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Abstract

As the reliance on cloud systems intensifies in our progressively digital world, un-

derstanding and reinforcing their reliability becomes more crucial than ever. Despite

impressive advancements in augmenting the resilience of cloud systems, the growing

incidence of complex failures now poses a substantial challenge to the availability of

these systems. With cloud systems continuing to scale and increase in complexity,

failures not only become more elusive to detect but can also lead to more catas-

trophic consequences. Such failures question the foundational premises of conven-

tional fault-tolerance designs, necessitating the creation of novel system designs to

counteract them.

This dissertation aims to enhance distributed systems’ capabilities to detect, lo-

calize, and react to complex failures at runtime. To this end, this dissertation makes

contributions to address three emerging categories of failures in cloud systems. The

first part delves into the investigation of partial failures, introducing OmegaGen, a

tool adept at generating tailored checkers for detecting and localizing such failures.

The second part grapples with silent semantic failures prevalent in cloud systems,

showcasing our study findings, and introducing Oathkeeper, a tool that leverages past

failures to infer rules and expose these silent issues. The third part explores solutions

to slow failures via RESIN, a framework specifically designed to detect, diagnose,

ii



and mitigate memory leaks in cloud-scale infrastructures, developed in collaboration

with Microsoft Azure. The dissertation concludes by offering insights into future

directions for the construction of reliable cloud systems.

Keywords: cloud-scale systems, distributed systems, software reliability, highly

available systems, fault tolerance, failure detection, failure diagnosis, failure mitiga-

tion, program analysis, runtime verification.
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Chapter 1

Introduction

1.1 The Rise of Complex Failures

Cloud services play an increasingly essential role in our daily lives. They have re-

defined traditional business models [4], emerged as the primary mechanism for pro-

cessing data workloads [47], as well as profoundly reshaping social and entertain-

ment experiences [124]. The convenience and efficiency offered by these services

have revolutionized the way we work and interact.

Failures within cloud systems are, unfortunately, an inescapable fact. In 2022

alone, Google Cloud documented over 400 failure incidents [76]. These failures

often lead to large-scale service unavailability and substantial economic losses [83,

10, 210, 170, 73]. Lloyd’s of London has forecasted that a solitary cloud incident,

specifically involving the shutdown of a top U.S. cloud computing provider, could

potentially trigger close to $19 billion in business losses [187]. Evidently, real-world

instances like the Amazon Web Services outage in 2020, which disrupted a significant

portion of the internet including services like Roku, Adobe, and Flickr, underline this

point. Failures not only disrupt the immediate service but also erode user trust, posing

a long-term threat to the sustainability of cloud services.

1



Historically, many strategies have improved system availability and cloud re-

silience [41, 8, 205, 27, 42, 185, 3, 56, 45, 63, 88], including consensus protocols like

Paxos [136] for reliable data agreement and RAID [182] for data redundancy amid

disk failures. Fault-tolerant mechanisms, such as checkpointing [123], allow quick

system recovery and minimal downtime. Collectively, these efforts have resulted in

cloud systems achieving 99.9% availability, an industry benchmark [24, 11, 169].

There have also been significant advancements in bug finding [157, 126], system

testing [145, 140], tracing [203, 23, 64, 190, 159, 131], and safe deployment [146,

225], further fortifying the resilience of these systems.

Nevertheless, the increasing complexity of cloud systems is evident in the failures

developers face. Cloud systems rapidly evolve in scale and complexity. Microsoft

plans to built up to 100 new data centers every year [171]. Amazon Web Services

announced it will invest $7.8 billion in new data centers [22]. As cloud systems intro-

duce new features such as serverless computing, adopt new architectural paradigms

like microservices, and enforce security and compliance regulations such as the Gen-

eral Data Protection Regulation [207], they become unprecedentedly complex.

Consequently, both industry practitioners and research communities have ob-

served a rise of “complex failures” [121, 82, 156, 222, 226, 118] – a state that

systems appear functional while being defective. Complex failures occur across dif-

ferent stacks, from software to hardware [20, 200], caused by diverse factors such

as misconfiguration [194], OS scheduling [195], bad disk [21], faulty network de-

vice [193], etc. Previously dismissed as glitches or corner cases, these failures now

hold significant costs. For instance, a bad configuration caused a 59-minute incident

in 2021, leading to a $34 million revenue loss for Amazon [12]. These issues can no

longer be ignored.
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1.2 Advancing Runtime for Complex Failures

A direct strategy to decrease complex failures would be bug exposure through pro-

gram analysis [113, 212, 219] or testing [220, 196, 225]. However, bugs in the

production software are inevitable. Even with extensive testing and strict code re-

views, bugs may still escape and manifest in the production. In practice, failures

often have diverse root causes, making it challenging to employ a common pattern

for bug detection. Many failures require specific production workloads or timing to

trigger as shown in studies [151], rendering most of them production-dependent and

necessitating runtime mechanisms to handle.

Existing runtime approaches, unfortunately, prove insufficient in dealing with

complex failures. Today, cloud systems have multiple defenses against failures, while

their effectiveness relies on efficient failure detection, a process that monitors nodes’

states and recognizes failures. Successful detection is the key to successful recov-

ery. Existing mechanisms show competence in managing crash failures [42, 204,

2, 25, 94, 45], but they fall short in detecting complex failures. We have observed

cases including gray failures [121], partial disk failures [183], limplock [60], fail-

slow hardware [17, 82], metastable failures [119], and state corruption [55], all of

which are prevalent in large cloud infrastructures.

This dissertation confronts a key question: can we enhance cloud system run-

time to improve availability [1] amidst escalating failure complexities? To address

this, our research initiates with a series of studies to thoroughly understand complex

failures in production environments, using empirical observations to both deepen our

comprehension and guide our system design. Subsequently, we reimagine traditional
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failure detection with new failure detector abstractions tailored to system logic, aim-

ing to capture and localize obscure failures that may have otherwise escaped the radar.

Meanwhile, constructing fine-grained detectors for large and complex cloud systems

is not easy. Towards this goal we construct comprehensive and robust solutions by

integrating different techniques from programming languages, software engineering,

and machine learning. Specifically, our solution often includes an automated tool to

extract insights from programs, tests, and execution traces. Such tool can eliminate

the need for developers to write formal specifications or implement additional check-

ers. With this approach we can synthesize fine-grained failure detectors for large

systems by utilizing derived insights.

Thesis statement The increasingly complex and subtle failures present a formidable

threat to the health of modern cloud systems. Enhancing system capabilities to de-

tect, localize, and react to complex failures is crucial to improve the cloud system

availability. Leveraging techniques like program analysis and machine learning of-

fers scalable solutions for such large and intricate systems.

1.3 Dissertation Contributions

This dissertation made contributions to three emerging types of cloud failures.

Firstly, we identified partial failures, where a process remains active but loses

some of its functionalities, as a significant issue for many production systems. We

noticed these failures often led to catastrophic consequences, like data loss and in-

consistencies, and were difficult to detect and debug. We concluded that the root

problem was the inability of existing failure detectors to comprehend the complex
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failure semantics of modern systems. To counter this, we proposed intrinsic soft-

ware watchdogs, which closely observe anomalies within a process. We automated

the creation of these watchdogs using a tool we developed, called OmegaGen, which

successfully generated hundreds of watchdogs for six popular distributed systems,

detecting and localizing a majority of partial failures.

Secondly, our work on partial failures inspired our discovery on silent seman-

tic violations, a type of failures subtly violate system semantics without giving off

explicit error signals. These violations can lead to long-lasting damages and in-

correctness. To understand this problem, we conducted an empirical study on 109

real-world silent semantic failures from nine widely-used distributed systems. Based

on our findings, we built Oathkeeper, a tool that automatically infers semantic rules

from past failures and enforces them at runtime to detect new failures. Oathkeeper

managed to generate a large number of rules for the evaluated systems and proved

effective at detecting new violations with minimal overhead.

Finally, we explored solutions for slow failures, notoriously known for their lack

of definitive standards for detection. We tackled the common slow failure example of

memory leaks on the cloud scale, which had been an arduous problem for cloud de-

velopers/operators. We identified the unique characteristics of the cloud environment

that complicate the handling process after closely observing developers’ process in

fixing memory leak bugs. To address the issue, we collaborated with Azure engi-

neers and developed RESIN, a centralized service that analyses processes across all

hosts in the Azure fleet to detect, diagnose, and mitigate memory leaks. Since its

implementation, RESIN has substantially reduced the number of VM reboots caused

by low memory across Microsoft Azure.
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1.4 Dissertation Outline

The structure of this dissertation is as follows:

Chapter 2 provides an overview of the fundamental concepts about failure detec-

tion in distributed systems. It elaborates on traditional failure detection mechanisms

and their limitations, underscoring the need for new solutions.

Chapter 3 delves into our work concerning partial failures. This includes an em-

pirical study on failures from widely-used distributed systems and the design and

assessment of our solution, OmegaGen. This chapter forms the foundation of this

dissertation.

Chapter 4 sheds light on our research into silent semantic failures. Our primary

focus lies in the thorough analysis of silent semantic failures in production. Addi-

tionally, we expound on the design and evaluation of our solution, Oathkeeper.

Chapter 5 outlines our collaborative work on cloud memory leaks with Azure,

and introduces the design and evaluation of the RESIN system. Please note, certain

confidential details have been anonymized for privacy reasons.

Chapter 6 presents an extensive review of previous literature, approaches, and

techniques in the field of distributed systems, especially focusing on related fields

such as failure studies, failure detection, runtime verification.

Chapter 7 discusses the limitations of our approach, the lessons we learned from

our research and outlines exciting future directions that this field of research may

explore.
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Chapter 2

Background

This chapter provides a brief review of the existing literature in the domain of dis-

tributed system failure detection. It underlines the the conventional mechanisms of

failure detection, and highlights the shortcomings of the existing models, setting the

stage for the contribution of this thesis.

2.1 Fault-tolerance in Distributed Systems

A distributed systems is an ensemble of independent computing entities. Each server,

often referred to as node, is interconnected via a network, which collaborate to per-

form complex tasks. Developers build a variety of services on top of this model such

as storage [54, 30, 69, 58], processing [57, 221] and coordination [29].

Reliability is a paramount requirement for distributed services. Many services

provide mission-critical operations in industries such as finance, healthcare, and

telecommunications. Reliable distributed systems must ensure uninterrupted service

availability, maintain data consistency across various nodes, and promptly recover

from unexpected failures. These characteristics directly influence user experience

and trust, and the performance of businesses that rely on these services.
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Figure 2.1: Traditional failure detection models in distributed systems.

In the context of distributed systems, failure refers to the inability of a system

or its component to perform its intended function. Failures can be attributed to a

multitude of reasons, including hardware faults, network partitioning, software bugs,

or operator errors. Reliable system designs must consider potential failures.

The reliability requirement necessitates fault tolerance, a process that enables a

system to continue to perform (at certain level) even if a failure happens in software

or hardware. This is achieved primarily through mechanisms such as redundancy,

where multiple instances of the same service are available to handle requests. For

example, if a single node fails in a distributed cluster, the system can redirect tasks

to another operational node, thereby ensuring continuity of service.

In the subsequent portion of this section, we will discuss two principal fault tol-

erance models: Fail-stop and Byzantine Faults.

2.1.1 Fail-stop

The fail-stop model is a simplified failure model used in the design and analysis of

distributed systems. In this model, components are abstracted as uniformed nodes,
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allowing group protocols to manage inherent complexities. Components need to

detect problematic peers that have potentially crashed, commonly through timeouts

and heartbeat mechanisms. As shown in Figure 2.1, components frequently transmit

heartbeat signals, indicating their operational status and enabling prompt responses

to failures. The system operates under the assumption that components are either

functioning or non-functioning.

Due to its simplicity and efficiency, the fail-stop model has gained popularity

in practice. Numerous research [42, 185, 45, 63, 94] studies and aims to enhance

its accuracy, primarily focusing on differentiating true crash failures from delayed

response due to network delays or congestion [42, 3]. Chandra and Toueg [42] intro-

duced the concept of unreliable failure detectors and showed Consensus can still be

solved even with unreliable failures detectors despite mistakes. GossipFD [56] and

SWIM [56] propose scalable protocols to detect crash failures in large-scale systems.

However, this failure mode is too simple to represent the complex behavior of

modern software. Its binary assumption of component status becomes insufficient as

cloud failures grow increasingly complex. In reality, it is possible for a component

to appear functional while being defective: system processes continue to run while

internal threads have stopped, or a storage service fail to replicate the promised num-

ber of data copies. Even a simple firewall service can gradually consume memory

resources, potentially bringing down the host server.

2.1.2 Byzantine Faults

A Byzantine Fault, as introduced by Leslie Lamport, Robert Shostak, and Marshall

Pease in their 1982 "Byzantine Generals Problem" [137], is an error in a distributed

network, where a component behaves unpredictably. This analogy represents faulty
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network nodes behaving like traitorous generals, spreading conflicting information,

leading to confusion and a lack of consensus. These faults are difficult to detect due

to their inconsistent symptoms and their potential to spread seemingly true, yet false

information. This unpredictable nature separates Byzantine Faults from other, more

predictable system failures.

To counteract such faults, an extensive array of Byzantine Fault Tolerance (BFT) [41,

134, 114, 206] techniques was introduced. BFT enables systems to operate correctly

and reach consensus despite some components acting arbitrarily or maliciously, ef-

fectively mitigating the problems illustrated by the Byzantine Generals Problem.

BFT algorithms aim to reach agreement on a single data value among nodes. Tradi-

tional BFT algorithms tolerate up to one-third faulty nodes.

However, BFT is not a panacea for all failure modes. For instance, it is ill-

equipped to handle gradual performance decay [49], such as a node’s processing

capacity deteriorating due to hardware issues in a distributed cloud service. Further-

more, BFT is an expensive solution, often reserved for security-critical applications

like blockchains. Consequently, a more efficient approach is desirable.

2.2 Challenges of Dealing with Complex Failures

We have discussed why existing failure detectors prove to be inadequate to handle

emerging failures in production: the fail-stop model, which treats all monitored soft-

ware as coarse-grained nodes, is overly generic. On the other hand, BFT is unneces-

sarily expensive.

The fundamental problem with existing failure detectors is, their logic is disjoint

from monitored system execution: it merely embeds a loop that periodically sends
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“ping” to peers, which cannot represent the complex behavior of modern software.

Thus, such coarse-grained detectors will create a false sense of health even when the

main program is broken for a long time or it will “bark” excessively even when the

main program executes smoothly.

In contrast, good failure detectors should intersect the normal execution so they

accurately reflect the internal status of the main program. They should be tailored

to different behaviors in different system components, and check safety and liveness

requirements these components may potentially violate, e.g., checking if a Cassandra

background task of SSTable compaction is stuck. Detectors should also achieve high

coverage of the main program’s major components.

Crucially, detectors should also provide hints for recovery options. Many cloud

failures are extremely difficult to diagnose and can take days or weeks to pinpoint [129].

To expedite recovery, besides enhance the detection of ongoing failures, detectors

should also pinpoint the problematic code region along with the payload for diagnos-

ing and reproducing production failures.

Challenge 1: Design new abstractions for failure detectors, specifically tailored

to accommodate system logics for detecting and localizing complex failures.

Some researchers recognized the need for new fault tolerance techniques to ad-

dress increasingly complex failure semantics. For example, Falcon [141] employs

developer-written checking functions to differentiate potential non-responsiveness

causes. For ZooKeeper, the checking function tests whether a client request has ex-

amines if a client request has been processed recently, while concurrently, a separate

component issues no-operation requests at a minimal rate. This manual approach,
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Software SLOC (approx.) Packages Classes Methods

Zookeeper 28,000 16 192 3,562
Cassandra 102,000 58 826 12,919
HDFS 219,000 110 1431 79,584
HBase 160,000 70 962 17,868

Table 2.1: Code base sizes of popular distributed systems in their recent releases.

however, proves impractical for larger, more realistic settings. Modern cloud infras-

tructures typically contain hundreds of diverse services, ranging from data storage

and processing to network management and security. These services often operate

under different paradigms and have extensive codebases, as depicted in Table 2.1,

with many surpassing hundreds of thousands of lines. This increasing size exacer-

bates the complexity of monitoring and error detection tasks.

Given the extensive nature of cloud system codebases, it’s unrealistic to expect

developers to manually create checkers. This process is not only time-consuming, but

also susceptible to human error. Consequently, automation becomes imperative, as

it can substantially reduce both the time expenditure and the likelihood of mistakes.

Any effective solution should accommodate large-scale programs, leading us to:

Challenge 2: Propose principles to automate failure detector construction for

systems with substantial codebases.

Detectors should not only be effective, but also safe. Ideally, detectors should

operate as mere “observers”, minimizing interference with program execution. How-

ever, this requirement contradicts with the need to accurately reflect a program’s sta-

tus, which requires detectors closely monitor program execution by inserting “probes”

and code snippets to frequently synchronize and utilize state with the main program.

These hooking or probing actions may inadvertently disrupt the program state or
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cause synchronization issues, leading to inaccurate results or crashes. They may

also introduce performance overheads that are detrimental in performance-sensitive

environments.

Challenge 3: Prevent side effects caused by failure detection, including correct-

ness and performance issues, while maintain detection accuracy.

2.3 Conclusion

This chapter highlighted the critical role of fault tolerance, the types and implications

of failures, and the fundamental aspects of failure detection. It also pointed out the

existing gaps in current failure detection methods, justifying the need for the research

presented in this thesis. The subsequent chapters delve into the proposed solution

to address these gaps for different types of failures and improve the efficiency and

effectiveness of failure detection in distributed systems.
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Chapter 3

Partial Failures

3.1 Introduction

It is elusive to build large software that never fails. Designers of robust systems

therefore must devise runtime mechanisms that proactively check whether a program

is still functioning properly, and react if not. Many of these mechanisms are built

with a simple assumption that when a program fails, it fails completely via crash,

abort, or network disconnection.

This assumption, however, does not reflect the complex failure semantics exhib-

ited in modern cloud infrastructure. A typical cloud software program consists of

tens of modules, hundreds of dynamic threads, and tens of thousands of functions

for handling different requests, running various background tasks, applying layers of

optimizations, etc. Not surprisingly, such a program in practice can experience par-

tial failures, where some, but not all, of its functionalities are broken. For example,

for a data node process in a modern distributed file system, a partial failure could oc-

cur when a rebalancer thread within this process can no longer distribute unbalanced

blocks to other remote data node processes, even though this process is still alive. Or,

a block receiver daemon in this data node process silently exits, so the blocks are no
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longer persisted to disk. These partial failures are not a latent problem that operators

can ignore; they can cause serious damage including inconsistency, “zombie” behav-

ior and data loss. Indeed, partial failures are behind many catastrophic real-world

outages [167, 166, 9, 78, 175, 70, 71, 74, 6]. For example, Microsoft Office 365 mail

service suffered an 8-hour outage because an anti-virus engine module of the mail

server was stuck in identifying some suspicious message [167].

When a partial failure occurs, it often takes a long time to detect the incident.

In contrast, a process suffering a total failure can be quickly identified, restarted or

repaired by existing mechanisms, thus limiting the failure impact. Worse still, par-

tial failures cause mysterious symptoms that are incredibly difficult to debug [133],

e.g., create() requests time out but write() requests still work. In a production

ZooKeeper outage due to the leader failing partially [175], even after an alert was

triggered, the leader logs contained few clues about what went wrong. It took the

developer significant time to localize the fault within the problematic leader process

(Figure 3.1). Before pinpointing the failure, a simple restart of the leader process was

fruitless (the symptom quickly re-appeared).

Both practitioners and the research community have called attention to this gap.

For example, the Cassandra developers adopted the more advanced accrual failure

detector [94], but still conclude that its current design “has very little ability to ef-

fectively do something non-trivial to deal with partial failures” [40]. Prabhakaran

et al. analyze partial failure specific to disks [183]. Huang et al. discuss the gray

failure [121] challenge in cloud infrastructure. The overall characteristics of software

partial failures, however, are not well understood.

15



public class SyncRequestProcessor {

  public void serializeNode(OutputArchive oa, ...) {

    DataNode node = getNode(pathString);

    if (node == null)

      return;

    String children[] = null;

    synchronized (node) {

      scount++;

      oa.writeRecord(node, "node");

      children = node.getChildren();

    }

    path.append('/');

    for (String child : children) {

      path.append(child);

      serializeNode(oa, path); //serialize children

    }

  }

}
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Figure 3.1: A production ZooKeeper outage due to partial failure [175].

In this chapter, we first seek to answer the question, how do partial failures man-

ifest in modern systems? To shed some light on this, we conducted a study (Sec-

tion 3.2) of 100 real-world partial failure cases from five large-scale, open-source

systems. We find that nearly half (48%) of the studied failures cause certain software-

specific functionality to be stuck. In addition, the majority (71%) of the studied fail-

ures are triggered by unique conditions in a production environment, e.g., bad input,

scheduling, resource contention, flaky disks, or a faulty remote process. Because

these failures impact internal features such as compaction and persistence, they can

be unobservable to external detectors or probes.

How to systematically detect and localize partial failures at runtime? Practition-

ers currently rely on running ad-hoc health checks (e.g., send an HTTP request every

few seconds and check its response status [198, 14]). But such health checks are too

shallow to expose a wide class of failures. The state-of-the-art research work in this

area is Panorama [120], which converts various requestors of a target process into
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observers to report gray failures of this process. This approach is limited by what

requestors can observe externally. Also, these observers cannot localize a detected

failure within the faulty process.

We propose a novel approach to construct effective partial failure detectors through

program reduction. Given a program P, our basic idea is to derive from P a reduced

but representative version W as a detector module and periodically test W in pro-

duction to expose various potential failures in P. We call W an intrinsic watchdog.

This approach offers two main benefits. First, as the watchdog is derived from and

“imitates” the main program, it can more accurately reflect the main program’s sta-

tus compared to the existing stateless heartbeats, shallow health checks or external

observers. Second, reduction makes the watchdog succinct and helps localize faults.

Manually applying the reduction approach on large software is both time-consuming

and error-prone for developers. To ease this burden, we design a tool, OmegaGen,

that statically analyzes the source code of a given program and generates customized

intrinsic watchdogs for the target program.

Our insight for realizing program reduction in OmegaGen is that W ’s goal is

solely to detect and localize runtime errors; therefore, it does not need to recreate the

full details of P’s business logic. For example, if P invokes write() in a tight loop,

for checking purposes, a W with one write() may be sufficient to expose a fault. In

addition, while it is tempting to check all kinds of faults, given the limited resources,

W should focus on checking faults manifestable only in a production environment.

Logical errors that deterministically lead to wrong results (e.g., incorrect sorting)

should be the focus of offline unit testing. Take Figure 3.1 as an example. In checking

the SyncRequestProcessor, W need not check most of the instructions in function

serializeNode, e.g., lines 3–6 and 8. While there might be a slim chance these
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instructions would also fail in production, repeatedly checking them would yield

diminishing returns for the limited resource budget.

Accurately distinguishing logically-deterministic faults and production-dependent

faults in general is difficult. OmegaGen uses heuristics to analyze how “vulnerable”

an instruction is based on whether the instruction performs some I/O, resource al-

location, async wait, etc. So since line 9 of Figure 3.1 performs a write, it would

be assessed as vulnerable and tested in W . It is unrealistic to expect W to always

include the failure root cause instruction. Fortunately, a ballpark assessment often

suffices. For instance, even if we only assess that the entire serializeNode function

or its caller is vulnerable, and periodically test it in W , W can still detect this partial

failure.

Once the vulnerable instructions are selected, OmegaGen will encapsulate them

into checkers. OmegaGen’s second contribution is providing several strong isolation

mechanisms so the watchdog checkers do not interfere with the main program. For

memory isolation, OmegaGen identifies the context for a checker and generates con-

text managers with hooks in the main program which replicates contexts before using

them in checkers. OmegaGen removes side-effects from I/O operations through redi-

rection and designs an idempotent wrapper mechanism to safely test non-idempotent

operations.

We have applied OmegaGen to six large (28K to 728K SLOC) systems. Omega-

Gen automatically generates tens to hundreds of watchdog checkers for these sys-

tems. To evaluate the effectiveness of the generated watchdogs, we reproduced 22

real-world partial failures. Our watchdogs can detect 20 cases with a median detec-

tion time of 4.2 seconds and localize the failure scope for 18 cases. In comparison,

the best manually written baseline detector can only detect 11 cases and localize 8
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Software Lang. Cases Ver.s (Range) Date Range

ZooKeeper Java 20 17 (3.2.1–3.5.3) 12/01/2009–08/28/2018
Cassandra Java 20 19 (0.7.4–3.0.13) 04/22/2011–08/31/2017
HDFS Java 20 14 (0.20.1–3.1.0) 10/29/2009–08/06/2018
Apache C 20 16 (2.0.40–2.4.29) 08/02/2002–03/20/2018
Mesos C++ 20 11 (0.11.0–1.7.0) 04/08/2013–12/28/2018

Table 3.1: Studied software systems, the partial failure cases, and the unique versions, ver-
sion and date ranges these cases cover.

cases. Through testing, our watchdogs exposed a new, confirmed partial failure bug

in the latest ZooKeeper.

3.2 Real-world Failure Study

Partial failures are a well known problem. Gupta and Shute report that partial failures

occur much more commonly than total failures in the Google Ads infrastructure [86].

Researchers studied partial disk faults [183] and slow hardware faults [82]. But how

software fails partially is not well understood. In this Section, we study real-world

partial failures to gain insight into this problem and to guide our solution design.

Scope We focus on partial failure at the process granularity. This process could

be standalone or one component in a large service (e.g., a datanode in a storage

service). Our studied partial failure is with respect to a process deviating from the

functionalities it is supposed to provide per se, e.g., store and balance data blocks,

whether it is a service component or a standalone server. We note that users may

define a partial failure at the service granularity (e.g., Google drive becomes read-

only), the underlying root cause of which could be either some component crashing

or failing partially.

Methodology We study five large, widely-used software systems (Table 3.1). They
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provide different services and are written in different languages. To collect the study

cases, we first crawl all bug tickets tagged with critical priorities in the official bug

trackers. We then filter tickets from testing and randomly sample the remaining fail-

ures tickets. To minimize bias in the types of partial failures we study, we exhaus-

tively examining each sampled case and manually determine whether it is a complete

failure (e.g., crash), and discard if so. In total, we collected 100 failure cases (20

cases for each system).

3.2.1 Findings

Finding 1: In all the five systems, partial failures appear throughout release history

(Table 3.1). 54%1 of them occur in the most recent three years’ software releases.

Such a trend occurs in part because as software evolves, new features and per-

formance optimizations are added, which complicates the failure semantics. For ex-

ample, HDFS introduced a short-circuit local reads feature [112] in version 0.23.

To implement this feature, a DomainSocketWatcher was added that watches a set of

Unix domain sockets and invokes a callback when they become readable. But this

new module can accidentally exit in production and cause applications performing

short-circuit reads to hang [110].

Finding 2: The root causes of studied failures are diverse. The top three (total 48%)

root cause types are uncaught errors, indefinite blocking, and buggy error handling

(Figure 3.2).

Results are shown in Figure 3.2 (UE: uncaught error; IB: indefinite blocking; EH:

1With sample size 100, the percents also represent the absolute numbers.
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Figure 3.2: Root cause distribution.

buggy error handling; DD: deadlock; PB: performance bug; LE: logic error; IL: infi-

nite loop; RL: resource leak.) Uncaught error means certain operation triggers some

error condition that is not expected by the software. As an example, the stream-

ing session in Cassandra could hang when the stream reader encounters errors other

than IOException like RuntimeException [33]. Indefinite blocking occurs when some

function call is blocked forever. In one case [108], the EditLogTailer in a standby

HDFS namenode made an RPC rollEdits() to the active namenode; but this call was

blocked when the active namenode was frozen but not crashed, which prevented the

standby from becoming active. Buggy error handling includes silently swallowing

errors, empty handlers [219], premature continuing, etc. Other common root causes

include deadlock, performance bugs, infinite loop and logic errors.

Finding 3: Nearly half (48%) of the partial failures cause some functionality to be

stuck.

Figure 3.3 shows the consequences of the studied failures. Note that these failures

are all partial. For the “stuck” failures, some software module like the socket watcher

was not making any progress; but the process was not completely unresponsive, i.e.,

its heartbeat module can still respond in time. It may also handle other requests like
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Figure 3.3: Consequence of studied failures.

non-local reads.

Besides “stuck” cases, 17% of the partial failures causes certain operation to take

a long time to complete (the “slow” category in Figure 3.3). These slow failures

are not just inefficiencies for optional optimization. Rather, they are severe perfor-

mance bugs that cause the affected feature to be barely usable. In one case [32], after

upgrading Cassandra 2.0.15 to 2.1.9, users found the read latency of the production

cluster increased from 6 ms/op to more than 100 ms/op.

Finding 4: In 13% of the studied cases, a module became a “zombie” with undefined

failure semantics.

This typically happens when the faulty module accidentally exits its normal con-

trol loop or it continues to execute even when it encounters some severe error that

it cannot tolerate. For example, an unexpected exception caused the ZooKeeper lis-

tener module to accidentally exit its while loop so new nodes could no longer join the

cluster [229]. In another case, the HDFS datanode continued even if the block pool

failed to initialize [107], which would trigger a NullPointerException whenever it

tried to do block reports.

Finding 5: 15% of the partial failures are silent (including data loss, corruption,
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inconsistency, and wrong results).

They are usually hard to detect without detailed correctness specifications. For

example, when the Mesos agent garbage collects old slave sandboxes, it could incor-

rectly wipe out the persistent volume data [165]. In another case [172], the Apache

web server would “go haywire”, e.g., a request for a .js file would receive a response

of image/png, because the backend connections are not properly closed in case of

errors.

Finding 6: 71% of the failures are triggered by some specific environment condition,

input, or faults in other processes.

For example, a partial failure in ZooKeeper can only be triggered when some

corrupt message occurs in the length field of a record [70]. Another partial failure

in the ZooKeeper leader would only occur when a connecting follower hangs [235],

which prevents other followers from joining the cluster. These partial failures are

hard to be exposed by pre-production testing and require mechanisms to detect at

runtime. Moreover, if a runtime detector uses a different setup or checking input, it

may not detect such failures.

Finding 7: The majority (68%) of the failures are “sticky”.

Sticky means the process will not recover from the faults by itself. The faulty pro-

cess needs to be restarted or repaired to function again. In one case, a race condition

caused an unexpected RejectedExecutionException, which caused the RPC server

thread to silently exit its loop and stop listening for connections [36]. This thread

must be restarted to fix the issue. For certain failures, some extra repair actions such

as fixing a file system inconsistency [104] are needed.
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The remaining (32%) failures are “transient”, i.e., the faulty modules could possi-

bly recover after certain condition changes, e.g., when the frozen namenode becomes

responsive [108]. However, these non-sticky failures already incurred damage for a

long time by then (15 minutes in one case [228]).

Finding 8: The median diagnosis time is 6 days and 5 hours.

For example, diagnosing a Cassandra failure [37] took the developers almost two

days. The root cause turned out to be relatively simple: the MeteredFlusher module

was blocked for several minutes and affected other tasks. One common reason for

the long diagnosis time despite simple root causes is that the confusing symptoms

of the failures mislead the diagnosis direction. Another common reason is the insuf-

ficient exposure of runtime information in the faulty process. Users have to enable

debug logs, analyze heap, and/or instrument the code, to identify what was happening

during the production failure.

3.2.2 Implications

Overall, our study reveals that partial failure is a common and severe problem in large

software systems. Most of the studied failures are production-dependent (finding 6),

which require runtime mechanisms to detect. Moreover, if a runtime detector can lo-

calize a failure besides mere detection, it will reduce the difficulty of offline diagnosis

(finding 8). Existing detectors such as heartbeats, probes [85], or observers [120] are

ineffective because they have little exposure to the affected functionalities internal in

a process (e.g., compaction).

One might conclude that the onus is on the developers to add effective runtime
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checks in their code, such as a timer check for the rollEdits() operation in the afore-

mentioned HDFS failure [108]. However, simply relying on developers to anticipate

and add defensive checks for every operation is unrealistic. We need a systematic

approach to help developers construct software-specific runtime checkers.

It would be desirable to completely automate the construction of customized run-

time checkers, but this is extremely difficult in the general case given the diversity

(finding 2) of partial failures. Indeed, 15% of the studied failures are silent, which re-

quire detailed correctness specifications to catch. Fortunately, the majority of failures

in our study violate liveness (finding 3) or trigger explicit errors at certain program

points, which suggests that detectors can be automatically constructed without deep

semantic understanding.

3.3 Watchdog: An Intrinsic Failure Detector Abstrac-
tion

We consider a large server process π composed of many smaller modules, provid-

ing a set of functionalities R, e.g., a datanode server with request listener, snapshot

manager, cache manager, etc. A failure detector is needed to monitor the process for

high availability. We target specifically partial failures. We define a partial failure in

a process π to be when a fault does not crash π but causes safety or liveness violation

or severe slowness for some functionality R f ⊊ R. Besides detecting a failure, we

aim to localize the fault within the process to facilitate subsequent troubleshooting

and mitigation.

Guided by our study, we propose an intersection principle for designing effective
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partial failure detectors—construct customized checks that intersect with the execu-

tion of a monitored process. The rationale is that partial failures typically involve

specific software feature and bad state; to expose such failures, the detector need to

exercise specific code regions with carefully-chosen payloads. The checks in existing

detectors including heartbeat and HTTP tests are too generic and too disjoint with the

monitored process’ states and executions.

We advocate an intrinsic watchdog design (Figure 3.4) that follows the above

principle. An intrinsic watchdog is a dedicated monitoring extension for a process.

This extension regularly executes a set of checkers tailored to different modules.

A watchdog driver manages the checker scheduling and execution, and optionally

applies a recovery action. The key objective for detection is to let the watchdog

experience similar faults as the main program. This is achieved through (a) executing

mimic-style checkers (b) using stateful payloads (c) sharing execution environment

of the monitored process.

Mimic Checkers. Current detectors use two types of checkers: probe checkers,

which periodically invoke some APIs; signal checkers, which monitor some health

indicator. Both are lightweight. But a probe checker can miss many failures because

a large program has numerous APIs and partial failures may be unobservable at the

API level. A signal checker is susceptible to environment noises and usually has poor

accuracy. Neither can localize a detected failure.

We propose a more powerful mimic-style checker. Such checker selects some

representative operations from each module of the main program, imitates them, and

detects errors. This approach increases coverage of checking targets. And because
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Figure 3.4: An intrinsic watchdog example.

the checker exercises code logic similar to the main program in production environ-

ment, it can accurately reflect the monitored process’ status. In addition, a mimic

checker can pinpoint the faulty module and failing instruction.

Synchronized States. Exercising checkers requires payloads. Existing detectors use

synthetic input (e.g., fixed URLs [14]) or a tiny portion of the program state (e.g.,

heartbeat variables) as the payload. But triggering partial failures usually entails

specific input and program state (§3.2). The watchdog should exercise its checkers

with non-trivial state from the main program for higher chance of exposing partial

failures.

We introduce contexts in watchdogs. A context is bound to each checker and

holds all the arguments needed for the checker execution. Contexts are synchronized

with the program state through hooks in the main program. When the main program

execution reaches a hook point, the hook uses the current program state to update its

context. The watchdog driver will not execute a checker unless its context is ready.

Concurrent Execution. It is natural to insert checkers directly in the main program.

However, in-place checking poses an inherent tension—on the one hand, catching

partial failures requires adding comprehensive checkers; on the other hand, partial
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public class SyncRequestProcessor {
  public void run() {
    while (running) {
      if (logCount > (snapCount / 2))
        zks.takeSnapshot();
      ...
    }
  }
}
public class DataTree {
  public void serializeNode(OutputArchive oa, ...) {
    ...
    String children[] = null;
    synchronized (node) {
      scount++;
      oa.writeRecord(node, "node");
      children = node.getChildren();
    }
    ...
  }
}
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(a) A module in main program

public class SyncRequestProcessor$Checker {
  public static void serializeNode_reduced(
       OutputArchive arg0, DataNode arg1) {
    arg0.writeRecord(arg1, "node");
  }
  public static void serializeNode_invoke() {
    Context ctx = ContextManger.
       serializeNode_reduced_context();
    if (ctx.status == READY) {
      OutputArchive arg0 = ctx.args_getter(0);
      DataNode arg1 = ctx.args_getter(1);
      serializeNode_reduced(arg0, arg1);
    }
  }
  public static void takeSnapshot_reduced() {
    serializeList_invoke();
    serializeNode_invoke();
  }
  public static Status checkTargetFunction0() {
    ...
    takeSnapshot_reduced();
  }
}
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(b) Generated checker

Figure 3.5: Example of watchdog checker OmegaGen generated for a module in ZooKeeper.

failures only occur rarely, but more checkers would slow down the main program in

normal scenarios. In-place checkers could also easily interfere with the main program

through modifying the program states or execution flow.

We advocate watchdog to run concurrently with the main program. Concurrent

execution allows checking to be decoupled so a watchdog can execute comprehen-

sive checkers without delaying the main program during normal executions. Indeed,

embedded systems domain has explored using concurrent watchdog co-processor for

efficient error detection [160]. When a checker triggers some error, the watchdog also

will not unexpectedly alter the main program execution. The concurrent watchdog

should still live in the same address space to maximize mimic execution and expose

similar issues, e.g., all checkers timed out when the process hits long GC pause.
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3.4 OmegaGen: Automatically Generate Watchdogs

It is tedious to manually write effective watchdogs for large programs, and it is chal-

lenging to get it right. Incautiously written watchdogs can miss checking important

functions, alter the main execution, invoke dangerous operations, corrupt program

states, etc. a watchdog must also be updated as the software evolves. To ease devel-

opers’ burden, we design a tool, OmegaGen, which uses a novel program reduction

approach to automatically generate watchdogs described in Section 3.3. The central

challenge of OmegaGen is to ensure the generated watchdog accurately reflects the

main program status without introducing significant overhead or side effects.

Overview and Target. OmegaGen takes the source code of a program P as an

input. It finds the long-running code regions in P and then identifies instructions

that may encounter production-dependent issues using heuristics and optional, user-

provided annotations. OmegaGen encapsulates the vulnerable instructions into exe-

cutable checkers and generates watchdog W. It also inserts watchdog hooks in P to

update W’s contexts and packages a driver to execute W in P. Figure 3.5 shows an

overview example of running OmegaGen.

As discussed in Section 3.2.2, it is difficult to automatically generate detectors

that can catch all types of partial failures. Our approach targets partial failures that

surface through explicit errors, blocking or slowness at certain instruction or func-

tion in a program. The watchdogs OmegaGen generates are particularly effective in

catching partial failures in which some module becomes stuck, very slow or a “zom-

bie” (e.g., the HDFS DomainSocketWatcher thread accidentally exiting and affecting

short-circuit reads). They are in general ineffective on silent correctness errors (e.g.,

Apache web-server incorrectly re-using stale connections).
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3.4.1 Identify Long-running Methods

OmegaGen starts its static analysis by identifying long-running code regions in a

program (step ➊), because watchdogs only target checking code that is continuously

executed. Many code regions in a server program are only for one-shot tasks such

as database creation, and should be excluded from watchdogs. Some tasks are also

either periodically executed such as snapshot or only activated under specific condi-

tions. We need to ensure the activation of generated watchdog is aligned with the life

span of its checking target in the main program. Otherwise, it could report wrong

detection results.

OmegaGen traverses each node in the program call graph. For each node, it

identifies potentially long-running loops in the function body, e.g., while(true) or

while(flag). Loops with fixed iterations or that iterate over collections will be

skipped. OmegaGen then locates all the invocation instructions in the identified loop

body. The invocation targets are colored. Any methods invoked by a colored node

are also recursively colored. Besides loops, we also support coloring periodic task

methods scheduled through common libraries like ExecutorService in Java concur-

rent package. Note that this step may over-extract (e.g., an invocation under a condi-

tional). This is not an issue because the watchdog driver will check context validity

at runtime (§3.4.4).

A complication arises when a method has multiple call-sites, some of which are

colored while others are not. Whether this method is long running or not depends

on the specific execution. Moreover, an identified long-running loop may turn out

to be short-lived in an actual run. To accurately capture the method life span and

control the watchdog activation, OmegaGen designs a predicate-based algorithm. A
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predicate is a runtime property associated with a method which tracks whether a call

site of this method is in fact reached.

For an invocation target inside a potentially long-running loop, a hook is inserted

before the loop that sets its predicate and another hook after the loop that unsets

its predicate. A callee of a potentially long-running method will have a predicate

set to be equal to this caller’s predicate. At runtime, the predicates are assigned

and evaluated that activates or deactivates the associated watchdog. The predicate

instrumentation occurs after OmegaGen finishes the vulnerable operation analysis

(§3.4.2) and program reduction (§3.4.3).

3.4.2 Locate Vulnerable Operations

OmegaGen then analyzes the identified long-running methods and further narrows

down the checking target candidates (step ➋). This is because even in those limited

number of methods, a watchdog cannot afford to check all of their operations. Our

study shows that the majority of partial failures are triggered by unique environment

conditions or workloads. This implies that operations whose safety or liveness are

heavily influenced by its execution environment deserve particular attention. In con-

trast, operations whose correctness is logically deterministic (e.g., sorting), are better

checked through offline testing or in-place assertions. Continuously monitoring such

operations inside a watchdog would yield diminishing returns.

OmegaGen uses heuristics to determine for a given operation how vulnerable this

operation is in its execution environment. Currently, the heuristics consider opera-

tions that perform synchronization, resource allocation, event polling, async waiting,

invocation with external input argument, file or network I/O as highly vulnerable.
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OmegaGen identifies most of them through standard library calls. Functions contain-

ing complex while loop conditions are considered vulnerable due to potential infinite

looping. Simple operations such as arithmetic, assignments, and data structure field

accesses are tagged as not vulnerable. In the Figure 3.5a example, OmegaGen con-

siders the oa.writeRecord to be highly vulnerable because its body invokes several

write calls. These heuristics are informed by our study but can be customized through

a rule table configuration in OmegaGen. For example, we can configure OmegaGen

to consider functions with several exception signatures as vulnerable (i.e., poten-

tially improperly handled). We also allow developers to annotate a method with a

@vulnerable tag in the source code. OmegaGen will locate calls to the annotated

method and treat them as vulnerable.

Neither our heuristics nor human judgment can guarantee that the vulnerable op-

eration criteria are always sound and complete. If OmegaGen incorrectly assesses

a safe operation as vulnerable, the main consequence is that the watchdog would

waste resources monitoring something unnecessarily. Incorrectly assessing a vul-

nerable operation as risk-free is more concerning. But one nice characteristic of

vulnerable operations is that they often propagate [81] – an instruction that blocks

indefinitely would also cause its enclosing function to block; and, an instruction that

triggers some uncaught error also propagates through the call stack. For example, in

a real-world partial failure in ZooKeeper [70], even if OmegaGen misses the exact

vulnerable instruction readString, a watchdog still has a chance to detect the partial

failure if dserialize or even pRequest is assessed to be vulnerable. On the other

hand, if a vulnerable operation is too high-level (e.g., main is considered vulnerable),

error signals can be swallowed internally and it would also make localizing faults

hard.
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3.4.3 Reduce Main Program

With the identified long-running methods and vulnerable operations, OmegaGen per-

forms a top-down program reduction (step ➌) starting from the entry point of long-

running methods. For example, in Figure 3.5a, OmegaGen will try to reduce the

takeSnapshot function first. When walking the control flow graph of a method to be

reduced, if an instruction is tagged as potentially vulnerable, it would be retained in

the reduced method. Otherwise, it would be excluded. For a call instruction that is

not tagged as vulnerable yet, it would be temporarily retained and OmegaGen will

recursively try to reduce the target function. If eventually the body of a reduced

method is empty, i.e., no vulnerable operation exists, it will be discarded. Any call

instructions that call this discarded method and were temporarily retained are also

discarded.

The resulting reduced program not only contains all vulnerable operations reach-

able from long-running methods but also preserves the original structure, i.e., for a

call chain f ↪→ g ↪→ h in the main program, the reduced call chain is f’ ↪→ g’ ↪→ h’

This structure can help localize a reported issue. In addition, when later a watchdog

invokes a validator (§3.4.6), the structure provides information on which validator to

invoke.

If a type of vulnerable operation (e.g., the writeRecord call in Figure 3.5a) is

included multiple times in the reduced program, it could be redundant in terms of

exposing failures. Therefore, OmegaGen will further reduce the vulnerable opera-

tions based on whether they have been included already. However, the same type of

vulnerable operation may be invoked quite differently in different places, and only a

particular invocation would trigger failure. If we are too aggressive in reducing based
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on occurrences, we may miss the fault-triggering invocation. So, by default Omega-

Gen only performs intra-procedural occurrence reduction: multiple writeRecord calls

will not occur within a single reduced method but may occur across different reduced

methods.

3.4.4 Encapsulate Reduced Program

OmegaGen will encapsulate the code snippets retained after step ➌ into watchdogs.

But these code snippets may not be directly executable because of missing defini-

tions or payloads. For example, the reduced version of serializeNode in Figure 3.5a

contains an operation oa.writeRecord(node, "node"). But oa and node are unde-

fined. OmegaGen analyzes all the arguments required for the execution of a reduced

method. For each undefined variable, OmegaGen adds a local variable definition at

the beginning of the reduced method. It further generates a context factory that pro-

vides APIs to manage all the arguments for the reduced method (step ➍). Before

a variable’s first usage in the reduced method, a getter call to the context factory is

added to retrieve the latest value at runtime.

To synchronize with the main program, OmegaGen inserts hooks that call setter

methods of the same context factory in the (non-reduced) method in the original

program at the same point of access. The context hooks are further conditioned on the

long-running predicate for this method (§3.4.1). When the watchdog driver executes

a reduced method, it first checks whether the context is ready and skips the execution

if the context is not ready. Together, context and predicate control the activation

of watchdog checkers—only when the original program reaches the context hooks

and the method is truly long-running would the corresponding operation be checked.

For example, in the while loop of Figure 3.5a, if the log count has not reached the
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snapshot threshold yet, the predicate for takeSnapshot is true but the context for the

reduced serializeNode is not ready so the checking is skipped.

3.4.5 Add Checks to Catch Faults

After step ➍, the encapsulated reduced methods can be executed in a watchdog.

OmegaGen will then add checks for the watchdog driver to catch the failure signals

from the execution of vulnerable operations in the reduced methods. OmegaGen

targets both liveness and safety violations. Liveness checks are relatively straight-

forward to add. OmegaGen inserts a timer before running a checker. Setting good

timeouts for distributed systems is a well-known hard problem. Prior work [141]

argues that replacing end-to-end timeouts with fine-grained timeouts for local op-

erations makes the setting less sensitive. We made similar observations and use a

conservative timeout (default 4 seconds). Besides timeouts, the watchdog driver also

records the moving average of checker execution latencies to detect potential slow

faults.

To detect safety violations, OmegaGen relies on the vulnerable operations to emit

explicit error signals (assertions, exceptions, and error codes) and installs handlers to

capture them. OmegaGen also captures runtime errors, e.g., null pointer exception,

out of memory errors, IllegalStateException.

Correctness violations are harder to check automatically without understanding

the semantics of the vulnerable operations. Fortunately such silent violations are

not very common in our studied cases (§3.2). Nevertheless, OmegaGen provides a

wd_assert API for developers to conveniently add semantic checks. When Omega-

Gen analyzes the program, it will treat wd_assert instructions as special vulnerable
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operations. It performs similar checker encapsulation (§3.4.4) by analyzing the con-

text needed for such operations and generates checkers containing the wd_assert in-

structions. The original wd_assert in the main program will be rewritten as a no-op.

In this way, developers can leverage the OmegaGen framework to perform concurrent

expensive checks (e.g., if the hashes of new blocks match their checksums) without

blocking the main execution.

The watchdog driver records any detected error in a log file. The reported error

contains the timestamp, failure type and symptom, failed checker, the corresponding

main program location that the failed checker is testing. backtrace, etc. The watchdog

driver also saves the context used by the failed checker to ease subsequent offline

troubleshooting.

3.4.6 Validate Impact of Caught Faults

An error reported by a watchdog checker could be transient or tolerable. To re-

duce false alarms, the watchdog runs a validation task after detecting an error. The

default validation is to simply re-execute the checker and compare, which is effec-

tive for transient errors. Validating tolerable errors requires testing software fea-

tures. Note that the validator is not for handling errors but rather confirming impact.

Writing such validation tasks mainly involves invoking some entry functions, e.g.,

processRequest(req), which is straightforward.

OmegaGen provides skeletons of validation tasks, and currently relies on manual

effort to fill out the skeletons. But OmegaGen automates the decision of choosing

which validation task to invoke based on which checker failed. Specifically, for a

filled validation task T that invokes a function f in the main program, OmegaGen

searches the generated reduced program structure (§3.4.3) in topological order and
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tries to find the first reduced method m’ that either matches f or any method in the f’s

callgraph. Then OmegaGen generates a hashmap that maps all the checkers that are

rooted under m’ to task T . At runtime, when an error is reported, the watchdog driver

checks the map to decide which validator to invoke.

3.4.7 Prevent Side Effects

Context Replication. To prevent the watchdog checkers from accidentally modify-

ing the main program’s states, OmegaGen analyzes all the variables (context) refer-

enced in a checker. It generates a replication setter in the checker’s context manager,

which will replicate the context when invoked. The replication ensures any modifi-

cations are contained in the watchdog’s state. Using replicated contexts also avoids

adding complex synchronization to lock objects during checking. But blindly repli-

cating contexts will incur high overhead. We perform immutability analysis [122,

115] on the watchdog contexts. If a context is immutable, OmegaGen generates a

reference setter instead, which only holds a reference to the context source.

To further reduce context replication, we use a simple but effective lazy copying

approach that, instead of replicating a context upon each set, delays the replication

to only when a getter needs it. To deal with potential inconsistency due to lazy

replication—e.g., the main program has modified the context after the setter call—

we associate a context with several attributes: version, weak_ref (weak reference to

the source object), and hash (hash code for the value of the source object). The lazy

setter only sets these attributes but does not replicate the context. Later when the

getter is invoked, the getter checks if the referent of weak_ref is not null. If so, it

further checks if the current hash code of the referent’s value matches the recorded

hash and skip replication if they do not match (main program modified context).
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Besides the attribute checks in getters, the watchdog driver will check if the

version attributes of each context in a vulnerable operation match and skip the check-

ing if the versions are inconsistent. Here, we give a concrete example to clarify how

potential inconsistency could arise and how it is addressed. With lazy replication

(essentially “copy-on-get”), a context may be modified or even invalidated after the

context setter call; if this occurs, the getter will replicate a different context value.

For example,

Main Program Watchdog Checker

------------------------------ ---------------------------

void foo() { void foo_reduced_invoke() {

foo_reduced_args_setter(oa);

write(oa);

oa.append("test");

<--- oa = foo_reduced_ctx.args_getter(0);

}

By the time the context getter is invoked in the checker, oa may already be invalidated

(garbage collected). But since the getter will check the weak_ref attribute, it will find

out the fact that the context is invalid (weak_ref returns null) and hence not replicate.

If oa is still valid, the context getter will further check the hash code of the current

value and skip replication if it does not match the recorded hash. This approach is

lightweight. But it assumes the hash code contract of Java objects being honored

in a program. If this is not the case, e.g., oa’s hash code is the same regardless of

its content, inconsistency (getter replicates a modified context) could arise. Such

inconsistency may or may not cause an issue for the checker. For the above example,

the checker’s write may write "xxxtest" instead of "xxx" to the watchdog test file,

which is still fine. But if another vulnerable operation has a special invariant on

"xxx", the inconsistency will lead to a false alarm at runtime. Our low false alarm

rates during the 12-hour experiment period suggest that hash code contract violation
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is generally not a major concern for mature software.

Another consistency scenario to consider is when a checker uses some vulnerable

operation that requires multiple context arguments. Since the context retrieval is

asynchronous under the lazy replication optimization, a race condition could occur

while a getter is retrieving all the arguments. For example,

Main Program Watchdog Checker

----------------------------------- ---------------------------

// called in a loop

synchronized void foo() { void foo_reduced_invoke() {

<--- arg0 = foo_reduced_ctx.args_getter(0);

...

foo_reduced_args_setter(oa, node);

oa.writeRecord(node);

<--- arg1 = foo_reduced_ctx.args_getter(1);

}

After the getter retrieves oa, the second argument (node) is updated before the getter

retrieves it. In this case, both arguments are valid and match their recorded hash

attributes. However, they are mixed from two invocations of foo(). We address

this inconsistency scenario with the version attributes. A checker will compare if

the version attributes of all the contexts it needs are the same before invoking the

checked operation, and skip the checking if the versions are inconsistent.

I/O Redirection and Idempotent Wrappers. Besides memory side effects; we also

need to prevent I/O side effects. For instance, if a vulnerable operation is writing

to a snapshot file, a watchdog could accidentally write to the same snapshot file and

affect subsequent executions of the main program. OmegaGen adds I/O redirection

capability in watchdogs to address this issue: when OmegaGen generates the context

replication code, the replication procedure will check if the context refers to a file-

related resource, and if so the context will be replicated with the file path changed to a

watchdog test file under the same directory path. Thus watchdogs would experience
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similar issues such as degraded or faulty storage.

If the storage system being written to is internally load-balanced (e.g., S3), how-

ever, the test file may get distributed to a different environment and thus miss issues

that only affect the original file. This limitation can be addressed as our write redirec-

tion is implemented in a cloning library, so it is relatively easy to extend the logic of

deciding the redirection path there to consider the load-balancing policy (if exposed).

Besides, if the underlying storage system is layered and complex like S3, it is perhaps

better to apply OmegaGen on that system to directly expose partial failures there.

For socket I/O, OmegaGen can perform similar redirection to a special watchdog

port if we know beforehand the remote components are also OmegaGen-instrumented.

Since this assumption may not hold, OmegaGen by default rewrites the watchdog’s

socket I/O operation as a ping operation.

If the vulnerable operation is a read-type operation, redirection to read from the

watchdog special test file may not help. We design an idempotent wrapper mecha-

nism so that both the main program and watchdog can invoke the wrapper safely. If

the main program invokes the wrapper first, it directly performs the actual read-type

operation and caches the result in a context. When the watchdog invokes the wrap-

per, if the main program is in the critical section, it will wait until the main program

finishes, and then it gets the cached context. In the normal scenario, the watchdog

can use the data from the read operation without performing the actual read. In the

faulty scenario, if the main program blocks indefinitely in performing the read-type

operation, the watchdog would uncover the hang issue through the timeout of wait-

ing in its wrapper; a bad value from the read would also be captured by the watchdog

after retrieving it. For each vulnerable operation of read-type, OmegaGen generates
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an idempotent wrapper with the above property, replaces the main program’s origi-

nal call instruction to invocation of the wrapper, and places a call instruction to the

wrapper in the watchdog checker as well.

P 1

1

1

input stream

2 3 4 5 …

WD

wrapper

check

(a) Idempotent wrapper for readRecord

P

1

2 3 4 5

WD

time

1

4

check check

wrapper 1 3 42

(b) Invoking wrapper in normal scenario

P

1WD

time

1

check

wrapper 1

2 2

hang
corrupt

2 X

timeout

check

2

2

check

(c) Invoking wrapper in faulty scenario

Figure 3.6: Illustration of idempotent wrapper

With this approach, both the watchdog and main program invoke the wrapper

instead of the original operation in a coordinated fashion. The wrapper distinguishes

whether the call is from main program or the watchdog. Take a vulnerable operation

readRecord as an example. In the fault-free scenario, the main program performs the

actual readRecord as normal; the watchdog checker would get a cached value. In a

faulty scenario, the main program may get stuck in readRecord; the watchdog would

be blocked outside the critical section of the wrapper so it can detect the hang without
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performing the actual readRecord. Figure 3.6 illustrates both scenarios.

OmegaGen automatically generates idempotent wrappers for all read-type vulner-

able operations. OmegaGen first locates all statements that invoke a read operation

in the main program. It extracts the stream objects from these statements. A wrapper

is generated for each type of stream object. The watchdog driver maintains a map be-

tween the stream objects and the wrapper instances. For the wrapper to later perform

the actual operation, OmegaGen assigns a distinct operation number for each read-

type method in the stream class, and generates a dispatcher that calls the method

based on the op number. Then, OmegaGen replaces the original invocation with a

call to the watchdog driver’s wrapper entry point using the stream object, operation

number, and caller source as the arguments. For example, buf = istream.read(); in the

main program would be replaced with buf = WatchdogDriver.readHelp(istream, 1, 0);

where 1 is the op number for read and 0 means the wrapper is called from the main

program.

The other steps in the checker construction for the read-type operations are simi-

lar to other types of vulnerable operations. The key difference is that OmegaGen will

generate a self-contained checker for the wrapped operation instead of the operation.

It particular, the checker OmegaGen generates will contain a call instruction to the

proper wrapper using source 1 (from watchdog) as the argument.

3.5 Implementation

We implemented OmegaGen in Java with 8,100 SLOC. Its core components are built

on top of the Soot [202] program analysis framework, so it supports systems in Java

bytecode. OmegaGen does not rely on specific JDK features. The Soot version we
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ZK CS HF HB MR YN
SLOC 28K 102K 219K 728K 191K 229K
Methods 3,562 12,919 79,584 179,821 16,633 10,432

Table 3.2: Evaluated system software.

ZK CS HF HB MR YN
Watchdogs 96 190 174 358 161 88
Methods 118 464 482 795 371 222
Operations 488 2,112 3,416 9,557 6,116 752

Table 3.3: Number of watchdogs and checkers generated.

used can analyze bytecode up to Java 8. We leverage a cloning library [135] with

around 400 SLOC of changes to support our selective context replication and I/O

redirection mechanisms. OmegaGen’s workflow consists of multiple phases to ana-

lyze and instrument the program and generate watchdogs. A single script automates

the workflow and packages the watchdogs with the main program into a bundle.

3.6 Evaluation

We evaluate OmegaGen to answer several questions: (1) does our approach work for

large software? (2) can the generated watchdogs detect and localize diverse forms

of real-world partial failures? (3) do the watchdogs provide strong isolation? (4)

do the watchdogs report false alarms? (5) what is the runtime overhead to the main

program? The experiments were performed on a cluster of 10 cloud VMs. Each VM

has 4 vCPUs at 2.3GHz, 16 GB memory, and 256 GB disk.

3.6.1 Generating Watchdogs

To evaluate whether our proposed technique can work for real-world software, we

evaluated OmegaGen on six large systems (Table 3.2): ZK (ZooKeeper), CS (Cas-

sandra), HF (HDFS), HB (HBase), MR (MapReduce), YN (Yarn). We chose these
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Figure 3.7: Thread-level coverage by generated watchdog checkers.

systems because they are widely used and representative, with codebases as large as

728K SLOC to analyze. OmegaGen uses around 30 lines of default rules for the vul-

nerable operation heuristics (most are types of Java library methods) and an average

of 10 system-specific rules (e.g., special asynchronous wait patterns). OmegaGen

successfully generates watchdogs for all six systems.

Table 3.3 shows the total watchdogs generated. Each watchdog here means a root

of reduced methods. Note that these are static watchdogs. Only a subset of them will

be activated in production by the watchdog predicates and context hooks (§3.4.1).

We further evaluate how comprehensive the generated checkers are by measuring

how many thread classes in the software have at least one watchdog checker gener-

ated. Figure 3.7 shows the results. OmegaGen achieves an average coverage ratio

of 60%. For the threads that do not have checkers, they are either not long-running

(e.g., auxiliary tools) or OmegaGen did not find vulnerable operations in them. In

general, OmegaGen may fail to generate good checkers for modules that primarily

perform computations or data structure manipulations. The generated checkers may

still contain some redundancy even after the reduction (§3.4.3).
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Id. Root Cause Conseq. Sticky? Study?

ZK1 [228] Bad Synch. Stuck No Yes
ZK2 [70] Uncaught Error Zombie Yes Yes
ZK3 [230] Logic Error Inconsist. Yes No
ZK4 [232] Resource Leak Slow Yes Yes

CS1 [34] Uncaught Error Zombie Yes Yes
CS2 [35] Indefinite Blocking Stuck No Yes
CS3 [39] Resource Leak Slow Yes No
CS4 [38] Performance Bug Slow Yes No

HF1 [110] Uncaught Error Stuck Yes Yes
HF2 [103] Indefinite Blocking Stuck No Yes
HF3 [102] Deadlock Stuck Yes No
HF4 [109] Uncaught Error Data Loss Yes No

HB1 [99] Infinite Loop Stuck Yes No
HB2 [97] Deadlock Stuck Yes No
HB3 [101] Logic Error Stuck Yes No
HB4 [100] Uncaught Error Denial Yes No
HB5 [96] Indefinite Blocking Silent Yes No

MR1 [163] Deadlock Stuck Yes No
MR2 [162] Infinite Loop Stuck Yes No
MR3 [164] Improper Err Handling Stuck Yes No
MR4 [161] Uncaught Error Zombie Yes No

YN1 [215] Improper Err Handling Stuck Yes No

Table 3.4: 22 real-world partial failures reproduced for evaluation.

3.6.2 Detecting Real-world Partial Failures

Failure Benchmark To evaluate the effectiveness of our generated watchdogs, we

collected and reproduced 22 real-world partial failures in the six systems. Table 3.4

in the appendix lists the case links and types. All of these failures led to severe

consequences. They involve sophisticated fault injection and workload to trigger. It

took us one week on average to reproduce each failure. Seven cases are from our

study in Section 3.2. Others are new cases we did not study before.

Baseline Detectors The built-in detectors (heartbeat) in the six systems cannot han-

dle partial failures at all. We thus implement four types of advanced detectors for

45

https://issues.apache.org/jira/browse/ZOOKEEPER-2201
https://www.pagerduty.com/blog/the-discovery-of-apache-zookeepers-poison-packet
https://issues.apache.org/jira/browse/ZOOKEEPER-2325
https://issues.apache.org/jira/browse/ZOOKEEPER-3131
https://issues.apache.org/jira/browse/CASSANDRA-6364
https://issues.apache.org/jira/browse/CASSANDRA-6415
https://issues.apache.org/jira/browse/CASSANDRA-9549
https://issues.apache.org/jira/browse/CASSANDRA-9486
https://issues.apache.org/jira/browse/HDFS-8429
https://issues.apache.org/jira/browse/HDFS-11377
https://issues.apache.org/jira/browse/HDFS-11352
https://issues.apache.org/jira/browse/HDFS-4233
https://issues.apache.org/jira/browse/HBASE-18137
https://issues.apache.org/jira/browse/HBASE-16429
https://issues.apache.org/jira/browse/HBASE-21464
https://issues.apache.org/jira/browse/HBASE-21357
https://issues.apache.org/jira/browse/HBASE-16081
https://issues.apache.org/jira/browse/MAPREDUCE-6351
https://issues.apache.org/jira/browse/MAPREDUCE-6190
https://issues.apache.org/jira/browse/MAPREDUCE-6957
https://issues.apache.org/jira/browse/MAPREDUCE-3634
https://issues.apache.org/jira/browse/YARN-4254


Detector Description

Client (Panorama [120]) instrument and monitor client re-
sponses

Probe (Falcon [141]) daemon thread in the process that peri-
odically invokes internal functions with
synthetic requests

Signal script that scans logs and checks
JMX [178] metrics

Resource daemon thread that monitors memory
usage, disk and I/O health, and active
thread count

Table 3.5: Four types of baseline detectors we implemented.

comparison (Table 3.5). The client checker is based on the observers in state-of-the-

art work, Panorama [120]. The probe checker presents Falcon [141] app spies (which

are also manually written in the Falcon paper). When implementing the signal and

resource checkers, we follow the current best practices [198, 52] and monitor signals

recommended by practitioners [116, 188, 201, 13].

Methodology The watchdogs and baseline detectors are all configured to run checks

every second. When reproducing each case, we record when the software reaches the

failure program point and when a detector first reports failure. The detection time

is the latter minus the former. For slow failures, it is difficult to pick a precise start

time. We set the start point using criteria recommended by practitioners, e.g., when

number of outstanding requests exceeds 10 for ZooKeeper [116].

Result Table 3.6 shows the results. ✖ means the failure is undetected. Overall, the

watchdogs detected 20 out of the 22 cases with a median detection time of 4.2 sec-

onds. 12 of the detected cases are captured by the default vulnerable operation rules.

8 are caught by system-specific rules. In general, the watchdogs were effective for

liveness issues like deadlock, indefinite blocking as well as safety issues that trigger

explicit error signals or exceptions. But they are less effective for silent correctness
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errors.

In comparison, as Table 3.6 shows, the best baseline detector only detected 11

cases. Even the combination of all baseline detectors detected only 14 cases. The

client checkers missed 68% of the failures because these failures concern the internal

functionality or some optimizations that are not immediately visible to clients. The

signal checker is the most effective among the baseline detectors, but it is also noisy

(§3.6.6).

Case Studies ZK1 [228]: This is the running example in the paper. A network issue

caused a ZooKeeper remote snapshot dumping operation to be blocked in a critical

section, which prevented update-type request processing threads from proceeding

(Figure 3.1). OmegaGen generates a checker serializeNode_reduced, which exposed

the issue in 4 s.

CS1 [34]: The Cassandra Commitlog executor accidentally died due to a bad com-

mit disk volume. This caused the uncommitted writes to pile up, which in turn led

to extensive garbage collection and the process entering a zombie status. The rel-

evant watchdog OmegaGen generates is CommitLogSegment_reduced. Interestingly,

this case had negative detection time. This happens because the executor successfully

executed the faulty program point prior to the failure and set the watchdog context

(log segment path). When the checker was scheduled, the context was still valid so

the checker was activated and exposed the issue ahead of time.

HB5 [96]: Users observed some gigantic write-ahead-logs (WALs) on their HBase

cluster even when WAL rolling is enabled. This is because when a peer is previously

removed, one thread gets blocked for sending a shutdown request to a closed execu-

tor. Unfortunately this procedure holds the same lock ReplicationSourceManager#recordLog,
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which does the WAL rolling (to truncate logs). Our generated watchdog mimics the

procedure of submitting request and waiting for completion, and experienced the

same stalling issue on closed executor.

CS4 [38]: Due to a severe performance bug in the Cassandra compaction module, all

the RangeTombstones ever created for the partition that have expired would remain in

memory until the compaction completes. The compaction task would be very slow

when the workloads contain a lot of overwrites to collections. The relevant checker

OmegaGen generates is SSTableWriter#append_reduced. After the tombstones piles

up, this checker reports a slow alert based on the dramatic (10×) increase of moving

average of operation latencies.

YN1 [215]: A new application (AM) was stuck after getting allocated to a recently

added NodeManager (NM). This was caused by /etc/hosts on the ResourceManager

(RM) not being updated, so this new NM was unresolvable when RM built the service

tokens. RM would retry forever and the AM would keep getting allocated to the same

NM. Our watchdogs failed to detect the issue. The reason is that the faulty operation

buildTokenService() mainly creates some data structure, so OmegaGen failed to

consider it as vulnerable.

3.6.3 Localizing Partial Failure

Detection is only the first step. We further evaluate the localization effectiveness for

the detected cases in Table 3.6. we measure the distance between the error reporting

location and the faulty program point. We categorize the distance into six levels of

decreasing accuracy. Table 3.7 shows the result. ➸means pinpointing the faulty instr.

✻means pinpointing the faulty function or data structure. ✺means pinpointing a func

in the faulty function’s call chain. ◗means pinpointing some entry function in the
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program, which is distant from the root cause. ●means only pinpointing the faulty

process. ❍means misleadingly pinpointing another innocent process. N/a meanings

not applicable because failure is undetected. Watchdogs directly pinpoint the faulty

instruction for 55% (11/20) of the detected cases, which indicates the effectiveness of

our vulnerable operation heuristics. In case MR1 [163], after noticing the symptom

(reducer did not make progress for a long time), it took the user more than two days of

careful log analysis and thread dumps to narrow down the cause. With the watchdog

error report, the fault was obvious.

For 35% (7/20) of detected cases, the watchdogs either localize to some program

point within the same function or some function along the call chain, which can still

significantly ease troubleshooting. For example, in case HF2 [103], the balancer was

stuck in a loop in waitForMoveCompletion() because isPendingQEmpty() will return

false when no mover threads are available. The generated watchdog did not pinpoint

either place. But it caught the error through timeout in executing a future.get() vul-

nerable operation in its checker dispatchBlockMoves_reduced, which narrows down

the issue.

In comparison, the client or resource detectors can only pinpoint the faulty pro-

cess. To narrow down the fault, users must spend significant time analyzing logs and

code. In case HB4 [100], the client checker even blamed a wrong innocent process,

which would completely mislead the diagnosis. The probe checker localizes failures

to some internal functions in the program. But these functions are still too high-level

and distant from the fault. The signal checker localizes 8 cases.
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3.6.4 Fault-Injection Tests

To evaluate how the watchdogs may perform in real deployment, we conducted a

random fault-injection experiment on the latest ZooKeeper. In particular, we inject

four types of faults to the system: Infinite loop (modify loop condition to force run-

ning forever); Arbitrary delay (inject 30 seconds delay in some complex operations);

System resource contention (exhaust CPU/memory resource); I/O delay (inject 30

seconds delay in file system or network). After that, we run a series of workloads

and operations (e.g., restart some server). We successfully trigger 16 synthetic fail-

ures. Our generated watchdogs can detect 13 out of the 16 triggered synthetic failures

with a median detection time of 6.1 seconds. The watchdogs pinpoint the injected

failure scope for 11 cases.

3.6.5 Discovering A New Partial Failure Bug

During our continuous testing, our watchdogs exposed a new partial bug in the latest

version (3.5.5) of ZooKeeper. We observe that our ZooKeeper cluster occasionally

hangs and new create requests time out while the admin tool still shows the leader

process is working. This symptom is similar to our studied bug ZK1. But that bug

is already fixed in the latest version. The issue is also non-deterministic. Our watch-

dogs report the failure in 4.7 seconds. The watchdog log helps us pinpoint the root

cause for this puzzling failure. The log shows the checker that reported the issue

was serializeAcls_reduced. We further inspected this function and found that the

problem was the server serializing the ACLCache inside a critical section. When de-

velopers fixed the ZK1 bug, this similar flaw was overlooked and recent refactoring

of this class made the flaw more problematic. We reported this new bug [234], which
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ZK CS HF HB MR YN
watch. 0–0.73 0–1.2 0 0–0.39 0 0–0.31
watch_v. 0–0.01 0 0 0–0.07 0 0
probe 0 0 0 0 0 0
resource 0–3.4 0–6.3 0.05–3.5 0–3.72 0.33–0.67 0–6.1
signal 3.2–9.6 0 0–0.05 0–0.67 0 0
Table 3.8: False alarm ratios (%) of all detectors in the evaluated six systems.

has been confirmed by the developers and fixed.

3.6.6 Side Effects and False Alarms

We ran the watchdog-enhanced systems with extensive workloads and verified that

the systems pass their own tests. We also verified the integrity of the files and client

responses by comparing them with ones from the vanilla systems. If we disable our

side-effect prevention mechanisms (§3.4.7), however, the systems would experience

noticeable anomalies, e.g., snapshots get corrupted, system crash; or, the main pro-

gram would hang because the watchdog read the data from a stream.

We further evaluate the false alarms of watchdogs and baseline detectors under

three setups: stable: runs fault-free for 12 hours with moderate workloads (§3.6.7);

loaded: random node restarts, every 3 minutes into the moderate workloads, switch

to aggressive workloads (3× number of clients and 5× request sizes); tolerable:

run with injected transient errors tolerable by the system. Table 3.8 shows the re-

sults. Each cell reports the ratio range under three setups (stable, loaded, tolerable).

watch_v means watchdog with validators. The false alarm ratio is calculated from

total false failure reports divided by the total number of check executions. Watch-

dogs did not report false alarms in the stable setup. But during a loaded period, they

incur around 1% false alarms due to socket connection errors or resource contention.
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ZK CS HF HB MR YN
Analysis 21 166 75 92 55 50
Generation 43 103 130 953 131 89
Table 3.9: OmegaGen watchdog generation time (sec).

ZK CS HF HB MR YN
Base 428.0 3174.9 90.6 387.1 45.0 45.0
w/ Watch. 399.8 3014.7 85.1 366.4 42.1 42.3
w/ Probe. 417.6 3128.2 89.4 374.3 44.9 44.9
w/ Resource. 424.8 3145.4 89.9 385.6 44.9 44.6

Table 3.10: System throughput (op/s) w/ different detectors.

These false alarms would disappear once the transient faults are gone. With the val-

idator mechanism (§3.4.6), the watchdog false alarm ratios (the watch_v row) are

significantly reduced. Among the baseline detectors, we can see that even though

signal checkers achieved better detection, they incur high false alarms (3–10%).

3.6.7 Performance and Overhead

We first measure the performance of OmegaGen’s static analysis. Table 3.9 shows

the results. For all but HBase, the whole process takes less than 5 minutes. HBase

takes 17 minutes to generate watchdogs because of its large codebase.

We next measure the runtime overhead of enabling watchdogs and the baseline

detectors. We used popular benchmarks configured as follows: for ZK, we used an

open-source benchmark [59] with 15 clients sending 15,000 requests (40% read);

for Cassandra, we used YCSB [53] with 40 clients sending 100,000 requests (50%

read); for HDFS, we used built-in benchmark NNBenchWithoutMR which creates

and writes 100 files, each file has 160 blocks and each block is 1MB; for HBase, we

used YCSB with 40 clients sending 50,000 requests (50% read); for MapReduce and

Yarn, we used built-in DFSIO benchmark which writes 400 10MB files.

Table 4.5 shows that the watchdogs incur 5.0%–6.6% overhead on throughput.
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ZK CS HF HB MR YN
Disk Base 3.97 6.04 88.26 1.50 0.10 0.05
(MB/s) w/ WD 4.04 6.12 89.02 1.53 0.10 0.05
Network Base 997 2,884 27 993 1.3 1.5
(KB/s) w/ WD 1,031 2,915 28 1,048 1.7 1.8

Table 3.11: Average disk and network I/O usages of the base systems and w/ watchdogs.

The main overhead comes from the watchdog hooks rather than the concurrent checker

execution. The probe detectors are more lightweight, incurring 0.2%–3.2% overhead.

We also measure the latency impact. The watchdogs incur 9.3%–12.2% overhead

on average latency and 8.3%–14.0% overhead on tail (99th percentile) latency. But

given the watchdog’s significant advantage in failure detection and localization, we

believe its higher overhead is justified. For a cloud infrastructure, operators could

also choose to activate watchdogs on a subset of the deployed nodes to reduce the

overhead while still achieving good coverage.

We measure the CPU usages of each system w/o and w/ watchdogs. The re-

sults are 57%→66% (ZK), 199%→212% (CS), 33%→38% (HF), 36%→41% (HB),

5.6%→6.9% (MR), 1.5%→3% (YN). We also analyze the heap memory usages. The

median memory usages (in MiB) are 128→131 (ZK), 447→459 (CS), 165→178

(HF), 197→201 (HB), 152→166 (MR), 154→157 (YN). The increase is small be-

cause contexts are only lazily replicated every checking interval, compared to con-

tinuous object allocations in the main program.

We measured the disk I/O usages (using iotop) and network I/O usage (using

nethogs) for the six systems with and without watchdogs under the same setup as our

overhead experiment in Section 3.6.7. Table 3.11 shows the results. We can see the

I/O usage increase incurred by the watchdogs is small (a median of 1.6% for disk I/O

and 4.4% for network I/O).
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3.6.8 Sensitivity

We evaluate the sensitivity of our default 4-sec timeout threshold on detecting live-

ness issues with ZK1 [228] (stuck failure) and ZK4[232] (slow failure). Under time-

out threshold 100 ms, 300 ms, 500 ms, 1 s, 4 s, and 10 s, the detection times for ZK1

are respectively 0.51 s, 0.61 s, 0.70 s, 1.32 s, 4.28 s, and 12.09 s. The detection time

generally decreases with smaller timeout, but it is bounded by the checking inter-

val. With timeout of 100 ms, we observe 6 false positives in 5 minutes. For ZK4,

when the timeout threshold is aggressive, the slow fault can be detected without the

moving average mechanism (§3.4.5), in particular with detection times of 61.65 s

(100 ms), 91.38 s (300 ms), 110.32 s (500 ms). Eventually the resource leak exhausts

all available memory before the watchdog exceeds more conservative thresholds.

3.6.9 Semantic Check API

Our experiments in Section 3.6 did not use semantic checks, wd_assert (§3.4.5), to

avoid biased results. But we did test using wd_assert on a hard case ZK3. Although

the watchdog OmegaGen automatically generates detected this case, it is because

the failure-triggering condition (bad disk) also affected some other vulnerable I/O

operations in the watchdog. We wrote a wd_assert to check if the on-disk transaction

records are far behind in-memory records:

wd_assert(lastProcessedZxid <= (new

ZKDatabase(txnLogFactory)).loadDataBase()+MISS_TXN_THRESHOLD);

OmegaGen handles the tedious details by automatically extracting the necessary con-

text, encapsulating a watchdog checker, and removing this expensive statement from

the main program. The resulted semantic checker can detect the failure within 2

seconds and pinpoint the issue.
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3.7 Limitations

OmegaGen has several limitations we plan to address in future work: (1) Our vulner-

able operation analysis is heuristics-based. This step can be improved through offline

profiling or dynamic adaptive selection. (2) Our generated watchdogs are effective

for liveness issues and common safety violations. But they are ineffective to catch

silent semantic failures. We plan to leverage existing resources that contain semantic

hints such as test cases to derive runtime semantic checks. (3) OmegaGen achieves

memory isolation with static analysis-assisted context replication. We will explore

more efficient solutions like copy-on-write when porting OmegaGen to C/C++ sys-

tems. (4) OmegaGen generates watchdogs to report failures for individual process.

One improvement is to pair OmegaGen with failure detector overlays [197] so the

failure detector of one process could inspect another process’ watchdogs. (5) Our

watchdogs currently focus on fault detection and localization but not recovery. We

will integrate microreboot [31] and ROC techniques [180].

3.8 Conclusion

System software continues to become ever more complex. This leads to a variety of

partial failures that are not captured by existing solutions. This work first presents

a study of 100 real-world partial failures in popular system software to shed light

on the characteristics of such failures. We then present OmegaGen, which takes

a program reduction approach to generate watchdogs for detecting and localizing

partial failures. Evaluating OmegaGen on six large systems, it can generate tens to

hundreds of customized watchdogs for each system. The generated watchdogs detect

20 out of 22 real-world partial failures with a median detection time of 4.2 seconds,
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and pinpoint the scope of failure for 18 cases; these results significantly outperform

the baseline detectors. Our watchdogs also exposed a new partial failure in latest

ZooKeeper.
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Chapter 4

Silent Semantic Failures

4.1 Introduction

Users’ increasing reliance on distributed systems highlights the importance of en-

suring they work correctly. Unfortunately, real-world distributed systems inevitably

encounter failures. When a failure is recognizable through explicit signals such as

crash, timeout, error code, or exception, timely actions can still be taken to detect [42,

141, 151] and mitigate [181, 179, 144] the failure. A vexing problem occurs when a

system is operational but silently breaks its semantics without apparent anomalies.

Take a distributed notification service as an example, which provides an inter-

face that promises to invoke the client callback whenever the status of some object

changes. A bug may cause this system to miss invoking the callback upon a change

or invoke the callback more than necessary. As another example, a distributed file

system that is supposed to replicate data blocks by user-configured n copies may

incorrectly under-replicate some blocks without any explicit errors.

Such failures can lead to severe consequences because they violate the guarantees

a system provides to its users. They also break the contracts that other components

or applications rely on, and result in amplified incorrectness. Moreover, since the
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System Ver. Client Public Admin Config.API Method Command

ZooKeeper 3.4.6 38 219 13 30
ZooKeeper 3.6.2 78 2,853 18 128
HDFS 2.7.2 128 5,293 11 224
HDFS 2.10.0 162 6,306 12 449
Kafka 2.6.0 166 2,661 76 366
Kafka 2.8.0 171 3,107 86 379

Table 4.1: Number of public interfaces in popular distributed systems. An interface can have
multiple semantics under different settings.

violation is silent, the damage exacerbates over time. For example, as the buggy

distributed file system that silently violates its replication policy continues to run,

more and more newly created files will be subject to potential data loss.

Distributed systems today have rich semantics (Table 4.1) exposed through client

APIs, public methods including RPCs among internal components, administrator

commands, configuration parameters, etc. One interface often encodes multiple

guarantees. New interfaces and semantics are also continuously introduced as a

system evolves. These characteristics together make it challenging to ensure that

a distributed system conforms to its semantics in production settings.

Indeed, real-world evidence shows that semantic violations occur in practice. In

a Google cloud incident [77], a traffic engineering subsystem that is supposed to

throttle traffic upon congestion incorrectly throttled traffic even though the network

was not congested. Another highly-impactful global outage [75] was caused by a

quota system incorrectly reporting the usage for a user ID service as zero.

However, other than anecdotal evidence, the problem of silent semantic viola-

tions in distributed systems remains mysterious, despite its severe consequences. For

instance, mature distributed systems include extensive test cases to check the cor-

rectness of their features. Thus, it is natural to assume silent semantic violations are
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rare in production because testing likely has eliminated most of them. In addition,

while adding assertions and runtime verification [148, 147, 155, 216] are potential

solutions, the conventional wisdom is that they are expensive and semantic rules are

difficult to get. It is also unclear what kind of semantics are violated in practice.

To systematically understand this problem, we present, to our best knowledge, the

first empirical study on 109 real-world silent semantic violations from nine widely-

used distributed systems. Through these cases, we analyze key questions such as how

prevalent are semantic violations in practice, what semantics are violated, why are

these failures not caught in testing, and how are these silent violations detected.

Our study provides quantitative data points to answer these questions. The study

findings also challenge some conventional wisdom and reveal gaps in the current

practice. We highlight several findings:

• Contrary to the belief that silent semantic violations rarely occur in deployed sys-

tems, they have significant presence (39%) among sampled failures of all kinds.

• While the studied systems get more extensively tested over time and continue to

add new features and semantics, their initial semantics do not become more bullet-

proof. On the contrary, more than two thirds of the failures violate semantics that

have existed since the system’s first stable release.

• Although these are distributed system failures, most (74%) violations can be deter-

mined locally in some component.

• The violated semantics are often not untested but rather well covered by existing

test cases.

• Enabling assertions in release builds helps by converting semantic violations into

crash failures. One studied system does this and has the lowest ratio of semantic

failures.
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• In many cases, although a semantic was initially honored, it was later violated, thus

one-time assertions are insufficient.

• Many system semantics are vulnerable to violations during maintenance operations

or node events.

Given the prevalence (as our study indicates) and severity of silent semantic vio-

lations, we design a tool Oathkeeper to help users check silent semantic violations at

runtime. The tool design is directly guided by insights from our study.

Specifically, we find that in 73% of the cases, developers add regression tests after

the failure is reported, which contain valuable information about the failed semantic.

However, the majority of the studied cases still violate semantics that have been

tested before. A major reason for the gap is that these regression tests are usually

patch-driven: they only check if the specific bug is fixed in a particular setup using a

bug-triggering workload. The underlying semantics can continue to be broken with

different root causes in different scenarios.

Based on this insight, Oathkeeper leverages the regression tests and tries to in-

fer the underlying semantic rules implied by the tests. To do so, Oathkeeper runs

the tests on both the buggy version and patched version of the system, and takes a

template-driven approach to automatically infer semantic rules from the two traces.

Oathkeeper then deploys these semantic rules to production to catch future violations

that are caused by different bugs under different conditions.

We evaluate Oathkeeper on ZooKeeper, HDFS, and Kafka. Oathkeeper infers

hundreds to thousands of semantic rules from the old regression tests in these sys-

tems. With the inferred rules, we evaluate Oathkeeper on seven real-world semantic

failures that were introduced long (9–34 months) after the old failures. Oathkeeper

detects violations for six of them. With all rules enabled, Oathkeeper on average only
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incurs 1.27% throughput overhead to the target systems.

The contributions of this chapter are two-fold: (i) the first study on real-world

silent semantic violations in nine popular distributed systems; (ii) the design of Oath-

keeper, which automatically infers semantic rules for large distributed systems to

check silent semantic violations at runtime.

The source code of Oathkeeper is publicly available at:

https://github.com/OrderLab/OathKeeper

4.2 Background

4.2.1 Definition

We consider a distributed system S that provides services through a collection of

operations. Each operation o has certain semantics [72]. The semantics encode guar-

antees that o makes about the output, system states, and results of subsequent oper-

ations, in response to some triggering condition c. The condition c can be a client

request, an admin command (at the server side), a message from internal components,

as well as an environment change including the passage of time. The semantics of S

are all the guarantees provided by the history of operations S executes in response to

a list of c.

A semantic violation (failure) occurs when S breaks some of its semantics in an

execution. The failures may exhibit explicit error signals, such as crashes, timeouts,

and exceptions. In such cases, the violations overlap largely with existing failure

models and can be well addressed by existing techniques.

This work focuses on silent semantic violations, in which S violates its semantics

but remains operational without exhibiting explicit error signals (S is unaware of its
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misbehavior). We focus on this class of failures because they are under-studied yet

incur damaging consequences, and they pose significant challenges to testing, failure

detection, and recovery.

Silent semantic violations differ from other failure modes in observability. Fail-

stop failures cause complete loss of functionality, which can be observed with simple

measures such as monitoring heartbeats. Fail-slow [82], partial failures [151] and

gray failures [121] only cause some functionality to be broken (slow). But these

issues can still be observed with generic approaches, e.g., checking exceptions or

timeouts [150]. In comparison, silent semantic violations are difficult to observe

without a deep understanding of S’ semantics and execution.

Another way to interpret the “silent” aspect is on the semantics being violated. If

S only has a few operations, all of which have well-defined and thoroughly checked

semantics, semantic violations in S will be observable failures. Unfortunately, dis-

tributed systems have a large number of interfaces (Table 4.1), many of which have

loosely-defined (or hidden) semantics that cannot be easily checked. Consequently,

violations of such semantics are difficult to detect and address.

4.2.2 An Example

We show an example of silent semantic failures from our study (Section 4.3.1).

ZooKeeper is a coordination service with a hierarchical data model. Its clients store

data by creating znode in a namespace. A special type of znode is called ephemeral

node. The semantics of the ephemeral node create() operation guarantees that the

znode exists for as long as the creating client’s session and will be deleted once the as-

sociated session ends. The triggering conditions are the create request and the client

session disconnection. Ephemeral nodes are commonly used to store membership
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Kafka client
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Figure 4.1: A silent semantic failure in ZooKeeper.

information. For example, HDFS implements its leader election using ephemeral

nodes [65].

In a production ZooKeeper failure [227], some ephemeral node still existed even

though the client session that created them was long gone. Specifically, a Kafka

consumer crashed but the associated znode was not deleted (Figure 4.1). As a result,

when Kafka clients queried ZooKeeper to discover consumer information, they kept

trying to connect to the crashed consumer. In other settings, this semantic violation

can propagate to other dependent applications, e.g., it will break HDFS namenode’s

automatic fail-over feature, which depends on the ephemeral node semantics, causing

an HDFS service outage.

4.3 Real-world Failure Study

4.3.1 Study Methodology

Compared to other failure modes in distributed systems, silent semantic violations

are not well understood. To fill this gap, we conduct a study on user-reported silent

semantic failures from nine large-scale distributed systems (Table 4.2). We select
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System Category Lang. All
Sampled Candi Stud

(valid) -date -ied

Cassandra (CS) Database Java 3,308 69 (54) 25 12
CephFS (CF) File Sys. C++ 673 673 (123) 37 12
ElasticSearch (ES) Search Java 4,101 101 (46) 26 10
HBase (HB) Database Java 6,143 233 (80) 32 14
HDFS (HF) File Sys. Java 3,409 99 (52) 22 14
Kafka (KF) Streaming Scala 2,764 142 (92) 39 13
Mesos (ME) Cluster Mgr. C++ 2,462 116 (47) 21 12
MongoDB (MG) Database C++ 14,776 355 (151) 30 10
ZooKeeper (ZK) Coordination Java 1,141 134 (102) 36 12

Total 38,786 1,922 (747) 268 109

Table 4.2: Studied systems, the tickets (of various kinds) in the issue tracker of each system,
the cases we sampled, and cases studied.

these systems because they are representative, mature, widely used in production,

and record many user-reported failures.

To collect the failure cases, we first query the study systems’ issue trackers to

find tickets that (1) are marked as “bugs”, (2) have priorities higher than “minor”, (3)

are resolved, (4) involve the server components. This step returns a large number of

tickets. We then randomly sample a subset (Table 4.2). Among this subset, some are

not real failures, such as issues found in internal testing. The remaining ones (valid

column in Table 4.2) are potential production failures. We then read their descriptions

and check whether the failures violate system semantics. We filter crashes, aborts,

out-of-memory errors, and semantic failures with clear error signals.

After the above step, we get a candidate set of production silent semantic fail-

ures (Candidate column). Due to time constraints, we perform in-depth analyses on

a subset of the candidate cases, preferring those with sufficient information and dis-

cussions. This gives us the final study dataset (Studied column) of 109 production

semantic failure cases.
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Note that our sample sizes vary across systems. This is because the studied sys-

tems’ tickets vary greatly in terms of their information, quality, and bug types. If

using a fixed sample size or ratio, one system can dominate the study and produce

extremely biased findings. Our sampling instead is done iteratively: for a particular

system, if after an initial sampling, its number of Candidate cases is too small or

0, we sample more, until the candidate numbers for different systems are relatively

balanced. Note that each iteration in this process is still randomly choosing from the

All tickets.

Threats to Validity. Like all empirical studies, our study is subject to validity prob-

lems such as the representativeness and biases. We cover popular distributed systems

of different types, such as database, file system, and search engine, to improve the

representativeness. To minimize selection bias, we randomly sample the cases. We

also spread the sampling across times so we are not biased by some specific version.

To reduce the manual inspection errors, we write a detailed analysis document for

each case and have multiple inspectors examine each document to reach a consensus.

Although our study provides informative findings on semantic failures in the stud-

ied systems, they may not be generalized to other systems beyond the scope this study

was conducted. Our study is also biased by programming languages (Java and C++);

the findings may not generalize to systems written in other languages such as Erlang

or Elixir, which embrace “let-it-crash” error handling philosophy [16].

4.3.2 Prevelance

Prevalence. An important question about silent semantic violations is whether they

occur rarely in production. Getting accurate prevalence data requires examining
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Figure 4.3: Consequence of the studied semantic failures.

thousands of tickets for each system, which is a daunting task. We instead obtain

an approximate result by calculating the percentage of silent semantic failures in our

sample set. Specifically, we calculate the percentages of the number of candidate

cases in Table 4.2 over the number of valid cases in the sample. Note that the can-

didate cases are examined to be indeed silent semantic failures, even though we only

study a subset of them.

Finding 1: Silent semantic failures have significant presence across all studied sys-

tems, occupying 20%–57% (39% on average) of the sampled cases for all types of

failures.
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The percentages vary in different systems. Systems such as ElasticSearch and

Cassandra have a higher percentage of semantic failures (57% and 46%, respec-

tively). MongoDB has the lowest ratio (20%). We will discuss in Section 4.3.6

these systems’ practices that may contribute to the differences.

Severity. How severe are these reported silent semantic failures? To answer this

question, we analyze the severity levels that developers assign to the issues. Some

systems use slightly different categories. We normalize them into three levels: Blocker,

Critical, Major. Based on the official descriptions, Blocker means the issue “should

block release until it is resolved”; Critical means the issue causes severe conse-

quences like data loss; Major means a “major loss of function”.

Overall, 45% of the studied cases have Blocker or Critical priorities. The ZooKeeper

failure [227] described in Section 4.2.2 is an example Blocker issue. As another ex-

ample Blocker issue, users reported that in their HDFS deployment, all the replicas of
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some blocks are residing on the same rack [111], which breaks the redundancy pol-

icy. This is clearly a severe violation because replica placement is critical to HDFS

data.

We also compare the priority distribution of semantic failures with all failures in

the sample. The result is shown in Figure 4.2. The average percentage of Blocker pri-

ority in semantic failures increases from 15% to 21%, and the percentage of Critical

priority increases from 8% to 24%.

Interestingly, we find in some cases initially developers may not consider the

symptoms to be severe, but after further investigation developers upgrade the priority

level, e.g., “Marking as critical for 2.0. These ‘unexpected behaviors’ cause operator

head-scratching and wasted hours of digging” [98].

Finding 2: Despite the lack of explicit error symptoms, silent semantic failures are

considered severe by developers and users. Moreover, the sampled semantic failures

are assigned with higher priorities compared to all sampled failures.

Consequence. We next analyze the failure consequences. Figure 4.3 shows that be-

sides incorrectness, semantic failures cause serious consequences such as corruption

and data loss.

The consequences are damaging because clients or users are misled by the sys-

tem’s seemingly normal reactions. For example, Kafka guarantees that when a suc-

cess response is sent to a producer, the produced message will be persisted by at least

min.isr replicas. Otherwise, the producer will be notified of an error, so it may retry

the request. In one failure [130], a leader replica switched to follower then back to

leader. Some messages produced were lost while the client received responses with

no error. This false success resulted in data loss for the users.
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Note that Figure 4.3 is about the reported impact of failures, which is not always

the semantic violation per se. For example, in a MongoDB case, the maximum cache

usage configuration is not enforced. It takes a while for the violation to cause a

performance problem—which is the consequence of this failure. But even before the

system reaches the performance collapse, a cache limit violation has occurred.

Finding 3: In addition to incorrectness (wrong responses), silent semantic viola-

tions often cause severe consequences including corrupt state, data or state loss, and

security issues.

4.3.3 Violated Semantics
4.3.3.1 Sources

The studied failures violate various system-specific semantics. We analyze where

these semantics come from. There are four sources and Figure 4.4 shows their distri-

butions:

• API spec: a system API promises certain effect will (not) occur, e.g., a successful

return of removeWatch API is supposed to remove the specified watcher.

• Internal behavior: the system’s documentation explicitly guarantees that some-

thing should (not) occur about its internal behavior, which is not directly exposed

to external APIs, e.g., HDFS guarantees that if some Erasure Coding blocks fail,

they should be detected and reconstructed.

• User configuration: user configurations regulate some system behaviors and the

guarantees depend on the user settings. For example, the max_hint_window_in_ms

parameter in Cassandra defines the maximum time window the coordinator will

generate hints for a dead host.
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• Implicit: the semantics are not explicitly defined or documented, but users expect

them to hold for a correct system.

Finding 4: Most (87%) studied failures violate semantics that are explicitly defined

in API specs, system docs, or configs.

Interestingly, in 10% of the studied cases, the system does not respect its con-

figuration’s semantics. For example, if users set acl.inheritance to true, HDFS

should enable ACL inheritance; but in one case the inherited ACL permissions are

masked [106]. This violation causes security issues. The problem of misconfigu-

ration is extensively researched [19, 18, 214, 117]. This finding suggests that even

when users set configuration properly, a system can still misbehave.

As an example of Implicit semantics, in one HBase case [95], a region is online

in server A, but the region location registered in the meta table is server B. While this

consistency semantics is a common sense, it is not explicitly declared.

Explicit documentation of semantics is indicative of developers’ awareness of its

guarantees and importance. One hypothesis is that if the semantics in a failure is

not documented, it is understandable that developers did not make enough efforts to

enforce the semantics. This finding disproves this hypothesis. However, the explicit

documentations do not translate into fewer violations. One reason is that developers

often document the semantics in a vague (e.g., “should produce correct results”)

or incomplete way. A more fundamental gap is that the documentation is designed

to be human-readable but not machine-checkable. For example, the semantics for

ephemeral znode in ZooKeeper is documented clearly, but the system does not have

any mechanism or tool to enforce this semantics in deployment.

Implications: Rich sources of documentation exist to leverage and judge semantic
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Figure 4.5: Issue ticket age (creation date minus first release date).

violations. Developers should move from documenting semantics in informal text to

rigorously declare semantics that are mechanically checkable and enforceable.

4.3.3.2 Categorizations

Old vs. New Semantics Modern distributed systems often keep adding new fea-

tures. For example, the number of client APIs in ZooKeeper increased from 38 in

version 3.4.6 (2016) to 78 in version 3.6.2 (2020). Similarly, HDFS’ key APIs in

fs.FileSystem increased from 128 in version 2.7.2 (2016) to 162 in version 2.10.0

(2019), along with significant increases of semantics in other interfaces such as RPC

methods.

Since around 90% of our studied failures occurred after more than two years since

the software’s initial release (Figure 4.5), a natural hypothesis is that most of them

violate some new semantics. We validate this hypothesis by analyzing the age of

semantics in the studied failures. We define old semantics as ones that exist since the

first major stable release of the system and others as new semantics.

Surprisingly, we find only less than one third (32%) of our studied failures violate

relatively new semantics, while 68% of them violate old semantics. Old semantics

usually represent the most fundamental functionalities the system provides since de-

velopers implement them first, and they usually undergo extensive testing already.
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However, our finding suggests that (1) even with new features added to the system,

old semantics are still ones violated the most; (2) even with testing accumulating

over the years, the reliability of old semantics is not necessarily higher in newer ver-

sions. Take ZooKeeper as an example. Its ephemeral znode interfaces and semantics

have existed since the first major stable release (3.0.0) in October 2008 [15]. How-

ever, there are still production failures violating the guarantees of ephemeral znode

reported by users even 10 years later [233].

We further investigate why old semantics still keep getting violated. There are

three broad reasons: (1) new implementation is buggy, developers may optimize,

refactor or refine the implementation of existing functionality, which contain bugs

that break old semantics, e.g., a concurrency bug introduced in changing an imple-

mentation to be multi-threaded; (2) new feature adds buggy interactions, when some

new feature is added, developers may extend existing module to interact with or

support the new feature. For example, after HDFS introduces the encryption zone

feature, it needs to extend the original snapshot file function and the new handling

path is buggy [105]; (3) latent bugs are exposed, as the most basic semantics, these

old semantics’ original implementations can be complex and contain latent bugs that

can only be exposed in very specific scenario. In one ZooKeeper failure [231], users

find the ephemeral znodes are not deleted when the system time changes unexpect-

edly. This bug exists for 6 years before it is discovered, because neither the testing

nor most deployments would exercise the system with the time change.

Note that we did not count the numbers of semantics in the study, either for new or

old semantics. This is because even with explicit documentation such as API specs,

determining how many semantics are there for a given API can be subjective, which

depends on the granularity of semantics. Instead, we objectively judge if the specific
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semantics violated in a failure were introduced in the initial release or not.

Finding 5: 68% of the studied failures violate old semantics.

Implications: Instead of having the false hope that old semantics are reliable,

developers should invest efforts to prevent semantic violation regressions.

Local vs. Distributed Semantics Since the study subjects are distributed systems,

we analyze whether the semantic violations naturally require considering multiple

distributed components. This question is important to the design of runtime verifica-

tion techniques [148, 147, 155, 216].

We find that indeed 26% of the semantic violations require global information to

judge, e.g., whether the replica placement policy in HDFS is correctly enforced, or

whether states in different Cassandra nodes match the consistency level.

However, interestingly, we find that the majority (74%) of the violations can be

determined in a local scope. For example, appendTo in HDFS has the semantics of

appending data to the end of a target file and making it persistent. A buggy node may

fail to persist the new blocks or accidentally overwrite them. The violations can be

determined in this node.

One reason is that a distributed system component often keeps local copies of

states for other components. For instance, even though ZooKeeper session is a global

concept (a client connection to any follower or leader constitutes a session), such state

is acknowledged to the ensemble. Thus, each node has a copy of the alive session

and node list. The semantics of ephemeral znode, which require knowledge of the

session information, can thus be checked locally in a ZooKeeper node.

Current runtime verification solutions typically aggregate global states across all
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nodes to check property violations. Obtaining such global information can be both

expensive and tricky, e.g., dealing with consistency issues in capturing distributed

snapshots [43]. Our finding suggests it may be sufficient to use local checkers to

expose many semantic failures.

Finding 6: The violations in semantic failures can be usually (74%) determined in

the scope of a single component.

Implications: Employing local checkers can potentially expose many semantic vio-

lations.

Safety vs. Liveness Semantics Some failures break safety-related guarantees. For

example, in Kafka, the maximum number of consumers in a group should not be

larger than a configured limit, but users found more consumers joined the group.

In comparison, other semantics are liveness related. For example, ZooKeeper

specifies that a container-type znode with no child znodes should eventually be deleted.

Even when we observe some empty container node exists, it does not necessarily in-

dicate this guarantee is violated because it might still hold some time later. Without

context, one can interpret some safety guarantee, such as a correct response should

be returned, to be involving liveness, because even if a response is not received, it

could be still on the way. We refer to the system’s official documentation for making

the distinction. If the documentation explicitly states that when an operation returns,

something (e.g., a notification) will eventually happen, then a failure about its absence

is a liveness violation.

It is generally challenging to check liveness properties [132], because there can

be infinite possibilities in the execution that eventually produce the desired effect.
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Fortunately, we find most (86%) of our studied failures violate safety semantics.

Finding 7: 86% of the studied cases violate safety semantics.

Implications: There is usually a fixed time point to determine if a system has vio-

lated its semantics.

4.3.4 Root Causes

We analyze what causes a system to break its semantics. We are interested in identi-

fying potential common bug patterns in the root causes, which can inform the designs

of bug finding tools to eliminate semantic failures before production.

Some semantic failures are caused by bugs such as memory error, data race, and

integer overflow, which are well studied with many tools designed to detect them.

We find only 12% of the cases are caused by such bugs. The remaining failures are

caused by system-specific logic bugs including design flaws, which are difficult to be

caught by bug detection tools.

An interesting finding is that even for failure cases that violate the same or related

semantics, their root causes can be quite different. Take the ZooKeeper ephemeral

znode as an example: (1) ZK-1208 is caused by a race condition: when ZooKeeper is

handling the close session request, it deletes ephemeral znodes and then removes the

session, in between a create operation causes new ephemeral znodes to be added; (2)

In ZK-3144, the violations are caused by an incorrect order: during request process-

ing, the lastProcessedZxid is updated before sessions are modified, so a snapshot

may not include the change and the ephemeral node is not deleted after log replay;

(3) In ZK-2355, the violations are caused by buggy error handling: follower fails

while reading the proposal packet, but resetting lastProcessedZxid is missed in the
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Figure 4.6: Timing of semantic violation.

error handler; (4) In ZK-2774, the system time of a server is changed unexpect-

edly, and session expiration codes rely the absolute system time, which causes the

ephemeral znodes to persist after the client is disconnected for a long time.

Finding 8: Only 12% of the studied failures are caused by well-defined bugs such as

race conditions, while most cases are caused by a wide variety of logic bugs. Even

for failures violating the same semantics, the root causes are diverse.

Implications: It can be challenging to exploit code patterns to eliminate semantic

violations through static bug detection.

4.3.5 Manifestations

Timing of Violation Understanding when semantics are violated can shed light on

how to detect the violation.

As Figure 4.6 shows, some semantics only exist during the execution of its as-

sociated operation (at return point), e.g., read operation should return the latest data.

We call them short-lived semantics. In comparison, some semantics exist even after

its associated operation finishes, e.g., the specified file in create operation should be

persisted and continue to be available after create returns. They often only cease

to apply after some other event, e.g., until a delete operation on the same file is

executed. We call them long-lived semantics.

Interestingly, we find that 67% of the cases violate long-lived semantics. This
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is partly because these semantics have a larger “vulnerability” window compared

to short-lived semantics: a violation can occur anytime in its lifespan. ZooKeeper

ephemeral znode and watches are such examples. Essentially, the system must main-

tain the promise for a long time.

We categorize the violation timing into four scenarios: at the end of short-lived

semantics (①), e.g., wrong response, at the start (②) or in the middle (③) or near the

end (④) for long-lived semantics. An example for ② is in HDFS-12217 the snapshot

operation did not capture all open files, which violates the long-lived snapshot se-

mantics since the beginning. An example for ③ is HDFS-9083: at the block creation

time, the block placement policy is honored; but after some node failures, all replicas

of the block reside on the same rack. ④ happens when the semantics should cease

to apply but did not, e.g., ephemeral nodes should be removed when clients timeout.

Figure 4.6 shows the distributions of the four scenarios.

Finding 9: Near two thirds of the studied cases violate some long-lived semantics.

In 40% of the cases, the semantics are initially honored but are violated in the middle.

Implications: It is crucial to continuously monitor semantic guarantees, even after

the initial semantic check passes.

Failure Triggering Conditions We further examine what triggers the semantic

failures. Figure 4.7 shows the result.

Finding 10: More than half of the studied failures are triggered by specific requests,

while 39% of the failures require particular timing to trigger. Semantic failures often

(41%) only manifest themselves under multiple types of conditions.

HDFS-14514 is an example of semantic failure that requires multiple types of
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triggering conditions. The semantic violation (read out file size from snapshot is in-

correct) can be only triggered when 1) snapshot.capture.openfiles is set; 2) create

empty directory and encryption zone; 3) a client keeps a file open for write under

the empty directory; 4) append several times; 5) perform a maintenance operation,

snapshot.

We also find that in 23% of the cases, the triggering condition is certain system

maintenance operation, such as compaction, cluster upgrade, node decommission-

ing. Such events do not occur frequently. They trigger semantic violations often

because during the maintenance operation, the system execution enters a different

mode, which exposes rare bugs.

Implications: The reliability of semantics is vulnerable to maintenance operations

or node events. Operators and the system should check violations during and after

such actions.
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4.3.6 Current Practice
4.3.6.1 Testing

Since semantic violations concern functionality correctness, testing is responsible for

catching them. The prevalence (Section 4.3.2) of many semantic failures in produc-

tion seems to suggest a lack of testing. But that is not the case. The systems we study

have extensive test cases—a median of 1309 test files. In addition, in 73% of the

studied cases, the system has at least one test case covering the violated semantics.

Then why the studied failures are not exposed during testing? The earlier Find-

ing 10 provides some clues. In many cases, even though there are related test cases,

they lack some operations or arguments key to trigger the production failure. Even

when the test cases have the proper operations and arguments, they only exercise the

system under one timing, one configuration or normal scenarios, while the bugs are

only triggered with unique timing, configuration, or node failures.

Are the failure triggering conditions so special that it is impossible for developers

to foresee? Interestingly, we find that in many cases, similar triggering scenarios do

exist in the test suite but they are not used in testing the violated feature.

Finding 11: Semantic violations occur not simply due to a lack of testing. The

violated semantics are usually (73%) covered by some existing test. In more than

half of the studied failures, similar triggering conditions exist in the test suite.

A fundamental gap is that developers tend to write tests driven by examples or

fixes for a specific bug. Such tests are not expressive enough to preserve the under-

lying semantics and prevent regression. Consequently, developers spend repeated ef-

forts to add tests. In HDFS-14514, the server reads snapshot file with incorrect length

from encrypted zones. This exact semantics is already checked in an existing test

80



case. If that test “copies” one line of test configuration dfsAdmin.createEncryptionZone(...)

from other tests, the new bug will be triggered and exposed.

Implications: Coverage of semantics alone is insufficient. Developers should intro-

duce variances in existing test cases. It is also useful to “copy” triggering conditions

across tests. More fundamentally, developers should write more general tests for the

semantic properties rather than specific examples.

4.3.6.2 Assertions

Assertions are a common method for catching logic bugs, which are major contribu-

tors to semantic failures (Section 4.3.4). They are typically only used in development

and are turned off by default in release build for performance and stability.

Some of our studied systems use assertions in production: MongoDB has added

many invariant checks since 2014 [173]. Interestingly, as Section 4.3.2 shows, Mon-

goDB has the lowest ratio of semantic failures compared to other systems. While this

practice may cause instability, e.g., some users got infrequent crashes due to invariant

check failures after upgrading to new versions [174], developers still prefer to fix the

underlying bugs rather than turning off assertions completely.

We observe two gaps in the current practice. First, most existing assertions are

pre-condition checks on the sanity of function arguments. They are too low-level

to catch semantic violations, which require checking system functionalities and usu-

ally the operation history (e.g., in checking consistency violations [155]). Second,

existing assertions are usually only activated once during an operation, e.g., the en-

try of a function. But many semantics are long-lived (Section 4.3.5), which require

continuous validation until the lifespan of semantics ends.

Finding 12: Although in 51% of the failures the buggy functions have some sanity
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checks, few (9%) cases can be potentially detected by adding proper sanity checks.

Implications: Enabling assertions helps reduce silent semantic violations. However,

developers should add more semantic-level invariant checks besides sanity checks.

4.3.6.3 Observability

Since our studied failures are silent violations, how do users notice these subtle fail-

ures then? Understanding this question can reveal insights to improve the observabil-

ity of semantic failures. We carefully examine the discussion threads in each ticket.

In 34 cases, users mentioned their experience clearly.

For all of these cases, users discovered the issues through noticing something

suspicious in some “side channels”. We categorize them into two types: (i) benign

errors in other requests (32%); (ii) anomalies in logs, files, or performance of other

tasks (68%). In HBASE-11654, users find out the violations by noticing splitting

directories in /hbase/WALs/, which is “very strange” because “those logs should have

been replayed and deleted”. In KAFKA-9137, users observe the failure by seeing an

increase in eviction rate in the logs. In CASSANDRA-6527, users found tombstones

appeared even though they never used delete for a column family.

It might seem that we can rely on users to manually detect system semantic fail-

ures. Note that there is a survival bias: our studied cases by definition are identi-

fied, but in practice silent semantic violations can be easily missed because (i) users

do not monitor the systems 24×7; (ii) when they check, they may not inspect the

proper signals. When users notice the failures, the damage may be already done. In

CASSANDRA-6527, users commented: “Fortunately, we have noticed that quickly

and canceled the migration. However, we were quite lucky.”

How to make semantic failures more observable? First, if a system API has no
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interaction with others, it is hard to judge its correctness based on a single piece

of information. In practice users often use multiple related APIs to cross-compare

results. In HBASE-15236, users observe the violations because Get and Scan return

different sizes for the same bulkloaded hfiles. Second, current systems often do not

expose enough information about theirs internal states, thus users have to ad-hocly

infer whether a promise is obeyed or not. Existing error messages (e.g., a legitimate

exception for another request) only focus on the current request, which is hard to link

to the semantic violation in past correlated requests.

Finding 13: Semantic violations are currently observed from “side channels”: 32%

from errors in other requests, 68% from anomalies in logs, files or performance of

other tasks.

Implications: Designs of overlapping APIs improve observability of semantic viola-

tions. Systems should provide more admin APIs for convenient query of their internal

states. Error messages should provide hints about past correlated requests.

4.4 Oathkeeper: Checking Semantic Violations

Guided by our study, we build a tool Oathkeeper to check semantic violations for

large-scale distributed systems.

4.4.1 Design Overview and Workflow

Oathkeeper takes a runtime approach to check semantic violations in production.

This choice is motivated by our findings that semantic failures have diverse root

causes (Finding 8) and often difficult to expose in testing due to complex trigger-

ing conditions (Finding 10).
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Central to a runtime verification approach is what invariants to use. Existing

solutions rely on users to write distributed assertions to check the correctness of dis-

tributed protocols [148, 147] or network functions [216]. In those scenarios, the

semantics to check are limited and well-defined. But in our cases, the systems have

abundant (Table 4.1) and loosely-defined semantics. Even for semantics that can be

described in simple expressions informally, mapping them to the concrete checkable

invariants in the complex systems code is hard. These factors make manual construc-

tion a daunting task.

Insight and Key Idea. The insight behind Oathkeeper is based on our finding that the

majority of the studied failures violate old semantics (Finding 5) despite the decent

coverage of testing (Finding 10). When a semantic failure occurs, developers usually

add regression tests. But these tests only check if the specific bug is fixed in a specific

setup, while the same semantics can be violated repeatedly in other scenarios.

Based on this insight, Oathkeeper leverages the existing regression tests devel-

opers write for past semantic failures and automatically extracts the essence—the

violated semantic rules. Oathkeeper then enforces these rules at runtime to detect

future semantic violations, which may be caused by different bugs under different

conditions.

Input and Output. To apply Oathkeeper to a new system, users supply a system-

wide configuration and a list of past semantic failure metadata. The former provides

basic information about the system such as the compilation command and test direc-

tory, and optionally the classes to include for analysis. The latter metadata is provided

in the form of git commit id (for version switching) and regression test name.
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Figure 4.8: Workflow of Oathkeeper.

Oathkeeper outputs the likely semantic rules (Section 4.4.3). Prior runtime verifi-

cation tools focus on invariants expressed as predicates among key state variables in a

system such as lock_id and lock_mode. This representation alone can be insufficient

or complex to express the semantics of large distributed systems. Instead, Oathkeeper

focuses on rules that describe relations among semantics-related events, particularly

operation invocations and state updates. Such an event relation rule is expressive to

capture various semantics.

Workflow. Figure 4.8 shows the tool’s workflow. Oathkeeper operates in two stages.

In the offline stage, Oathkeeper instruments the target systems to record major events

(❶). It then exercises the system twice with the regression tests: once using the

patched version and the second time using the buggy version. This will generate

two sets of traces (❷). The inference engine infers likely semantic rules from the

traces of the patched version (❸). The verifier applies the inferred semantic rules

against the traces of the buggy version and output rules that are violated in the buggy

traces (❹). We assume these violated rules are potentially related to the semantic

failure. Further optimizations are applied to remove noises and redundancies (❺). In

the online stage, Oathkeeper only performs minimal instrumentation that is relevant
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to these final semantic rules from the offline stage. The event tracer ingests traces

from the system in real time. The Oathkeeper verifier continuously checks the traces

against the deployed semantic rules and reports violations (❻).

4.4.2 Instrumentation and Trace Generation

For both inferring semantic rules and runtime verification, we need to first instrument

the system to obtain execution traces. The Oathkeeper traces use a uniform event

schema that captures operation-related events and state-related events.

Oathkeeper designs a load-time instrumentation library that performs bytecode

manipulation when a target system is loaded. This way of instrumentation is conve-

nient (without re-compiling and re-packaging the system) and transparent.

To record operation events, the library adds hooks at the beginning, return and ex-

ception point of a method. To record state events, Oathkeeper takes a patch plus base

approach. It analyzes the given semantic failure patch and automatically includes the

list of classes involved in the patch file. Users can optionally specify names of some

important system classes, such as SessionTrackerImpl. With the combined list of

classes, Oathkeeper performs simple analysis at the loading phase of these classes to

retrieve their member variables of primitive or collections types, and treat them as the

state variables. It then identifies instructions that update these variables and insert a

hook to emit a state update event with the relevant context (variable name, location,

etc.).

For each given test, Oathkeeper switches the target system to the patched version.

The tool executes the test with the instrumented system and generates the trace of

events. Then Oathkeeper reverts the target system to the buggy version (snapshot

prior to the patch commit id). Since the buggy version does not contain the test,
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Template Example

p⇒ q decommission a datanode should trig-
ger reconstruction

s ↑⇒ p when datanode changes, associated
watcher notifies clients

s ↑⇒ k ↑ after session disconnection, ephemeral
node is removed

(s = c)⊕q read-only server should not provide
write access

p+∆t⇒ q inserted data should expire after the
TTL is reached.

s ↑→ q cf schema should be altered before al-
ter command returns

p⇒⊙(s ↑,k ↑) after snapshot renaming, either new
snapshot creation and old snapshot
deletion both occur or none of them
occur

Table 4.3: Some templates integrated in Oathkeeper.

Oathkeeper copies the regression test from the patched version and executes it to get

the buggy trace. If the test cannot directly run on the buggy version due to interface

changes (e.g., a function used in the test is not public in the buggy version), the tool

supports user-provided patches to fix the compatibility issue.

The trace is stored in a JSON file for ease of deserialization. An example trace en-

try is {"type": "OpTriggerEvent", "data":{"opName": "zookeeper.FileSnap.deserialize", "time":

1654026992, ...}}. The trace scale is usually moderate, because it is generated from

tests. For example, with ZooKeeper, even under the full instrumentation mode (in-

strumenting all classes), most end-to-end tests generate less than 10,000 events. A

common scale is several thousands. We see large traces in only 5/273 tests that pro-

duce over 500,000 events. Under the diff mode (only instrument the classes affected

by the patch), the trace typically has hundreds of events.
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4.4.3 Template-Driven Inference

A key challenge in the semantic rule inference step of Oathkeeper is to integrate

domain knowledge without requiring significant manual effort, while also having

reasonable accuracy and efficiency. We take a template-driven approach to address

this challenge. We first summarize general semantic rule patterns, such as happens-

before relationship, atomicity, periodicity. For each pattern, we define one or more

parameterized templates, such as a state change event for s must happen before the

completion event of operation p. Oathkeeper currently supports 18 templates. Ta-

ble 4.3 shows several examples. p, q are operations, s and k are states, t is time, c

is constant. ¬p means p can not occur. ↑ means state changes. p+∆t means time t

after p occurs. Our technical report [152] shows the full list.

The inference engine implements an inference algorithm for each template. The

algorithm checks if there are matches in a given trace and derives concrete values to

each template parameter if so. We call each match a context for the template, which

is a potential invariant. For one template (e.g., p⇒ q), a trace can have multiple

contexts (e.g., a1⇒ a2 and a1⇒ a3).

The templates allow encoding domain-specific semantics without significant spec-

ification effort. They also restrict the search space so the inference engine only ana-

lyzes trace events that match the template structure and parameter types. While these

templates may not represent the exact or full semantics like a high-level specification

does, they can capture the essential ingredients for making the semantics hold.

The inference engine takes the trace obtained from running the regression tests

against the patched system. Each template class implements an infer function that

returns a list of rules from the trace. Most templates follow three phases in the infer
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public abstract class InferScanner {

//init state variables

abstract void prescan(Set<Event> eventSet);

//always need to go through the whole traces

abstract void scan(Event event);

//check states after scan, and generate invariants

abstract List<Invariant> postscan();

}

public abstract class VerifyScanner {

//init state variables

abstract void prescan();

//return true if continues to scan, otherwise break

abstract boolean scan(Event event, Context context);

//check states after scan, and judge

abstract InvState postscan();

}

Listing 1: Inference and validation interfaces for each template.

function: pre-scan, scan, and post-scan (interfaces defined in Listing 1). The pre-

scan step typically builds an index of the unique event set in the trace. The uniqueness

is determined by a custom function we define for different types of events. For exam-

ple, operation invocation events are unique based on the signatures of invoked func-

tions. The scan step iterates through each event in the trace and updates bookkeeping

data structures such as an event occurrence map. The post-scan step generates invari-

ants based on the bookkeeping data structures. Templates that do not follow this pat-

tern can customize the procedures. For example, the AfterOpAtomicStateUpdateTemplate

iterates forward once and scans backwards once; the StateEqualsDenyOpTemplate

scans the trace for each state type in the test.

The core inference algorithm for each template, while different, is relatively

straightforward. It essentially involves identifying events in the trace that match the

type of a template’s parameter, enumerating hypotheses (candidates) from the con-

texts, and validating the hypotheses against the trace. Since the trace size is moderate,

we can afford enumerations.
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Algorithm 1: Generic inference and validation workflow.
Input: L: a trace (list of events)
Output: a list of inferred invariants (one inv. is a template w/ context)
Func Infer(L):

/* get unique events in the trace (we define equality individually for different

types of events) */

unique_events← Set(L)
prescan(unique_events)

foreach event ∈ L do scan(event)

return postscan()

Input: L: a trace (list of events), context: parameters in templates, e.g., if an invariant is
a1⇒ a2, context is a1 and a2

Output: the checking result of invariant (pass, fail or inactive)
Func Verify(L, context):

foreach event ∈ L do
if scan(event,context) then break

end
return postscan()

Func Main(Lpatched , Lbuggy):
inv_list← /0
foreach inv ∈ Infer(Lpatched) do

if Verify(Lbuggy, inv.context) == InvState.FAIL then inv_list.add(inv)

end
return inv_list

Example. We describe the inference of a representative template p⇒ q, which repre-

sents that every invocation of operation p implies a subsequent operation invocation

of q. For example, createSession should usually imply closeSession. The steps are

listed in Algorithms 1 and 2.

We use Figure 4.9 (a) to show the process of inferring rules of template p⇒ q

from a patched trace [e1,e2,e3,e1,e2]. The algorithm assumes all pairs <ei,e j> in

the unique event set are candidate contexts to the template, in which ei and e j are

of OpTriggerEvent type and the uniqueness is based on the operation name. Then it

attempts to find counterexamples to invalidate wrong rules. The inference algorithm

of this template uses a simple counting approach that runs in three steps. The pre-

scan step constructs a nested map {event: {event: int}} to record the occurrences
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Figure 4.9: Inference and validation algorithm example.

for the event pairs. For each event pair, the counter is initially zero. Then the scan

step iterates through each event e in the trace in order. If e is ei, i.e., a key in the

nested map, we increment the counters for all entries with <ei, *> keys; if e is e j, we

decrement the counters for entries that have <*, e j> keys and have positive counters.

In the post-scan step, we check the final state of counters. If the final counter does

not reach zero, there is an orphan ei that does not have subsequent e j. We get e1⇒

e2, e3⇒ e1 and e3⇒ e2 at the end. Rules like e1⇒ e3 are removed because no

subsequent e3 occurs after the second e1.

4.4.4 Rule Validation

After step ❸, the inference engine could infer many likely semantic rules. Oathkeeper

then applies these rules against the buggy traces (❹) and sees which rules are violated.

Similarly to inference, each template class needs to implement a verify function. The

verify function also usually consists of three phases: pre-scan, scan, and post-scan.

The pre-scan step initializes auxiliary data structures specific to the template. The

scan step goes over the events in the trace and updates the data structures. In some

template, the scan step does not need to iterate through all events in the trace if a

contradictory example is already found. The post-scan step checks the data structures
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and returns the result, which could be PASS (rule is activated and no contradiction is

found), INACTIVE (the antecedent of the rule does not occur, e.g., p⇒ q is inactive in

a trace without occurrences of p), or FAIL (at least one contradiction is found). We

only preserve rules that pass in the patched trace and fail in the buggy trace.

Example. Algorithms 1 and 2 show the steps to verify template p⇒ q. We use

Figure 4.9 (b) to show the process of validating inferred rules from (a) on a buggy

trace [e1,e2,e3,e1]. There are three rules to verify: e1⇒ e2, e3⇒ e1, e3⇒ e2.

In the pre-scan step, we first initialize a counter for each inferred rule. The scan

step then updates the counter: for rule ei⇒ e j, if a processed event e matches ei, we

increment the counter; if e matches e j, we decrement the counter if it is positive. All

three rules are active as both e1 and e3 appear in the trace. The post-scan step marks

rules with non-zero counters as FAIL: e1⇒ e2 and e3⇒ e2.

However, there could still be a significant number of rules due to noises like

unfinished tests (e.g., an assertion failed in the middle of the test), new type events

(new methods introduced), coincidence, and methods that are used for testing only.

To reduce these noises, the verifier validates (❺) the candidate rules against traces

obtained from all test cases, under the patched version, and discards rules that do not

hold in all traces. In addition, we filter uninteresting rules about the system start-up

or shut-down methods or thread run methods. This is achieved by inserting special

marker events at the start and end of test method, and only running the inference

algorithms on trace region within the markers.
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4.4.5 Runtime Checking

Oathkeeper deploys the refined semantic rules with the target system in production,

along with the verifier and event tracer. Oathkeeper performs load-time instrumenta-

tion to the production system in a wrapper class of the entry points. Different from

the offline stage, the instrumentation is selective to only the deployed rules and is

thus lightweight. The event tracer stores in-memory traces from the target systems.

The runtime verifier schedules periodical tasks that validate the current trace

against each of the deployed semantic rules. It reuses the same checking logic de-

fined in the function verify of the template. When the engine finds a semantic rule

reported as FAIL, it records the counterexamples in the traces for debugging. It also

schedules a second check on this violated rule again shortly to tolerate transient vi-

olations or inconsistencies in the trace. For high availability, Oathkeeper generates

alerts in the log upon detection of potential semantic failures and does not attempt to

crash the system.

4.4.6 Optimizations

The validation step can be time-consuming. With N (often thousands) candidate

rules and M (often hundreds) test cases, we need to get M traces and check N×M

times. To reduce the validation time, we introduce a survivor optimization. After a

test finishes, we validate the rules, if some rule is already “killed” (invalidated) by

this test’s trace, it will not be carried over to the remaining tests. Therefore, only

the survived rules will be validated to the end. Another optimization is to run more

closely related tests first. The rationale is that some test takes a long time to run

but is irrelevant to a given rule (thus the test’s trace will not disprove the rule). By
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void checkSession(...) {
-    if (session == null) {
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+        || session.isClosing()) {
        throw new SessionExpiredException();
    }
...
void pRequest2Txn(...){
     case OpCode.create:
         checkSession();

void testCreateAfterCloseShouldFail() {
  for (int i = 0; i < 10; i++) {
    // open a connection
    ConnectRequest conReq = new ...;
    // close connection
    RequestHeader h = new ...;
    // create ephemeral znode
    CreateRequest createReq = new...;
  }
  assertEquals(1, zk.getChildren("/").size());
}

(c) Patched trace

(d) Buggy trace
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Figure 4.10: Example: Oathkeeper workflow of using ZK-1208 to detect ZK-1496.

prioritization, we can potentially invalidate false rules faster.

We also add several optimizations to reduce the runtime overhead. First, the

event tracer only preserves the most recent events within a time window, since always

checking full traces from the start is wasteful. The time window is configured larger

than checking frequency to avoid missing checking events. The events involved in

time-related semantic rules are excluded as their expiration time is based on their

parameters. Second, to achieve both high concurrency and low memory pressure,

we decouple the checking from the event emission with a ring buffer design inspired

by high-performance message queues [149]. Third, to avoid massive new object

creation frequently triggering garbage collection, we reuse expired event objects in

the ring buffers. Oathkeeper also pre-allocates buffers for each type of events at the

instrumentation phase to prevent buffer initialization blocking.

4.4.7 Implementation

We implement Oathkeeper in Java (JDK 8). Its instrumentation library is built based

on Javassist for class bytecode manipulation. Its test engine leverages JUnit to man-

age and execute test cases. The tool also includes a workflow script such as checking

out patched and buggy versions and checking a semantic rule against given traces.
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4.4.8 Limitations

Our approach makes several assumptions: 1) semantics should be expressible with

simple relations of events; 2) the system has a number of test cases with good quality;

3) the failure patch should not involve significant redesign or interface interfaces. If

some assumption does not hold, Oathkeeper may fail to deduce good semantic rules.

4.5 Evaluation

We have integrated Oathkeeper with ZooKeeper, HDFS and Kafka. We evaluate (1)

whether Oathkeeper can leverage past semantic failures to check new violations; (2)

what runtime overhead it incurs to the target system. The experiments are done in

servers with 20-core 2.2 GHz CPUs, 64 GB memory, running Ubuntu 18.04. The

Oathkeeper check engine is configured to schedule and check rule violations every

second.

4.5.1 Generation Overview

Oathkeeper requires old semantic failures and their associated regression tests as

input to extract semantic rules. We select old semantic failures and their regression

tests to reproduce (8 for ZooKeeper, 10 for HDFS and 8 for Kafka). These tests

cover major functionalities of the three systems. We add a switch in the system

code to easily enable and disable the patch for the semantic failure bugs. We then

apply Oathkeeper to the source code to add instrumentation points, run the regression

tests with the patch switch turned on and off, and execute other steps in Oathkeeper

(Section 4.4.1). For each case, Oathkeeper infers many raw semantic rules. After

the validation and optimization step, the rule set is significantly reduced. In total,
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Oathkeeper extracted 285 rules for ZooKeeper, 1,209 rules for HDFS, and 150 rules

for Kafka.

4.5.2 Checking Newer Violations

We evaluate whether the inferred rules are useful to catch new semantic failures.

Given Oathkeeper’s approach, it is likely less effective with unseen semantics. We

reproduce 7 newer (9–34 months later) failures (Table 4.4) that violate related se-

mantics in the old cases, but with different root causes. With the inferred rules,

Oathkeeper detects violations for 6 of them. These newer violations are known bugs

by the time we conducted this experiment. However, their root causes and triggering

conditions are completely different from the failures used to extract semantic rules.

Oathkeeper detects these newer violations with only knowledge from the old failures,

which demonstrates the tool’s detection capability.

We show one example in Figure 4.10. ZK-1496 is not in our study dataset, but

its symptom is similar to a studied failure ZK-1208 that was reported 9 months ago

prior to ZK-1496 in an older release. Users found that the ephemeral znodes were

not deleted long after the client exited. The root cause is a race condition bug that

while the session tracker is removing the expired session, another thread is processing

an ephemeral node creation request. In ZK-1208, developers added a fix to mark

sessions as closing to prevent ephemeral node creation on expiring sessions, and

introduced a regression test. Oathkeeper executes the regression test on ZooKeeper

twice with patch enabled and disable, and generates two traces (c) and (d). Then

Oathkeeper infers rules (e) from the patched traces. Not all inferred rules are useful.

Oathkeeper only preserves rules that fail in buggy traces and pass all tests (f). Rules

such as 3 are filtered when being validated on all tests. Finally, two verified rules 1
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Figure 4.11: Detection of 22 semantic failures in ZooKeeper (sorted by the bug ticket time
in ascending order) when applying Oathkeeper on a sliding subset of the failures for inferring
semantic rules.

and 2 detect the violations (g).

Oathkeeper fails to detect ZK-1667: client A sets a watch on /d and then dis-

connects, client B deletes /d and recreates it; when client A reconnects, it receives a

NodeCreated event instead of NodeDataChanged event. The violated semantics fits into

one of our templates. However, due to the quality of the old watch test in our pool,

Oathkeeper infers other rules.

The average detection time is 0.91 seconds. This result does not contradict with

the long-lived semantics finding in Section 4.3.5. In the experiments, we trigger the

conditions to reproduce the failure soon and measure the detection time from the start

time of the violation.

We compare Oathkeeper with a state-of-the-art invariant checking tool, Dinv [80].

Dinv is designed for checking distributed protocols. Its core invariant inference com-

ponent is based on Daikon [61] that mines variable-level relationship. We instrument

the state variables in the two systems and apply Daikon to traces from the system test

cases. The inferred invariants only detect 1 case (ZK-1496) and are highly noisy.

We conduct an additional “cross-validation” experiment. Specifically, we collect

a larger pool of 22 semantic failures in ZooKeeper. The failures are sorted from
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Figure 4.12: Time to generate trace, infer rules, and verify rules against test suite.

older to newer. We feed each failure to Oathkeeper and measure how many of the 22

failures can be detected. For 16 cases, the rules inferred from one case only detect

that case. It does not imply, though, these rules are useless. They might help detect

failures outside the pool. Interestingly, for the remaining 6 cases, their inferred rules

detect a median of 5 failures. For example, rules from ZK-2355 can detect 6 other

failures besides itself. Figure 4.11 plots the aggregate detection result.

4.5.3 Performance

Figure 4.12 shows the performance of running Oathkeeper for the 26 old cases. Our

template-based inference is fast. The median time to finish inference is 6.5 s. The

median trace generation time is 153.5 s. The most time-consuming part is verify-

ing the inferred rules against the system test suite, because running the full test for

the three systems alone takes a long time. The end-to-end validation time is 2196 s

(median). After discounting the original test execution time, the median validation

time is 301 s. The survivor optimization we introduce (Section 4.4.4) helps. In one

time-consuming case, it reduces the end-to-end validation time from 8104 s to 5024 s.
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4.5.4 Runtime Overhead

We measure the overhead Oathkeeper introduces to the systems at runtime. The

main source of overhead comes from the added instrumentation to emit traces; the

rule checking does not impact the system much because it is done asynchronously.

Oathkeeper only adds instrumentation relevant to the deployed rules to minimize the

overhead. Naturally, more rules lead to higher overhead. We evaluate the overhead as

a function of the percentage of enabled rules. For ZooKeeper, we run the workload of

15 clients sending 15,000 requests (40% reads, 60% creates and writes). For HDFS,

we run the built-in benchmark NNBenchWithoutMR which creates and writes 100

files, each file has 160 blocks and each block is 1MB. For Kafka, we run the workload

of producing 1 million 16KB messages. Table 4.5 shows the result. With all rules

enabled, the average system throughput overhead is 1.27%.

Our initial event tracer used an array list with synchronization, which resulted

in a 31% overhead under heavy workloads. We later implemented a more complex

non-blocking queue, but the overhead is still large. After investigation, we found the

overhead mainly comes from memory and GC instead of synchronization, which mo-

tivated our ring buffer design (Section 4.4.6) that significantly reduced the overhead.

4.5.5 Rule Activation and False Positive

We deploy the inferred rules to a cluster of ZooKeeper, HDFS, and Kafka instances.

We run a set of workloads against the instances. We first measure the rule activa-

tion ratio during the experiment. A rule is activated if the check engine finds the

antecedent of the rule has occurred. For ZooKeeper, 11% of the rules are activated.

The remaining rules are not activated due to the lack of workloads, faulty conditions,
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etc., to trigger the antecedent events. For HDFS and Kafka, the activation ratio is 66%

and 48%. We then measure the false positive ratio among the activated rules. The

result is 4% for ZooKeeper, 9% for HDFS, and 12% for Kafka. This result benefits

from the validation steps described in Section 4.4.4: Oathkeeper eliminates falsely

inferred rules by validating the rules against both the buggy trace and the traces from

all test cases of a target system. Adding profile runs or a dynamic ban mechanism

can further remove the false rules.

4.6 Conclusion

Silent semantic violations pose a severe challenge to distributed systems reliability.

This chapter sheds light on this under-explored yet important problem by presenting

a study on real-world failures in popular distributed systems. It reveals that sadly “a

promise is often not a promise”. Guided by our study, we design a tool Oathkeeper

that automatically extracts semantic rules from past semantic failures, and enforces

these rules at runtime to check future violations.
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Algorithm 2: Implementation for template p⇒ q.
Func ImplyTemplate::InferScanner::prescan(S):

foreach event ∈ S do C.put(event, {})

foreach event ∈ S do
foreach event2 ∈ S do

if event != event2 then
C.get(event).put(event2, 0)

C.get(event2).put(event, 0)

end
end

Func ImplyTemplate::InferScanner::scan(event):
foreach (k,v) ∈ C.get(event) do v ← v + 1

foreach event2 ∈ C do
if event == event2 then continue
val ← C.get(event2).get(event)

if val > 0 then C.get(event2).put(event, val - 1)

end
Func ImplyTemplate::InferScanner::postscan(L):

lst ← []

foreach (k,v) ∈ C do
foreach (k2,v2) ∈ v do

/* add potential invariants when counter is 0 */

if v2==0 then lst.add(genImplyInv(k,k2))

end
end
return lst

Func ImplyTemplate::VerifyScanner::prescan():
ifHold ← true

ifActivated ← false

counter ← 0

Func ImplyTemplate::VerifyScanner::scan(event, context):
if event == context.left then

counter ← counter + 1

ifActivated ← true

else if event == context.right && counter > 0 then
counter ← counter - 1

end
return true

Func ImplyTemplate::VerifyScanner::postscan(L):
if counter != 0 then ifHold ← false

if !ifHold then return InvState.FAIL

if ifActivated then return InvState.PASS

else return InvState.INACTIVE
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JIRA Id Violated Semantics

ZK-1496 ephemeral node should be deleted after session expired
ZK-1667 watcher should return correct event when client reconnected
ZK-3546 container node should be deleted after children all removed
HDFS-14699 failed block need to be reconstructed
HDFS-14317 edit log rolling should be activated periodically
HDFS-14633 file rename should respect storageType quota
KAFKA-12426 partition topic ID should be persisted into metadata file

Table 4.4: Evaluated newer semantic failures.

Base 25% 50% 75% 100%
ZooKeeper 418.27 417.63 416.71 416.55 416.1
HDFS 174.55 174.56 172.10 172.10 172.06
Kafka 30,759.49 30,546.00 30,377.50 30,246.04 30,183.15

Table 4.5: System throughput (op/s) with varying percentages of semantic rules enabled.
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Chapter 5

Memory Leaks at Cloud-scale

5.1 Introduction

Memory leak is a prevalent issue in software, from applications [67] to OS kernels

and device drivers [209]. At Microsoft Azure, its infrastructure contains many com-

plex software components running on a massive number of machines with various

workloads. Unsurprisingly, these components encounter memory leak issues from

time to time. When a process leaks memory, the direct consequence is performance

degradation and crash. Worse still, its impact often affects other components running

on the same machine, such as causing excessive paging, innocent processes being

killed, and node reboots.

Memory leak is notoriously difficult to deal with, especially in a production cloud

infrastructure setting. The issues are usually only triggered by rare conditions and

occur slowly, thus they easily escape testing and failure detectors [121]. After leak

symptoms are detected, it is time-consuming and sometimes impossible to reproduce

them offline. Unlike other failures like crashes that have clear points to start diagno-

sis, developers are often clueless in finding the leak’s root cause.
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Extensive solutions have been proposed to detect memory leak bugs. One ap-

proach uses static analysis techniques [212, 113, 87, 177, 62] to analyze the software

source code and deduce potential leaks. The second approach detects memory leaks

dynamically by instrumenting a program and tracking the object references at run-

time [91, 184, 213, 139, 125].

While helpful, these solutions are insufficient to address the memory leak chal-

lenges in Azure. Static approach is limited by the well-known accuracy and scal-

ability issues with static analyses. It also only focuses on leaks in which allocated

objects are unreachable [128]. If memory objects are reachable but never accessed

again, it still incurs the consequences of leaks. Such leaks are hard to detect statically.

Moreover, memory leaks in cloud infrastructure can be caused by cross-component

contract violations, which require too much domain knowledge to recognize stati-

cally.

Dynamic approaches better fit Azure’s requirements. However, while the exist-

ing dynamic detection solutions are generally more accurate, they are intrusive and

require extensive instrumentations that are cumbersome to apply to complex compo-

nents[91, 125]. They also incur high runtime overhead that is prohibitive for deploy-

ment in production [28].

In this chapter, we present RESIN, an end-to-end service designed to holisti-

cally address memory leaks in large cloud infrastructure, from detection to diagnosis

and mitigation. RESIN is highly scalable—it analyzes all the host software com-

ponents, including kernels, drivers, and system processes, on millions of nodes in

Azure. RESIN has low overhead while running in production environment. At the

same time, RESIN provides good accuracy and helps developers pinpoint the root

causes of memory leak issues.
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Two key insights motivate the design of RESIN and enable it to achieve the above

properties. First, the conundrum of existing solutions is in part because they mix de-

tecting a leak and pinpointing the leak bug in one step, so they have to make trade-offs

among accuracy, scalability, and overhead. In our experience, we should decompose

the detection and pinpointing into multi-level stages to catch memory leaks at pro-

duction scale. Second, taking a centralized service approach that leverages low-level

system mechanism is essential to support many components transparently in a non-

intrusive way. It also enables gathering valuable information from many nodes in the

cloud to address the accuracy challenges.

Based on these insights, RESIN performs non-intrusive, low-overhead leak de-

tection first. When a process is suspected of experiencing leaks, RESIN triggers

a live heap-snapshot mechanism to capture sufficient evidence and runs diagnoses.

RESIN leverages kernel-level monitors and profilers as its building blocks, so it di-

rectly supports all the running processes without cumbersome integration. Further-

more, RESIN builds a centralized service that analyzes processes across all hosts in

Azure fleet together to capture complex leaks.

A key challenge for dynamic leak detection is the highly noisy nature of mem-

ory usage in modern software affected by the workload characteristics. Using simple

static thresholds can easily generate many false alarms or false negatives. For in-

stance, in an impactful real-world cloud service outage caused by memory leaks, no

alarm was triggered despite the existence of a memory monitoring service [9].

RESIN addresses this challenge by designing a robust bucketization-based pivot

scheme. It aggregates the memory usages of processes across machines, and groups

them into different buckets. Then by performing a pivot analysis on the process name,

bucket, and other attributes, RESIN can reliably detect leaks without being prone to
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fragile thresholds. Essentially, we focus on analyzing a component’s global memory

usage behavior, rather than the microscope of an individual process. The rationale is

that a true memory leak comes down to some buggy release. Although the memory

usage of an individual process is highly dependent on workloads, the workload effect

is likely canceled out when inspecting the usage of the same component running in

all machines.

Once a suspicious memory leak is detected, RESIN activates the second stage

of taking live heap snapshots of the suspected processes, which contain information

about the active allocations and their stack traces. This stage is more heavyweight

but provides more evidence to help developers confirm and diagnose the issue. Since

a leak is often sporadic, RESIN aims to “hit” the leak again and capture useful ev-

idence. It carefully chooses the snapshot time points so that the obtained snapshots

have a high chance of localizing the root causes while minimizing the snapshot cost.

Besides taking heap snapshots of the suspected leaking process, RESIN performs a

fingerprinting step that periodically takes heap snapshots of representative processes

to build a reference database. This reference database is used in the diagnosis algo-

rithm to further improve the diagnosis accuracy.

Finally, RESIN automatically mitigates a detected leak to minimize its impact on

the service availability and performance. The mitigation engine in RESIN leverages

the information from the detection and diagnosis engines, and determines the ap-

propriate actions to resolve the leak symptoms while developers investigate the root

causes and fixes.

RESIN has been running in production in Azure for more than 3 years. RESIN

reported many memory leaks, helped developers diagnose the issues, and automati-

cally mitigated the leaks before their impact becomes visible to customers. Within
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the recent year at the timing of writing, the unexpected VM reboots in Azure caused

by out of memory are reduced by 41×, and the new VM allocation errors due to low

memory are reduced by 10×. In addition, no severe outages in 2020 and 2021 at

Azure were caused by memory leaks.

In summary, the main contributions of this work are:

• A holistic memory leak solution for cloud infrastructure.

• A novel bucketization-based pivot scheme to robustly detect memory leaks with

low overhead.

• A live heap snapshot algorithm to effectively capture evidence in production and

diagnose memory leaks.

• A lightweight automated leak mitigation design.

• Deployment of RESIN in a production cloud service.

5.2 Background and Motivation

5.2.1 Host Memory Compositions

In IaaS cloud infrastructure, servers are equipped with large memory, a significant

portion of which is used by the virtual machines (VMs), while the other portion is

used by the host software. The latter includes the hypervisor, host OS kernel, drivers,

system processes, and various host agents, e.g., an agent that manages networking

of the VMs. In this work, we focus on memory leak issues in host software, not

leaks in customer VMs. Unless otherwise specified, the kernel, drivers and processes

hereafter refer to those in host software stack.

Leaks in the host software can cause severe performance degradation and even

instability of the host OS. They can further impact the running VMs, because memory
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between VMs and the host is not strictly partitioned, typically controlled by a soft

threshold [208]. They can also cause potential VM start-up failures due to insufficient

physical memory available.

The host memory is divided into user-mode memory and kernel memory. The

host OS in Azure’s infrastructure distinguishes four states for pages in a process’

virtual memory: free, reserved (for future use but no physical page is allocated),

committed (memory has been allocated from physical memory or paging files), and

shared. For memory leak detection, we only need to consider pages in the committed

and shared states. For kernel memory, the kernel creates two types of memory pools:

non-paged pools and paged pools. Virtual memory in the non-paged pool is guar-

anteed to reside in physical memory as long as the kernel objects are alive, whereas

memory in paged pool can be paged out. Memory leaks in the kernel can happen in

both types of pools.

5.2.2 Memory Leaks

Memory leak occurs when heap-allocated objects are not freed at appropriate time.

It is manifested in two forms: (i) unreachable leak, in which an allocated object is

no longer reachable from the root objects such as global and stack variables; (ii)

forgotten leak, in which an allocated object is still reachable but no longer accessed.

The first type does not occur in managed languages like Java. For the second type,

since the program still keeps references to the leaked object, it cannot be reclaimed

even with managed languages [68]. Such leak is challenging to be detected because

whether an object will be accessed in the remaining execution is undecidable. Thus,

a leak detection solution can only output conservative (correct) answers, e.g., the

objects that are definitely dead at a given time point, or approximate answers (which
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// ConfigMonitorThread

while (cm->running) {
  waitStatus = WaitForSingleObject(
                      fileChangeHandle, 5 * 1000);
  if (waitStatus == WAIT_OBJECT_0) {
    // object is signaled, config file has changed

    ::Sleep(200);
    cm->ReadConfig(); // read the file
+   if (!FindNextChangeNotification(fileChangeHandle))  
+     throw ServerBaseException(
+         "Failed to get handle to config directory");
  }
- FindNextChangeNotification(fileChangeHandle);
}

1
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14

5-sec timeout, previously 

it was set to INFINITE

Figure 5.1: A production memory leak example in Azure from a host process that caused
leaks of objects allocated at the kernel side.

may be incorrect) such as inferring based on the object’s staleness [92].

Memory leaks in cloud software have further complications. For instance, while

existing solutions focus on detecting leaks in an individual component, a memory

leak in cloud infrastructure often happens because of API contract violations be-

tween different components, which is not well addressed. This type of leak is hard to

expose in pre-production environment, because software components are often tested

separately and integration testing cannot cover all possible interactions. Slow leaks

also unlikely get detected due to testing time constraints.

Figure 5.1 shows a real example of such a leak in Azure (this case was success-

fully caught by RESIN). The process has a thread that monitors the configuration

file updates using WaitForSingleObject with a 5-second timeout. In each loop itera-

tion, it calls the FindNextChangeNotification API (line 13). Each invocation causes

the kernel to allocate I/O request kernel objects from the non-paged pool memory.

The contract of the FindNextChangeNotification is that it must be followed by a

call to a wait function, and if the wait function returns for any reason other than

the change notification handle being signaled (e.g., timeout), the wait must be re-

tried. In this case, although the process calls the wait function, it unconditionally
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calls FindNextChangeNotification even if the wait returns timeout. Thus, the kernel

objects are allocated every 5 seconds without being cleaned up. In this incident, the

culprit process’ memory usage was not high. The kernel was experiencing memory

leak in its non-paged pool, not because of kernel bugs but rather the improper API

usage in the process’ code. This memory leak was introduced during a bug fix for

another issue: previously the process waits for the updates using an INFINITE param-

eter in line 4, but this caused service restart operations to be blocked, so developers

changed the wait parameter to a timeout of 5 seconds.

5.2.3 Requirements

There are several challenges and requirements for addressing memory leaks in cloud

infrastructure software:

• Highly scalable. Cloud system is large in the number of components, codebase

size, and deployment scale.

• Versatile. Memory leaks in cloud infrastructure manifest themselves in various

ways—in processes, kernel, unreachable leaks, forgotten leaks, cross-component

leaks, etc.

• Non-intrusive and low-overhead. Solutions that require intrusive modifications or

incur high runtime overhead are hard to be deployed in production.

• Accurate. True leaks should be detected. False positives should be minimized,

because they would cause developers to waste significant time investigating false

issues.

• Timely. If the leak detection is too slow, significant damage to customers may

already occur.
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• End-To-End. Only alerting memory leaks is insufficient. Developers also need con-

siderable help in confirming the issue, pinpointing the root cause, and mitigating

the leak.

Additional constraints include generality and efforts of integrating a solution. The

software components in cloud infrastructure are written in different programming

paradigms, and may depend on proprietary libraries. The millions of nodes in Azure

also have heterogeneity with different OSes, libraries, and hardware versions. Sup-

porting all of these varieties is challenging. For example, we made an experimental

effort of integrating the LeakSanitizer [138], a popular run-time memory leak detec-

tor from the LLVM project, into one Azure host component’s codebase. The integra-

tion effort was difficult (took one person month) due to complex compilation flags,

and library compatibility issues. The MSVC compiler’s full support for LeakSani-

tizer is still pending [186].

5.3 RESIN: Automating Resolving Memory Leaks at
Cloud-scale

5.3.1 Overview

Despite the extensive efforts to address memory leaks in conventional settings, they

are insufficient to satisfy the unique requirements for tackling memory leaks in large

cloud infrastructure (Section 5.2.3). To address this gap, we propose RESIN. RESIN

is a holistic system running in the Azure production infrastructure to detect memory

leaks in host software and provide diagnosis support to developers easily pinpointing

the leak’s root causes. RESIN further performs automatic leak mitigation to reduce

the impact of detected leaks.
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Approach A large cloud infrastructure can have hundreds of components owned by

different teams. Prior to RESIN, tackling memory leaks in Azure is a team-by-team

effort. Some teams started investigating after incident reports about slow or failing

VMs, and developers discovered leak bugs in their components during manual in-

vestigation. Some teams added telemetry monitors in their testing cluster and used

hard-coded thresholds to trigger leak alerts in testing. Similarly, diagnosing leaks

in Azure used to rely on developers to manually inspect the leaking nodes and run

profiling tools. These individual practices were tedious and costed repeated engi-

neering efforts. They also incurred significant false positives and could not handle

cross-component leak issues.

RESIN takes a centralized approach instead. It does not require access to a com-

ponent’s source code, nor extensive instrumentation or re-compilation. RESIN uses a

monitoring agent to each host that leverages low-level OS features to collect memory

telemetry data. It automatically supports all components including the kernel. The

data analysis is offloaded to a remote service, which minimizes the overhead to the

hosts. By aggregating data from different hosts, RESIN can run more sophisticated

analyses to catch complex leaks.

In addition, RESIN decomposes and tackles the memory leak problem in multi-

level stages. It performs lightweight leak detection first and triggers more in-depth

inspections on the fly when necessary for confirmation and diagnosis. This divide-

and-conquer approach allows RESIN to achieve low overhead, high accuracy, and

scalability together.

Workflow Figure 5.2 shows the workflow of RESIN. It starts with low-overhead

monitoring (❶) at each host. A remote service analyzes (❷) the collected data across

112



Lightweight

Monitoring

Live Heap

Snapshotting

Root Cause 

Pinpointing

Hosts

Bucket-based 

pivot analysis

Telemetry

Remote Cross-

Case Analyses

Individual proc. 

analysis

1 2

Candidates

3

Growth pattern 

classification

Trace collector

Reference builder

4

Heap snapshot diff

Leak alert ticket

Mitigation engine

Ranking & filtering

Diagnosis report

Figure 5.2: Workflow of the RESIN system.

different hosts using a bucketization-pivot scheme. If a bucket is suspected of leak-

ing, RESIN triggers an analysis on the process instances from that bucket. After

the two steps identify a highly suspicious software component, RESIN automati-

cally generates an alert ticket for that component along with a list of leaking process

instances belonging to that component. Meanwhile, RESIN performs live heap snap-

shotting (❸) for the suspected processes. RESIN carefully chooses the snapshotting

time using a growth pattern based algorithm to ensure the collected snapshots would

be helpful. RESIN also samples normal processes to take regular heap snapshots and

build a reference database. After generating multiple heap snapshots, RESIN tries to

pinpoint the root causes (❹) by running a diagnosis algorithm on the snapshots. The

analysis report will be attached to the alert ticket thread to assist developers. Finally,

RESIN automatically mitigates the leaking processes.

5.3.2 Design of Leak Detection

In this section, we describe the RESIN’s design for detecting memory leaks. In

existing literature, the term “detection” refers to detect both (i) if a program or a

process has a leak, and (ii) the bug in code or leaked objects. RESIN separates these

as two tasks and uses the term detection to refer to (i) specifically. The diagnosis
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component (Section 5.3.3) targets (ii).

5.3.2.1 Challenges

RESIN needs to address several challenges. First, cloud infrastructure software has

highly noisy memory usage due to changing workloads and interference in the en-

vironment. Using static thresholds would generate many false positives. Standard

anomaly detection algorithms [191, 192] do not work well either, because it is com-

mon for a component to exhibit memory usage spikes that are not leaks but legitimate

increases in handling certain workloads.

Second, memory leaks in production systems are usually fail-slow faults [82]

that last days, weeks, to even months (rapid leaks are likely caught in testing or

deployment). Inspecting memory usage in a short time window would miss these

slow leaks. It is necessary but challenging to capture gradual changes over a long

period and still raise timely alerts.

Third, given the scale of Azure, collecting fine-grained data for a long time is

impractical because of storage and overhead concerns. Therefore, RESIN can only

collect limited, coarse-grained data and must work well under this constraint. Still,

even with coarse-grained signals, the data volume is enormous. The detection algo-

rithms must run efficiently.

5.3.2.2 Lightweight Memory Usage Monitoring

RESIN deploys a privileged monitoring agent on each host (Figure 5.3). This agent

communicates with the host OS to track memory usage. It collects both kernel mem-

ory usage and per-process memory usage. The kernel usage is obtained from a pool

monitor kernel module (PoolMon), and includes the usages of non-paged memory pool
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Figure 5.3: Monitor agent in each node collecting memory usage data.

and paged memory pool for each tag. The tag is passed as an argument by the callers

of the kernel allocation API [168] and represents a sub-system that has requested

memory from the kernel allocator, e.g., the file system, a driver. The per-process us-

age is obtained by querying the per-process performance counters from the host. It

includes breakdowns of a process’s memory, such as the private commit, working set

size, paging file usage, etc.

We collect the memory usage breakdowns and tags instead of simply a single total

memory usage metric, because mixing different memory usage sources can introduce

noises and miss important changes. For example, a 20 MB increase can be a leak

for a driver but may be negligible for another component. Reporting the specific

memory portion or tag that is leaking helps developers localize the buggy code. The

breakdowns also help RESIN take more effective mitigation actions.

In addition to memory usages, the monitoring agent also records attributes such

as the software version, hardware generations, node id, and cluster id. The attributes

are used during leak detection analyses to increase accuracy. RESIN includes the
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common attributes of the leaked process in the detection report to give developers

troubleshooting hints.

The monitoring agent is scheduled to run every 5 minutes. However, the data

points from different hosts may not be perfectly synchronized. Some special events

in a host such as node reboots also introduce missing or invalid data. Therefore,

RESIN aggregates the time-series data into hourly granularity by removing extreme

outliers and computing the mean of the remaining data points. This pre-processing

step reduces the noises as well as the data volume. Using an hourly window is not

too coarse-grained because most software components in cloud infrastructure are

long running, and production leaks typically occur in a large time scale.

5.3.2.3 Detection Algorithms

RESIN uses a two-level scheme to detect memory leak symptoms: a global bucketing-

based pivot analysis to identify suspicious components, and a local individual process

leak detection to identify leaking processes. The detection output includes the sus-

pected component, the list of top leaking processes of that component, the leak start

and end times, severity scores, etc. The detection algorithms are language agnostic.

Bucketization-based Pivot Analysis. To address the challenges described in Sec-

tion 5.3.2.1, our insight is that we should inspect at the component granularity across

processes. This is because although an individual process’ memory usage is influ-

enced by workloads and highly noisy, the noises can be “canceled out” en masse. For

a normal component, its process instances on different hosts may experience differ-

ent workload effect at any time slice. But for a leaky component, the memory leak

must be caused by some buggy release. Therefore, its processes should exhibit some

116



global trend at certain time slices despite the workload effect.

Based on this insight, we design a simple yet robust bucketization-based pivot

detection scheme (Figure 5.4). Each circle represents one process. Shaded circle

represents a process moving to another bucket. RESIN first groups the raw memory

usage telemetry data into a number of buckets. In our implementation, we use 20

buckets (50 MB, 100 MB, 200 MB, . . . , 40 GB, 50 GB). RESIN then applies pivoting

to the data with a unique attribute tuple as the index and memory usage bucket as

columns. The attribute tuple is (ProcessImageName, ServiceName) for user-level soft-

ware, and (TagName, PoolType) for kernel subsystems, where Type is paged memory

or non-paged memory. The aggregation function is the count of distinct nodes. Thus,

each summary cell represents the number of nodes that have running processes with

a particular attribute tuple and these processes’ memory usages fall into the specific

bucket. RESIN computes the summary periodically and incrementally for data in

each time interval. The results are saved into a database table.

We basically transform the memory usage data into summary about numbers of

nodes in different buckets, which can more robustly represent the trends and tolerate

noises due to workload effect (e.g., the non-leaky component in Figure 5.4). RESIN

then runs anomaly detection on the time-series data of each bucket for each compo-

nent. It uses the most recent time period of summary data (default 15 days), with

the first 2/3 portion as the baseline and the remaining data points as the test. If a

bucket’s test period has data points that exceed the µ + 3σ of the baseline data (µ

and σ represent the mean and standard deviation of the distribution), it is considered

to be an anomaly. The start time and end time in the test period when the node count

becomes the outlier are recorded.

One caveat is that if many processes of a component experience a sudden drop in
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Figure 5.4: The memory usage grouped into buckets and pivot by image name, service, and
bucket size.

memory usage, the node count would shift from a higher bucket to a lower bucket.

But the lower bucket’s node count significant increase is not an anomaly. To handle

such scenarios, RESIN calculates cumulative bucket values during the anomaly de-

tection. In other words, if the 100 MB bucket has a node count of n, it means there

are n nodes that have the particular processes with memory usage equal to or larger

than 100 MB, including processes (if any) that fall into the 200 MB bucket. In this

way, a significant increase in a bucket almost always suggests an anomaly.

The bucketization approach also helps address the computation challenges. Be-

fore introducing this approach, it can take RESIN more than one day to run anomaly

detection on the enormous data points from millions of nodes. After the pivot sum-

mary, RESIN only needs to run anomaly detection for the time-series data in each

bucket, which can finish in less than one hour for all data (even without paralleliza-

tion).

RESIN calculates a severity score for each bucket based on the deviations and
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node count in the bucket. It considers a component is leaking based on a <size_mb,score>

threshold: if a bucket is of size equal to or larger than size_mb and its severity score

exceeds score. RESIN generates intermediate reports for the abnormal buckets. It

de-duplicates the intermediate reports by only keeping the one for the largest bucket

of a unique attribute tuple, and generates a ticket for that report.

Localizing Individual Processes. The bucketization pivot analysis works at the

component granularity. RESIN uses a second-level detection scheme that works at

the process1 granularity. The motivation for this scheme is that a component has

many process instances. It is important to localize the truly leaking processes in

the alerting bucket. If we simply include all the processes in the abnormal bucket,

developers can waste significant effort investigating innocent processes that fall into

that bucket by coincidence.

The second-level detection scheme computes the leak likelihood and severity for

a process based on its memory usage. RESIN uses all the memory usage data of a

component in the most recent month to train two parametric models: (i) the absolute

usage model and (ii) the usage difference model. Since different clusters and regions

can exhibit drastically different characteristics, the tool builds separate models for

each combination of region name and cluster type for a component.

Let Uc(ni, t j) denote the memory usage value for a process of component c on

node ni at time t j. RESIN assumes absolute usage Uc(ni, t j) follows a Gaussian dis-

tributionN (µ1,σ
2
1 ) and fits the memory usage data by calculating the maximum like-

lihood estimators for µ1 and σ1. The absolute memory usage values can be severely

1Here we use the term “process” to also include a running instance of a kernel subsystem in a
particular host for kernel memory leak detection.
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Algorithm 3: Moving suspicious interval algorithm
Input: Uc(ni, t): time-series memory usage for node ni of component c; N (µ2,σ

2
2 ): offline

usage difference model for component c.
Output: T0, T1: leak start and end time; no leak if T0==T1. Ninc: number of increasing data

points
tn←max(t) in Uc(ni, t), Ninc← 0
T0 ← t1, T1 ← t1
for j← 2 to n do

T1 ← t j
∆Uc(ni, t j)←Uc(ni, t j) - Uc(ni, t j−1)
if IsOutlier(∆Uc,N ) || Uc(ni, t j)<Uc(ni,T0) || Ninc/n < ε then

T0← t j
if T0 == T1 then

Ninc← 0 /* empty interval, no leak, reset */

else if IsLarger(Uc(ni, t j),Uc(ni, t j−1),N ) then
Ninc ← Ninc +1 /* a new increasing data point */

end
return T0,T1,Ninc

distorted by occasional events such as VM creations. To account for such events,

we consider the differential memory usage, i.e., ∆Uc(ni, t j) =Uc(ni, t j)−Uc(ni, t j−1).

Based on our observations, when noisy events such as VM creations occur, ∆Uc(ni, t j)

usually significantly deviates from its normal range. Thus, RESIN also builds a para-

metric Gaussian distribution N (µ2,σ
2
2 ) model for usage difference ∆Uc(ni, t j) and

calculates the µ2 and σ2.

With the offline models, RESIN uses a moving suspicious interval algorithm (Al-

gorithm 3) to examine a suspected process’ memory usage in real time. This algo-

rithm works by keeping a suspicious leak time interval [T0,T1]. The basic idea is to

assume the leak still continues at the end of the time series and try to find the earli-

est time the leak trend starts by skipping over low-confidence points. This interval

is initialized as [t1, t1] upon reading the first data point in a time series. At the j-th

step, RESIN reads Uc(ni, t j), calculates the ∆Uc(ni, t j), and adjusts the time interval

by moving T1 and update T0 adaptively. If ∆Uc(ni, t j) has a significant increase or

drop (based on the 3-sigma rule for µ2 and σ2), T0 is updated to t j because the system
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Figure 5.5: Applying the moving suspicious interval algorithm.

status is likely changed by some event. If Uc(ni, t j) is lower than Uc(ni,T0) or there

are few increasing points in the current interval, T0 is also updated to t j because a

leaking trend should have enough increasing values. For other situations, we keep

the T0 intact. The loop stops when T1 hits the last time point tn. If the final T0 is equal

to T1, this process is not considered as leaking.

Figure 5.5 shows an example of applying the algorithm. [T0,T1] are initially set

to [t1, t1]. When T1 is set to t2, ∆Uc(ni, t j) is positive thus we keep T0 unchanged and

continue to move T1 forward. When T1 is set to t3, ∆Uc(ni, t j) is an outlier in the

offline model (N ,µ2,σ
2
2 ), which we consider an occasional event instead of a leak.

We reset T0 to t3 accordingly. When T1 is set to t4, Uc(ni, t j) is significantly lower

than Uc(ni,T0) thus we also reset T0 to t4. After t4 we did not encounter scenarios to

reset T0 (the memory usage drops slightly later but it is unnecessary to reset for such

cases), so eventually T1 reaches the end tn, and [T0,T1] is [t4, tn].

RESIN calculates a severity score (Equation 5.1) for a process to indicate its leak

probability and impact. Several factors are considered, including the normalized

memory usage difference (∆Uc =Uc(ni, tn)−Uc(ni, t1)), the length of the suspicious

leak interval (∆T = T1− T0 in the unit of month), the increasing rate (number of

increasing data points over the number of all data points), and the final memory
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usage at tn.

SevScore =
∆Uc

σ1
+

Ninc

n
+∆T +

1
1+ e−Uc(ni,tn)/µ1

(5.1)

For efficiency, the above analyses are run proactively. When the bucketization-

based pivot detection step identifies a leaking bucket, RESIN triggers the individual

process analysis for the processes in the bucket and can usually inspect the results

without waiting. It outputs the suspected leaking processes, the leak start and end

time, and the severity scores.

5.3.3 Diagnosis of Detected Leaks

Only detecting a leak is not enough. Without sufficient evidence and diagnosis sup-

port, developers are likely stuck in confirming and diagnosing the issue. RESIN

designs a solution that automatically takes live heap snapshots and analyzes the snap-

shots to pinpoint the root cause of a detected leak.

5.3.3.1 Background: Heap Snapshot

RESIN provides diagnosis information at stack trace granularity. In our experience,

if developers are presented with a stack trace containing the problematic allocations,

they can often quickly debug the issue. RESIN leverages the Windows heap man-

ager’s snapshot capability to perform live profiling. The heap manager exposes APIs

such as HeapAlloc, HeapReAlloc, and HeapFree, which are used by applications and

C/C++ runtime to allocate heap objects. Thus the heap manager has the ability to

collect the heap allocation sizes and stack traces.

RESIN uses the Windows Performance Recorder [211] to notify the kernel to

start tracing heap allocations, typically for a specific process ID and occasionally
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Figure 5.6: Periodic heap snapshot collection.

for an image name (which enables tracing for all processes with the image). Then

RESIN instructs the heap manager to take a snapshot at a certain time. Our current

heap snapshotting mainly focuses on C/C++, which are the primary language choices

for host software on Azure. Extending to other languages would take extra effort but

are still straightforward, as their runtime typically already provides the functionality

to capture allocation events.

To minimize overhead, the heap manager only stores limited information in each

snapshot. Specifically, it stores (1) the stack trace and size for each active alloca-

tion after the tracing was enabled (if an allocation has been freed, no information is

stored), (2) the total allocation sizes for each unique stack trace, and (3) the number

of times a unique stack trace is invoked. It does not store more detailed information

such as the allocation time or a pointer graph.

The information in a single snapshot is usually too noisy, as it includes all ac-

tive allocations from the tracing start to the snapshot point. To get more accurate

information for a time window, RESIN periodically takes multiple heap snapshots

(Figure 5.6) to increase the chance of capturing truly leaking allocations between

snapshots. RESIN uploads the snapshot files to a remote storage service. The diag-

nosis engine uses these snapshots to deduce the leaking allocation points.
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5.3.3.2 Choosing Candidate Hosts to Profile

Picking the right hosts to take heap snapshot is vital for diagnosis effectiveness. Be-

cause heap snapshot incurs overhead, RESIN cannot afford to enable snapshot on all

hosts containing the leaking processes the detection engine outputs. Simply choosing

the hosts randomly is not a good strategy either, because the workloads on different

hosts vary widely. For the same leak bug, it can exhibit in quite different patterns on

different hosts. Thus, we may choose a candidate host in which the buggy allocations

are triggered rarely.

We rank the candidate hosts in the suspected list based on three factors: 1) sever-

ity: choose processes with higher severity scores as described in Section 5.3.2.3,

since more obvious symptoms suggest a better chance to be diagnosed; 2) noisiness:

choose processes with a clearer growth pattern, which we will discuss in more detail

in Section 5.3.3.3; 3) impact: choose hosts that have fewer user activities to mini-

mize impact of profiling events. By default RESIN triggers snapshot collection for

the top three hosts in the list in case the collection fails unexpectedly (e.g., due to

target process restart).

5.3.3.3 Deciding Trace Collection Strategy

With the candidate hosts selected, the next step is to decide if a new leak happens

in the most recent snapshot interval and whether to take the snapshots. This step is

different from the analysis in Section 5.3.2.3, which only finds leaking processes in

past time. The decision making has two main challenges.

First, many production leaks are only triggered by specific events. Some leaks

only occur once in several days. If we take snapshots at other times, the collected

traces would not be helpful. To ensure rare leaks are captured, RESIN attaches the
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Figure 5.7: Memory growth patterns and completion point choices. Each data point is real
memory usage from production processes.

profiling workflow to the process for a long time and periodically (every half hour)

takes snapshots in hope of capturing the leak. However, we cannot afford to keep

uploading snapshots due to storage and overhead concerns. RESIN addresses the

challenge with a long-term, trigger-based strategy: it uses a circular buffer that only

keeps the most recently taken snapshots, and completes tracing once certain trigger

is met.

Second, how to decide when the trace collection should complete, i.e., the trigger.

At the completion time, we should ideally (1) have snapshot(s) containing the buggy

allocation; (2) have snapshot(s) for non-leaking scenarios; (3) minimize noisy allo-

cations in the snapshot(s). One potential trigger is to complete the collection once the

memory usage difference exceeds some threshold. This trigger can easily complete

the tracing prematurely (fails to capture the buggy allocation) due to a legitimate

memory usage spike, and/or produces snapshots that have many noisy allocations

and mislead diagnosis.

To gain some insights on how to choose the triggers, we study the memory usage

data of 51 real leak cases. Interestingly, most cases fall into three common patterns

(and a mixture of them). Additionally, one leaking process in a specific host often
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Pattern Characteristics Completion Trigger

Steady Almost linear growth R2
j > λa.

Stair Steady growing and flat curves |1− slope j/slopek|< λb
alternately appears. && R2

j < λc

Spike A few large allocations in a short ∆Uc(ni, t j)/∆Uc(ni, tk)
period of time > λd

Table 5.1: Leak patterns, characteristics and their completion triggers.

has a consistent pattern. In 63% of the cases, the leaking process shows a steady

pattern. One example is the bug shown in Figure 5.1, in which the leak exists in

periodical update tasks. The other two common patterns are stair (the memory usage

occasionally grows only when the procedure containing leaks is activated) and spike

(the leak only occurs once in a while due to rare events). Each pattern has its unique

usage growth characteristics and clear completion point candidates a , b , c shown

in Figure 5.7. d is not a good completion point as it is right after a period of some

noises.

Guided by the findings, RESIN takes a pattern-based approach to decide the trace

completion triggers. It uses the target process’ memory usage data in the most recent

week and classifies it into one of the three patterns. Specifically, RESIN first identi-

fies nearly flat segments in the time-series data and removes them. It then performs

linear regression on the remaining growing segments and outputs results including

the slope slopek, coefficient of determination R2, and absolute memory usage in-

crease ∆Uc(ni, tk). If the data contains no flat segments, RESIN marks it as a steady

pattern. If the data has flat segments in between growing segments, it is marked as a

stair pattern. If a large increase in memory usage only occurs in a few data points, it

is marked as a spike pattern.

After the pattern is classified, the workflow starts to monitor and analyze the
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Algorithm 4: Heap snapshot diagnosis algorithm
Input: An−1,An: sets of allocations in two heap snapshots, Sr: a list of outstanding stacks from

reference hosts, pattern: classified pattern, estimate_leak: upper bound of estimated
leaking size

Output: So: a list of top N stack traces that likely caused leaks
So ← [], Sdi f f ← []
Sn ← An.groupBy(alloc=>alloc.stackid)

Sn−1 ← An−1.groupBy(alloc=>alloc.stackid)

foreach stack ∈ Sn do
if stack ∈ Sn−1 then Adi f f ← Sn[stack.id] \ Sn−1[stack.id]

else Adi f f ← Sn[stack.id]

if Adi f f ̸= /0 then
foreach a ∈ Adi f f do stack.size← stack.size+a.size

Sdi f f .add(stack)

end
end
Sdi f f .orderBy(stack=>stack.size)

if pattern ̸= SPIKE then
Sdi f f .removeAll(stack=> stack.size > estimate_leak)

end
Sdi f f .removeAll(stack=> stack ∈ Sr) /* filter references */

So ← Sdi f f .top(N) /* only keep top N stack traces */

return So

recent memory usage. We compute the slope j, R2
j , and ∆Uc(ni, t j) for the most recent

six hours and check the pattern’s completion trigger based on rules listed in Table 5.1

( λa, λb, λc and λd are set to 0.8, 0.1, 0.1, and 0.5, respectively). Once the trigger is

satisfied, RESIN stops tracing and uploads the trace file that contains the most recent

few snapshots. It ensures each trace has at least three snapshots.

5.3.3.4 Collecting Reference Snapshots

One challenge in using snapshots for diagnosis is the presence of many noisy but be-

nign allocations. Even with multiple snapshots, they may remain active and mislead

the diagnosis. RESIN collects reference snapshots to address this challenge.

For the reference snapshots to be useful, they should be comparable to the snap-

shots from the leaking process. A poor choice of a reference snapshot may be even
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counter-productive and filter out the culprit allocations. RESIN uses a periodical

fingerprinting process to build reference snapshots. It randomly samples hosts for

common leaking services to take heap snapshots. We currently define the finger-

prints to be the attribute tuple (cluster_id, OS version, service version, date).

This is based on our observations on the locality of memory leaks. These snapshots

are saved in a reference database and cleaned up when they become stale.

At the diagnosis stage, after RESIN chooses the candidate leaking hosts to pro-

file (Section 5.3.3.2), RESIN checks if the database already has reference snapshots

with similar fingerprints. If not, RESIN triggers reference collection. It first scans

the qualified hosts (not in the detection engine’s suspicious list and have similar fin-

gerprints to the leaking hosts) and samples a few that have active memory activities

and modest memory usage. Then RESIN applies the growth pattern analysis (Sec-

tion 5.3.3.3) to check if this host is leaking. If not, it takes snapshots and uploads the

traces to the reference database.

5.3.3.5 Trace Analyses for Diagnosis

The next step is to analyze the collected snapshots to output the root cause stack

traces. The challenge is to handle many noisy allocations and localize the buggy

allocations.

RESIN designs a diagnosis algorithm listed in Algorithm 4. The inputs are the

allocations from the two most recent snapshots of a trace file (An−1, An), stack traces

from reference snapshots, and the estimated leaked size upper bound calculated in the

pattern analysis. For the steady and stair patterns, we estimate the leaked size upper

bound by multiplying the slope with the time interval of the growing segments and a

coefficient (by default 2). The goal is to find the stack traces that allocate objects of
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sizes closest to the estimated leak.

The diagnosis engine first groups allocations in An−1, An by the stack trace id

and get two maps Sn and Sn−1. Each map value is all the allocations that come

from a stack trace. It then traverses each stack trace in Sn to calculate the aggregated

allocation size. The engine then identifies stack traces that contain unique allocations,

and ranks these traces based by their allocated object sizes. Stack traces allocating

sizes larger than the estimated leak size are likely noises and thus removed. Finally,

the diagnosis engine cross-checks the reference snapshots to filter out benign stack

traces. If the output list is empty, the engine repeats the analysis for the next snapshot

pairs (An−2, An−1), etc.

5.3.4 Mitigating Leaks

When a memory leak is detected, it can take time for developers to come up with and

deploy the bug fix. To avoid further customer impact, RESIN attempts to automati-

cally mitigate the detected leak issues. Depending on the nature of the memory leak,

mitigation can be done in several ways. Rebooting the host OS in general can miti-

gate all kinds of leaks. However, this is costly and potentially causes VM downtime.

RESIN leverages the results from its detection engine and uses a rule-based deci-

sion tree to choose a mitigation action that can minimize the impact. If the memory

leak is localized to a single process or Windows service, and this process or service

is not required to be always alive to provide services to customers, RESIN attempts

the lightest mitigation by simply restarting the process or Windows service.

For some processes, the mitigation requires additional steps. RESIN allows com-

ponent teams to define custom scripts and invoking conditions. If the leak is located

in buggy drivers, RESIN unloads and reloads the driver to mitigate the issue.
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For safety, RESIN uses allowlists for each action category to make sure auto-

mitigation is not misused. It defines an initial allowlist for the processes and drivers

that are known to be safe to restart. A feature team can opt in auto-mitigation by

adding the name of the process or tag to the allowlist.

For leaks in the OS kernel memory such as I/O request objects and file objects, if

the detection engine can attribute the leak to a process or a service, RESIN attempts

to restart the culprit process or service. This action is usually effective because it

allows the leaked kernel objects to be properly freed without the need to reboot the

OS.

OS reboot will resolve any software memory leak but takes a much longer time

and can cause VM downtime. Thus, it is the last resort when a leak cannot be miti-

gated by the above actions or the name is not in the allowlist. RESIN checks if the

host is empty and does the OS reboot if so. Empty hosts could also leak memory

due to past user activities or current background processes. For a non-empty host,

RESIN first performs live VM migrations [48]. Then it attempts a kernel soft reboot,

which skips hardware initialization. If the soft reboot is ineffective, a full OS reboot

is performed.

To minimize the impact of mitigation actions, RESIN closely monitors the leak-

ing hosts. It prioritizes the actions on 1) nodes that fire low-memory related events,

such as E2004 (low virtual memory) from the Windows resource exhaustion detec-

tor, E3122 (not enough memory to start VM) from Hyper-V; 2) nodes in regions with

capacity issues; 3) nodes with host memory reservation overage; 4) nodes ordered by

the leak size, leaking rate, and the predicted time-to-failure.

RESIN stops applying mitigation actions to a target when the detection engine
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Figure 5.8: Memory leak cases RESIN detected and reported.

no longer considers the target leaking. This typically occurs without manual inter-

vention. For example, after developers identify the root cause and apply a fix, the

leak symptom disappears, so RESIN stops the mitigation. Sometimes, after a miti-

gation action, the leak symptom no longer re-appears, which naturally stops further

mitigation.

RESIN also coordinates with its diagnosis engine (Section 5.3.3) in performing

the mitigation actions. If the diagnosis engine plans to or is taking heap snapshots

for a candidate host, RESIN defers the mitigation actions to avoid losing the critical

opportunities for capturing the leaking allocations.

5.4 Evaluation

Our evaluation answers several questions: (1) how effective is RESIN in detecting

memory leaks? (2) how accurate is the detection? (3) can RESIN help developers

diagnose and mitigate leaks? (4) what is the overhead of trace collection?

5.4.1 Deployment Status and Scale

RESIN has been running in production in Azure since late 2018. It covers millions of

hosts, over 600 different host processes and over 800 different kernel pool tags daily.

The detection engine in RESIN analyzes more than 10 TB memory usage data every
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Figure 5.9: Unexpected VM reboot.

10 11 12 01 02 03 04 05 06 07 08 09

Month (2020-2021)

0%

20%

40%

60%

80%

100%

V
M

 a
ll
o
c
. 

e
rr

o
r 

ra
te

Figure 5.10: VM allocation error rate.
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day. The diagnosis module collects 56 trace files on average (10–200MB) daily.

Every month, the mitigation engine performs a median of 1,592 process restarts,

1,290 kernel soft reboots, and 4,649 node reboots.

5.4.2 Detecting Production Memory Leaks

Azure has various solutions that help eliminate memory leak bugs before produc-

tion, including code reviews, static bug finding tools, testing, and safe deployment

policies. As a result, only complex memory leak bugs occasionally escape these solu-

tions. RESIN serves as the last defense to effectively catch these bugs in production.

Figure 5.8 shows the memory leak tickets RESIN reported in Azure from July

2020 to August 2021. Overall, RESIN reported 564 tickets in 14 months, among

which developers explicitly resolved 291 tickets.
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5.4.3 End-to-End Impact

The end-to-end benefits brought by RESIN are clearly demonstrated by two key met-

rics: (1) VM unexpected reboot2: the average number of reboots per one hundred

thousand hosts per day due to low memory; (2) VM allocation error: the ratio of

erroneous VM allocation requests due to low memory.

As shown in Figures 5.9 and 5.10 (data is normalized for confidentiality), the

improvement RESIN provides is significant. Both metrics show large decreases: VM

reboots are reduced by 41× from September 2020 to September 2021, and allocation

error rates are reduced by 10× from October 2020 to September 2021. Note that these

key metrics have been continuously dropping before the starting points in Figures 5.9

and 5.10. We omit to plot these earlier points because the raw data are no longer in

the database due to data retention policies.

The improvement also shows in the reduction of service incidents. In 2020 and

2021, no severe outages in Azure were caused by memory leaks (such outages oc-

curred previously).

5.4.4 Effectiveness of Detection

Detecting memory leaks in a complex, frequently changing cloud infrastructure like

Azure is challenging. RESIN aims to minimize the false positives and false negatives.

Precision To evaluate the detection accuracy, we count how many cases RESIN

reported are flagged by developers as false alarms. Overall, RESIN only incurs 7

false positives out of 291 resolved cases in 14 months.

There are two common patterns of false positives: (i) after a component adds

2In this chapter, we only count those VM unexpected reboots and allocation errors caused by low
memory and memory exhaustion.
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a new feature that consumes significantly more memory; (ii) after a configuration

change, e.g., “we are collecting and correlating lot more counters and # of disks per

node have also increased”. The memory usages in these cases typically stabilize

and become new baselines, which RESIN automatically picks up without requiring

adjustment.

Recall We count how many cases RESIN misses or fails to detect in time. The

criterion is a memory leak causing noticeable service impact and getting reported by

users, developers, or other monitoring services before RESIN detects it. We search

keywords including “memory leak” and “leak” on Azure’s issue tracker used by all

teams. We compare them with tickets automatically created by RESIN. Overall the

false negatives are few: only 4 cases are not on RESIN’s ticket list.

We also inspect the reason for each case. One case in July 2020 was caught by us

manually when analyzing a heap snapshot trace, before the issue triggered RESIN’s

alert. In other two cases, the leak impact was not significant, but developers found the

leaks when they were closely monitoring their new deployment. The last case was

both found by developers and RESIN, but developers found the issue faster. This

happened because the issue manifested itself earlier on a testing cluster that had a

different workload from the production clusters RESIN monitored; developers were

also using an aggressive threshold in that cluster to expose potential issues.

Timeliness It can be difficult to determine the exact starting time of a leak and

hence the exact detection delay. We observe that RESIN’s detection typically occurs

within two hours of a leak’s clear manifestation. In general, a too-long detection

delay would be reflected in a false negative since developers or other monitoring

tools would detect the issue earlier.
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Resolution rate Not all cases are eventually resolved by developers. On average,

RESIN reports a resolution rate of 52% within reported date range. We believe this

resolution rate is underestimated compared to actual responsive rate: in many cases,

developers took actions but did not update the open tickets (only tickets tagged with

a high severity level are mandatory to resolve according to ticket platform’s policy).

“Unresolved” also does not necessarily mean the ticket is unimportant. We observed

that some teams tend to have lower response rates, likely due to their limited re-

sources and the overwhelming number of urgent tickets.

This result is also influenced by our design goal. RESIN is designed to catch

memory leaks early before the leak escalates to catastrophic issues. RESIN fur-

ther provides automatic leak mitigation. Thus, a could-have-been-severe leak would

appear to be low-risk. When developers prioritize resolving high-impact tickets, it

adversely affects the resolution rate for our leak tickets. Due to the large volume

of reported cases from various groups, we could not afford to inspect all unresolved

tickets and check with their owners.

5.4.5 Effectiveness of Diagnosis

The diagnosis module of RESIN in total collects traces and generates reports for 157

cases from July 2020 to August 2021 (Figure 5.8). For tickets related to kernel leaks

or clusters with legacy OSes, RESIN is unable to collect traces. Before November

2020 the diagnosis module was in trial runs and diagnosis reports were not appended

to tickets. We gradually enabled it for more clusters after the trial run was over.

Figure 5.11 shows how the ratio of tickets with collected traces (and diagnosis

reports) increases, which correlates with the improvements on the ratio of resolved

tickets.
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Usefulness To evaluate the usefulness of the diagnosis reports RESIN generates,

we randomly sample 14 issue tickets and closely follow up with the developers (all

cases are eventually resolved and fixed). In 11 cases (79%), developers directly use

the diagnosis reports to pinpoint root causes. Among them, in 5 cases the bug fix

is in the same function in the allocation stack; in 5 cases the allocation stack and

bug fix are in the same source file; in only 1 case the allocation stack and bug fix

are in different components. Out of the other three cases, two are solved by memory

dumps because the developers are quite experienced: upon seeing the sizes of leaked

memory objects, they immediately realized which function the leaks came from. In

one case the traces captured in the production cluster are not particularly useful.

Instead, developers successfully captured some snapshots consisting of leaking stack

on their own testing cluster.

Feedback Over time, developers build up high confidence in RESIN. We receive

many pieces of positive feedback:

“(The result is..) incredibly useful. The information I had was enough.”

“Thanks for pinpointing out the memory leak that we had been trying so hard to

find over the past few days.”

“Stack trace was sufficient for debugging this, it included the API call that was

problematic.”

Case studies We share two representative cases. The first case occurs in ServiceH3.

This process’ memory usage keeps increasing and gets restarted every few days. The

diagnosis module in RESIN collects heap snapshots and pinpoints the root cause

stack trace. After the diagnosis report is attached to the ticket, developers confirm

3The service names are anonymized for reasons of confidentiality.
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virtual void AddDsmsCertificate(CertificateStore& ... {

-   for (; certHead != nullptr; certHead = certHead->Next) {

+   for (auto currentCert = certHead; currentCert != nullptr;

+        currentCert = currentCert->Next) {

-      if (certHead->Versions == nullptr)

+      if (currentCert->Versions == nullptr)

          continue;

-      auto latest = certHead->Versions->Latest;

+      auto latest = currentCert->Versions->Latest;

       if (latest == nullptr)

          continue;

       ...

    freeCertLst(certHead)

Figure 5.12: The fix for ServiceH leak.
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Figure 5.13: Contract violation induced leak on ServiceD.

and fix the issue in 3 hours.

In this case, the program uses a pointer to manage the list of certificates, and frees

the pointer at the end of the function. However it also uses the pointer to traverse the

list. In the end the pointer has moved and only a part of the list is freed (Figure 5.12).

This is a day-0 bug introduced a long time ago, but is recently triggered due to added

certificates to the machines.

The second case represents another common (6 out of 14 cases we studied) type

of leaks in cloud infrastructure: leaks due to contract violations in cross-component

interactions. After RESIN reports a firewall-related svchost is leaking, the diagnosis

module collects traces and reports a function in the rule list adding procedures after

analyses.

Developers do not find bugs in this specific function at first, but the report prompts

them to check the firewall rule lists on these machines. They then find the rule lists
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Figure 5.14: Mitigation for a leaking driver.
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Figure 5.15: False positive of detection algo.
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Figure 5.16: False negative of detection algo.

on these machines have been flooded with redundant rules. The reason is that the

svchost process gets a firewall configuration from another program ServiceD. This

program creates firewall rules at startup. Due to another bug, ServiceD keeps crash-

ing, which causes it to miss deleting created rules and repeatedly recreate rules upon

restarts (Figure 5.13). This in turn causes significant memory usage increases for the

svchost program. Such a bug is hard to be detected statically.

Timeliness The diagnosis timeliness is also important to help developers. We mea-

sure the latencies of RESIN’s heap snapshot collection and analysis. The median

trace collection time is 61 minutes. For more than 80% of cases, the collection fin-

ishes within 10 hours. Note that the trace collection time is influenced by when a

leak recurs in a suspected process. If the leak is sporadic, RESIN has to wait until the

symptom reappears to capture the snapshot. For trace analysis, the median latency of

the analysis jobs is 10 minutes.
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Mitigation Count 50% 75% 90% 99%

Process restart 27,039 1.62 5.74 6.50 30.70
Kernel soft reboot 8,292 24.64 34.47 49.14 141.69
Node reboot 278,005 248.58 274.36 362.10 1382.61

Table 5.2: Single mitigation action execution time (seconds).

5.4.6 Effectiveness of Mitigation

Mitigation procedure duration on leaked services Figure 5.14 shows the number

of mitigated nodes of a kernel leak due to a buggy driver. At first, RESIN applied

mitigation actions on a few nodes per day to test possible side effects. Once the miti-

gation actions reached production, RESIN applied mitigation to at most around 2,000

nodes per day with some fluctuations. The mitigation action volume then gradually

dropped as the fix was being rolled out. Eventually the volume dropped to a few

nodes a day, which were primarily nodes that failed in driver upgrading or other fix

actions.

Mitigation action duration on single host We collect the frequencies and durations

of each mitigation action between July 2020 to September 2021. As Table 5.2 shows,

process restart is the most lightweight mitigation action. In most cases, it finishes

within 6.5 seconds. Kernel soft reboot is also fast and in most cases finishes in a

minute. Node reboot takes a longer time, with a median time of 4.6 minutes.

5.4.7 Comparison of Different Algorithms

Bucketization-based detection We first compare our core detection algorithm, the

bucketization-based pivot analysis, with the practice of static threshold-based mem-

ory usage monitoring. We use four threshold policies, e.g., policy “500MB-40”

means generating leak alerts if a service’s memory usage exceeds 500 MB on more
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than 40 nodes. We apply these hard thresholds to historical data and count how many

cases will be wrongly reported as leaking (false positive) and how many leaking cases

will be missed (false negative).

Figures 5.15 and 5.16 show the results. Our algorithm performs the best: it has

both the lowest false positives and the lowest false negatives. In comparison, for other

policies, it is often a dilemma to balance precision and recall. For example, policy

“1GB-80” has the lowest false positives among the baselines at the cost of having the

highest false negatives.

Pattern-based collection We compare our pattern-based collection with random

collection. The experiment is conducted on ServiceS, ServiceV, and ServiceW. They

have ongoing memory leaks on some hosts. We randomly choose six hosts and apply

pattern-based collection on three hosts and random collection on the other three hosts.

For the random strategy, we implement a workflow that periodically collects snap-

shots with at least two snapshots and completes the trace collection with a probability

1/6. We inspect the collected heap snapshot traces to see if the leaking allocation ex-

ists in the snapshot.

Our pattern-based collection successfully captures leaking allocation stacks for

all three services. Interestingly, the root cause of ServiceW was still unknown at

the time we conducted the experiment. RESIN successfully captures an outstanding

allocation that contains the bug within a real-time event processing function. In com-

parison, random collection only captures the buggy allocation for ServiceS, which

has a frequent leaking interval (less than 1 hour).

Reference-assisted analysis We then evaluate the usefulness of reference snapshots

with a controlled experiment on the ongoing leaking component ServiceS, which has
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Figure 5.17: Ranks of root cause stack trace in diagnosis analyses on 8 trace files.

the most noises among the three ongoing leak cases. We randomly sample eight hosts

that have leaking patterns and collect snapshots until the leaking stack appears. We

feed eight collected trace files to RESIN and compare the analysis results with and

without reference snapshots. Figure 5.17 shows the result. Green colored cells use

reference snapshots and red colored cells do not. The numbers on cells represent

the ranks. “X” marks the stack trace that gets filtered with the reference snapshots.

Without the reference snapshots, the root cause stack trace ranks below the top three

in all traces. With the reference snapshots, in 7 out of 8 traces, the root cause rank

improves. In four traces, the rank rises to the top three, which largely narrows down

the code regions developers need to investigate.

5.4.8 Runtime Overhead

As a production service, RESIN should not impose significant overhead on the hosts.

For the detection component, since RESIN leverages the kernel to collect perfor-

mance counters infrequently and offloads the analyses remotely, the overhead is min-

imal. The main source of overhead is the heap snapshot trace collection. We use
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HasOverlap Sessions Nodes 25% 50% 75% 90% 95% 99%

FALSE 102,627 315 28 49 94 164 202 869
TRUE 165 31 38 50 59 86 241 888

Table 5.3: VM deployment time (seconds) impact by trace collection.

the VM deployment performance to quantify the end-to-end cost of trace collection,

because VM deployment is the most important event for hosts and involves nearly all

host services and triggers many critical code paths. A large overhead will be reflected

in long deployment time.

We first check how many hosts RESIN performs trace collection on in November

2021. The result shows only 346 hosts are collected at least once, which is less

than 0.1% of all nodes in a cluster. We then collect start and end timestamps of all

VM deployment sessions and the heap snapshot tracing requests. We compare the

timestamps in the two sets of events. In 315 (91%) of the 346 hosts, the deployment

sessions do not have any overlap with tracing sessions, thus the tracing has no impact

on these sessions.

Table 5.3 shows the end-to-end latency of the overlapped sessions compared to

non-overlapped sessions: by 1 s for the median, and by 10 s for the 25th percentile.

The latency increase could be notable for some short-duration deployments. How-

ever, this impact is limited to only a few sessions (0.16%) from a relatively small

number of host nodes.

To measure the impact on memory size and CPU, we conduct experiments on

two hosts that have active workloads. We trace one of the critical host processes.

Figure 5.18 shows the memory and CPU usage during the experiment. Enabling

tracing both slightly increases the average memory usage, 0.25 MB for host A and

0.53 MB for host B, and the CPU usage, 0.23% for host A and 0.22% for host B.
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Figure 5.18: Memory size and CPU usage changes through tracing.

When doing snapshot and dumping the trace, there is a clear spike for CPU usage:

around 46% in both hosts. The memory usage also increases, but not significantly:

1.93 MB for host A and 3.89 MB for host B. After the tracing, the memory usage

remains at a slightly increased level due to a one-time initialization required by tracer.

Overall, the CPU and memory usage costs are acceptable in production deployment.

5.4.9 Tuning Effort

The software components and workloads in Azure infrastructure undergo frequent

changes. As part of RESIN’s design goals of minimizing false positives and false

negatives, we aim to build robust algorithms that avoid fragile parameter tuning.

For the detection part, throughout RESIN’s production operation, we only made

one major parameter change. We updated the alert threshold for the final result

<BucketSize,SeverityScore> from <50 MB, 10> to <200 MB, 40> around 3 months

after deploying RESIN. There has not been further tuning since then. For the diag-

nosis part, except for the initial trial runs in which we were experimenting with the

snapshot algorithms, the parameters for the completion triggers have not been tuned

after the diagnosis engine was enabled in production.
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5.5 Lessons and Limitations

Lessons While memory leaks are generally taken seriously, developers tend to post-

pone the investigation if there are no convincing hints. Presenting clear evidence in

results is critical, and significantly improves developers’ responsiveness.

Many teams write extensive test cases that check if allocations are freed. Some

teams also implement their own version of memory leak detection tool in their testing

cluster. Developers mentioned a major pain point is that the testing environment has

significant discrepancies with the production environment. For example, in one case,

developers mentioned “We don’t have an environment where ServiceH runs for a

really long time with hosts undergoing reboots.”, otherwise, their testing would have

caught the memory usage anomaly.

Our initial thought in designing the diagnosis module is to analyze the source

code of the detected leaking component. We later found that finding the root cause

stack traces is usually good enough for developers to debug the issue based on their

own experience and domain knowledge.

For production services, safety is of high priority. The cloud infrastructure is a

complex and dynamic environment. Some workflow in RESIN can be interrupted

abruptly, e.g., due to transient network issues, interference with other profiling tools.

On one occasion, RESIN accidentally left the trace collection running and triggered

alarms in the detection engine. We set three lines of protection to prevent similar

issues: (i) limit collecting on same cluster within one hour five times at maximum to

reduce side effects; (ii) a forced cleanup operation whether the profiling succeeds or

not; (iii) a workflow that periodically checks logs and cleans up for runaway hosts.

Limitations The telemetry data RESIN analyzes is relatively coarse-grained. Even
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the heap snapshot only contains limited information about allocations. Therefore, it

has inherent inaccuracies and may miss detection of minor leak bugs. RESIN can

be further enhanced by collecting more fine-grained signals, and leveraging semantic

information from source code.

Developers may need to reproduce a reported memory leak issue for investigation

or confirming bug fixes. But this is often challenging, because the issues are often

triggered by complex workloads and rare conditions. RESIN does not address this

challenge. We plan to automatically capture production triggering workloads for

developers to reproduce leaks.

The patterns used in our heap snapshot trigger are based on empirical observa-

tions, which may be incomplete. Our classification method is simple. They can be

improved with more comprehensive case studies and more advanced methods.

5.6 Conclusion

This chapter presents RESIN, an end-to-end service designed to tackle memory leaks

in production cloud infrastructure. RESIN takes a divide-and-conquer approach to

decompose the memory leak problem, and designs a multi-level solution with novel

algorithms including bucketization-based pivot analysis, live heap snapshot strategy,

and diagnosis analysis. RESIN has been running in Azure for more than 3 years,

and successfully reduces low-memory-induced VM reboots and new VM allocation

errors by 41× and 10×, respectively.
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Chapter 6

Related Work

6.1 Distributed Systems Failure Study

Understanding failures has been an important theme in distributed system literature,

with a series of empirical studies [17, 176, 60, 84, 121, 82, 120, 7, 5, 151]. Arpaci-

Dusseau and Arpaci-Dusseau propose the fail-stutter fault model [17]. Prabhakaran

et al. analyze the fail-partial model for disks [183]. Correia et al. propose the ASC

fault model [55]. Huang et al. propose a definition for gray failure in cloud [121].

Other notable studies include an examination of fail-slow performance faults in hard-

ware by Gunawi et al. [82], an analysis of network partition-induced failures in cloud

systems by Alquraan et al. [7], and a study on metastable failures leading to system

overloading by Huang et al. [119].

The research in this dissertation contributes to this existing body of work in two

ways: firstly, although previous studies have discussed certain types of failures such

as partial failures in hardware, our research specifically targets failures in modern

cloud software. We bring a unique perspective by examining runtime observations,

and we broaden the scope to cover a wider array of root causes that extend beyond
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hardware or network issues. Secondly, while traditionally studied failures often ex-

hibit noticeable error signals like timeouts, our work fills a gap by concentrating on

the less explored domain of silent semantic failures in distributed systems.

6.2 Failure Detection

Failure detection has been extensively studied in existing literature [42, 185, 3, 56,

45, 63, 88, 89, 141, 142, 143]. They primarily focus on detecting fail-stop failures

in distributed systems. Chandra and Toueg [42] discuss several classes of unreli-

able crash failure detectors for solving consensus in asynchronous systems. Gos-

sipFD [185] proposes random gossiping for scalable crash failure detection; FAL-

CON [141] constructs spies to achieve accurate crash detection. Failures we aim to

address in this dissertation are beyond the scope of these detectors. Panorama [120]

proposes to leverage observability in a system to detect gray failures [121]. While

this approach can enhance failure detection, it assumes some external components

happen to observe the subtle failure behavior. These logical observers also cannot

isolate which part of the failing process is problematic, making subsequent failure

diagnosis time-consuming [129]. Instead our tool OmegaGen focuses on detecting

and localizing partial failures within a process.

6.3 Failure Diagnosis

The field of distributed system failure diagnosis has made significant strides recently,

as evidenced by numerous studies [218, 217, 189, 223, 26, 224]. Our approach

shares a common aim with these work - the localization of the failure root cause.

However, our focus and challenges are distinct. Whereas failure diagnosis research
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is oriented towards assisting developers in understanding failure manifestations by

reconstructing failure executions, our approach is primarily geared towards pinpoint-

ing the root cause to facilitate recovery. Furthermore, given that our tool is utilized

in a production environment, we must address unique challenges such as ensuring

the production system correctness and managing the performance penalty at runtime.

Such challenges are generally not prominent in conventional failure diagnosis work.

6.4 Runtime Verification

Prior works have explored runtime assertion approach to verify distributed proto-

cols [148, 147], file systems [66], and network functions [216]. Runtime verifica-

tion [93] is also studied in embedded systems and Java benchmark programs [44].

Lu et al. propose a runtime checker for consistency violations [155]. Overall, there

is a lack of runtime verification solutions for monitoring the semantic correctness

of large-scale distributed system implementations. Our proposed tool Oathkeeper

explores automatically extracting semantic rules to check a variety of semantics for

large distributed systems.

One direction is to automatically infer likely invariants from software execution

traces, e.g., Daikon [61] and DIDUCE [90]. These works mainly focus on mining

invariants on the relationship of program variables for single-component software,

e.g., off < array.length. These invariants are too low-level to capture the semantics

of distributed systems. Dinv [80] is proposed to infer protocol invariants of program

variables across nodes. It runs complex program slicing to instrument program vari-

ables influenced by network communication. It then uses Daikon to infer invariants

from the logs of running the system’s test suite. I4 [158] infers inductive invariants
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for verifying distributed protocols. Our tool, Oathkeeper, complements these works,

but with a different emphasis. Instead of focusing on protocols and variable relations,

we aim to infer high-level semantic rules for large distributed systems, the majority

of which are not protocol-based. In contrast to Dinv, Oathkeeper does not depend on

complex static analysis and, as a result, avoids associated inaccuracies and scalability

issues. Uniquely, Oathkeeper utilizes past failures and semantic templates to extract

semantic rules, carving its own niche in this field of study.

6.5 Distributed Tracing and Monitoring

Previous work has improved distributed system observability with a tracing approach [23,

64, 190, 159, 131]. Some solutions apply statistical techniques to collected metrics

[27, 46, 51, 50, 191, 192, 127]. They are primarily designed to help diagnose per-

formance issues in large and complex distributed systems. While they can help in

pinpointing bottlenecks or inefficiencies, they target at a different problem scope and

lack a high-level understanding of what these operations mean in the context of the

overall system. They also cannot detect silent semantic failures since such failures

do not cause obvious performance issues or error messages.
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Chapter 7

Conclusion

Traditional system design methodologies often mask underlying failures to sustain

high availability, operating under the assumption that entire components will fail,

enabling backup components to detect these failures. However, the rise in complex

system failures challenges this premise. This dissertation pivots towards managing

complex failures by enhancing system observability, rather than following traditional

fault-tolerance approaches by masking issues, to more effectively address them.

7.1 Limitations of Our Approach

While the evaluation results underscore the effectiveness of our solutions, our ap-

proach has a few limitations that we aim to address in the future work.

The generated checkers lack assurances of accuracy or completeness. Similar

to criticisms commonly received by bug finding tools, our heuristic approach does

not offer formal guarantees regarding the accuracy or thoroughness of the checkers,

and they cannot unequivocally confirm or dismiss potential failures. These heuris-

tics, grounded in empirical study observations, may not suit all system types. For
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example, understanding failure characteristics in different cloud system paradigms,

such as microservices and serverless computing, requires new studies.

The quality of checkers relies on the input sources. Automated systems can be

convenient, but the quality of the produced checker depends on the quality of the pro-

gram, tests, and traces. In our Oathkeeper project, we noticed that ad hoc test cases

written by developers sometimes led to issues. Therefore, promoting standardized,

rigorous test writing practices could be beneficial.

The potential safety risks are not fully mitigated. Our intrusive methodology

might make developers wary of using our tools on production systems due to con-

cerns about the safety of the generated code. Despite our tool providing transparency,

such as OmegaGen displaying decompiled generated watchdogs, developers still

yearn for stronger safety guarantees.

7.2 Lessons for Robust Cloud System Designs

Throughout our research, we have deepened our understanding of complex failures

and distilled principles that could inform future robust cloud system designs. We

discussed these principles in this section.

Addressing failures holistically. Complex failures often occur due to oversight of

broader system impacts of local faults. Modern cloud systems, characterized by inter-

actions between diverse modules, require a comprehensive perspective to detect both

immediate and latent fault effects for effective error management. Developers must

consider new approaches to integrate the system context when designing systems to
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tolerate hypothetical failures.

Strengthening the system’s weakest link. The robustness of a system, much like

a chain, is determined by its weakest link. While previous work predominantly focus

on the central components of distributed systems such as consensus algorithms and

transaction processing, we found many issues stem from auxiliary components. In-

terestingly, minor malfunctions, such as stuck issues during routine log dumping, can

cause major disruptions like data loss. Therefore, developers should apply rigorous

designs and thorough testing protocols for these components.

Constructing the system as a unified whole. Our work with the Oathkeeper project

highlighted that current testing often targets specific functions and bugs, necessitat-

ing a more general approach. A focus on semantic properties and tighter integration

with main programs should not only be applied to improve testing but also enhance

ecosystem components like client interfaces and administrative tools.

7.3 Future Directions

Advancing mitigation and recovery techniques for complex failures. This dis-

sertation mainly focuses on timely detection of complex failures in large distributed

systems, meanwhile the subsequent question how should systems appropriately react

to complex failures upon detection has yet to be fully explored. Current efforts pri-

oritize mitigation and recovery to minimize the effects of failures. Yet, determining

the right response proves to be a challenging task. Real-world production systems

are still grappling with several challenges: (1) imprecise failure impact estimation
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due to the complexity of interactions and internals in cloud systems; (2) misbehav-

ior and side effects in the recovery process, which may paradoxically exacerbate the

situation; and (3) high cost of existing recovery approaches which extends system

downtime. Addressing these challenges presents valuable opportunities for future

research.

A pragmatic verification framework for production systems. The primary focus

of this dissertation has been on checking implementation-level codes. This objec-

tive aligns with, and supplements, existing endeavors such as the verification of dis-

tributed protocols. However, the task of verifying the implementation of distributed

systems remains challenging. Formal methods often demand the formulation of a

precise specification, a process that requires significant expertise and considerable

effort, thus limiting its utility in real-world production environments. Through our

work with Oathkeeper, we have discovered the potential to automatically derive sys-

tem rules from test executions. It poses an interesting question: can we employ these

inferred rules and harness model checking methods to verify correctness? This could

mark a significant step towards making the process of system verification more effi-

cient and practical.

Enhancing trust and privacy through system execution audits. OmegaGen has

demonstrated the feasibility of using program analysis to automatically generate run-

time checkers to improve reliability. We posit that the similar methodology could be

expanded to enhance security and privacy in cloud systems. Nowadays, user focus on

data utilization by tech companies has intensified, making it crucial to verify if these

companies are adhering to their commitments [79]. Existing approaches assume the
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platform is untrusted and interpret the program execution on the cloud as a black

box. Instead of treating entities as hypothetical adversaries, it would be interesting

to explore a new direction that involves cloud vendors in the solution. One conceiv-

able avenue is to assist these vendors in creating auditing libraries for their services.

These libraries could then provide verifiable proof that the system execution aligns

with the declared properties. This proactive approach could, in turn, build more trust

with users and enhance the overall data privacy landscape.

7.4 Concluding Remarks

Cloud systems, with their intricate architectures, present unique and challenging fail-

ure modes due to their extraordinary complexity. Through detailed studies and in-

novative strategies, we’ve proven our methods’ effectiveness in improving these sys-

tems’ availability. We aim for our work to not only solve current distributed system

and cloud infrastructure issues but also inspire future designs to manage escalating

complexity. Ultimately, our goal is to contribute to the creation of more dependable

and resilient computing environments.
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