52 research outputs found

    Liveness-Based Garbage Collection for Lazy Languages

    Full text link
    We consider the problem of reducing the memory required to run lazy first-order functional programs. Our approach is to analyze programs for liveness of heap-allocated data. The result of the analysis is used to preserve only live data---a subset of reachable data---during garbage collection. The result is an increase in the garbage reclaimed and a reduction in the peak memory requirement of programs. While this technique has already been shown to yield benefits for eager first-order languages, the lack of a statically determinable execution order and the presence of closures pose new challenges for lazy languages. These require changes both in the liveness analysis itself and in the design of the garbage collector. To show the effectiveness of our method, we implemented a copying collector that uses the results of the liveness analysis to preserve live objects, both evaluated (i.e., in WHNF) and closures. Our experiments confirm that for programs running with a liveness-based garbage collector, there is a significant decrease in peak memory requirements. In addition, a sizable reduction in the number of collections ensures that in spite of using a more complex garbage collector, the execution times of programs running with liveness and reachability-based collectors remain comparable

    Heap Reference Analysis Using Access Graphs

    Full text link
    Despite significant progress in the theory and practice of program analysis, analysing properties of heap data has not reached the same level of maturity as the analysis of static and stack data. The spatial and temporal structure of stack and static data is well understood while that of heap data seems arbitrary and is unbounded. We devise bounded representations which summarize properties of the heap data. This summarization is based on the structure of the program which manipulates the heap. The resulting summary representations are certain kinds of graphs called access graphs. The boundedness of these representations and the monotonicity of the operations to manipulate them make it possible to compute them through data flow analysis. An important application which benefits from heap reference analysis is garbage collection, where currently liveness is conservatively approximated by reachability from program variables. As a consequence, current garbage collectors leave a lot of garbage uncollected, a fact which has been confirmed by several empirical studies. We propose the first ever end-to-end static analysis to distinguish live objects from reachable objects. We use this information to make dead objects unreachable by modifying the program. This application is interesting because it requires discovering data flow information representing complex semantics. In particular, we discover four properties of heap data: liveness, aliasing, availability, and anticipability. Together, they cover all combinations of directions of analysis (i.e. forward and backward) and confluence of information (i.e. union and intersection). Our analysis can also be used for plugging memory leaks in C/C++ languages.Comment: Accepted for printing by ACM TOPLAS. This version incorporates referees' comment

    Precise garbage collection for C

    Get PDF
    Journal ArticleMagpie is a source-to-source transformation for C programs that enables precise garbage collection, where precise means that integers are not confused with pointers, and the liveness of a pointer is apparent at the source level. Precise GC is primarily useful for long-running programs and programs that interact with untrusted components. In particular, we have successfully deployed precise GC in the C implementation of a language run-time system that was originally designed to use conservative GC. We also report on our experience in transforming parts of the Linux kernel to use precise GC instead of manual memory management

    Program analysis of temporal memory mismanagement

    Full text link
    In the use of C/C++ programs, the performance benefits obtained from flexible low-level memory access and management sacrifice language-level support for memory safety and garbage collection. Memory-related programming mistakes are introduced as a result, rendering C/C++ programs prone to memory errors. A common category of programming mistakes is defined by the misplacement of deallocation operations, also known as temporal memory mismanagement, which can generate two types of bugs: (1) use-after-free (UAF) bugs and (2) memory leaks. The former are severe security vulnerabilities that expose programs to both data and control-flow exploits, while the latter are critical performance bugs that compromise software availability and reliability. In the case of UAF bugs, existing solutions that almost exclusively rely on dynamic analysis suffer from limitations, including low code coverage, binary incompatibility, and high overheads. In the case of memory leaks, detection techniques are abundant; however, fixing techniques have been poorly investigated. In this thesis, we present three novel program analysis frameworks to address temporal memory mismanagement in C/C++. First, we introduce Tac, the first static UAF detection framework to combine typestate analysis with machine learning. Tac identifies representative features to train a Support Vector Machine to classify likely true/false UAF candidates, thereby providing guidance for typestate analysis used to locate bugs with precision. We then present CRed, a pointer analysis-based framework for UAF detection with a novel context-reduction technique and a new demand-driven path-sensitive pointer analysis to boost scalability and precision. A major advantage of CRed is its ability to substantially and soundly reduce search space without losing bug-finding ability. This is achieved by utilizing must-not-alias information to truncate unnecessary segments of calling contexts. Finally, we propose AutoFix, an automated memory leak fixing framework based on value-flow analysis and static instrumentation that can fix all leaks reported by any front-end detector with negligible overheads safely and with precision. AutoFix tolerates false leaks with a shadow memory data structure carefully designed to keep track of the allocation and deallocation of potentially leaked memory objects. The contribution of this thesis is threefold. First, we advance existing state-of-the-art solutions to detecting memory leaks by proposing a series of novel program analysis techniques to address temporal memory mismanagement. Second, corresponding prototype tools are fully implemented in the LLVM compiler framework. Third, an extensive evaluation of open-source C/C++ benchmarks is conducted to validate the effectiveness of the proposed techniques

    Establishing local temporal heap safety properties with applications to compile-time memory management

    Get PDF
    AbstractWe present a framework for statically reasoning about temporal heap safety properties. We focus on local temporal heap safety properties, in which the verification process may be performed for a program object independently of other program objects. We apply our framework to produce new conservative static algorithms for compile-time memory management, which prove for certain program points that a memory object or a heap reference will not be needed further. These algorithms can be used for reducing space consumption of Java programs. We have implemented a prototype of our framework, and used it to verify compile-time memory management properties for several small, but interesting example programs, including JavaCard programs

    Virtual Machine-Assisted Collaborative Junk Object Detection

    Get PDF
    Memory leak is unrecoverable software bug that causes performance degradation and re- liability issues to software applications. Although memory management systems exist in modern Object Oriented Language to reclaim unused memory store, memory leak can still happen, and continue to exhaust memory resource. In Java, where there is garbage col- lection for releasing unused objects, memory leaks manifest itself in the form of unused object retention. Since Java Programming language allocates objects on heap, the lifetime of an object deviates from the stack discipline, which can be a challenge in detecting Java memory leak. In this thesis, we propose a collaborative approach in detecting Java memory leaks through verifying Object Lifetime Specification at runtime. We designed a runtime verifier that leverages Java Virtual Machine technologies to monitor and extract annotated infor- mation from the user application, and use that information to verify against Java Virtual Machine events to detect unintentional object retention in the Java application under test. We implemented our runtime verifier with Maxine Virtual Machine, an open source, meta-circular virtual machine developed by Oracle Lab, and conducted experiments and DaCapo benchmark to evaluate its accuracy and performance efficiency. The results show that the runtime verification tool successfully identifies junk objects for different semantic cases proposed in this thesis with certain runtime overhead. Through the research and experimental results, we further make implications on how to improve the performance overhead associated with current design and implementation methods in detecting unused object retention, which in the long term constitute memory leak and performance bug

    ENHANCING CLOUD SYSTEM RUNTIME TO ADDRESS COMPLEX FAILURES

    Get PDF
    As the reliance on cloud systems intensifies in our progressively digital world, understanding and reinforcing their reliability becomes more crucial than ever. Despite impressive advancements in augmenting the resilience of cloud systems, the growing incidence of complex failures now poses a substantial challenge to the availability of these systems. With cloud systems continuing to scale and increase in complexity, failures not only become more elusive to detect but can also lead to more catastrophic consequences. Such failures question the foundational premises of conventional fault-tolerance designs, necessitating the creation of novel system designs to counteract them. This dissertation aims to enhance distributed systems’ capabilities to detect, localize, and react to complex failures at runtime. To this end, this dissertation makes contributions to address three emerging categories of failures in cloud systems. The first part delves into the investigation of partial failures, introducing OmegaGen, a tool adept at generating tailored checkers for detecting and localizing such failures. The second part grapples with silent semantic failures prevalent in cloud systems, showcasing our study findings, and introducing Oathkeeper, a tool that leverages past failures to infer rules and expose these silent issues. The third part explores solutions to slow failures via RESIN, a framework specifically designed to detect, diagnose, and mitigate memory leaks in cloud-scale infrastructures, developed in collaboration with Microsoft Azure. The dissertation concludes by offering insights into future directions for the construction of reliable cloud systems

    Mutable Checkpoint-Restart: Automating Live Update for Generic Server Programs

    Get PDF
    The pressing demand to deploy software updates without stopping running programs has fostered much research on live update systems in the past decades. Prior solutions, however, either make strong assumptions on the nature of the update or require extensive and error-prone manual effort, factors which discourage live update adoption. This paper presents Mutable Checkpoint-Restart (MCR), a new live update solution for generic (multiprocess and multithreaded) server programs written in C. Compared to prior solutions, MCR can support arbitrary software updates and automate most of the common live update operations. The key idea is to allow the new version to restart as similarly to a fresh program initialization as possible, relying on existing code paths to automatically restore the old program threads and reinitialize a relevant portion of the program data structures. To transfer the remaining data structures, MCR relies on a combination of precise and conservative garbage collection techniques to trace all the global pointers and apply the required state transformations on the fly. Experimental results on popular server programs (Apache httpd, nginx, OpenSSH and vsftpd) confirm that our techniques can effectively automate problems previously deemed difficult at the cost of negligible run-time performance overhead (2% on average) and moderate memory overhead (3.9x on average)

    Detection and Diagnosis of Memory Leaks in Web Applications

    Get PDF
    Memory leaks -- the existence of unused memory on the heap of applications -- result in low performance and may, in the worst case, cause applications to crash. The migration of application logic to the client side of modern web applications and the use of JavaScript as the main language for client-side development have made memory leaks in JavaScript an issue for web applications. Significant portions of modern web applications are executed on the client browser, with the server acting only as a data store. Client-side web applications communicate with the server asynchronously, remaining on the same web page during their lifetime. Thus, even minor memory leaks can eventually lead to excessive memory usage, negatively affecting user-perceived response time and possibly causing page crashes. This thesis demonstrates the existence of memory leaks in the client side of large and popular web applications, and develops prototype tools to solve this problem. The first approach taken to address memory leaks in web applications is to detect, diagnose, and x them during application development. This approach prevents such leaks from happening by finding and removing their causes. To achieve this goal, this thesis introduces LeakSpot, a tool that creates a runtime heap model of JavaScript applications by modifying web-application code in a browser-agnostic way to record object allocations, accesses, and references created on objects. LeakSpot reports the locations of the code that are allocating leaked objects, i.e., leaky allocation sites. It also identifies accumulation sites, which are the points in the program where references are created on objects but are not removed, e.g., the points where objects are added to a data structure but are not removed. To facilitate debugging and fixing the code, LeakSpot narrows down the space that must be searched for finding the cause of the leaks in two ways: First, it refines the list of leaky allocation sites and reports those allocation sites that are the main cause of the leaks. In addition, for every leaked object, LeakSpot reports all the locations in the program that create a reference to that object. To confirm its usefulness and e fficacy experimentally, LeakSpot is used to find and x memory leaks in JavaScript benchmarks and open-source web applications. In addition, the potential causes of the leaks in large and popular web applications are identified. The performance overhead of LeakSpot in large and popular web applications is also measured, which indirectly demonstrates the scalability of LeakSpot. The second approach taken to address memory leaks assumes memory leaks may still be present after development. This approach aims to reduce the effects of leaked memory during runtime and improve memory efficiency of web applications by removing the leaked objects or early triggering of garbage collection, Using a new tool, MemRed. MemRed automatically detects excessive use of memory during runtime and then takes actions to reduce memory usage. It detects the excessive use of memory by tracking the size of all objects on the heap. If an error is detected, MemRed applies recovery actions to reduce the overall size of the heap and hide the effects of excessive memory usage from users. MemRed is implemented as an extension for the Chrome browser. Evaluation demonstrates the effectiveness of MemRed in reducing memory usage of web applications. In summary, the first tool provided in this thesis, LeakSpot, can be used by developers in finding and fixing memory leaks in JavaScript Applications. Using both tools improves the experience of web-application users.4 month
    • …
    corecore