
Science of Computer Programming 58 (2005) 264–289

www.elsevier.com/locate/scico

Establishing local temporal heap safety properties
with applications to compile-time

memory management

Ran Shahama,∗, Eran Yahavb, Elliot K. Kolodnera,
Mooly Sagivb

aIBM Haifa Research Lab, University Campus, Carmel Mountains, Haifa 31905, Israel
bSchool of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel

Received 19 December 2003; received in revised form 25 August 2004; accepted 17 February 2005
Available online 25 May 2005

Abstract

We present a framework for statically reasoning about temporal heap safety properties. We focus
on local temporal heap safety properties, in which the verification process may be performed for
a program object independently of other program objects. We apply our framework to produce
new conservative static algorithms for compile-time memory management, which prove for certain
program points that a memory object or a heap reference will not be needed further. These algorithms
can be used for reducing space consumption of Java programs. We have implemented a prototype of
our framework, and used itto verify compile-time memory management properties for several small,
but interesting example programs, including JavaCard programs.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Abstract interpretation; Memory liveness; Garbage collection; Shape analysis; Safety properties;
Verification

∗ Corresponding author.
E-mail addresses:ran.shaham@gmail.com (R. Shaham), yahave@post.tau.ac.il (E. Yahav),

kolodner@il.ibm.com (E.K. Kolodner), msagiv@post.tau.ac.il (M. Sagiv).

0167-6423/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2005.02.010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82603705?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/scico

R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289 265

1. Introduction

This work is motivated by the need to reduce space consumption, for example for
memory-constrained applications in a JavaCard environment. Static analysis can be used to
reduce space consumption by identifying source locations at which a heap-allocated object
is no longer needed by the program. Once such source locations are identified, the program
may be transformed to directly free unneededobjects, or aid a runtime garbage collector
collect unneeded objects earlier during the run.

The problem of statically identifying source locations at which a heap-allocated object is
no longer needed can be formulated as a local temporal heap safety property — a temporal
safety property specified for each heap-allocated object independently of other objects.

The contributions of this paper can be summarized as follows.

(1) We present a framework for verifying local temporal heap safety properties of Java
programs.

(2) Using this framework, we formulate two important compile-time memory management
properties that identify when a heap-allocated object or heap reference is no longer
needed, allowing space savings in Java programs.

(3) We have implemented a prototype of our framework, and used it as a proof of
concept to verify compile-time memory management properties for several small but
interesting example programs,including JavaCard programs.

(4) We show that our heap abstraction is precise enough to verify interesting compile-time
memory management properties, while otherpoints-to based heap abstractions fail to
verify our properties of interest.

1.1. Local temporal heap safety properties

This paper develops a framework for automatically verifyinglocal temporal heap safety
properties, i.e., temporal safety properties that could be specified for a program object
independently of other program objects. We assume that a safety property is specified
using aheap safety automaton(HSA), which is a deterministic finite state automaton.
The HSA defines the valid sequences of events that could occur for a single program
object.

During the analysis events are triggered for state machines associated with objects. It
is important to note that our framework implicitly allows infinite state machines, since
the number of objects is unbounded, and a state machine is associated with every object.
Thus, precise information on heap paths for disambiguating program objects is crucial
for the precise association of an event and its corresponding program object’s state
machine.

In this paper, we develop static analysis algorithms that verify that on all execution
paths, all objects are in an HSA accepting state. In particular, we show how the
framework is used to verify properties that identify when a heap-allocated object or heap
reference is no longer needed by the program. This information could be used by an
optimizing compiler or communicated to the runtime garbage collector to reduce the space
consumption of an application. Our techniques could also be used for languages like C to
find a misplaced call tofree that prematurely deallocates an object.

266 R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289

1.2. Compile-time memory management properties

Runtime garbage collection (GC) algorithms are implemented in Java and C#

environments. However, GC does not (and in general cannot) collect all the garbage that a
program produces. Typically, GC collects objects that are no longer reachable from a set of
root references. However, there are some objects that the program never accesses again and
therefore are not needed further, even though they are reachable. In previous work [34,36]
we reported on dynamic experiments that show on average a potential for saving 39% of
the space, by freeing reachable unneeded objects. Moreover, in some applications, such
as those for JavaCard, GC is avoided by employing static object pooling, which leads to
non-modular, limited, and error-prone programs.

Existing compile-time techniques produce limited saving. For example, [1] produces a
limited savings of a few per cent due to the fact that its static algorithm ignores references
from the heap. Indeed, our dynamic experiments indicate that the vast majority of savings
require analyzing the heap.

In this paper, we develop two new static algorithms for statically detecting and
deallocating garbage objects:

free analysis Statically identify source locations and variables for which it is safe to insert
a free statement in order to deallocate a garbage element.

assign-null analysis Statically identify source locations, variables and fields for which it
is safe to assign null to heapreferences that are not used further in the run.

The assign-null analysis leads to space saving by allowing the GC to collect more space.
In [36] we conduct dynamic measurements that show that assigning null to heap references
immediately after their last use has an average space-saving potential of 15% beyond
existing GCs. Free analysis could be used with runtime GC in standard Java environments
and without GC for JavaCard.

Both of these algorithms handle heap references and destructive updates. They employ
both forward (history) and backward (future) information on the behavior of the program.
This allows us to free more objects than reachability based compile-time garbage collection
mechanisms (e.g., [21]), which only consider the history.

1.3. A motivating example

Fig. 1shows a program that creates a singly linked list and then traverses it. We would
like to verify that for this program afree(y) statement can be added immediately after
line 10. This is possible because once a list element is traversed, it cannot be accessed along
any execution path starting after line 10. It is interesting to note that even in this simple
example, standard compile-time garbage collection techniques (e.g., [21]) will not issue
such a free statement, since the element referenced byy is reachable via a heap path starting
from x. Furthermore, integrating limited information on the future of the computation such
as liveness of local reference variables (e.g., [1]) is insufficient for issuing such a free
statement. Nevertheless, our analysis is able to verify that the list element referenced byy
is no longer needed, by investigating all execution paths starting at line 10.

In order to prove that a free statement can be added after line 10, we have to verify that
all program objects referenced byy at line 10 are no longer needed on execution paths

R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289 267

class L { // L is a singly linked list
public L n; // next field
public int val; // data field

}
class Main { // Creation and traversal of a singly-linked list

public static void main(String args[]) {
L x, y, t;

[1] x = null;
[2] while (...) { // list creation
[3] y = new L();
[4] y.val = ...;
[5] y.n = x;
[6] x = y;

}
[7] y = x;
[8] while (y != null) { // list traversal
[9] System.out.print(y.val);
[10] t = y.n;
[11] y = t;

}
}

}

Fig. 1. A program for creating and traversing a singly linked list.

starting at this line. Morespecifically, for every execution path and every objecto, we have
to verify that from line 10 there is no use of a reference too. In the following, we show
how to formulate this property as a heap safety property and how our framework is used to
successfully verify it.

1.4. A framework for verifying heap safety properties

Our framework is conservative, i.e., if a heap safety property is verified, it is never
violated on any execution path of the program. As usual for a conservative framework, we
might fail to verify a safety property which holds on all execution paths of the program.

Assuming the safety property is described by an HSA, we instrument the program
semantics to record the automaton state for every programobject. First-order logical
structures are used to represent a global state of the program. We augment this
representation to incorporate information about the automaton state of every heap-allocated
object.

Our abstract domain uses first-order 3-valued logical structures to represent an abstract
global state of the program, which represent several (possibly an infinite number of)
concrete logical structures [31]. We usecanonical abstractionthat mapsconcrete program
objects (i.e., individuals in a logical structure) to abstract program objects on the basis of
the properties associated with a program object. In particular, the abstraction is refined by
the automaton state associated with every program object.

For thepurpose of our analyses one needs to: (i) consider information on the history
of the computation, to approximate the heap paths, and (ii) consider information on the
future of the computation, to approximate the future use of references. Our approach here
uses a forward analysis, where the automaton maintains the temporal information needed
to reason about the future of the computation.

268 R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289

1.5. Outline

The rest of this paper is organized as follows. InSection 2, we describe heap safety
properties in general, and a compile-time memory management property of interest —
thefree property. Then, inSection 3, we giveour instrumented concrete semantics which
maintains an automaton state for every program object.Section 4describes our property-
guided abstraction and provides an abstract semantics. InSection 5, we describe an
additional property of interest — the assign-null property, and discuss efficient verification
of multiple properties.Section 6describes our implementation and empirical results.
Related work is discussed inSection 7.

2. Specifying compile-time memory management properties via heap safety
properties

In this section, we introduce heap safety properties in general, and a specific heap safety
property that allows us to identify source locations at which heap-allocated objects may be
safelyfreed.

Informally, a heap safety property may be specified via a heap safety automaton (HSA),
which is a deterministic finite state automaton that defines the valid sequences of events
for a single object in the program. An HSA defines a prefix-closed language, i.e., every
prefix of a valid sequence of events is also valid. This is formally defined by the following
definition.

Definition 1 (HeapSafety Automaton (HSA)). A heap safetyautomatonA = 〈Σ , Q, δ,

init, F〉 is a deterministic finite state automaton, whereΣ is the automaton alphabet which
consists of observable events,Q is the set of automaton states,δ : Q × Σ → Q is the
deterministic transition function mapping a state and an event to a single successor state,
init ∈ Q is theinitial state, err ∈ Q is a distinguishedviolation state(the sink state), for
which for alla ∈ Σ , δ(err, a) = err, andF = Q \ {err} is the set of accepting states.

In our framework, an observable event is derived from the program state and the current
statement. We assume the observable events arepart of the specification. We associate
an HSA state with every object in the program, and verify that on all program execution
paths, all objects are in an accepting state. The HSA is used to define an instrumented
semantics, which maintains the state of the automaton for each object. The automaton
state isindependentlymaintained for every program object. However, the same automaton
is used for allprogram objects.

Whenan objecto is allocated, it is assigned the initial automaton state. The state of
an objecto is then updated by automaton transitions corresponding to events associated
with o, triggered by program statements. For example, an objecto in automaton stateq is
updated by automaton transitionα to have a new automaton stateδ(q, α), if o is associated
with the observable eventα occurring in the current program statement.

The states in the automaton capture history information on memory locations.
Transitions in the automaton capture the changes in the history information when a
statement corresponding to the event is executed. This can be formalized using trace

R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289 269

semantics. To make the material more accessible, we use automata directly and define
self-explanatory events.

2.1. Free property

We now formulate the free property, which allows us to issue a free statement to reclaim
objects unneeded further in the run. In the following, we make a simplifying assumption
and focus on verification of the property for a single program point. InSection 5.2we
discuss a technique for efficient verification for a set of program points.

In order to formulate the free property we first consider the notions of a program state
and a program trace. Aprogram state σi = 〈storei , pti 〉 representsthe global state of the
program, which consists of the store (storei) and the current program point (pti). A trace
π = σ1, σ2, . . . is a (possibly infinite) sequence of program statesσi . A trace reflects a
program execution.

In order to define thefree property, we also define the notion ofdynamic location
liveness.

Definition 2 (Dynamic Location Liveness). A memory location l is dynamically live in
a program state σi along a trace π if (i) l is used inσ j , for some j ≥ i , and(ii) l is not
assigned in allσi , . . . , σ j −1.

Intuitively, an object can be collected as soon as its references are no longer used. This
observation leads to the following intuitive definition of the free property.

Definition 3 (Free Property〈pt, x〉). The free property 〈pt, x〉 holds if there exists no
traceπ with a program stateσi = 〈storei , pt〉 such that there exists a reference to the
object referenced byx in σi+1, which is dynamically live inσi+1 in π .

The free property allows us to free an object that is not needed further in the run. In
particular, when a free property〈pt, x〉 holds for a program pointpt and a reference
variablex, it guaranteesthat it is safe to issue afree(x) statement immediately after
pt. That is, itguarantees that adding such afree(x) statement preserves the semantics of
the original program (for a more formal treatment of semantic preserving transformations
see [33]). Interestingly, such an object can still be reachable from a program variable
through a heap path. For simplicity, we assume that afree(x) statement does nothing
(and in particular does not abort) whenx references the specialnull value. Finally,
for expository purposes, we only present the free property for an object referenced by
a program variable. However, this free property can easily handle an object referenced
through an arbitrary reference expressionexp, by introducing a new program variablez,
assigned withexp just after pt, and verifying that free(z) may be issued just after the
statementz = exp.

2.1.1. Free property for the running example
Consider the exampleprogram ofFig. 1. We would like to verify that a free(y)

statement can be added immediately after line10, i.e., a list element can be freed as soon
as it has been traversed in the loop.

270 R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289

initial �� 0�������� {use, ref10,y}
��

{¬use, ref10,y}
��

	
��
{use, ¬ref10,y}

���
1�������� 	
��

{¬use, ref10,y}
���

{use, ref10,y}
��

{use,¬ref10,y}
�� err�������� 	
��

Σ

���

Fig. 2. A heap safety automatonAfree
10,y for freey at line 10.

The HSA Afree
10,y shown inFig. 2 represents the free property〈10, y〉. States 0 and 1

are accepting, while the state labellederr is the violation state. An arbitrary free property
is formulated as a heap safety property using an HSA similar to theone shown inFig. 2
where the program point and program variable are set accordingly. In particular, for a free
property〈pt, x〉, the corresponding HSAAfree

pt,x may be obtained from the automaton in
Fig. 2by replacing 10 withpt, andby replacingy with x.

The alphabet of the automaton consists of sets of observable object attributes. For the
purpose of verifying the free property, we maintain the following object attributes in the
instrumented semantics (seeSection 3) for anobjecto: (i) useattribute, which holds foro
if the r-value of reference expressione (of the formx or of the formx.f) is used in the
current statement execution, and the r-value ofe is o, and(ii) ref10,y attribute, which holds
for o if the program execution is immediately after execution of the statement at line 10
andy referenceso after the execution of the statement at line 10.

On the basis of the above object attributes we define the alphabet of the HSAAfree
10,y

to beΣ = {{use, ref10,y}, {use,¬ref10,y}, {¬use, ref10,y}}. For readability purposes, we
show for a set of attributes (an alphabet symbol) the attributes that hold for an object as
well as the attributes that do not hold for an object.1 For example, the alphabet symbol
{use,¬ref10,y} denotes that the attribute useholds for an object (i.e., a reference to that
object is used in the current statement), while the attributeref10,y does not hold for that
object (i.e., either the current statement is not atpt, or this object is not referenced by
y after the current statement is executed). Finally, we useΣ in the self-loop emanating
from theerr state (seeFig. 2) as shorthand expressing the fact that for all alphabet symbols
theerr state may only be transitioned to itself (i.e., when reaching the violation state, the
automaton state cannot be changed, since the property is violated).

The HSA is in an accepting state along an execution path if and only ifo can be freed
in the program after line 10.Thus, when on all execution paths, for all program objects
o, only accepting states are associated witho, we conclude thatfree(y) can be added
immediately after line 10.

First, when an object is allocated, it is assigned the initial state ofAfree
10,y (state 0). Then, a

use of a reference to an objecto (theuseattribute holds foro) when the program execution
is not immediately after line 10 (theref10,y attribute does not hold foro) does not change

the state ofAfree
10,y for o (the self-loop on state 0 labelled with{use,¬ref10,y} is taken).

1 An equivalent way of writing the alphabet would beΣ = {{use, ref10,y}, {use}, {ref10,y}}, whereonly
attributes that hold for an object are shown.

R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289 271

Table 1
Predicates for partial Java semantics

Predicates Intended meaning
after[pt]() Program execution is immediately after program pointpt
x(o) Program variable x references the objecto
f (o1, o2) Field f of the objecto1 points to the objecto2

use(o) A reference too is used in the current program statement
refpt,x(o) o is referenced byx and the execution is immediately afterpt
s[q](o) The current state ofo’s automaton isq

When the program is immediately after line 10 andy references an objecto (the ref10,y
attribute holds foro), o’s automaton state is set to 1 (if theuseattribute holds foro the
labelled edge{use, ref10,y} is taken;otherwise if theuseattribute does not hold foro then
the labelled edge{¬use, ref10,y} is taken). If areference too is used further (i.e., in the
subsequent program configurations along the execution path a reference too is used),
ando’s automaton state is 1, the automaton state foro reaches the violation state of the
automaton (either via the{use, ref10,y} edge or via the{use,¬ref10,y} edge). In that case
the property is violated, and it is not possible to add afree(y) statement immediately
after line 10 since it will free an object that is needed later in the program. However, in
the program ofFig. 1, references to objects referenced byy at line 10 are not used further;
hence the property is not violated, and it is safe to add afree(y) statement at this program
point. Indeed, inSection 4we showhow thefree〈10, y〉 property is verified.

3. Instrumented concrete semantics

We define an instrumented concrete semantics that maintains an automaton state for
each heap-allocated object. InSection 3.1, we use first-order logical structures to represent
a global state of the program and augment this representation to incorporate information
about the automaton state of every heap-allocated object. Then inSection 3.2, we describe
an operational semantics manipulating instrumented configurations.

3.1. Representing program configurations using first-order logical structures

The global state of the program can be naturally expressed as a first-order logical
structure in which each individual corresponds to a heap-allocated object and predicates
of the structure correspond to properties of heap-allocated objects. In the rest of this paper,
we work with a fixed set of predicates denoted byP.

Definition 4 (Program Configuration). A program configurationis a 2-valued first-order
logical structureC� = 〈U �, ι�〉 where:

• U � is the universe of the 2-valued structure. Each individual inU � represents an
allocated heap object.

• ι� is the interpretation function mapping predicates to their truth-value in the structure,

i.e., for every predicatep ∈ P of arity k, ι�(p) : U �k → {0, 1}.
We use the predicates ofTable 1 to record information used by the properties

discussed in this paper. The nullary predicateafter[pt]() records the program location

272 R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289

x

��
y, t

��
after[9]

��������u1
n �� ��������u2

n �� ��������u3
n �� ��������u4

n �� ��������u5
n �� ��������u6

n �� ��������u7

s[1]
��

s[1]
��

s[1]
��

s[0], use

��

s[0]
��

s[0]
��

s[0]
��

(a)

x

��
y

��
t

��
after[10]

��������u1
n �� ��������u2

n �� ��������u3
n �� ��������u4

n �� ��������u5
n �� ��������u6

n �� ��������u7

s[1]

��

s[1]

��

s[1]

��

s[1], use, ref10,y

��

s[0], use

��

s[0]

��

s[0]

��

(b)

Fig. 3. Concrete program configurations (a) before and (b) immediately after execution oft = y.n at line 10.

in a configuration and holds in configurations in which the program is immediately after
line pt. Theunary predicatex(o) records the value of a reference variablex and holds for
the individual referenced byx. Thebinary predicatef (o1, o2) records the value of a field
reference, and holds when the fieldf of o1 points to the objecto2.

The predicatesuse(o) and refpt,x maintain the object attributes needed for triggering

events in the HSA Afree
pt,x. We describe these object attributes more completely

in Sections 3.2.2and3.2.3.
Predicates of the forms[q](o) (referred to asautomaton state predicates) maintain

temporal information by maintaining the automaton state for eachobject. Such predicates
record history information that is used to refine the abstraction. The abstraction is refined
further by predicates that record spatial information, such asreachability and sharing
(referred to asinstrumentation predicatesin [31]).

In this paper, program configurations are depicted as directed graphs. Each individual
of the universe is displayed as a node. A unary predicate of the formp(o) is shown as an
edge from the predicate symbol to a node in which it holds. The name of a node is written
inside the node using anitalic face. Node names are only used for ease of presentation and
do not affect the analysis. A binary predicatep(u1, u2) which evaluates to 1 is drawn as
directed edge fromu1 to u2 labelled with the predicate symbol. Finally, a nullary predicate
p() is drawn inside a box.

Example 5. The configuration shown inFig. 3(a) corresponds to a global state of the
program in which execution is immediately after line 9. In this configuration, a singly
linked list of 7 elements has been traversed up to the 4-th element (labelledu4) by the
reference variabley, and the reference variablet still points to the same element asy. This
is shown in theconfiguration by the fact that both predicatesy(o) and t (o) hold for the
individualu4. Directed edges labelled byn correspond to values of then field.

The nullary predicateafter[9]() shown in abox in the upper right corner of the figure
records the fact that the program is immediately after line 9. Thepredicateuse(o) holds
for an objecto if a reference too is used in the current statement. For example, a reference

R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289 273

Table 2
Use attributes set by program statements

Statement Use attribute is set to true for
an object referenced by

x = y y
x = y.f y, y. f
x.f = null x
x.f = y x, y
x binop y x, y

to u4 is used(due the use ofy in the statement at line 9); thus we see an edge connecting
useandu4. Thepredicateref10,y does not hold for any objects in this configuration, since
the execution is not immediately after line 10. Finally, the predicatess[0](o) ands[1](o)

record which objects are in state 0 of the automaton and which are in state 1. For example,
the individualu3 is in automaton state 1 and the individualu4 is in automaton state 0.

3.2. Operational semantics

Program statements are modelled by generating the logical structure representing
the program state after execution of the statement. First-order logical formulae can be
used to formally define the effect of every statement (see [31]). In particular, first-order
logical formulae are used to model the change of the automaton state of every affected
individual.

In general, the operational semantics associates a program statement with a set of HSA
events that update the automaton state of program objects. The translation from the set of
HSA events to first-order logical formulae reflecting the change of the automaton state
of every affected individual is automatic (seeSection 7). We now show how program
statements are associated withAfree

pt,x events. For expository purposes, and without loss
of generality, we assume the program is normalized to a 3-address form. In particular, a
program statement may manipulate reference expressions of the formx or x.f.

3.2.1. Object allocation

For a program statementx = new C(), a new object onew is allocated, which is
assigned the initial state of the HSA, i.e., we set the predicates[init](onew) to 1.

Example 6. Consider the HSAAfree
10,y of the example in Section 2.1.1. For this HSA we

define a set of predicates{s[0](o), s[1](o), s[err](o)} to record the state of the HSA
individually for every heap-allocated object. Initially, when an objecto is allocated at line
3 of the example program, we sets[0](o) to 1, and other state predicates ofo to 0.

3.2.2. Maintaining the use attribute

Theuseattribute reflects information for an object depending on the current state of the
program. Thus, conceptually, this means that before executing a statement theuseattribute
is set tofalsefor all program objects, and then theuseproperty is set totrue for some of
the objects depending on the executed program statement, as shown inTable 2.

274 R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289

In general, a use of a program variablex in a program statement updates theuse(o)

attribute to 1 for the object referenced byx. In addition, a use of the fieldf of the object
referenced byx in a program statement updates theuse(o) attribute to 1 for the object
referenced byx.f. For example, as shown inTable 2, the statementx = y.f setsuse(o)

to 1 for the objects referenced byy andy. f .

3.2.3. Maintaining the refpt,x attribute
As in the case of theuseattribute, therefpt,x attribute reflects information for an object

depending on the current state of the program. Thus, conceptually, this means that before
executing a statement therefpt,x attribute is set tofalsefor all program objects, and then
this property is set totrue for some of the objects depending on the program statement
executed. In particular, we set therefpt,x attribute to true for the object referenced byx
when the execution is immediately afterpt (i.e., when the currently executed statement
is at program pointpt). For example, for theref10,y attribute,ref10,y(o) is set to 1 for the
object referenced byy, when the execution is immediately after line 10.

3.2.4. Maintaining s[q] predicates
We can now determine the transition taken in the automaton for an objecto changing

its associated automaton state fromqi to qj . The ideais that an edge emanating fromqi is
taken if the label on that edge matches the values ofo’s use, refpt,x attributes. For example,
in our running example, if an objecto is associated with state 0, and bothuse, ref10,y
attributes hold foro, then the edge labelled{use, ref10,y} connecting state 0 to state 1
(seeFig. 2) is taken, updatings[0](o) to 0, ands[1](o) to 1. In general, a transition from
stateqi to stateqj for an objecto is reflected by settings[qi](o) to 0, and settings[qj](o)

to 1.

Example 7. Fig. 3 shows the effect of the t = y.n statement at line 10, where the
statement is applied to the configuration labelled by (a). First, this statement updates the
predicatet (o) to reflect the assignment by setting it to 1 foru5, andsetting it to 0 foru4. In
addition, it updates the program point by settingafter[10]() to 1 andafter[9]() to 0. Then,
use(o) is set to 1 forbothu4, u5. This isdue to the use ofy andy. f in this statement. Also,
ref10,y(o) is set to 1 foru4, sincethe execution is after line 10 andu4 is referenced byy at
that time.

We can now update the automaton states associated with program objects. Foru4 the
current associated automaton state is 0. The attributesuse, ref10,y hold for u4; thus, the
{use, ref10,y} edge connecting automaton state 0 to automaton state 1 is taken, updating
s[0](u4) to 0, ands[1](u4) to 1. Inaddition, foru5, the attributeuseholds, and the attribute
ref10,y does not hold; thus the{use,¬ref10,y} edge connecting state 0 to itself is taken,
leavings[0](u5) unchanged with the value 1.

4. An abstract semantics

In this section, we present a conservative abstract semantics [11] abstracting the
concrete semantics ofSection 3. In Section 4.1, we describe how abstract configurations
are used to finitely represent multiple concrete configurations. InSection 4.2, we describe
an abstract semantics manipulating abstract configurations.

R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289 275

x

��

y, t

��

after[9]

��������u1
n �� �������������	
u23

n ��

n

�� ��������u4
n �� �������������	
u567

n

��

s[1]

��

s[1]

��

s[0], use

��

s[0]

��

Fig. 4. An abstract program configuration representing the concrete configuration ofFig. 3(a).

4.1. Abstract program configurations

We conservatively represent multiple concrete program configurations using a single
logical structure with an extra truth-value 1/2 that denotes values that could be 1 or could
be 0.

Definition 8 (Abstract Configuration). An abstract configurationis a 3-valued logical
structureC = 〈U, ι〉 where:

• U is the universe of the 3-valued structure. Each individual inU represents possibly
many allocated heap objects.

• ι is the interpretation function mapping predicates to their truth-value in the structure,
i.e., for every predicatep ∈ P of arity k, ι(p) : Uk → {0, 1/2, 1}. For example,
ι(p)(u) = 1/2 indicates that the truth value of p may be 1 for some of the objects
represented byu and may also be 0 for some of the objects represented byu.

We allow an abstractconfiguration to include asummary node, i.e., anindividual which
corresponds to one or more individuals in a concrete configuration represented by that
abstract configuration. Technically, we use a designated unary predicatesm to maintain
summary-node information. A summary nodeu hassm(u) = 1/2, indicating that it may
represent more than one node. An individual withsm(u) = 0 corresponds to exactly one
individual in a concrete configuration.For technical reasons we do not allowsm(u) to be1.

Abstract program configurations are depicted by enhancing the directed graphs from
Section 3with a graphical representation for 1/2 values: a binary predicatep(u1, u2)

which evaluates to 1/2 is drawn as dashed directed edge fromu1 to u2 labelled with the
predicate symbol, and a summary node is drawn as circle with double-line boundaries.

Example 9. The abstract configuration shown inFig. 4 represents the concrete
configuration ofFig. 3(a). The summary node labelled byu23 represents the linked-list
itemsu2 andu3, having the same values for their unary predicates. Similarly, the summary
nodeu567 represents the nodesu5, u6, andu7.

Note that this abstract configuration represents many configurations. For example, it
represents any configuration in which program execution is immediately after line 10 and
a linked-list with at least 4 items has been traversed up to some item after the third item.

4.1.1. Embedding
We now formally define how configurations are represented using abstract

configurations. The idea is that each individual from the (concrete) configuration is mapped

276 R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289

into an individual in the abstract configuration. More generally, it is possible to map
individuals from an abstract configuration into an individual in another less precise abstract
configuration. The latter fact is important for our abstract transformers.

Formally, let C = 〈U, ι〉 and C′ = 〈U ′, ι′〉 be abstract configurations. A function
f : U → U ′ suchthat f is surjective is said toembed C into C′ if for each predicate
p of arity k, and for eachu1, . . . , uk ∈ U the following holds:

ι(p(u1, . . . , uk)) = ι′(p(f (u1), . . . , f (uk))) or ι′(p(f (u1), . . . , f (uk))) = 1/2
and

for all u′ ∈ U ′ s.t. |{u | f (u) = u′}| > 1 : ι′(sm)(u′) = 1/2.

One way of creating an embedding function f is by using canonical abstraction.
Canonical abstraction maps concrete individuals to an abstract individual on the basis of
the values of the individuals’ unary predicates. All individuals having the same values for
unary predicate symbols are mapped byf to the same abstract individual. Only summary
nodes (i.e., nodes withsm(u) = 1/2) can have more than one node mapped to them by the
embedding function.

Since automaton states are represented using unary predicates, the soundness of our
approach is guaranteed by theembedding theoremof [31]. For a given program and HSA, if
there exists a concrete program state in whichthe automaton is in its error state (according
to the instrumented semantics ofSection 3), then embedding guarantees that there exists
an abstract state in which the automaton is possibly in its error state.

Moreover, using unary predicates to represent automaton states also refines the
abstraction by the automaton state of each object. This provides a simple property-guided
abstraction since individuals at different automaton states are notsummarized together.
Indeed, adding unary predicates to the abstraction increases the worst-case cost of the
analysis. However, as noted in [31], in practice this abstraction refinement often decreases
significantly the cost of the analysis. Finally, our analysis allows multiple 3-valued logical
structures at a single program point, reflecting different behaviors.

4.2. Abstract semantics

Implementing an abstract semantics directly manipulating abstract configurations is
non-trivial since one has to consider all possible relations on the (possibly infinite) set
of represented concrete configurations.

The bestconservative effect of a program statement [11] is defined by the following
three-stage semantics: (i) a concretization of the abstract configuration is performed,
resulting in all possible configurationsrepresentedby the abstract configuration; (ii) the
program statement is applied to each resulting concrete configuration; (iii) abstraction
of the resulting configurations is performed, resulting in a set of abstract configurations
representingthe results of the program statement.

Example 10. Fig. 5 shows the stages ofan abstract action: first, concretization is applied
to the abstract configuration resulting with an infinite set of concrete configuration
represented by it. The program statement update is then applied to each of these
concrete configurations. The program statement update also includes the update of the
useandrefpt,x, attributes, and the application of automaton transition updates described

R
.S

h
a
h
a
m

e
ta

l./S
cie

n
ce

o
fC

o
m

p
u
t

e
r

P
rog

ra
m

m
in

g
5
8

(2
0
0
5
)

2
6
4
–
2
8
9

277

abstract configuration

after[9] x

��

y, t

��

t

�����
���

�

������� n �� ��������!"#$%&'(
n

��
n ��������� n �� ��������!"#$%&'(

n

��

s[1]

��

s[1]

��

s[0], use

��

s[0]

��

after concretization

after[9] x

�����
��

y, t

��)*+,-./0 n ��)*+,-./0 n ��)*+,-./0 n ��)*+,-./0
s[1]

��

s[1]

��

s[0], use

��

s[0]

��

after[9] x

�����
��

y, t

��)*+,-./0 n ��)*+,-./0 n ��)*+,-./0 n ��)*+,-./0 n ��)*+,-./0
s[1]

��

s[1]

��

s[1]

��

s[0], use

��

s[0]

��

. . . after[9] x

�����
��

y, t

��)*+,-./0 n ��)*+,-./0 n ��)*+,-./0 n ��)*+,-./0 n ��)*+,-./0
s[1]

��

s[1]

��

s[0], use

��

s[0]

��

s[0]

��

. . .

after update

after[10] x

��������� y

��
t

��)*+,-./0 n ��)*+,-./0 n ��)*+,-./0 n ��)*+,-./0
s[1]

��

s[1]

��

s[1]

��

s[0]

��

use, ref10,y

		��������
use

��������

after[10] x

������� y

��
t

��)*+,-./0 n ��)*+,-./0 n ��)*+,-./0 n ��)*+,-./0 n ��)*+,-./0
s[1]

��

s[1]

��

s[1]

��

s[1]

��

s[0]

��

use, ref10,y

		��������
use

��������

. . . after[10] x

��������� y

��
t

��)*+,-./0 n ��)*+,-./0 n ��)*+,-./0 n ��)*+,-./0 n ��)*+,-./0
s[1]

��

s[1]

��

s[1]

��

s[0]

��

s[0]

��

use, ref10,y

		��������
use

��������

. . .

after abstraction

after[10] x

��

y

��

t

��������� n �� ��������!"#$%&'(
n

��
n ��������� n ��������� n �� ��������!"#$%&'(

n

��

s[1]

��

s[1]

��

s[1], use, ref10,y

��

s[0], use

��

s[0]

��

Fig. 5. Concretization, predicate-updateincluding automaton transition updates, and abstraction for the statementt = y.n at line 10.

278 R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289

in Section 3.2. That is, theuseattribute is set to 1 for the objects referenced byy andy.n,
and theref10,y attribute set to 1 for the object referenced byy. Then, s[1] is set to 1 for the
object referenced byy, ands[0] is set to 0 for theobject referenced byy. Finally, after all
transition updates have been applied, the resulting concrete configurations are abstracted
resulting with a finite representation.

Our prototype implementation described inSection 6.1operates directly on abstract
configurations usingabstract transformers. The implemented actions are more
conservative than the ones obtained by the best transformers. Interestingly, since temporal
information is encoded as part of the concrete configuration via automaton state predicates,
the soundness of the abstract transformers is still guaranteed by theEmbedding Theorem
of [31]. Our experience shows that the abstract transformers used in the implementation
are still precise enough to allow verification of our heap safety properties.

When the analysis terminates, we verify that in all abstract configurations, all
individuals are associated with an accepting automaton state, i.e., in all abstract
configurations, for every individualo, thepredicates[err](o) evaluates to 0. The soundness
of our abstraction guaranteesthat this implies that in all concrete configurations, all
individuals are associated with an accepting automaton state, and we conclude that the
property holds.

5. Extensions

In this section, we extend the applicability of our framework by: (i) formulating an
additional compile-time memory management property — the assign-null property; and
(ii) extending the framework to simultaneously verify multiple properties.

5.1. Assign-null analysis

The assign-null problem determines source locations at which statements assigning
null to heap references can be safely added.Such null assignments lead to objects being
unreachable earlier in the program, and thus may help a runtime garbage collector collect
objects earlier, thus saving space. As inSection 2, we show how to verify the assign-null
property for a single program point and discuss efficient verification for a set of program
points inSection 5.2.

Definition 11 (Assign-Null Property〈pt, x, f〉). The assign-null property 〈pt, x, f〉
holds if there exists no traceπ that includes aprogram stateσi = 〈storei , pt〉 suchthat
the location denoted byx. f in σi+1 is dynamically live inσi+1 in π .

The assign-null property allows us to assign null to a dead heap reference. In particular,
when an assign-null property〈pt, x, f〉 holds for a program pointpt, a reference variable
x and a reference fieldf, it guaranteesthat it is safe to issue ax.f = null statement
immediately afterpt. That is, it guarantees that adding such anx.f = null statement
preserves the semantics of the original program (for a more formal treatment of semantic
preserving transformations see [33]). As in the free property case, our assign-null property
can also handle arbitrary reference expressions (e.g., of the formexp.f), by introducing a

R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289 279

Fig. 6. A heap safety automatonAan
10,y,n for assign null toy.n at 10.

[1] Node root = CreateTree();
[2] processTree(root.right);

... // no further uses of root

Fig. 7. A code snippet demonstrating the importance of assign-null analysis.

new program variablez, assigned withexp, and verifying thez.f may be issued just after
the statementz = exp.

The potential for space savings beyond GC is demonstrated using the code snippet
in Fig. 7. A tree of objects is allocated, but only the right side of the tree is processed.
We assume that the typeNode contains two instance fields:left andright. After line
1 all tree objects are reachable; thus GC cannot reclaim the entire left subtree of the root.
However, it is easy to see that the assign-null property〈1, root, left〉 holds; thus it is safe
to insert aroot.left = null statement after line 1 allowingGC to collect the left side
of the tree before the processing at line 2.

5.1.1. Assign-null property for the running example
Wenow demonstrate how an assign-null property is verified using our running example

shown inFig. 1. We would like to verify that ay.n = null statement can be added
immediately after line 10, i.e., a reference connecting consecutive list elements can be
assigned null as soon as it is traversed in the loop. The HSAAan

10,y,n shown inFig. 6
represents the assign-null〈10, y, n〉 property. Our implementation verifies the assign-null
〈10, y, n〉 property, by applying the framework withAan

10,y,n to the example program.
Notice that this automaton contains a back arc and thus is more complex than that for
thefree property.

An arbitrary assign-null property is formulated as a heap safety property using an HSA
similar to theone shown inFig. 6 where theprogram point, variable and field names are
set accordingly. In particular, for a free property〈pt, x, f〉, the corresponding HSAAan

pt,x, f
may be obtained from the automaton inFig. 6by replacing 10 withpt, andby replacingy
with x, andn with f .

As in the case for thefree automaton (seeSection 2), the alphabet of the assign-null
automaton consists of sets of observable object attributes. For the purpose of verifying
the assign-null property, we maintain the following object attributes in the instrumented
semantics (seeSection 3) for anobjecto: (i) usen attribute, which holds foro if a reference

280 R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289

expression of the formx.f is used in the current statement execution andx references
o; (ii) defn, which holds foro if a reference expression of the formx.f is defined in the
current statement execution andx referenceso; (iii) ref10,y attribute, which holds foro
if the program execution is immediately after execution of the statement at line 10 andy
referenceso after the execution of the statement at line 10.

On the basis of the above object attributes we define the alphabet of the HSAAan
10,y,n to

beΣ = {{usen,¬defn,¬ref10,y}, {usen,¬defn, ref10,y}, {¬usen, defn,¬ref10,y},
{¬usen, defn, ref10,y}, {¬usen,¬defn, ref10,y}}.2 For example, the alphabet symbol
{usen,¬defn,¬ref10,y}, denotes that the attribute usen holds for an object (i.e., the field
n of that object is used in the currentstatement), while the attributedefn does not hold for
that object (i.e., the fieldn of that object is not defined in the current statement), and also
the attributeref10,y does not hold for that object (i.e., either the current statement is not at
10, or this object is not referenced byy after the current statement is executed). Note that
usen, defn attributes cannot hold at the same time for an object, since we assume the code
is normalized to a 3-address form, thus an object field cannot be used and defined in the
same statement.

Initially, when an objecto is allocated it is assigned the initial state ofAan
10,y,n. Then,

uses or definitions of then field of an objecto (a usen or a defn attribute holds foro,
respectively) do not change the state ofAan

10,y,n for o (the self-loop in state 0 is taken).
When the program is immediately after line 10 andy references an objecto (ref10,y
attribute holds foro), o’s automaton state is set to 1. Now, if then field of o is further
defined (i.e., adefn attribute holds foro in the subsequent program configurations along
the execution path), ando’s automaton state is 1, the automaton state foro gets backto the
initial state (state 0). However, if then field of o is used further (i.e., ausen attribute holds
for o in a subsequent program configuration along the execution path) before this field is
redefined, ando’s automaton state is 1 the automaton state foro reaches theviolation state
of the automaton. However, in the program ofFig. 1, then-field references emanating from
objects referenced byy at line 10 are not used further before being redefined; hence the
property is not violated, and it is safe to add ay.n = null statement at this program point.

5.2. Simultaneous verification of multiple properties

So far we showed how toverify the free and assign-null properties for a single program
point. Clearly, in practice one wishes to verify these properties for a set of program
points without repeating the verification procedure for each program point. Our framework
supports simultaneous verification of multiple properties, and in particular verification
of properties for multiple program points. Assuming that HSA1, . . . , HSAk describek
verification properties, thenk automaton states thats1, . . . , sk are maintained for every
program object, wheresi maintains an automaton state for HSAi . Technically, as described
in Section 3, a statesi is represented by automaton state predicatessi [q], whereq ranges
over the states of HSAi . The eventsassociated with the automata HSA1, . . . , HSAk at a

2 And in the alphabet for the free automaton, an equivalent way of writing the alphabet would beΣ =
{{usen}, {usen, ref10,y}, {defn}, {defn, ref10,y}, {ref10,y}}, whereonly attributes that hold for an object are shown.

R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289 281

program point are triggered simultaneously, updating the corresponding automaton state
predicates of individuals.

The worst-case cost of simultaneous verification of properties is higher than the worst-
case cost of verifying the same properties one by one. However, verifying properties one
by one ignores the potential of computing overlapping heap information just once, where
in simultaneous verification of properties thisoverlap istaken into consideration. Thus, we
believe that in practice simultaneous verification of properties may achieve a lower cost
than verifying the properties one by one. In fact, our initial findings inSection 6show that
verifying two properties one by one takes close to double the time it takes to verify these
properties simultaneously. This is because mostof the analysis time is spent on computing
heap information.

Interestingly,if we limit our verification of free〈pt, x〉 properties to ones wherex is
used atpt (i.e.,x is used in the statement atpt), then the following features are obtained:
(i) an object is freed just after it is referenced last, i.e., exactly at the earliest time possible;
this object cannot be freed earlier sincex references the object, and a use ofx occurs at
pt; (ii) an object is freed “exactly once”, i.e., there are no redundant frees of variables
referencing the same object; this is immediatefrom the first feature, as an object is freed if
and only if it is last referenced. A similar choice for assign-null properties assigns null to
a heap reference immediately after its last use.

The motivation for this choice of verification properties comes from our previous
work [36], showing an average of 15% potential space savings beyond a runtime garbage
collector if a heap reference is assigned null just after its last use. However, we note that
our framework allows verification of arbitrary free and assign-null properties, which may
yield further space reduction. In fact, in [36] we show an average of 39% potential space
savings beyond a runtime garbage collector assuming complete information on the future
use of heap references.

6. Empirical results

We implemented the static analysis algorithms for verifying free and assign-null
properties, and applied it to several programs, including JavaCard programs.

Our benchmark programs were used as a proof of concept. Due to scalability issues
our benchmarks only provide a way to verify that our analysis is able to locate the static
information at points of interest, and we do not measure the total savings. In particular the
benchmarks provide three kinds of proofs of concept:

• We use smallprograms manipulating a linked-list to demonstrate the precision of our
technique; moreover, we show that less preciseanalyses such as points-to analysis is
insufficient for provingfree and assign-null properties for these programs.

• We demonstrate how our techniques could be used to verify/automate manual space-
saving rewritings. In particular, in our previous work [35] the code of thejavac
Java compiler was manually rewritten in order to save space. Here, we verify the
manual rewritings injavac, which assign null to heap references, by applying our
prototypeimplementation to a Java code fragment emulating part of the Parser facility
of javac.

282 R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289

• We demonstrate how our techniques could play an important role in the design of future
JavaCard programs. This is done by rewriting existing JavaCard code in a more modular
way, and showing that our techniques may be used to avoid the extra space overhead
due to the modularity.

6.1. Implementation

Our implementation consists of the following components: (i) a front-end, which
translates a Java program (.class files) to a TVLA program [25]; (ii) an analyzer, which
analyzes the TVLA program; (iii) a back-end, which answers our verification question by
further processing of the analyzer output.

The front end (J2TVLA), developed by R. Manevich, is implemented using the Soot
framework [38]. The analyzer, implemented using TVLA, includes the implementation
of static analysis algorithms for the free and assign-null property verification. TVLA is a
parametric framework that allows the heap abstractions and the abstract transformers to be
easily changed. In particular, for programs manipulating lists we obtain a rather precise
verification algorithm by relying on spatial instrumentation predicates, that give sharing,
reachability and cyclicity information for heap objects [31]. For other programs, allocation-
site information for heap objects suffices for the verification procedure.

In both abstractions interprocedural information is computed. In order to enable
interprocedural analysis we explicitly represent stack frames and a corresponding set of
predicates following [29]. Since this does not interfere with the material in this paper, to
simplify presentation we do notdescribe these predicates.

Finally, our implementation allows simultaneous verification of several free or assign-
null properties, by maintaining several automaton states per program object.

The back-end, implemented using TVLA libraries, traverses the analysis results, i.e.,
the logical structures at every program point, and verifies that all individuals are associated
with an accepting state. For a single property, we could abort the analyzer upon reaching
a non-accepting state on some object and avoid the back-end component. However, in the
case of simultaneous verification of multiple safety properties, this would not work and the
back-end is required.

6.2. Benchmark programs

Table 3showsour benchmark programs. The first four programs involve manipulations
of a singlylinked list. DLoop, DPairs involve adoubly linked list manipulation.small
javac is motivated by ourprevious work [35], where we manuallyrewrite the code of
the javac compiler, issuing null assignments toheap references. We can now verify
our manual rewriting by applying the corresponding assign-null properties to Java code
emulating part of the Parser facility injavac.

The last two benchmarks are JavaCard programs.JavaPurse is a simple electronic
cash application, taken from Sun JavaCard samples [22]. In JavaPurse a fixed set of
loyalty stores is maintained, so every purchase grants loyalty points at the corresponding
store.GuessNumber [28] is aguess number game over mobile phone SIM cards, where
one player (using a mobile phone) picks a number, and other players (using other mobile
phones) try to guess the number.

R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289 283

Table 3
Analysis cost for the benchmark programs
Program Description Free Assign Null

Space Time Space Time
Loop The running example 1.71 1.93 1.37 1.76
CReverse Constructive reverse of a list 3.03 5.17 2.58 4.79
Delete Delete an element from a list 5.33 19.66 4.21 13.84
DLoop Doubly linked list variant of Loop 2.09 2.91 1.75 2.68
DPairs Processing pairs in a doubly linked list 2.76 5.01 2.54 4.86
small javac Emulation ofjavac’s parser facility N/A N/A 16.02 43.84
JavaPurse’ slice A JavaCard simple electronic purse 56.3 979 56.15 991
GuessNumber’ slice A JavaCarddistributed guess number game 9.99 17.3 N/A N/A

Space is measured in MB, and time is measured in seconds.

Due to memory constraints, JavaCard programs usually employ a static allocation
regime, where all program objects are allocated when the program starts. This leads to
non-modular and less reusable code, and to more limited functionality. For example, in the
GuessNumber program, a global buffer is allocated when the program starts and is used
for storing either a server address or a phone number. InJavaPurse, thenumber of stores
where loyaltypoints are granted is fixed.

A better approach thataddresses the JavaCard memory constraints is to rewrite the code
using a natural object-oriented programming style, and to apply static approaches to free
objects not needed further in the program. Thus, we first rewrite the JavaCard programs
to allow more modular code in the case ofGuessNumber, and tolift the limitation on the
number of stores inJavaPurse. Then, we apply our free analysis to the rewritten code,
and verify that an object allocated in the rewritten code can be freed as soon it is no longer
needed. InJavaPurse we also apply our assign-null analysis and verify that an object
allocated in the rewritten code can be made unreachable as soon it is no longer needed
(thus, a runtime garbage collector may collect it). Concluding, we show that in principle
the enhanced code bears no space overhead compared to the original code when the free or
the assign-null analysis is used.

6.3. Results

Our experiments were done on a 900 MHz Pentium-III with 512 MB of memory running
Windows 2000.Table 3shows the space and time the analysis takes. ForDelete, small
javac andJavaPurse Table 3shows the time and space cost for simultaneous verification
of two properties. Later in this section we compare this cost to the time and space cost of
verifying these properties one by one. For other benchmarksTable 3shows thetime and
space cost for verifying a single property.

In Loop we verify our free〈10, y〉 and assign-null〈10, y, n〉 properties. ForCReverse
we verify that an element of the original listcan be freed as soon it is copied to the reversed
list. In Delete we show that an object can be freed as soon it is taken out of the list
(even though it is still reachable from temporary variables). Turning to our doubly linked
programs, we also show objects that can freed immediately after their last use, i.e., when an
object is traversed in the loop (DLoop), and when an object in a pair is not processed further

284 R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289

(DPairs). We also verify corresponding null assignments that make an object unreachable
via heap references as soon these references are not used further.

For small javac we verify that heap references to large objects in a parser class may
beassigned null just after their last use. Finally, for scalability reasons we analyze slices of
rewritten JavaCard programs. Our current implementation does not include a slicer; thus
we manually slice the code. Using the sliced programs we verify that objects allocated due
by our rewritings can be freed as soon they are not needed.

We have also tried our benchmarks using a points-to based heap abstraction, which is
considered relatively cheap and scalable. We use a flow-sensitive, field-sensitivepoints-to
analysis with unbounded context information [13]. Our results indicate that in all cases but
one (assign-null properties forJavaPurse benchmark), points-to analysis is insufficient
for proving the free and assign-null properties of interest. ForJavaPurse the points-to
analysis is able to prove the assign-null properties of interest since (i) we try to assign
null to fields emanating from a singleton object, and (ii) field-sensitive information allows
disambiguation of the fields emanating from the singleton object.

For Delete, small javac and JavaPurse we experiment with the simultaneous
verification of properties.Table 3shows the time and space cost for the simultaneous
verification of two assign-null properties (Assign Nullcolumn forDelete, small javac
and JavaPurse) and thetime and space cost for the simultaneous verification of two
free properties (Free column for Delete and JavaPurse). We compared the cost of
simultaneous verification to the costof verifying these properties one by one. Verifying the
properties one by one takes close to double the time it takes to verify the same properties
simultaneously. In addition, the space cost for verifying two properties simultaneously is
close to the space cost of verifying a single property. This is because most of the analysis
time (and space) is spent on computing heap information.

7. Related work

One of the main difficulties in verifying local temporal heap safety properties is
considering the effect of aliasing in a precise enough manner. Some of the previous work on
software verification allows universally quantified specifications similar to our local heap
safety properties (e.g., [4,9]). We are the first to apply such properties to compile-time
memory management and to employ a high-precision analysis of the heap.

ESP [12] uses a preceding pointer-analysis phase and uses the results of this phase
to perform finite state verification. Separating verification from pointer-analysis may
generally leadto imprecise results demonstrated inSection 7.1.

The Bandera project [9] uses the Bandera specification language (BSL) [10] to specify
properties of software systems. Bandera constructs a finite state model of the program
and uses existing model-checkers (e.g., SPIN [19]) to perform verification. BSL allows
universally quantified specifications which aresimilar to our local heap safety properties.
However, the abstractions currently applied by Bandera to verify these properties may
generally lead to results that are less precise than ours.

The SLIC specification language [4] from MSR’s SLAM project [26] is a low-level
specification language which defines a (possibly infinite) state machine for tracking

R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289 285

temporal safety properties. Although SLIC is more powerful than our local heap safety
properties (e.g., it allows counting), the abstraction applied by SLAM to verify SLIC
properties may produce results that are less precise than ours.

In [40,39] a more general framework is presented for the specification and verification
of properties of heap-manipulating programs using a first-order temporal logic named ETL
(evolution temporal logic). The properties we addressed in this paper could be formulated
as ETL formulae with a specific limited form — safety properties using a single universal
quantifier. The algorithms presented in this paper efficiently handle the verification of
properties in this subset.

Field et al. [14] investigate theproblem of precise typestate checking in the presence
of aliasing for shallow programs. They propose several abstraction techniques for precise
typestate checking in such programs, and relate the cost of verification to the nature of
the property being verified. In contrast, we handle arbitrary programs (not necessarily
shallow) and arbitrary typestate properties,but donot guarantee precise results, and use
more expensive techniques.

Some prior work used automata to dynamically monitor program execution and throw
an exception when the property is violated (e.g.,[32,8]). Obviously, dynamic monitoring
cannot verify that the property holds for all program executions.

Recoding history information for investigating a particular local temporal heap safety
property was used for example in [20,30] (approximating flow dependencies) and [24]
(verification of sorting algorithms). The framework presented here generalizes the idea of
recording history information by using a heap safety automaton.

Our free property falls in thecompile-time garbage collectionresearch domain, where
techniques are developed to identify and recycle garbage memory cells at compile time.
Most work has been done for functional languages [5,21,15,17,23]. In this paper, we show
a free analysis, which handles a language with destructive updates, that may reclaim an
object still reachable in the heap, but not needed further in the run.

Escape analysis (e.g., [7]), which allows stack allocating heap objects, has been recently
applied to Java. In this technique an object isfreed as soon as its allocating method returns
to its caller. While this technique has shown to be useful, it is limited to objects that do not
escape their allocating method. Our technique applies to all program objects, and allows
freeing objects before their allocating method returns.

In region based memory management [6,37,2,16], the lifetime of an object is predicted
at compile time. An object is associated witha memory region, and the allocation and
deallocation of the memory region are inferred automatically at compile time. It would be
interesting to instantiate our framework with a static analysis algorithm for inferring earlier
deallocation of memory regions.

Liveness analysis [27] may beused in the context of a runtime to reduce the size of
the root set (i.e., ignoring dead stack variables and dead global variables) or to reduce the
number of scanned references (i.e., ignoring dead heap references). In [3,1,18] liveness
information for root references is used to reclaim more space.

In [36] we conduct dynamic measurements estimating the potential space savings
achieved by communicating the liveness of stack variable references, global variables
references and heap references to a runtime garbage collector. We conclude there that
heap livenessinformation yields a potential for space savings significantly larger than that

286 R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289

[1] while (...) {
[2] x = new T();
[3] x.foo();

...
}

Fig. 8. A code snippet demonstrating why a two-phase approach of a pointer analysis followed by an automaton
state analysis leads to overconservative results.

Fig. 9. Two-phase analysis example.

achieved by communicating liveness information for stack and global variables. One way
of communicating heap liveness information to a runtime GC is by assigning null to heap
references. In this paper we present a static analysis algorithm for assigning null to heap
references.

7.1. Advantages of integrated analysis

Our framework uses an integrated pointer and typestate analysis (called hereafter a
one-phase approach). As discussed above, in [12,4,9] a pointer analysis is applied as
a preliminary phase, followed by a phase of automaton state analysis via finite state
verification (called hereafter atwo-phase approach). Generally, it is well known that the
analysis of combined abstract domains (e.g., our one-phase approach) is more precise
than the combination of separate analyses of abstract domains (e.g., the two-phase
approach) [11]. In particular, in this section we demonstrate that even when applying a
morelimited points-to analysis (in contrast to the shape analysis used in earlier sections)
to a simple program it may be profitable to use an integrated analysis.

Consider the code snippet inFig. 8. A new object is allocated and used in every loop
iteration.Fig. 9 shows the result ofapplying the two-phase approach for the purpose of
verifying the free property〈3, x〉. We omit the information forline 1, since no automaton
eventsare triggered at line 1. For the pointer analysis phase we assume an allocation-site
based abstract domain used in points-to algorithms, e.g. [13]. The columnPointer Analysis
Phaseshows the results ofthepointer analysis. The predicatesite[2] holds for individuals
allocated at line 2. We see that at both line 1 and line 2,x may reference objects allocated
at line 2.

R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289 287

Fig. 10. One-phase analysis example.

In the finite verification phase, we start with the pointer information at line 2 and
initialize the automaton state ofu1 to s[0] due tothe allocation in 2. Then, at line 3, we
need to trigger theautomaton event{use, ref3,x} for the objects that may be referenced by
x (i.e., the objects represented byu1). For objects referenced byx the automaton state is
changed to 1 (due to the{use, ref3,x} edge connecting states 0 and 1 in theAfree

3,x automaton).
However, not all theobjects represented byu1 are necessarily referenced byx, and for those
their automaton state 0 is unchanged. Thus, we conclude that the objects represented byu1
after line 3 may either be in state 0 or in state 1, as shown by the dashed edges emanating
from s[0], s[1]. Next, in the second verification iteration, the allocation at line 2 does not
change the possible automaton states foru1. Finally, we consider again the effect of line 3.
We again trigger the automaton event{use, ref3,x}, and conclude that the objects referenced
by x may reach theerr state (since forobjects in state 1 the{use, ref3,x} edge leading toerr
state is taken), leading to an overconservative result, i.e., we fail to validate thatfree(x)
can be safely inserted after line 3.

We now show how the free property〈3, x〉 is successfully verified using aone-phase
approach.Fig. 10 shows how the analysis works. Again, we omit the information for line
1. Here an allocation site based abstract domain is used, refined with the automaton state.
Thus, objects allocated at the same allocation site, but in different automaton state are
abstracted to different elements in the abstract domain. First, at line 2,x may reference
objects allocated at line 2 that are in automatonstate 0 (the latter factis represented by
the solid edge froms[0] to u1). Then, atline 3, we need to trigger the automaton event
{use, ref3,x} for the objects that may be referenced byx. Thus, after triggering these events
x may only reference objects allocated at line 2in automaton state 1 (these objects are
represented by the individualu2). In addition, there may be objects allocated at line 2 in
automaton state 0. These latter objects may not be referenced byx and are represented by
the individualu1. Next,in the second iteration at line 2,x may reference objects allocated
at 2 in automaton state 0. This is due to the allocation in 2. Finally, the second iteration for
line 3 yields the same structure as in the previous iteration for line 3, and the third iteration
for the structure at line 2 (not shown inFig. 10) yields the same structure as in theprevious
iteration; thus we conclude that theerr may not be reached, and therefore the free property
〈3, x〉 is verified, and it is safe to insertfree(x) after line 3.

288 R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289

8. Conclusion

In this paper we present a framework for statically reasoning about local temporal
heap safety properties. This framework is instantiated to produce two new static analysis
algorithms for calculating the liveness of heap objects (free property) and heap references
(assign-null property). Our initial experience shows evidence for the precision of our
techniques, leading to spacesavings in Java programs. In the future we intend to apply our
techniques to more “real-world” programs by integrating a code slicer and cheaper pointer
analysis algorithms. It may also be interesting to explore opportunities for deallocating
space using richer constructs thanfree(exp). For example, using a newfree-list
construct for deallocating an entire list.

References

[1] O. Agesen, D. Detlefs, E. Moss, Garbage collection and local variable type-precision and liveness in Java
virtual machines, in: SIGPLAN Conf. on Prog. Lang. Design and Impl., June 1998, ACM Press, 1998,
pp. 269–279.

[2] A. Aiken, M. Fahndrich, R. Levien, Better static memory management: Improvingregion-based analysis
of higher-order languages, in: SIGPLAN Conf. on Prog. Lang. Design and Impl., June 1995, ACM Press,
1995, pp. 174–185.

[3] A.W. Appel, Compiling with Continuations, CUP, 1992, pp. 205–214 (Chapter 16).
[4] T. Ball, S. Rajamani, SLIC: A Specification Language for Interface Checking (of C), Technical Report

MSR-TR-2001-21, MSR, 2001.
[5] J.M. Barth, Shifting garbage collection overhead to compile time, Commun. ACM 20 (7) (1977) 513–518.
[6] L. Birkedal, M. Tofte, M. Vejlstrup, From region inference to von Neumann machines via region

representation inference, in: Symp. on Princ. of Prog. Lang., ACM Press, 1996, pp. 171–183.
[7] B. Blanchet, Escape analysis for objectoriented languages. application to Javatm, in: Conf. on Object-

Oriented Prog. Syst., Lang. and Appl., ACM Press, 1998, pp. 20–34.
[8] T. Colcombet, P. Fradet, Enforcing trace properties by program transformation, in: Symp. on Princ. of Prog.

Lang., January 2000, ACM Press, 2000, pp. 54–66.
[9] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, R.Shawn, L. Hongjun, Bandera: Extracting finite-state

models from Java source code, in: Int. Conf. on Soft. Eng., June 2000, ACM Press, 2000, pp. 439–448.
[10] J.C. Corbett, M.B. Dwyer, J. Hatcliff, Robby, A language framework for expressing checkable properties of

dynamic software, in: Int. Spin Workshop on Model Check. of Soft., in: Lec. Notes in Comp. Sci., vol. 1885,
Springer-Verlag, 2000, pp. 205–223.

[11] P. Cousot, R. Cousot, Systematic design of program analysis frameworks, in: Symp. on Princ. of Prog.
Lang., ACM Press, 1979, pp. 269–282.

[12] M. Das, S. Lerner, M. Seigle, ESP: Path-sensitive program verification in polynomial time, in: SIGPLAN
Conf. on Prog. Lang. Design and Impl., June 2002, ACM Press, 2002, pp. 57–68.

[13] M. Emami, R. Ghiya, L. Hendren, Context-sensitive interprocedural points-to analysis in the presence of
function pointers, in: SIGPLAN Conf. on Prog. Lang. Design and Impl., ACM Press, 1994, pp. 242–256.

[14] J. Field, D. Goyal, G. Ramalingam, E. Yahav, Typestate verification: Abstraction techniques and complexity
results, in: Proc. of SAS’03, June 2003, in: LNCS, vol. 2694, Springer, 2003, pp. 439–462.

[15] I. Foster, W. Winsborough, Copy avoidance through compile-time analysis and local reuse, in: Proceedings
of International Logic Programming Symposium, MIT Press, 1991, pp. 455–469.

[16] N. Hallenberg, M. Elsman, M. Tofte, Combining region inference and garbage collection, in: SIGPLAN
Conf. on Prog. Lang. Design and Impl., ACM Press, 2002, pp. 141–152.

[17] G.W. Hamilton, Compile-time garbage collection for lazy functional languages, in: Memory Management,
International Workshop IWMM 95, in: Lec. Notes in Comp. Sci., vol. 637, Springer-Verlag, 1995.

[18] M. Hirzel, A. Diwan, A.L. Hosking, On the usefulness of type and liveness accuracy for garbage collection
and leak detection, Trans. Prog. Lang. Syst. 24 (6) (2002) 593–624.

R.Shaham et al. / Science of Computer Programming 58 (2005) 264–289 289

[19] G. Holzmann, The model checker SPIN, IEEE Trans. Softw. Eng. 23 (5) (1997) 279–294.
[20] S. Horwitz, P. Pfeiffer, T. Reps, Dependence analysis for pointer variables, in: SIGPLAN Conf. on Prog.

Lang. Design and Impl., ACM Press, 1989, pp. 28–40.
[21] K. Inoue, H. Seki, H. Yagi, Analysis of functional programs to detect run-time garbage cells, Trans. on Prog.

Lang. and Syst. 10 (4) (1988) 555–578.
[22] Java card 2.2 development kit. Available athttp://java.sun.com/products/javacard.
[23] R. Jones, Garbage Collection. Algorithms for Automatic Dynamic Memory Management, John Wiley and

Sons, 1999.
[24] T. Lev-Ami, T.W. Reps, R. Wilhelm, M. Sagiv, Putting static analysis to work for verification: A case study,

in: Int. Symp. on Soft. Testing and Anal., ACM Press, 2000, pp. 26–38.
[25] T. Lev-Ami, M. Sagiv, TVLA: A system for implementing static analyses, in: Static Analysis Symp., in:

Lec. Notes in Comp. Sci., vol. 1824, Springer-Verlag, 2000, pp. 280–301.
[26] Microsoft Research, The SLAM project,http://research.microsoft.com/slam/, 2001.
[27] S. Muchnick, Advanced Compiler Design and Implementation, Morgan Kaufmann, 1997.
[28] Oberthur card systems,http://www.oberthurcs.com.
[29] N. Rinetzky, M. Sagiv, Interprocedural shape analysis for recursive programs, in: Int. Conf. on Comp.

Construct., in: Lec. Notes in Comp. Sci., vol. 2027, Springer-Verlag, 2001, pp. 133–149.
[30] J. Ross, M. Sagiv, Building a bridge between pointer aliases and program dependences, in: European

Symp. on Prog., March 1998, in: Lec. Notes in Comp.Sci., vol. 1381, Springer-Verlag, 1998, pp. 221–235.
Available athttp://www.math.tau.ac.il/~sagiv.

[31] M. Sagiv, T. Reps, R. Wilhelm, Parametric shape analysis via 3-valued logic, Trans. Prog. Lang. and Syst.
24 (3) (2002) 217–298.

[32] F. Schneider, Enforceable security policies, ACM Trans. Inform. Syst. Security 3 (1) (2000) 30–50.
[33] R. Shaham, Heap-liveness-based memory management: Potential, tools, and algorithms, Ph.D. Thesis,

Tel Aviv University, 2004.
[34] R. Shaham, E.K. Kolodner, M. Sagiv, Automatic removal of array memory leaks in Java, in: Int. Conf. on

Comp. Construct., April 2000, in: Lec. Notes in Comp. Sci., vol. 1781, Springer-Verlag, 2000, pp. 50–66.
[35] R. Shaham, E.K. Kolodner, M. Sagiv, Heap profiling for space-efficient Java, in: SIGPLAN Conf. on Prog.

Lang. Design and Impl., ACM Press, 2001, pp. 104–113.
[36] R. Shaham, E.K. Kolodner, M. Sagiv, Estimating the impact of heap liveness information on space

consumption in Java, in: Int. Symp. on Memory Management, June 2002, ACM, 2002, pp. 171–182.
[37] M. Tofte, J.-P. Talpin, Implementation of the typedcall-by-value lambda-calculus using a stack of regions,

in: Symp. on Princ. of Prog. Lang., January 1994, ACM Press, 1994, pp. 188–201.
[38] R. Vallée-Rai, L. Hendren, V. Sundaresan, E.G.P.Lam, P. Co. Soot—a Java optimization framework, in:

Proceedings of CASCON 1999, 1999, pp. 125–135.
[39] E. Yahav, A. Pnueli, T. Reps, M. Sagiv, Efficient verification of temporal heap properties, Technical Report

339/04, Tel Aviv University, December 2003.
[40] E. Yahav, T. Reps, M. Sagiv, R. Wilhelm, Verifying temporal heap properties specified via evolution logic,

in: Proc. of the 12th European Symposium on Programming, ESOP 2003, April 2003, in: LNCS, vol. 2618,
2003.

http://java.sun.com/products/javacard
http://research.microsoft.com/slam/
http://www.oberthurcs.com
http://www.math.tau.ac.il/~sagiv

	Establishing local temporal heap safety properties with applications to compile-time memory management
	Introduction
	Local temporal heap safety properties
	Compile-time memory management properties
	A motivating example
	A framework for verifying heap safety properties
	Outline

	Specifying compile-time memory management properties via heap safety properties
	Free property
	Free property for the running example

	Instrumented concrete semantics
	Representing program configurations using first-order logical structures
	Operational semantics
	Object allocation
	Maintaining the use attribute
	Maintaining the refpt,x attribute
	Maintaining s[q] predicates

	An abstract semantics
	Abstract program configurations
	Embedding

	Abstract semantics

	Extensions
	Assign-null analysis
	Assign-null property for the running example

	Simultaneous verification of multiple properties

	Empirical results
	Implementation
	Benchmark programs
	Results

	Related work
	Advantages of integrated analysis

	Conclusion
	References

