View metadata, citation and similar papers at core.ac.uk brought t

provided by Elsevier -

Available online at www.sciencedirect.com

Science of
SCIENCE DIRECT®
@ Computer
= i Programming
ELSEVIER Science of Computer Programming 58 (2005) 264—289

www.elsever.com/locate/scico

Establishing local temporal heap safety properties
with applications to compile-time
memory management

Ran Shaha#t, Eran Yaha¥, Elliot K. Kolodnerd
Mooly Sagiv

3BM Haifa Research Lab, University Campus, Carmel Mountains, Haifa 31905, Israel
bschool of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel

Received 19 December 2003; received in revised form 25 August 2004; accepted 17 February 2005
Available online 25 May 2005

Abstract

We present a framework for statically reasoning about temporal heap safety properties. We focus
on local temporal heap safety properties which the \erification process may be performed for
a pogram object independently of other program objects. We apply our framework to produce
new conservative static algorithms for compilee memory nanagement, which prove for certain
program points that a memory object or a heap reference will not be needed further. These algorithms
can be used for reducing space consumption of Java programs. We have implemented a prototype of
our framework, and usedtiv verify compile-time memory management properties for several small,
but inteesting example programs, including JavaCard programs.
© 2005 Elsevier B.V. All rights reserved.

Keywods: Abstract interpretation; Memory liveness; Garbage collection; Shape analysis; Safety properties;
Verification

* Corresponding author.
E-mail addresses:an.shabm@gmail.com (R. Shaham), yahave@post.tau.ac.il (E. Yahav),
kolodner@il.ibom.com (E.K. Kolodner), msagiv@post.tau.ac.il (M. Sagiv).

0167-6423/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2005.02.010

https://core.ac.uk/display/82603705?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/scico

R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264—-289 265

1. Introduction

This work is motivated by the need to reduce space consumption, for example for
memory-constrained applications in a JavalGanvionment. Static analysis can be used to
reduce space consumption by identifying source locations at which a heap-allocated object
isno longer needed by the program. Once such source locations are identified, the program
may be transformed to directly free unneeadiects, or aid a runtime garbage collector
collect unneeded objects earlier during the run.

The problem of statically identifying soce locations at which a heap-allocated object is
no longer needed can be formulated as a local temporal heap safety property — a temporal
sdety property specified for each heap-all@dhbbject independdy of other objects.

The contributions of this paper can be summarized as follows.

(1) We present a framework for verifying local temporal heap safety properties of Java
programs.

(2) Using this framework, wedrmulae two important compile-time memory management
properties that identify when a heap-allocated object or heap reference is no longer
needed, allowing space savings in Java programs.

(3) We have implemented a prototype of our framework, and used it as a proof of
concept to verify compiléime memory management properties for several small but
interesting example programagluding JavaCard programs.

(4) We show that our heap abstraction is precise enough to verify interesting compile-time
memory management properties, while otpeints-to based heap abstractions fail to
verify our properties of interest.

1.1. Local temporal heap safety properties

This paper develops a framework for automatically verifyioxpl tenporal heap safety
properties i.e., tenporal safety properties that could be specified for a program object
independently of other program objects. We assume that a safety property is specified
using aheap safety automatofHSA), which is a determistic finite state automaton.

The HSA defines the valid sequences of events that could occur for a single program
object.

During the aalysis events are triggered for gatachines associated with objects. It
is important to note that our framework implicitly allows infinite state machines, since
the number of objects is unbounded, and a state machine is associated with every object.
Thus, precise information on heap paths for disambiguating program objects is crucial
for the precise association of an event and its corresponding program object’s state
machine.

In this paper, we devep static analysis algorithms that verify that on all execution
paths, all objects are in an HSA accepting state. In particular, we show how the
framework is used to verify properties that identify when a heap-allocated object or heap
reference is no longer needed by the program. This information could be used by an
optimizing compiler or communicated to the runtime garbage collector to reduce the space
consumption of an application. Our techniques could also be used for languages like C to
find a misplaced call tdree that prematurely deallocates an object.

266 R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264-289

1.2. Compile-time memory management properties

Runtime garbage collection (GC) algorithms are implemented in Java &nhd C
environments. However, GC does not (and in general cannot) collect all the garbage that a
program produces. Typically, GC collects ebjs that are no longer reachable from a set of
rootreferences. However, there are some objects that the program never accesses again and
therefore are not needed further, even though they are reachable. In previouS8488k [
we reported on dynamic experiments thatwhan average a potential for saving 39% of
the space, by freeing reachable unneeded ahjbireover, in some applications, such
as those for JavaCard, GC is avoided by employing static object pooling, which leads to
non-modular, limited, and error-prone programs.

Existing compile-time techniques produce limited saving. For examfl@rpduces a
limited savings of a few per cent due to the fact that its static algorithm ignores references
from the heap. Indeed, our dynamic experiments indicate that the vast majority of savings
require analyzing the heap.

In this paper, we developwb new stéic algorithms for statically detecting and
deallocating garbage objects:

freeanalysis Statically identify source locations and variables for which it is safe to insert
afree stédement in order to dealtate a garbage element.

assign-null analysis Statically identify source locationsariabkes and fields for which it
is safe to assign null to heapferences that are not used further in the run.

The assign-null analysis leads to spacersgiiy allowing the GC to collect more space.

In [36] we conduct dynamic measurements that show that assigning null to heap references
immediately after their last use has average space-saving potential of 15% beyond
exiging GCs. Free analysis could be used withttme GC in standard Java environments
and without GC for JavaCard.

Both of these algorithms handle heap references and destructive updates. They employ
both forward (history) and backward (future) information on the behavior of the program.
This allows us to free more objects than reachability based compile-time garbage collection
mechanisms (e.g.2[]), which only consi@r the history.

1.3. A motivéing example

Fig. 1shows a program that creates a singly linked list and then traverses it. We would
like to verify that for this program dree (y) staement can be added immediately after
line 10. This is possible because once a list element is traversed, it cannot be accessed along
any execution path starting after line 10. It is interesting to note that even in this simple
exampeé, standard compile-time garbage collection techniques (4),Will not issue
such a free statement, since the element referencedshgachable via adap path starting
from x. Furthermore ntegrding limited information on the future of the computation such
as liveness of local reference variables (e.d]) [s insufficient for issuing such a free
statement. Nevertheless, our analysis is able to verify that the list element referenced by
is no longer needed, by investigating all execution paths starting at line 10.

In order to prove that a free statement can be added after line 10, we have to verify that
all program objects referenced lyyat line 10 are no longer needed on execution paths

R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264—-289 267

class L { // L is a singly linked list
public L n; // next field
public int val; // data field

class Main { // Creation and traversal of a singly-linked list
public static void main(String args[]) {
Lx,y, t;
[1] x = null;
[2] while (...) { // list creation
[3] y = new LO);
[4] y.val = ...;
[5] y.n = x;
[e] X =7y;
}

[7] vy = x;

[8] while (y '= null) { // list traversal
[9] System.out.print(y.val);

[10] t = y.n;

[11] y = t;

}

}
}

Fig. 1. A program for creating and traversing a singly linked list.

starting at this line. Morspecifically, for every execution path and every objecive have

to verify that from line 10 there is no use of a referencetdn the fdlowing, we show

how to formulate this property as a heap safety property and how our framework is used to
successfully verify it.

1.4. A framework foverifying heap safety properties

Our framework is conservative, i.e., if a heap safety property is verified, it is never
violated on any execution path of the program. As usual for a conservative framework, we
might fail to verify a safety property which holds on all execution paths of the program.

Assuming the safety property is desa&ibby an HSA, we instrument the program
semantics to record the autaton state for every programbject. First-order logical
structues are used to represent a global state of the program. We augment this
representation to incorporate information about the automaton state of every heap-allocated
object.

Our abstract domain uses first-order 3-valued logical structures to represent an abstract
global state of the program, which represent several (possibly an infinite number of)
concrete logical structure8]]. We usecanonical abstractiomthat mapsoncrete program
objects (i.e., individuals in a logical structure) to abstract program objects on the basis of
the properties associated with a program objecpaticular, the abstraction is refined by
the automaton state assoeidtwvith every program object.

For thepurpose of our analyses one needs to: (i) consider information on the history
of the computation, to approximate the heap paths, and (ii) consider information on the
future of the computation, to approximate theure use of references. Our approach here
uses a forward analysis, where the automaton maintains the temporal information needed
to reason about the future of the computation.

268 R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264-289

1.5. Outline

The rest of this paper is organized as follows.Saction 2 we desribe heap safety
properties in general, and a compile-timemory management property of interest —
thefree property. Then, isection 3 we giveour instrumented concrete semantics which
maintains an automaton state for every program obfattion 4describes our property-
guided abstraction and provides an abstract semanticS§ettion 5 we desribe an
additional property of interest — the assign-null property, and discuss efficient verification
of multiple properties.Section 6describes our implementation and empirical results.
Related work is discussed Bection 7

2. Specifying compile-time memory management properties via heap safety
properties

In this section, we introduce heap safety properties in general, and a specific heap safety
property that allows us to identify sourcecktions at which heap-allocated objects may be
safelyfreed.

Informally, a heap safety property may bessijied via a heap safety automaton (HSA),
which is a deterministic finite state automaton that defines the valid sequences of events
for a single object in the program. An HSA defines a prefix-closed language, i.e., every
prefix of a valid sequence of events is also valid. This is formally defined by the following
definition.

Definition 1 (HeapSafety Automaton (HSA A heap safetyautomatonA = (¥, Q, 6,

init, F) is a deterministic finite state automaton, whéré the autoraton alphabet which
consists of observable event3,is the set of automaton statés; Q x X — Q is the
deterministic transition function mapping a staand an event to a single successor state,
init € Q is theinitial state err € Q is a dstinguishedviolation state(the sink state), for
which foralla € X, §(err, a) = err, andF = Q\ {err} is the set of accepting states.

In our framework, an observable event is derived from the program state and the current
staement. We assume the observable eventgare of the specifiddon. We associate
an HSA state with every object in the prograamd verfy that on all program execution
paths, all objects are in an accepting statee HSA is used to define an instrumented
sanantics, which maintains the state oktlutomaton for each object. The automaton
state isndependentlynaintained for every program object. However, the same automaton
is used for alprogram objects.

Whenan objecto is allocated, it is assigned the initial automaton state. The state of
an objecto is then updated by automaton trarwits corresponding to events associated
with o, triggered by program statements. For example, an objecautomaton statq is
updated by automaton transitiarto have a new automaton stdi@, «), if ois associated
with the obserable eenta occurring in the current program statement.

The states in the automaton capture history information on memory locations.
Transtions in the automaton capture the algas in the history information when a
statement corresponding to the event is executed. This can be formalized using trace

R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264—-289 269

sanantics. To make the material more accelesiwe use automata directly and define
sef-explanatory events.

2.1. Free property

We now ormulde the free property, which allows us to issue a free statement to reclaim
objects unneeded further in the run. In the following, we make a simplifying assumption
and focus on verification of the property for a single program poinSeéuction 5.2we
discuss a technique for efficient verification for a set of program points.

In order to formulate the free property we first consider the notions of a program state
and a program trace. program stde o; = (store, pt;) representshe global state of the
program, which consists of the store (styr@nd the arrent program pointg(;). A trace
T = o01,02,... IS a (posdily infinite) sequence of program staigs A trace reflects a
program execution.

In order to define thdree property, we also define the notion dfnamic laation
liveness

Definition 2 (Dynamic Location LivenessA memory location | is dynamically livein
aprogram state oj along atracer if (i) | is used inoj, for somej > i, and(ii) | is not
assigned in albj, ..., oj_1.

Intuitively, an object can be collected as soon as its references are no longer used. This
observation leads to the following intuitive definition of the free property.

Definition 3 (Free Poperty(pt, x)). The free property (pt, x) holds if there exists no
tracexr with a program state; = (store, pt) such ttat there exists a reference to the
object referenced by in oj1, which is dynamically live insj 1 in 7.

The free property allows us to free an object that is not needed further in the run. In
particular, when a free propertypt, x) holds for a program poinpt and a reference
variablex, it guaranteeshat it is safeto issue afree(x) staement immediately after
pt. That is, itguarantees that adding suchiwee (x) staement preserves the semantics of
the orignhal program (for a more formal treatment of semantic preserving transformations
see BJ)). Interestingly, such an object can still be reachable from a program variable
through a heap path. For simplicity, we assume thétee (x) staement does nothing
(and in particular does not abort) whenreferences the specialll value. Fhdly,
for expository purposes, we only present the free property for an object referenced by
a pogram variable. However, this free propyecan easily handle an object referenced
through an arbitrary reference expressip, by introducing a new program variahie
assigned withexp just after pt, and veifying that free (z) may be ssued just after the
staementz = exp.

2.1.1. Free property for the running example

Consider tle exampleprogram ofFig. 1L We would like to erify that afree(y)
staement can be added immediately after lir@e i.e., a list element can be freed as soon
as it has been traversed in the loop.

270 R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264-289

{use —refyg y) {—use refg y} X

initial /5) {use reflo,y} G@ {use reflO,y} eD

{—userefigy} {use —refyg y}

Fig. 2. A heap saty automatonAflrgz for freey at line 10.

The HSA Aflrge shown inFig. 2 represents the free property0, y). Stades 0 and 1
are accepting, V\)K"G the state labelled is the violation state. An arbitrary free property
is formulated as a heap safety propergjing an HSA similara theone shown irFig. 2
where the program point and program variablke st accordingly. In particular, for a free
property(pt, x), the corresponding HSA\f‘;‘fﬁ(may be obtained from the automaton in
Fig. 2by replacing 10 withpt, andby replacingy with x.

The alphabet of the automaton consists of sets of observable object attributes. For the
purpose of verifying the free property, we mizim the following object attributes in the
instrumented semantics (sBection 3 for anobjecto: (i) useattribute, which holds foo
if the r-value of réerence expressioa (of the formx or of the formx. £f) is used in the
current statement execution, and the r-value isfo, and(ii) ref,q ,, attribute, which holds
for o if the program execution is immediately aftexecution of the statement at line 10
andy reference® after the execution of the statement at line 10.

ree

On the basis of the above object attries we define the alphabet of the H3¥ |,
to be X' = {{userefyq}, {use —refg}, {—use refyq }}. For readability purposes, we
show for a set of attributes faalphabet symbol) the attributes that hold for an object as
well as the attributes #t do not hold for an objedtFor examplethe aphabet symbol
{use —refyq} denotes that t atribute useholds for an object (i.e., a reference to that
object is used in the current statent), while the attributeef;q , does not hold for that
object (i.e., either the current statement is nopator this object is not referenced by
y after the current statement is executed). Finally, we lise the self-loop emanating
from theerr state (se€ig. 2) as fiorthand expressing the fact that for all alphabet symbols
theerr state may only be transitioned to itself (i.&vhen reaching the violation state, the
automaton state cannot be changed, since the property is violated).

The HSA is in an accepting state along an execution path if and onlgain be freed
in the program after line 10Thus, when on all execution paths, for all program objects
0, only accepting states are associated withve mnclude thatfree (y) can be added
immediately after line 10.

First, when an object is allocated, it is assigned the initial staléf@"f/ (state 0). Then, a
use of a reference to an objecfthe useattribute holds fon) when he program execution

is not immediately after line 10 (thef,q , attribute does not hold fas) does not change

the state ofAflrgi, for o (the self-loop on state 0 labelled witluse —ref;q ,} is taken).

1an equivalent way of writing the alphabet would B¢ = {{use reflo,y}, {usdg, {reflo,y}}, where only
attributes that hold for an object are shown.

R.Shaham et al. / Science of ComguProgramming 58 (2005) 264—289 271

Table 1

Predtates for partial Java semantics
Predicates Intended meaning
after[pt]() Program execution is immediately after program pqnt
x(0) Program vaable x references the objeot
f (01, 00) Field f of the objecio; points to the objeab,
us€o) A reference tm is used in the current program statement
refpt, x(0) o is referenced by and the execution is immediately aftet
s[q](o) The curent state ob’s automaon isq

When the program is imneately after line 10 ang references an object (therefyg
attribute holds for), o’s automaon state is set to 1 (if thaseattribute holds foio the
labelled edgduse refyg } is taken;otherwise if theuseattribute does not hold fay then
the labelled edgé—use ref,q ,} is taken). If areference tm is used futher (i.e., in the
subsequent program configurations along the execution path a referencis tased),
ando’s automaon state is 1, the automaton state ¢oreaches the viotion state of the
automaton (either via thiuse ref,q ,} edge or via theuse —ref;g ,} edge). In that case
the property is violated, a@hit is not possible to add &ree(y) staement immediately
after line 10 since it will free an object that is needed later in the program. However, in
the piogram ofFig. 1, references to objects referencedsbgit line 10 are not used further;
hence the property is not violated, and it is safe to afitks (y) staement at this program
point. Indeed, irSection 4we showhow thefree (10, y) property is verified.

3. Instrumented concr ete semantics

We define annstrumented concrete semanticstthin@ains an automaton state for
each heap-allocated object.$ection 3.1we use fist-arder logical structures to represent
a global state of the program and augment this representation to incorporate information
about the automaton state of every heap-allocated object. Ttgetihion 3.2we desribe
an operational semantics manipulating instrumented configurations.

3.1. Representing program configurations using first-order logical structures

The global state of the program can be naturally expressed as a first-order logical
structure in which each individual cornesnds to a heap-allocated object and predicates
of the structure correspond to properties of heap-allocated objects. In the rest of this paper,
we work with a fixed set of predicates denotedmy

Definition 4 (Program Configuratiop A program configurations a 2-valued fist-order
logical structureC? = (U?, (") where:
e U7 is the universe bthe 2-valued structure. Each individual id? represents an
allocated heap object.
e 7 is the interpretation function mapping predicates to their truth-value in the structure,
i.e., for every predicatp € P of arity k, (“(p): uk {0, 1}.
We use he predicates ofTable 1 to record information used by the properties
discussed in this paper. The nullary predicatier] pt]() records the program location

272 R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264-289

[aterl]
@éﬁ@ﬁ@ﬁ#@ﬁr@

s[1] s[1] s[1] q0]use s[0] s[0] s[0

000020

s[1] s[1] s[1] s[1], userefigy s[0], use s[0] s[0]
(b)

after{10]

Fig. 3. Concrete program cogfirations (a) before and (b) immediately after execution &f y.n at line 10.

in a configuration and holds in configurations in which the program is immediately after
line pt. Theunary predicate (o) records the value of a reference variablend holds for

the individual referenced by. Thebinary predicatef (01, 02) records the Vae of a field
reference, and holds when the figladf 0; points to the objeaty,.

The predicatesisgo) andref,; , mairtain the object attributes needed for triggering

eventsin the HSA Af"fi We desribe these object attributes more completely

in Sectons 3.2.2and3.2. 3

Predicates of the forms[q](0) (referred to asautomaton state predicafesaintin
temporal information by maintaining the@maton state for eaasbject. Such predicates
record history information that is used to refine the abstraction. The abstraction is refined
further by predicates that record spatial information, sucheashakility and sharing
(referred to asnstrumentation predicatdn [31]).

In this paper, program configurations are depicted as directed graphs. Each individual
of the universe is displayed as a node. A unary predicate of the pganis shown as an
edge from the predicate symbol to a node inahht holds. The name of a node is written
inside the node using dtalic face. Node names are only used for ease of presentation and
do not affect the analysis. A binary predicgiéus, uz) which evaluates to 1 is drawn as
directed edge from; to uy labelled with the predicate symbol. Finally, a nullary predicate
p() is drawn inside a box.

Example 5. The configuration shown ifrig. 3(a) corresponds to a global state of the
program in which execution is immediately after line 9. In this configuration, a singly
linked list of 7 elements has been trased up to the 4-th element (labelled) by the
reference variablg, and the eference variablestill points to the same element gsThis
is shown in theconfiguration by the fact that both predicatg®) andt(o) hold for the
individualug. Directed edges labelled mycorrespond to values of threfield.

The nullary predicatefter[9]() shown in abox in the upper right corner of the figure
records the fact that the program mmediately after lie 9. Thepredicateusgo) holds
for an objecb if a reference tm is used in the current statement. For example, a reference

R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264—-289 273

Table 2
Use dtributes set by program statements
Statement Use attributeis set to true for
an object referenced by
X=y y
x = y.f y,y. f
x.f=null X
xf=y X,y
X binop y X,y

to ug is used(due the use of in the statement at line 9); thus we see an edge connecting
useandus. Thepredicateef,g , does not hold for any objects in this configuration, since
the execution is not immediately aftline 10. Finally, the predicates$0](0) ands[1](0)

record which objects are in state 0 of the automaton and which are in state 1. For example,
the individualus is in automaton state 1 and the individualis in automaton state 0.

3.2. Operational semantics

Program statements are modelled by getirgathe bgical structure representing
the program state after execution of the aeae¢nt. First-order logical formulae can be
used to formally define the effect of every statement (848.[In particular, first-order
logical formulae are used toadel the change of the automaton state of every affected
individual.

In general, the operational semantics asses a program statement with a set of HSA
ewvents that update the automaton state of program objects. The translation from the set of
HSA events to firserder logical formulae reflecting the change of the automaton state
of every affected individual is automatic (s&ection J. We now show how program
staements are associated wiﬂrf‘;iex events. For expository purposes, and without loss
of generdity, we assume the program is normalized to a 3-address form. In particular, a
program statement may manipulaédéarence expressions of the fosnor x. £.

3.2.1. Object allocation

For a ppgram statement = new C(), a newobject one, is allocated, which is
assigned the initial state of the HSA, i.e., we set the predstati#](0pey) to 1.

Example 6. Consider the HSAAflrgey of the exanplein Section 2.1.1For this HSA we
define a set of predicates0, s[1](0), s[err](0)} to record the state of the HSA
individually for every heap-allocated object. Initially, when an objeis allocated at line
3 of the exarple program, we set{0](0) to 1, and other state predicatesoab 0.

3.2.2. Maintaning the use attribute

Theuseattribute reflects information for an object depending on the current state of the
program. Thus, conceptually, this meahattbefore executing a statement tlseattribute
is set tofalsefor all program objects, and then thiseproperty is set tdrue for some of
the objects depenag on the executed program statement, as showatie 2

274 R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264-289

In general, a use of a program varialdlén a program statement updates thego)
attribute to 1 for the object referenced byln addtion, a wse of the fieldf of the object
referenced by in a program statement updates thego) attribute to 1 for the object
referenced by . f. For exanple, as shown ifTable 2 the statmentx = y.f setsus€o)
to 1 for the objects referenced lyandy. f.

3.2.3. Maintaning the ref; , attribute

As in the case of thaseattribute, theef,; , attribute reflects information for an object
depending on the current state of the program. Thus, conceptually, this means that before
executing a statement thvef,,; , attribute is set tdalsefor all program objects, and then
this property is set tarue for some of the objects depending on the program statement
executed. In particular, we set thef, , attribute to true for the object referenced oy
when the execution is immediately aftpt (i.e., when the currdly executed statement
is at pogram pointpt). For example, for theef, , attribute,ref, (0) is set to 1 for the
object referenced by, when he execution is immediately after line 10.

3.2.4. Mainaining 94q] predicates

We can now determine the transition taken in the automaton for an abjgtdnging
its associated automaton state frgnto gj. The ideais that an edge emanating fragnis
taken if the labkon that elge matches the values@s$ use ref, , attributes. For example,
in our running example, if an object is associated with state 0, and batbe ref;q
attributes hold foro, then he edge labelleduse ref;q ,} connecting state O to state 1
(seeFig. 2) is taken, updating[0](o) to 0, ands[1](0) to 1. In general, a transition from
stateqj; to stateq; for an object is reflected by setting[q;1(0) to 0, and setting[q;1(0)
to 1.

Example 7. Fig. 3 shows the déct of thet = y.n staement at line 10, where the
statement is applied to the configuration labelled by (a). First, this statement updates the
predicate (0) to reflect the assignment by setting it to 1 €@t and setting it to O forug. In
addition, it updates the program point by settaftgr[10]() to 1 andafter[9]() to 0. Then,

usgo) is set b 1 forbothug, us. This isdue to the use of andy. f in this statement. Also,
refyg,y(0) is set to 1 forug, sincethe execution is after line 10 and is referenced by at

that time.

We can now update the automaton states associated with program objeats. tRer
current associated automaton state is 0. The attritugesef,o , hold for us; thus, the
{userefyyy} edge connecting automaton state O to automaton state 1 is taken, updating
s[0](ug) to 0, ands[1](ug) to 1. Inaddition, forus, the dtributeuseholds, and the attribute
refypy does not hold; thus theuse —refyy } edge connecting state 0 to itself is taken,
leavings[0](us) unchanged with the value 1.

4. An abstract semantics

In this section, we present a conservative abstract semariti¢sapstrating the
concrete semantics &ection 3 In Section 4.1we desribe how abstract configurations
are used to finitely represent multiple concrete configurationSebtion 4.2we desribe
an abstract semantics maniatihg abstract configurations.

R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264—-289 275

e

s[1] s[1] s[0], use s[0]

Fig. 4. An abstract program configuration repenting the concrete configurationraf. 3(a).

4.1. Abstract program configurations

We conservatively represent multiple concrete program configurations using a single
logical structure with an extra truth-valug¢ZLthat deotes values that could be 1 or could
be 0.

Definition 8 (Abstract Configuration An abstract configuratioris a 3-vaued logical
structureC = (U,) where:

e U is the universe fothe 3-valued structure. Each individual I represents possibly
many allocated heap objects.

e ¢ is the interpretation function mapping predicates to their truth-value in the structure,
i.e., for every predicat@ € P of aity k, «(p): UX — {0,1/2, 1}. For example,
t(p)(u) = 1/2 indicates that thertith vdue of p may be 1 for some of the objects
represented by and may also be 0 for some of the objects represented by

We dlow an abstractonfiguration to include aummay node i.e., anindividual which
corresponds to one or more individuals in a aabe configuration represented by that
abstract configuration. Technically, we use a designated unary prediodtemaintain
sunmary-node information. A summary nodehassm(u) = 1/2, indicating that it may
represent more than one node. An individual véth(u) = O corresponds to exactly one
individual in a concrete configuratidror tedinical reasons we do not allasw(u) to bel.

Abstract pogram configurations are depicted by enhancing the directed graphs from
Section 3with a graphical representation foy2 values: a biary predicatep(us, u2)
which evaluates to /2 is drawn as dshed diected edge fronu; to uy labelled with the
predicate symbol, and a summary node is drawn as circle with double-line boundaries.

Example 9. The abstract configuration shown iRig.4 representsthe concrete
configuration ofFig. 3(a). The summary node labelled g3 represents #nlinked-list
itemsuy andug, having the same Waes for their unary predicates. Similarly, the summary
nodeusg7 represents the nodes, ug, andus.

Note that this abstract configuration repeats many @nfigurations. For example, it
represents any configuration in which pragr execution is immediately after line 10 and
alinked-list with at least 4 items has been traversed up to some item after the third item.

4.1.1. Embedding
We now frmally define how configurations are represented using abstract
configurations. The idea isaheach individual from the (conete) configuration is mapped

276 R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264-289

into an indivdual in the abstract configuration. More generally, it is possible to map
individuals from an abstract configuration into an individual in another less precise abstract
configuration. The latter fact is important for our abstract transformers.

Formdly, let C = (U,:) andC’ = (U’,/) be abstract configurations. A function
f: U — U’ suchthat f is surjective is said t@mbed C into Cif for each predicate
p of anty k, and for eachuy, . .., ux € U the following holds:

t(p(ug, ..., uk) = /(p(f(uy), ..., f(u)) or/(p(f(uy),..., fu)) =1/2
and
forallu eU/'s.t.|{u] fwy=u}>1:/(sm@)=1/2

One way of creating anmebedding functionf is by using canonical abstraction
Canonical abstraction maps concrete individuals to an abstract individual on the basis of
the values oftie individuals’ unary predicates. All individuals having the same values for
unary predicate symbols are mappedfbto the same abstract individual. Only summary
nodes (i.e., nodes wittm(u) = 1/2) can have more than one node mapped to them by the
embedding function.

Since automaton states are represented using unary predicates, the soundness of our
approachis guaranteed by tambedding theoreof [31]. For a given program and HSA, if
there exists a concrete program state in whiethautomaton is in itsreor state (according
to the instrumented semantics $éction 3, then embedding guarantees that there exists
an abstract state in which the automaton is possibly in its error state.

Moreover, using unary predicates to repent automaton states also refines the
abstraction by the automaton state of eactechjThis provides a siple property-guided
abstraction since individuals at differenitamaton states are netmmarized together.
Indeed, adding unary predicates to the abstraction increases the worst-case cost of the
analysis. However, as noted i81], in practice this abstraction refinement often decreases
significantly the cost of the analysis. Finally, our analysis allows multiple 3-valued logical
structues at a single program point, reflecting different behaviors.

4.2. Abstract semantics

Implementing an abstract senti&es directly manipulating abstract configurations is
non-trivial since one has to consider all possible relations on the (possibly infinite) set
of represented concrete configurations.

The bestconservative effect of a program statemeti][is defined by he following
three-stage semantics: (i) arwretization of the abstract configuration is performed,
resulting in all possible configurationspreentedby the abstract configuration; (ii) the
program statement is applied to each resulting eete configuration; (iii) abstraction
of the resulting configurations is performed, resulting in a set of abstract configurations
repreentingthe results of the program statement.

Example 10. Fig. 5shows the stages afh abstract action: first, concretization is applied
to the abstract configuration resulting with an infinite set of concrete configuration
represented by it. The program statemempdate is then applied to each of these
concrete configurations. The program staént update also includes the update of the
useandrefy; ,, atributes, and the application of aumhaton transition updates described

abstract configuration

after[9] | X h
e
_____ n _>©

s[1] s[1] s[0], use s[0]

after concrézation

after[9] X y,t after[9] X y,t e after[9] X y,t

n n n

s[1] s[1] s[0],use s[0] s[1] s[1] s[1] s[0],use s[0] s[1] s[1] s[0],use s[0] s[0]

after update

after{ 10] X y t after[10] X y t e after[10] X y t

Frro—t-gtp

s[1] s[1] s[1] s[1] s[1] s[0]

s[0]

s[0]

use reflo_y use use reflo_y use usg reflo_y use

after abgraction

s[1] s[1] S[1], userefyg y s[0], use s[0]

Fig. 5. Concretization, predicate-updateluding automaton transition updates, and abstraction for the statement.n at line 10.

682-792 (5002) 85 Bulwelbolgnuod Jo 80UsI0S / e 18 Weyeys 'y

lLle

278 R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264-289

in Section 3.2That is, theuseattribute is set to 1 for the objects referencediandy .n,
and thereflo’y attribute set to 1 for the object referencedybyhen, s[1] is set to 1 for the
object referenced by, ands[0] is set to O fo the object referenced by. Findly, after all
transition updates have been applied, theilltes) concrete configurations are abstracted
resulting with a finite representation.

Our prototype implementation described Section 6.1operates ectly on abstract
configurations usingabstract transformers The inplemented actions are more
conservative than the ones obtained by the best transformers. Interestingly, since temporal
information is encoded as part of the concrete configuration via automaton state predicates,
the soundness of the abstract transformers is still guaranteed Byrthedding Theorem
of [31]. Our experience shows that the abstraahtformers used in the implementation
are still precise enough to allow verification of our heap safety properties.

When the analysis terminates, we verify that in all abstract configurations, all
individuals are associated with an acceptingtomaton state, i.e., in all abstract
configurations, for every individual thepredicates[err](0) evaluates to 0. The soundness
of our abstraction guarantedisat this implies that in all concrete configurations, all
individuals are associated with an acceptingomaton state, and we conclude that the
property holds.

5. Extensions

In this section, we extend the applicability of our framework by: (i) formulating an
additional compile-time memory management property — the assign-null property; and
(ii) extending the framework to simultaneously verify multiple properties.

5.1. Assign-null analysis

The assign-null problem determines source locations at which statements assigning
null to heap references can be safely adddh null assignments lead to objects being
unreachable earlier in the program, and thuy hmelp a runtime garbage collector collect
objects earlier, thus saving space. AsSiection 2 we show how to vefy the assign-null
property for a single program point and discuss efficient verification for a set of program
points inSection 5.2

Definition 11 (Assign-Null Property pt, x, £)). The assign-null property (pt, x, f)
holds if there exists no trace that includes grogram states; = (storg, pt) suchthat
the location denoted byx. f in oi41 is dynamically live inoj41 in 7.

The assign-null property allows us to assign null to a dead heap reference. In particular,
when an assigmull property(pt, x,) holds for a program poinpt, a réference variable
x and a reference field, it guaranteeshat it is safeto issue ax.f = null staement
immediately afterpt. That is, itguarantees that adding suchanf = null staement
preserves the semantics of the original program (for a more formal treatment of semantic
preserving transformations se8]). As in the free property case, our assign-null property
can also handle arbitrary reference expressions (e.g., of thestgsnt), by introducing a

R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264—-289 279

{usen, —defy, —refio,y)} {—usen, —defy, refio,,}
{—usen, def,, —refig, ;) {"Héen defy, ref10,y} 2
{—use, ,—def,,,ref19.,} y

l’l
initia {use, ,—def,, ,ref}, vl {usey, ,—def,, re/‘"lo1 orr

\{Wyw

{—use, def, ,—ref(,}

Fig. 6. A heap saty automatonA‘i‘ay’n for assign null toy.n at 10.

[1] ©Node root = CreateTree();
[2] processTree(root.right);
... // no further uses of root

Fig. 7. A code snippet demonstratirtgetimportance of assign-null analysis.

new program variable, assigned withexp, and verying thez. £ may be ssued just after
the statement = exp.

The potential for space savings beyond GC is demonstrated using the code snippet
in Fig. 7. A tree ofobjects is allocated, but only the right side of the tree is processed.
We assume that the typBode contains two instance fielddeft andright. After line
1 dl tree objects are reachable; thus GC canectaim the entire left subtree of the root.
However, it is easy to seedhthe assign-null propertil, root, left) holds; thus it is safe
to insert aroot.left = null stakment after line 1 allowing&C to collect the left side
of the tree before the processing at line 2.

5.1.1. Assign-null property for the running example

We now demonstrate how an assign-null property is verified using our running example
shown inFig. L We would like to \erify that ay.n = null staement can be added
immediately after line 10, é., a reference connecting consecutive list elements can be
assigned null as soon as it is traversed in the loop. The IA%&, shown inFig. 6
represents the assign-nidlO, y, n) property. Our implementation verifies the assign-null
(10, y,n) property, by applying the framework Wltwiay’n to the examfg program.
Notice that his automaton contains a back arc and thus is more complex than that for
thefree property.

An arbitrary asgin-null property is formulated as a heap safety property using an HSA
similar to theone shown irFig. 6 where theprogram point, variable and field names are
sa accordingly. In particdr, for a free propertypt, x, £), the corresponding HS#\\"‘t % f
may be obtained from the automatorfig. 6 by replacing 10 withpt, andby replacmgy
with x, andn with f.

As in the case for théree automaton (seBection 3, the alphabet of the assign-null
automaton consists of sets of observable object attributes. For the purpose of verifying
the assign-null property, we maintain the following object attributes in the instrumented
semantics (seBection 3 for anobjecto: (i) use, attribute, which holds foo if a reference

280 R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264-289

expression of the fornx.f is used in the current statement execution aneferences
o; (i) def,, which holds foro if a reference expression of the formf£ is defined in the
current statement execution ardeferences; (iii) ref;q attribute, which holds foo
if the program execution is immediately aftexecution of the statement at line 10 gnd
reference® after the execution of the statement at line 10.

On the basis of the above object attribs we define the alphabet of the H%yy,n to
be X = {{use, —def,, —refq }, {use, —def,, ref g}, {—use, def,, —ref;q y},
{-use, def,, refyq y}, {—use, —def,, reflo,y}}.2 For example the aphabet symbol
{usey, —def,, —ref;q }, denotes that th atribute use, holds for an object (i.e., the field
n of that object is used in the currestatement), while the attributkef, does not hold for
that object (i.e., the field of that object is not defined in the current statement), and also
the attributeref, , does not hold for that object (i.e., either the current statement is not at
10, or this object is not referenced byafter the current statement is executed). Note that
use, def, attributes cannot hold at the same time for an object, since we assume the code
is normalized to a 3-address form, thus an object field cannot be used and defined in the
same stament.

Initially, when an objecb is allocated it is assigned the initial stateAqO Then,
uses or definitions of tha field of an objecto (a use, or adef, attribute holds foro,
respectively) do not change the statekif‘ for o (the self-loop in site O is taken).
When the program is imnaéately after Ilne 10 andy references an objed (refq
attribute holds fomw), o's automaon state is set to 1. Now, if the field of o is further
defined (i.e., alef, attribute holds foio in the subsguent program configurations along
the execution path), arals automaon state is 1, the automaton state dagyets backo the
initial state (state 0). However, if thefield of o is used futher (i.e., ause, attribute holds
for o in a subsequent program configuration along the execution path) before this field is
redefined, and’s automaon state is 1 the automaton state daeaches theiolation state
of the automaton. However, in the prograntig. 1, then-field references emanating from
objects referenced by at line 10 are not used further before being redefined; hence the
property is not violated, and itis safe to adgd.a = null staement at this program point.

5.2. Simultaneous verification of multiple properties

So far we showed how teerify the free and assign-null properties for a single program
point. Clearly, in practice one wishes to verify these properties for a set of program
points without repeating the verificationqeedure for each program point. Our framework
supports simultaneous verification of multipleoperties, and in particular verification
of propeties for multiple program points. Assuming that HEA. ., HSAx describek
verificaion properties, thelk automaton states that, ..., s are maintained for every
program object, wherg maintains an automaton state for HSAecnically, as described
in Section 3 a states is represented by automaton state predica{eg, whereq ranges
over the stas of HSA. The eventassociated with the automata HEA. ., HSA, at a

2 And in the alphabet for the free automaton, an egent way of writing the alphabet would b& =
{{usen), {usey, refg), {detf,}, (det,, refig y), {refiq y}}, whereonly attributes that hold for an object are shown.

R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264—-289 281

program point are triggered simultaneously, updating the corresponding automaton state
predicates of individuals.

The worst-case cost of simultaneous verification of properties is higher than the worst-
case cost of verifying the same properties one by one. However, verifying properties one
by one ignores the potential of computing overlapping heap information just once, where
in simultaneous verification of properties tloigerlap istaken inb consideration. Thus, we
bdieve that in practice simultaneous verification of properties may achieve a lower cost
than verifying the properties one by one. In fact, our initial findingSiection 6show that
verifying two properties one by one takes close to double the time it takes to verify these
properties simultaneously. This is because mbthe analysis time is spent on computing
heap information.

Interestingly,if we limit our verification of free(pt, x) properties to ones wheteis
used atpt (i.e., x is used in the statement pt), then the following features are obtained:

(i) an object is freed just after it is referencedtld.e., exactly at the earliest time possible;
this object cannot be freed earlier sincgeferences the object, and a usexafccurs at

pt; (i) an object is freed “exactly once”, i.e., there are no redundant frees of variables
referencing the same object; this is immediabm the first feature, as an object is freed if
and only if it is last referenced. A similar choice for assign-null properties assigns null to
a heap reference immediately after its last use.

The motivation for this choice of verification properties comes from our previous
work [36], showing an average of 15% potential space savings beyond a runtime garbage
collector if a heap reference is assigned null just after its last use. However, we note that
our framework allows verification of arbitrary free and assign-null properties, which may
yield further space reduction. In fact, iBf] we show an aveage of 39% potential space
savings beyond a runtime garbage collector assuming complete information on the future
use of heap references.

6. Empirical results

We implenented the static analysis algorithms for verifying free and assign-null
properties, and applied it to several programs, including JavaCard programs.

Our benchmark programs were used as a proof of concept. Due to scalability issues
our benchmarks only provide a way to verify that our analysis is able to locate the static
information at points binterest, and we do not measure the total savings. In particular the
benchmarks provide three kinds of proofs of concept:

e We use smalprograms manipulating a linked-list to demonstrate the precision of our
technique; moreover, we show that less pre@salyses such as points-to analysis is
insufficient for provingree and assign-null properties for these programs.

e We demonstrate how our techmpies could be used to verify/automate manual space-
saving rewritings. In particular, in our previous worl8q the code of the javac
Java compiler was manually rewritten in order to save space. Here, we verify the
manual rewritings injavac, which assign null to heap references, by applying our
prototypeimplementation to a Java code fragment emulating part of the Parser facility
of javac.

282 R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264-289

o We denonstrate how our techniques could play an important role in the design of future
JavaCard programs. This is done by rewriting existing JavaCard code in a more modular
way, and showig that our techniques may be used to avoid the extra space overhead
due to the modularity.

6.1. Implementation

Our implementation consists of the following components: (i) a front-end, which
translates a Java program (.class files) to a TVLA prograf [ii) an analyzer, which
analyzes the TVLA program; (iii) a back-end, which answers our verification question by
further processing of the analyzer output.

The front end (J2TVLA), developed by R. Manevich, is implemented using the Soot
framework B8]. The analyzer, implemented using/IA, includes the implementation
of static analysis algorithms for the free and assign-null property verification. TVLA is a
parametric framework tit allows the heap abstractiongahe abstact transformers to be
easily changed. In particular, for programs manipulating lists we obtain a rather precise
verificalion algorithm by relying on spatial ingtmentation predicates, that give sharing,
reachability and cyclicity information for heap objec3d]. For other programs, allocation-
site information for heap objects $igks for the verification procedure.

In both abstractions interprocedural infieation is computed. In order to enable
interprocedural analysis we explicitly regzent stack frames and a corresponding set of
predicates following29]. Since this does not interfere with the material in this paper, to
simplify presentation we do nalescribe these predicates.

Finally, our implementation allows simultaneous verification of several free or assign-
null properties, by maintaing several automatonates per prgram object.

The back-end, implemented using TVLA libraries, traverses the analysis results, i.e.,
the logical structures at every program poimiaerifies that all individuals are associated
with an accepting state. For a single proggrte could abort the analyzer upon reaching
anon-accepting state on some object and avoid the back-end component. However, in the
case of simultaneous verification of multiple safety properties, this would not work and the
back-end is required.

6.2. Benchmark programs

Table 3showsour benchmark programs. The first four programs involve manipulations
of a singlylinked list. DLoop, DPairs involve adoubly linked list manipulationsmall
javac is motivated by ouprevious work B5], where we manuallyewrite the code of
the javac compiler, issuing null assignments teeap references. We can now verify
our manual rewriting by applying the corpgesmding assign-null properties to Java code
emulating part of the Parser facility javac.

The last two benchmarks are JavaCard prograragaPurse is a simple electronic
cash application, taken from Sun JavaCard sam@@gk [n JavaPurse a fixed set of
loyalty stores is maintained, so every purchase grants loyalty points at the corresponding
store.GuessNumber [28] is aguess number game over mobile phone SIM cards, where
one player (using a mobile phone) picks a number, and other players (using other mobile
phones) try to guess the number.

R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264—-289 283

Table 3
Analysis cost for the benchmark programs
Program Description Free Assign Null
Space Time Space Time
Loop The running example n 193 137 176
CReverse Constructive reverse of a list .03 517 258 479
Delete Delete an element from a list B 1966 421 1384
DLoop Doubly linked list variant of Loop P9 291 175 268
DPairs Processing pairs in a doubly linked list e 501 254 486
small jaac Emulation ofjavac’s parser facility N/A N/A 1602 4384
JavaPurse’ slice A JavaCard simple electronic purse 356 979 5615 991

GuessNumber’ slice A JavaCaditributed guess number game .99 173 N/A N/A
Space is measured in MB, and time is measured in seconds.

Due to memory constraints, JavaCard programs usually employ a static allocation
regime, where all program objects are allechtvhen the program starts. This leads to
non-modular and less reusable code, and teerfinmited functionality. For example, in the
GuessNumber program, a global buffer is allocated when the program starts and is used
for storing either a server address or a phone numbgaiaPurse, thenumber of stores
where loyaltypoints are granted is fixed.

A better approach thatddresses the JavaCard memory constraints is to rewrite the code
using a natural object-oriented programming style, and to apply static approaches to free
objects not needed further in the program. Thus, we first rewrite the JavaCard programs
to allow more modular code in the case@fessNumber, and tolift the limitation on the
number of stores idavaPurse. Then, we apply our free analysis to the rewritten code,
and verify that an object allocated in the rewritten code can be freed as soon it is no longer
needed. InJavaPurse we also appt our assign-null analysis and verify that an object
allocated in the rewritten code can be made unreachable as soon it is no longer needed
(thus, a runtime garbage collector may collect it). Concluding, we show that in principle
the enhanced code bears no space overheadarechfn the original code when the free or
the assigmull analysis is used.

6.3. Results

Our experiments were done on a 900 MHz Pentium-111 with 512 MB of memory running
Windows 2000Table 3shows the sace and time the analysis takes. BelLete, small
javac andJavaPurse Table 3shows the time and space cost for simultaneous verification
of two properties. Lter in this section we compare this cost to the time and space cost of
verifying these properties one by one. For other benchmbakée 3shows theime and
space cost for verifying a single property.

In Loop we verify our free(10, y) and assign-nulj10, y, n) properties. FOCReverse
we verify that an element of the original lisan be freed as soon it is copied to the reversed
list. In Delete we show that an object can be freed as soon it is taken out of the list
(even though it is still reachable from tempagramriables). Turning to our doubly linked
programs, we also show objects that can freed idliately after their last use, i.e., when an
objectis traversed in the loopI{oop), and when an object in a pair is not processed further

284 R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264-289

(DPairs). We also verify corrggonding null assignments that make an object unreachable
via heap references as soon these references are not used further.

Forsmall javac we verify that heap references to large objects in a parser class may
beassigned null just after their last use. Finally, for scalability reasons we analyze slices of
rewritten JavaCard programs. Our current implementation does not include a slicer; thus
we manually slice theade. Using the sliced programs we verify that objects allocated due
by our rewritings can be freed as soon they are not needed.

We have also ted our benchmarks using a points-to based heap abstraction, which is
considered relatively cheap and scalable. \Weaiflow-sensitie, fieldsensitivepoints-to
analysis with unbounded context informatidr8]. Our results indicate that in all cases but
one (assign-null properties fadmvaPurse benchmark), points-to analysis is insufficient
for proving the free and assign-null properties of interest. FeoraPurse the points-to
analysis is able to prove the assign-null properties of interest since (i) we try to assign
null to fields emanating from a singleton objeatddji) field-sensitive information allows
disambiguation of the fields emanating from the singleton object.

For Delete, small javac and JavaPurse we experiment with the simultaneous
verification of properties.Table 3shows the tire and spce cost for the simultaneous
verificetion of two assigmull properties Assign Nullcolumn forDelete, small javac
and JavaPurse) and thetime and space cost for the sittaneous verification of two
free properties Kree column for Delete and JavaPurse). We compared the cost of
simultaneous verificatioto the cosbf verifying these properties one by one. Verifying the
properties one by one takes close to double the time it takes to verify the same properties
simultaneously. In addition, the space cost for verifying two properties simultaneously is
close to the space cost of verifying a singleperty. This is because most of the analysis
time (and space) is spent oaraputing heap information.

7. Related work

One of the main difficulties in verifying local temporal heap safety properties is
considering the effect of aliasing in a precise enough manner. Some of the previous work on
software verification allows universally quantified specifications similar to our local heap
safety poperties (e.g.,4,9]). We are the first to apply such properties to compile-time
memory management and to employ a high-precision analysis of the heap.

ESP [L2] uses apreceding pointer-analysis phase and uses the results of this phase
to perform finite state verification. Separating verification from pointer-analysis may
generally leado imprecise results demonstratedSaction 7.1

The Bandera projecf] uses the Bandera specification language (BSL{][to specify
properties of software systems. Bandera constructs a finite state model of the program
and uses existing model-checkers (e.g., SPI§)[to perform verification. BSL allows
universally quantified specifications which aienilar to our local heap safety properties.
However, the abstractions currently applied by Bandera to verify these properties may
generally lead to results that are less precise than ours.

The SLIC specification languagéd][from MSR’s SLAM project [26] is a low-evel
specification language which defines a (possibly infinite) state machine for tracking

R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264—-289 285

temporal safety properties. Although SLIC is more powerful than our local heap safety
properties (e.g., it allows counting), the abstraction applied by SLAM to verify SLIC
properties may produce results that are less precise than ours.

In [40,39] a more gaeral framework is presented foretlspecification and verification
of properties of heap-manipulating programs using a first-order temporal logic named ETL
(evolution temporal logic). The properties we addressed in this paper could be formulated
as ETL formulae with a specific limited form — safety properties using a single universal
quantifier. The algorithms presented in this paper efficiently handle the verification of
properties in this subset.

Field et al. 4] invedigate theproblem of precise typestate checking in the presence
of aliasing for shallow programs. They propose several abstraction techniques for precise
typestate checking in such programs, anatesthe cost of verification to the nature of
the poperty being verified. In contrast, we handle arbitrary programs (not necessarily
shallow) and arbitrary typestate propertibat donot guarantee precise results, and use
more expensive techniques.

Same prior work used automata to dynamically monitor program execution and throw
an exception when the property is violated (e323]). Obviously, dynamic monitoring
cannot verify that the property holds for all program executions.

Recoding history information for investigating a particular local temporal heap safety
property was used for example i8(,30] (approximating flow dependencies) an24]
(verificdtion of sorting algorithms). The framework presented here generalizes the idea of
recording fistory information by using a heap safety automaton.

Our free property falls in theompile-time garbage collectiarsearch domain, where
techniques are developed to identify and recycle garbage memory cells at compile time.
Most work has been done for functional languadg®21,15,17,23). In this paper, we show
a free analysis, which handles a language with destructive updates, that may reclaim an
object still reachable in the heap, but not needed further in the run.

Escape analysis (e.g7]], which allows stack allocating heap objects, has been recently
applied to Java. In this technique an objedtéed as soon as its allocating method returns
to its caller. While this technique has shown to be useful, it is limited to objects that do not
escape their allocating method. Our technique applies to all program objects, and allows
freeing objects before their allocating method returns.

In region based memory manageme8J,2,16], thelifetime of an object is predicted
at compile time. An object is associated wahmemory regin, and the allocation and
deallocation of the memory region are infatr@ubmatically at comje time. It would be
interesting to instantiate our framework with a static analysis algorithm for inferring earlier
deallocdion of memoy regions.

Liveness analysis2[7/] may beused in the context of a runtime to reduce the size of
the root set (i.e., ignoring dead stack variables and dead global variables) or to reduce the
number of scanned references (i.e., ignoring dead heap reference3)L,18][liveness
information for root refereces is used to reclaim more space.

In [36] we aonduct dynamic measurements estimating the potential space savings
achieved by communicating the liveness ddcét variable references, global variables
references and heap references to a runtiamape collector. We conclude there that
heap livenessformation yields a potential for space savings significantly larger than that

286 R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264-289

[1] while (...) {
[2] x = new TQ;
[3] x.foo();

}

Fig. 8. A code snippet demonstrating why a two-phgggr@ach of a pointer analysis followed by an automaton
state analysiselads to overconservative results.

Program Point|Pointer Analysis Phase Verification Phase
1st Iteration 2nd Iteration
snj[z] site[2] s[0] sie2] s[0],s[1]
[3] . vv
sirj[Z] sie2] s[0].s[1] site[2] vs to]'. s[1], slerr]

Fig. 9. Two-phase analysis example.

achieved by communicating liveness infotima for stack and global variables. One way

of communicating heap liveness information to a runtime GC is by assigning null to heap
references. In this paper we present distanalysis algorithmdr assigning null to heap
references.

7.1. Advantages of integrated analysis

Our framework uses an integrated pointer and typestate analysis (called hereafter a
one-phase approaghAs disassed above, in124,9] a pointer analysis is applied as
a prdiminary phase, followed by a phase of automaton state analysis via finite state
verification (called hereafter awo-phase approaghGenerally, it is vell known that the
analysis of combined abstract domains (e.g., our one-phase approach) is more precise
than the combination of separate anatys# abstact domains (e.g., the two-phase
approach) 11]. In particular, in this section we demonstrate that even when applying a
morelimited points-to analysis (in contrast to the shape analysis used in earlier sections)
to a simple program it may be profitable to use an integrated analysis.

Consider the ade snippet irFig. 8 A new object is allocated and used in every loop
iteration.Fig. 9 shows the result ofpplying the two-phase approach for the purpose of
verifying the free property3, x). We omit the ifiormation forline 1, since no automaton
eventsare triggered at line 1. For the pointer analysis phase we assume an allocation-site
based abstract domain used in points-to algorithms, £3j).The columnPointer Analysis
Phaseshows the results dhe pointer analysis. The predicadée[2] holds for individuals
allocated at line 2. We seedhat both line 1 and line Z may reference objects allocated
atline 2.

R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264—-289 287

Program Point 1st Iteration 2nd Iteration
o | @ @
T\ T\ AN
site[2] s[0] site[2] s[0] site[2] s[1]
] ()
TN SN SN SN
site[2] s[0] site[2] s[1] site[2] s[0] site[2] s[1]

Fig. 10. One-phase analysis example.

In the finte verification phase, we start with the pointer information at line 2 and
initialize the automaton state of; to s[0] due tothe allocation in 2. Then, at line 3, we
need to trigger thautomaton ever{use ref; , } for the objects that may be referenced by
x (i.e., the objects represented by). For objects referenced hythe aubmaton state is
changedto 1 (due to tHese ref; , } edge connecting states 0 and 1 in Ag?xe automaton).
However, not dithe objects represented by are necessarily referencedtyand fa those
their aubmaton state 0 is unchanged. Thus, we conclude that the objects represemted by
after line 3 may either be in state 0 or in state 1, as shown by the dashed edges emanating
from s[0], s[1]. Next,in the second verification iteration, the allocation at line 2 does not
change the possible automaton statesifoiFindly, we consider again the effect of line 3.

We agin trigger the automaton evejutse refs , }, and onclude that the objects referenced
by x may reach therr state (sine forobjects in state 1 thiuse ref; ,} edge leading terr
state is &ken), leading to an overconservative result, i.e., we fail to validatef teat(x)
can be safely inserted after line 3.

We now $iow how the free property3, x) is successfully verifig¢ using aone-phase
approachFig. 10 shows how the analysis works. Again, we omit the information for line
1. Here an alloation site based abstract domain is used, refined with the automaton state.
Thus, objects allocated at the same allocatibe, $ut in different atomaton state are
abstracted to different elements imetabstract domain. First, at line 2 may reference
objects allocated at line 2 that are in automastette O (the latter fads represented by
the solid edge frons[0] to u;). Then, atline 3, we need to trigger the automaton event
{use ref; ,} for the objects that may be referencedxbyrhus, after triggering these events
x may only reference objects allocated at lininZautomaton state 1 (these objects are
represented by the individuap). In addition, there may be objects allocated at line 2 in
automaton state 0. These latter objects may not be referencedty are represented by
the individualu;. Next,in the second iteration at line 2 may reference objects allocated
at 2 in automaton state 0. This is due to the allocation in 2. Finally, the second iteration for
line 3 yields the same structure as in the previous iteration for line 3, and the third iteration
for the structure at line 2 (not shownliig. 10) yields the same structamas in thgrevious
iteration; thus we anclude that therr may not be reached, and therefore the free property
(3, x) is verified, and it is safe to insettee (x) after line 3.

288 R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264-289

8. Conclusion

In this paper we present a framework for statically reasoning about local temporal
heap safety properties. This framework is instantiated to produce two new static analysis
algorithms for calculating the liveness of heap objects (free property) and heap references
(assign-null property). Our initial experience shows evidence for the precision of our
techniques, leading to spasavings in Java programs. In the future we intend to apply our
techniques to more “real-world” programs by integrating a code slicer and cheaper pointer
analysis algorithms. It may also be inteieg to explore opportunities for deallocating
space using richer constructs thainee (exp). For exanple, using a newfree-list
construct for deallocating an entire list.

References

[1] O. Agesen, D. Detlefs, E. Moss, Gae collection and local variable type-precision and liveness in Java
virtual machines, in: SIGPLAN Conf. on Prog. Lang. Design and Impl., June 1998, ACM Press, 1998,
pp. 269-279.
[2] A. Aiken, M. Fahndrich, R. Levien, Better static mery management: Improvingegion-based analysis
of higher-order languages, inIGPLAN Conf. on Prog. Lang. Design and Impl., June 1995, ACM Press,
1995, pp. 174-185.
[3] A.W. Appel, Compiling with Continuations, CUP, 1992, pp. 205-214 (Chapter 16).
[4] T. Ball, S. Rajamani, SLIC: A Specification hguage for Interface Checking (of C), Technical Report
MSR-TR-2001-21, MSR, 2001.
[5] J.M. Barth, Shifting garbage collection atead to compile time, Commun. ACM 20 (7) (1977) 513-518.
[6] L. Birkedd, M. Tofte, M. Vejlstrup, From region infence to von Neumann machines via region
representation inference, in: Symp. on Princ. of Prog. Lang., ACM Press, 1996, pp. 171-183.
[7] B. Blanchet, Escape analysis for objemiented languages. application to J8ain: Conf. on Object-
Oriented Prog. Syst., Lang. and Appl., ACM Press, 1998, pp. 20-34.
[8] T. Colcombet, P. Fradet, Enforcing trace propertiy pogram transformation, in: Symp. on Princ. of Prog.
Lang., January 2000, ACM Press, 2000, pp. 54—66.
[9] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, $hawn, L. Hongjun, Bandera:xEacting finite-state
models from Java source code, in: Int. Conf. on Soft. Eng., June 2000, ACM Press, 2000, pp. 439-448.
[10] J.C. Corbett, M.B. Dwyer, J. Hatcliff, Robby, Adguage framework for expressing checkable properties of
dynamic software, in: Int. Spin Workshop on Modeléck. of Soft., in: Lec. Notes in Comp. Sci., vol. 1885,
Springer-Verlag, 2000, pp. 205-223.
[11] P. Cousot, R. Cousot, Systematic design of program analysis frameworks, in: Symp. on Princ. of Prog.
Lang., ACM Press, 1979, pp. 269-282.
[12] M. Das, S. Lerner, M. Seigle, ESP: Path-semsitirogram verification in polynomial time, in: SIGPLAN
Conf. on Prog. Lang. Design and Impl., June 2002, ACM Press, 2002, pp. 57-68.
[13] M. Emami, R. Ghiya, L. Hendren, Context-sensitivéeiprocedural points-to analysis in the presence of
function pointers, in: SIGPLAN Conf. on Prog. Lang. Design and Impl., ACM Press, 1994, pp. 242-256.
[14] J. Field, D. Goyal, G. Raalingam, E. Yaav, Typestate verification: Abstraction techniques and complexity
results, in: Proc. of SAS’03, June 2003, in: LNCS, vol. 2694, Springer, 2003, pp. 439-462.
[15] I. Foster, W. Winsborough, Copy avoidance througmpite-time analysis and local reuse, in: Proceedings
of International Logic Programmg Symposium, MIT Press, 1991, pp. 455-469.
[16] N. Hallenberg, M. Elsman, M. Taét Combining region inference and garbage collection, in: SIGPLAN
Conf. on Prog. Lang. Design and Impl., ACM Press, 2002, pp. 141-152.
[17] G.W. Hamilton, Compile-time garbage collectioor fazy functional languages, in: Memory Management,
International Workshop IWMM 95, in: Lec. Notes Comp. Sci., vol. 637, Springer-Verlag, 1995.
[18] M. Hirzel, A. Diwan, A.L. Hosking, On the usefulness of type and liveness accuracy for garbage collection
and leak detection, Trans. Prog. Lang. Syst. 24 (6) (2002) 593-624.

R.Shaham et al. / Science of Com@uProgramming 58 (2005) 264—-289 289

[19] G. Holzmann, The model checker SPIN, IEEE Trans. Softw. Eng. 23 (5) (1997) 279-294.

[20] S. Horwitz, P. Pfeiffer, T. RepdDependence analysis for pointer \abies, in: SIGPLAN Conf. on Prog.
Lang. Design and Impl., ACM Press, 1989, pp. 28—-40.

[21] K. Inoue, H. Seki, H. Yagi, Analysis of functionalggrams to detect run-time garbage cells, Trans. on Prog.
Lang. and Syst. 10 (4) (1988) 555-578.

[22] Java card 2.2 development kit. Availablehttp://java.sun.com/products/javacard

[23] R. Jones, Garbage Collection. Algorithms for Amatic Dynamic Memory Management, John Wiley and
Sons, 1999.

[24] T. Lev-Ami, T.W. Reps, R. Wilhelm, M. Sagiv, Putting static analysis to work for verification: A case study,
in: Int. Symp. on Soft. Testing and Anal., ACM Press, 2000, pp. 26—38.

[25] T. Lev-Ami, M. Sagiv, TVLA: A system for implemdimg static analyses, in: Static Analysis Symp., in:
Lec. Notes in Comp. Sci., vol. 1824, Springer-Verlag, 2000, pp. 280-301.

[26] Microsoft Research, The SLAM projedtitp://research.microsoft.com/slar2001.

[27] S. Muchnick, Advanced Compiler Designd Implementation, Morgan Kaufmann, 1997.

[28] Oberthur card systembttp://www.oberthurcs.com

[29] N. Rinetzky, M. Sagiv, Interprocedural shape Iggis for recursive programs, in: Int. Conf. on Comp.
Construct., in: Lec. Notes in Comp. Saiol. 2027, Springer-Verlag, 2001, pp. 133-149.

[30] J. Ross, M. Sagiv, Building a bridge between peinéliases and program dependences, in: European
Symp. on Prog., March 1998, in: Lec. Notes in Cor@pi., vol. 1381, Springer-Verlag, 1998, pp. 221-235.
Available athttp://www.math.tau.ac.il/~sagiv

[31] M. Sagiv, T. Reps, R. Wilhelm, Parametric shape analysis via 3-valued logic, Trans. Prog. Lang. and Syst.
24 (3) (2002) 217-298.

[32] F. Schneider, Enforceable seity policies, ACM Trans. Inform. Syst. Security 3 (1) (2000) 30-50.

[33] R. Shalam, Heap-liveness-based memory managemertenBal, tools, and algorithms, Ph.D. Thesis,
Tel Aviv University, 2004.

[34] R. Shaham, E.K. Kolodner, M. Sagiv, Automatic removal of array memory leaks in Java, in: Int. Conf. on
Comp. Construct., April 2000, in: Lec. Notes in Cpn$ci., vol. 1781, Springer-Verlag, 2000, pp. 50-66.

[35] R. Shaham, E.K. Kolodner, M. Sagiv, Heap profiling for space-efficient Java, in: SIGPLAN Conf. on Prog.
Lang. Design and Impl., ACM Press, 2001, pp. 104-113.

[36] R. Shaham, E.K. Kolodner, M. Sagiv, Estimating the impact of heap liveness information on space
consumption in Java, in: Int. Symp. on Mery Management, June 2002, ACM, 2002, pp. 171-182.

[37] M. Tofte, J.-P. Talpin, Implementation of the typeall-by-value lambda-calculus using a stack of regions,
in: Symp. on Princ. of Prog. Lang., January 1994, ACM Press, 1994, pp. 188-201.

[38] R. Vallée-Rai, L. Hendren, V. Sundaresan, E.&#&n, P. Co. Soot—a Java optimization framework, in:
Proceedings of CASCON 1999, 1999, pp. 125-135.

[39] E. Yahav, A. Pnueli, T. Reps, M. Sagiv, Efficient ifation of temporal heap pperties, Technical Report
339/04, Tel Aviv University, December 2003.

[40] E. Yahav, T. Reps, M. Sagiv, R. Wilhelm, Verifyingrhporal heap properties specified via evolution logic,
in: Proc. of the 12th European Symposium on Programming, ESOP 2003, April 2003, in: LNCS, vol. 2618,
2003.

http://java.sun.com/products/javacard
http://research.microsoft.com/slam/
http://www.oberthurcs.com
http://www.math.tau.ac.il/~sagiv

	Establishing local temporal heap safety properties with applications to compile-time memory management
	Introduction
	Local temporal heap safety properties
	Compile-time memory management properties
	A motivating example
	A framework for verifying heap safety properties
	Outline

	Specifying compile-time memory management properties via heap safety properties
	Free property
	Free property for the running example

	Instrumented concrete semantics
	Representing program configurations using first-order logical structures
	Operational semantics
	Object allocation
	Maintaining the use attribute
	Maintaining the refpt,x attribute
	Maintaining s[q] predicates

	An abstract semantics
	Abstract program configurations
	Embedding

	Abstract semantics

	Extensions
	Assign-null analysis
	Assign-null property for the running example

	Simultaneous verification of multiple properties

	Empirical results
	Implementation
	Benchmark programs
	Results

	Related work
	Advantages of integrated analysis

	Conclusion
	References

