 and 5.15 yield claim 2 of Theorem 2.

Remark 5.16. The proof of Proposition 5.15 does not work for q odd. Indeed when char(K) 6= 2
the unipotent radical U of GP is non-abelian. So, there is no way to prove that the class-wise
stabilizer U0 of the partition π is non-trivial.

On the other hand, most of the proof of Proposition 5.15 also works for K an infinite field
of characteristic 2. Most likely, the final part of that proof can be modified in such a way as to
work in this case too, but we are not completely sure about this.

5.3.3. The spin embedding ε−spin of the dual polar space DQ−(2n+ 1,Kσ)

Let ∆ := Dn+1(K) and assume that K admits an involutory non-trivial automorphism σ.
Let Kσ be the subfield of K fixed by σ and let δ ∈ Aut(∆) be defined as in Subsection 3.4.2.
As seen in that subsection, the polar space S := Q−(2n + 1,Kσ) is formed by the singular
subspaces of ∆1 fixed by δ. Accordingly, Aut(S) = CAut(∆)1,n,n+1

(δ) ∼= CAut(∆)1(δ)/〈δ〉. (Note
that CAut(∆)1(δ) = CAut(∆)1,n,n+1

(δ)×〈δ〉.) The dual polar space Sn is embedded in ∆n+1 in the
most natural way: the points of Sn bijectively correspond to the {n, n+ 1}-flags of ∆ stabilized
by δ and every such flag is mapped onto its (n + 1)-element. Denoted by η this embedding of
Sn in ∆n+1, the spin embedding ε−spin of Sn is defined as the composition ε+spin · η of η with the
spin embedding ε+spin of ∆n+1 (see Section 4.2).
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Proposition 5.17. The spin embedding ε−spin is transparent.

Proof. We know that ε+spin is transparent (Propositions 5.11 and 5.12). So, in order to prove
that ε−spin is transparent we only must prove that η(Sn) is a full subgeometry of ∆n+1, namely
if a line `′ of ∆n+1 is fully contained in the η-image of the point-set of Sn, then `′ = η(`) for a
line ` of Sn. Explicitly, we must prove the following:

(∗) If A is an (n−1)-element of ∆ such that X is incident with Xδ in ∆ for every X ∈ shn+1(A),
then A = Aδ.

As CAut(∆)1(δ) acts transitively on the set of (n+ 1)-elements X of ∆ such that Xδ is incident
with X, we can assume without loss of generality that A has been chosen so that shn+1(A)
contains an element W := 〈u1, u3, . . . , u2n−1, u2n+1〉 such that W δ = 〈u1, u3, . . . , u2n−1, u2n+2〉,
where U = (u1, u2, ..., u2n+1, u2n+2) is the basis of V = V (2n+ 2,K) chosen in Subsection 3.4.2.
With this set-up, A = 〈a1, . . . , an−1〉 ⊂ 〈u1, u3 . . . , u2n−1, u2n+1〉 = W .

Put W0 := W ∩W δ = 〈u1, u3, . . . , u2n−1〉. Two cases must be considered.

Case 1. A ⊆ W0. Since the stabilizer of W0 in Aut(S) acts as PΓL(n,Kσ) on ResS(W0) ∼=
PG(n− 1,Kσ), we can assume, up to a suitable change of basis for A, that there are λi ∈ K such
that ai = u2i−1 + λiu2n−1 for all i = 1, . . . , n − 1. Claim (∗) now amounts to the following: if
dim(X ∩Xδ) = n for any (n+ 1)-element X of ∆ with A ⊆ X, then all λi are in Kσ.

When λi = 0 for all i = 1, . . . , n − 1 there is nothing to prove, as aδi = uδ
2i−1 = u2i−1 = ai.

Suppose that there is i such that λi 6= 0. Let λ1 6= 0, to fix ideas. Define

w := (x1, x2, . . . , x2n+1, x2n+2), w′ := (x′
1, x

′
2, . . . , x

′
2n+1, x

′
2n+2).

Write X = 〈a1, . . . , an−1, w, w
′〉. By construction, we can assume that

x2i−1 = x′
2i−1 = 0, for i = 1, 2, . . . , n− 1. (6)

The space X is totally singular for the form q(x1, x2, . . . , x2n+1, x2n+2) associated with ∆1 (see
Subsection 3.2.3, (2)) if and only if

x2i = −λix2n, for i = 1, 2, . . . , n− 1;

x′
2i = −λix

′
2n, for i = 1, 2, . . . , n− 1;

x2n−1x2n + x2n+1x2n+2 = 0;

x′
2n−1x

′
2n + x′

2n+1x
′
2n+2 = 0;

x2n−1x
′
2n + x2nx

′
2n−1 + x2n+1x

′
2n+2 + x2n+2x

′
2n+1 = 0.

(7)

Observe that if w and w′ satisfy (6) and (7) and, in addition, the set {a1, . . . , an−1, w, w
′} is

linearly independent, then the matrix M with rows given by

M = [a1, . . . , an−1, a
δ
1, . . . , a

δ
n−1, w, w

′, wδ, w′δ],

has rank n + 2 (here each entry in the list is a distinct row vector containing the components
of the corresponding vector; so M has 2n + 2 rows). The condition λ1 ∈ Kσ is equivalent to
a1 = aδ1. So we just need to show that M0 = [a1, . . . , an−1, a

δ
1, . . . , a

δ
n−1] has rank n− 1.

Since λ1 6= 0, the (3×3) minor of M encompassing rows 2n−1, 2n, 2n+1, that is [w,w′, wδ],
and columns 2, 2n+1, 2n+2 is non-singular and x2n−1 = x′

2n−1 = 0. So, the minor of M determ-
ined by its first n−1 rows as well as rows 2n−1, 2n, 2n+1 has rank n+2. In particular, the remain-
ing n− 1 rows of M must be linear combinations of these. Thus, aδ1 ∈ 〈a1, . . . , an−1, w, w

′, wδ〉.
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This is possible only if aδ1 = a1, that is λ1 ∈ Kσ. A similar argument for the remaining values of
i completes the proof of (∗) in this case.

Case 2. A 6⊆ W0. We show that in this case there is an X containing A which is not incident
with Xδ. First, we can assume a1, . . . , an−2 ∈ U0 and write an−1 = b+ u2n+1 for some b ∈ W0.
We can also assume

ai = u2i−1 + λiu2n−3 + µiu2n−1 for i = 1, 2, . . . , n− 2,
an−1 = λn−1u2n−3 + µn−1u2n−1 + u2n+1,

for suitable scalars λ1, . . . , λn−1, µ1, . . . , µn−1 in K. So,

aδi = u2i−1 + λσ
i u2n−3 + µσ

i u2n−1 for i = 1, 2, . . . , n− 2;
aδn−1 = λσ

n−1u2n−3 + µσ
n−1u2n−1 + u2n+2.

If we take two vectors w and w′ with x2i−1 = x′
2i−1 for i = 1, 2, . . . , n − 1 as in Case 1, the

conditions for X = 〈a1, . . . , an−1, w, w
′〉 to be totally singular for the form associated with ∆1

become 

x2i = −λix2n−2 − µix2n, for i = 1, 2, . . . , n− 2;

x′
2i = −λix

′
2n−2 − µix

′
2n, for i = 1, 2, . . . , n− 2;

x2n+2 = −λn−1x2n−2 − µn−1x2n;

x′
2n+2 = −λn−1x

′
2n−2 − µn−1x

′
2n;

x2n−3x2n−2 + x2n−1x2n = 0;

x′
2n−3x

′
2n−2 + x′

2n−1x
′
2n = 0;

x2n−3x
′
2n−2 + x2n−2x

′
2n−3 + x2n−1x

′
2n + x2nx

′
2n−1 = 0.

(8)

We now need to show that there are w, w′ such that (8) is fulfilled, the vectors {a1, . . . , an−1, w, w
′}

are linearly independent and the matrix

M = [a1, . . . , an−1, a
δ
1, . . . , a

δ
n−1, w, w

′, wδ, w′δ]

has rank larger than n + 2. To this aim, observe that the minor of M given by the first n − 1
rows together with row 2n− 2 as well as columns 1, 3, 5, . . . , 2n− 5, 2n+ 1, 2n+ 2 has full rank
n. So it is enough to choose w and w′ such that the minor of M comprising the last 4 rows and
columns 2n − 3, 2n − 1, 2n − 2 and 2n has rank 3. This is always possible. Claim (∗) is proved
in this case too.

Proposition 5.17 corresponds to claim 3 of Theorem 2.

6. More on Sk with S = W(2n − 1,K)

Symplectic k-grassmannians with k < n are not considered in Corollary 3 because their
Plücker embeddings are not transparent. However, the following holds.

Theorem 6.1. Let S := W(2n− 1,K) and, for 1 < k < n, let ε := εSk be the Plücker embedding
of the k-grassmannian Sk of S. Then Stab(|ε|) = Aut(ε).

Proof. Let V = V (2n,K), G = PG(V ), Gk the k-grassmannian of G and ε̂ := εGk the Plücker
embedding of Gk, as in Section 4. Also, let f be the alternating form of V associated to S.
Denoted by ⊥ the orthogonality relation with respect to f , a subspace X of G is totally isotropic
for f (namely it belongs to S) if and only if X ⊆ X⊥.
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It is well known that the Grassmann variety |ε̂| contains two families of maximal projective
subspaces, say M̂+ and M̂−, defined as follows; see Blok and Cooperstein [1]. In order to keep
this work self-contained, we recall this characterization here: given two subspaces Z1 and Z2 of
G of rank k − 1 and k + 1 respectively, define

M̂+(Z1) := {ε̂(X) : X subspace of G of rank k, X ⊃ Z1},
M̂−(Z2) := {ε̂(X) : X subspace of G of rank k, X ⊂ Z2}.

Then M̂+ := {M̂+(Z1) : rank (Z1) = k − 1} and M̂− := {M̂−(Z2) : rank (Z2) = k + 1}.
It is well known that |ε| spans a subspace Σ := 〈|ε|〉 of PG(

∧k
V ) of codimension

(
2n
k−2

)
.

Moreover |ε| = |ε̂| ∩ Σ (see e.g. [23, Section 4]). Hence every maximal projective subspace of |ε|
is the intersection of Σ with a suitable maximal projective subspace of |ε̂|.

Explicitly, consider M+(Z1) := M̂+(Z1) ∩ Σ. If Z1 6⊆ Z⊥
1 then M+(Z1) = ∅. Otherwise, the

points of M+(Z1) are the subspaces of G of rank k which contain Z1 and are totally isotropic for
f . These subspaces bijectively correspond to the points of the polar spaces associated with the
alternating form induced by f on Z⊥

1 /Z1. The points of the latter polar space are just the points of
PG(Z⊥

1 /Z1) and dim(PG(Z⊥
1 /Z1)) = dim(Z⊥

1 )−dim(Z1)−1 = (2n−k)−(k−2)−1 = 2n−2k+1.
Therefore dim(M+(Z1)) = 2n− 2k + 1.

Consider now M−(Z2) := M̂−(Z2) ∩ Σ. If Z2 ⊂ Z⊥
2 then M̂−(Z2) ⊆ Σ. In this case

M−(Z2) = M̂−(Z2) and dim(M−(Z2)) = k.
On the other hand, suppose Z⊥

2 ∩ Z2 ⊂ Z2. The space Z⊥
2 ∩ Z2 has even codimension in Z2,

say codZ2(Z
⊥
2 ∩Z2) = 2r for a positive integer r. If r = 1 then M−(Z2) is a line of Σ, but not the

ε-image of a line of Sk. In this case M−(Z2) ⊆ M+(Z1) with Z1 = Z⊥
2 ∩Z2. The space M+(Z1)

has dimension 2n− 2k+1 > 1 (as k < n by assumption). Hence M−(Z2) is not maximal among
the projective subspaces of |ε|. Finally, let r > 1. The maximal subspaces of Z2 totally isotropic
for f have rank rank (Z2)− r = k + 1− r < k. In this case M−(Z2) = ∅.

To sum up, |ε| admits only the following two families of maximal projective subspaces:

M+ := {M+(Z1) = M̂+(Z1) ∩ Σ : rank (Z1) = k − 1, Z1 ⊆ Z⊥
1 },

M− := {M−(Z2) = M̂−(Z2) ⊆ Σ : rank (Z2) = k + 1, Z2 ⊆ Z⊥
2 }.

The members of M+ and M− have projective dimensions equal to 2n−2k+1 and k respectively.
Moreover, if ` = shk({Z1, Z2}) is a line of Sk, for a {k− 1, k+1}-flag {Z1, Z2} of S, then ε(`) =
M+(Z1)∩M−(Z2). Conversely, if M+(Z1) ∈ M+ and M−(Z2) ∈ M−, then M+(Z1)∩M−(Z2)
is either empty or a line of Σ contained in |ε|. In the latter case, M+(Z1)∩M−(Z2) = ε(`) where
` = shk({Z1, Z2}) (a line of Sk).

So, if some property exists which enables us to distinguish M+ from M− in the family
M := M+ ∪ M− of maximal projective subspaces of |ε|, then we can recover the ε-images of
the lines of Sk as the nonempty intersections of members of M+ with members of M−. Having
done this, the equality Stab(|ε|) = Aut(ε) follows.

We shall now explain how to recognize the subfamilies M+ and M− in M. As remarked
above, the members of M+ and M− have projective dimensions equal to 2n − 2k + 1 and k
respectively. If 2n − 2k + 1 6= k, then dimensions are sufficient to distinguish the members of
M+ from those of M−. In this case we are done.

Suppose that 2n− 2k+ 1 = k. Two members of the same family M+ or M− always have at
most one point in common. So, we can define a connected bipartite graph M with M as the set
of vertices and adjacency defined as follows: two subspaces S, S′ ∈ M are adjacent in M precisely
when S ∩ S′ is a projective line. Thus, M+ and M− are the two classes of the bipartition of
M (uniquely determined because M is connected). It remains to understand which is which of
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these two classes. In view of this, note that every line of a subspace M−(Z2) ∈ M− is contained
in a member of M+. On the other hand, if M+(Z1) ∈ M+ then the lines of M+(Z1) that also
belong to members of M− are the ε-images of the lines shk({Z1, Z2}) of Sk, for some singular
subspace Z2 of S of rank k + 1 containing Z1. These are precisely the projective lines of Z⊥

1 /Z1

that are totally isotropic with respect to the form fZ1
induced by f on Z⊥

1 /Z1. However, the
full set of lines of M+(Z1) is the set of all projective lines of Z⊥

1 /Z1. Not all of them are totally
isotropic for fZ1 . So, not all lines of a M+(Z1) belong to members of M−. This is enough to
distinguish M+ from M−.
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