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Abstract

Memory leaks – the existence of unused memory on the heap of applications – result in
low performance and may, in the worst case, cause applications to crash. The migration of
application logic to the client side of modern web applications and the use of JavaScript as
the main language for client-side development have made memory leaks in JavaScript an
issue for web applications. Significant portions of modern web applications are executed on
the client browser, with the server acting only as a data store. Client-side web applications
communicate with the server asynchronously, remaining on the same web page during their
lifetime. Thus, even minor memory leaks can eventually lead to excessive memory usage,
negatively affecting user-perceived response time and possibly causing page crashes. This
thesis demonstrates the existence of memory leaks in the client side of large and popular
web applications, and develops prototype tools to solve this problem.

The first approach taken to address memory leaks in web applications is to detect,
diagnose, and fix them during application development. This approach prevents such leaks
from happening by finding and removing their causes. To achieve this goal, this thesis
introduces LeakSpot, a tool that creates a runtime heap model of JavaScript applications
by modifying web-application code in a browser-agnostic way to record object allocations,
accesses, and references created on objects. LeakSpot reports the locations of the code
that are allocating leaked objects, i.e., leaky allocation sites. It also identifies accumulation
sites, which are the points in the program where references are created on objects but are
not removed, e.g., the points where objects are added to a data structure but are not
removed. To facilitate debugging and fixing the code, LeakSpot narrows down the space
that must be searched for finding the cause of the leaks in two ways: First, it refines the
list of leaky allocation sites and reports those allocation sites that are the main cause
of the leaks. In addition, for every leaked object, LeakSpot reports all the locations in
the program that create a reference to that object. To confirm its usefulness and efficacy
experimentally, LeakSpot is used to find and fix memory leaks in JavaScript benchmarks
and open-source web applications. In addition, the potential causes of the leaks in large
and popular web applications are identified. The performance overhead of LeakSpot in
large and popular web applications is also measured, which indirectly demonstrates the
scalability of LeakSpot.

The second approach taken to address memory leaks assumes memory leaks may still
be present after development. This approach aims to reduce the effects of leaked memory
during runtime and improve memory efficiency of web applications by removing the leaked
objects or early triggering of garbage collection, Using a new tool, MemRed. MemRed
automatically detects excessive use of memory during runtime and then takes actions to
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reduce memory usage. It detects the excessive use of memory by tracking the size of all
objects on the heap. If an error is detected, MemRed applies recovery actions to reduce the
overall size of the heap and hide the effects of excessive memory usage from users. MemRed
is implemented as an extension for the Chrome browser. Evaluation demonstrates the
effectiveness of MemRed in reducing memory usage of web applications.

In summary, the first tool provided in this thesis, LeakSpot, can be used by developers
in finding and fixing memory leaks in JavaScript Applications. Using both tools improves
the experience of web-application users.
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Chapter 1

Introduction

1.1 Problem Statement

In a garbage-collected language such as JavaScript, a memory leak means the existence of
objects on the heap of an application which are reachable from the garbage collection roots
but will not be used by the program anymore. Such memory leaks do not cause significant
problems for traditional web applications where pages are short-lived and most of the
events on the page lead to a new page load from the server; however, the characteristics
and complexity of modern web applications make memory leaks a problem [19, 39, 74].
Modern web applications, leveraging AJAX technology [104], communicate asynchronously
with the server to retrieve required data; as such, they often remain on the same page for a
long time without requiring a full page refresh or navigation to a new page. This situation
causes the leaked memory to accumulate over time, affecting the user-perceived response
time of the application [74] and possibly causing the program to fail. In the context of
browsers, they affect the response time of other web applications and the whole browser
system, too.

In summary, the growth in size and complexity of the client side of web applications,
the potential for leaked memory accumulation due to long-lived web applications, and
the consequences of memory leaks have motivated this research to focus on techniques to
improve the memory efficiency of web applications by focusing on the memory leaks. The
goal of this thesis is to demonstrate the extent of memory leaks in web applications and
the need to solve the memory leak problem on the client side of web applications. Based
on this need, the dissertation presents tool support to detect and fix memory leaks in web
applications during development, and to reduce the effects of memory leaks at runtime.
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These tools should help the developers of web application to reduce leakiness of applications
and the users of web applications to experience memory efficient and responsive systems.

1.2 Background

This section first briefly mentions the current work on memory leak detection and discusses
why those tools and techniques are not sufficient for detecting and diagnosing memory
leaks in JavaScript applications. Next, it discusses the current work on error detection and
recovery at runtime and explains why new solutions are needed for runtime management
of memory leaks on the client side of web applications.

As a type of memory bloat, a memory leak in a managed language occurs when ob-
ject references that are no longer needed are unnecessarily maintained, resulting in the
existence of unused objects on the heap. Since detecting leaked memory (unused objects)
is an undecidable problem [76], many of the current solutions use heuristics. Techniques
based on static analysis [74] can be used to attempt the detection of such leaks; however,
detection techniques based on static analysis are limited by the lack of scalable and precise
reference/heap modelling (a well-known deficiency of static analysis), reflection, scalability
for large programs, etc. Thus, in practice, identification of memory leaks is more often
attempted with techniques based on dynamic analysis [8, 48, 50, 68, 103, 107].

There are challenges and limitations in applying the tools and techniques developed
based on dynamic analysis to JavaScript applications. First, most of these tools are tuned
for a specific environment, such as Java/C++ programs, and cannot be used for JavaScript
applications. Second, some of these approaches [39, 74, 107], require upfront information
about the runtime behaviour of objects, which is not available in a dynamic typing language
such as JavaScript. Third, many approaches based on dynamic analysis [29, 8] report
allocation sites of the leaked objects; however, this information does not provide any insight
on how to fix the leaks: a) because the allocation site and the location of the code that
is causing the leak are in different parts of the application code [13], and b) existing
approaches report a list of allocation sites, which can be confusing for the developer,
because many allocation sites are related: for example, a leaky object may cause the
allocation of many other objects; existing approaches report all those other allocation sites
as leaky, in addition to the allocation site of the object that is the root cause of the leak.

With all the considerations in development mode, memory leaks may reach production
and result in runtime errors and poor user experience. Looking at the current approaches
for error detection and recovery during runtime, we realize that most current work focuses
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on the server-side [3, 10, 16, 26, 31, 46, 86]; however, we need new solutions on the client
side, as the differences between the client and server environments introduce many new
reliability challenges. First, in a client browser, there are several web applications running
simultaneously, and errors in one web application may have some effects on the other ap-
plications. Second, approaches on the server side are meant to help system administrators
who have more technical expertise than the ordinary user on the client side. Third, re-
sources may be limited on the client side, which demands a low overhead for any technique
taken for error detection and recovery at runtime. Finally, high interactivity on the client
side of web applications makes transparent recovery challenging. In addition, it prioritizes
user-perceived response time over throughput. Regarding the aforementioned differences
between client and server environment, we need a new solution to make the client side of
web applications dependable.

1.3 Solutions

This thesis consists of two parts. First, to address the lack of a general tool to detect mem-
ory leaks and guide developers to fix the leaks during the development phase of JavaScript
applications, it introduces LeakSpot. Second, to improve memory efficiency of web applica-
tions and reduce the effects of memory leak errors at runtime, it develops a prototype tool,
called MemRed. Figure 1.1 presents an overview of the solutions presented in this thesis.

1.3.1 Detection and Diagnosis of Memory Leaks

To find the causes of memory leaks during development of web applications and guide
developers to fix the memory leak errors easily and quickly, we have developed LeakSpot.
LeakSpot modifies the application code in a browser-agnostic way to make it possible to
monitor all object allocations, all accesses made to an object, and all code locations where
an object reference is created. LeakSpot reports the line numbers in the code that are
allocating leaked objects. It also identifies the code locations where references are created
to the objects but are not removed. To facilitate debugging and fixing, LeakSpot refines
the list of leaky allocation sites by finding related allocation sites, reporting those that are
the main cause of the leaks and removing those that are the side-effects of the allocation
sites causing the leaks. In addition, for every leaked object, LeakSpot points out all the
locations in the program where a reference is created to the object.

LeakSpot has several advantages over existing approaches for memory leak detection
and diagnosis. First, LeakSpot provides more information for the developer than previous

3



Object−Level Leak Detection Heap−Level Leak Detection

Diagnose and Fix Leaks

LeakSpot: Development Mode MemRed: Runtime Mode

Remove Leaks

Figure 1.1: Thesis Structure

approaches based on dynamic analysis [8, 50, 68, 107]. For every leaked object, LeakSpot
not only reports the allocation site and last-use site, but also reports all code locations
that create a reference to an object, which in turn keeps that object from being released.
This information helps developers to find and fix the leaks by narrowing down the search
space for finding the cause of the leaks. It shows not only where the leaked object is
created but also why that object is being leaked. Second, it refines the list of allocation
sites to distinguish real leaky allocation sites from those that are a side-effect of that
leaky allocation site. Finally, monitoring all the points in the program where references
are created allows finding the points in the program that accumulate objects without
requiring upfront information about the object names and behaviour. As mentioned by
Pienaar etal. [74], library data structures that hold references to objects are a common
cause of memory leaks in JavaScript applications [74].

Compared to existing tools and solutions [39, 74] for JavaScript, LeakSpot provides
more information and is not limited to specific libraries. First, the dynamic-analysis tech-
nique of LeakSpot makes it possible to know the type of objects during the leak-detection
process, so unlike LeakFinder [39], it does not need the name of container data structures
and does not rely on the annotations provided by the developer, as does JSWhiz [74]. In
addition, it detects a larger class of leaked objects compared to the specific cases that are
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addressed in LeakFinder or JSWhiz. Specifically, closure-related memory leaks [19, 91],
which are one of the causes of memory leaks in JavaScript applications, can be found using
LeakSpot.

We have used LeakSpot to find and fix memory leaks in JavaScript benchmark and
open-source web applications. In addition, we demonstrate the existence of memory leaks
in large and popular web applications and identify the potential causes of said leaks.
Moreover, we have measured the performance overhead of LeakSpot experimentally and
discussed how the approach taken in LeakSpot, along with the characteristics of JavaScript
applications, provides the opportunity to apply optimizations that make it possible to use
LeakSpot beyond the development stage.

1.3.2 Runtime Management of Memory Leaks

To improve the memory efficiency of web applications and reduce the effects of leaked
memory on application performance, we have developed MemRed. It is designed to work
by monitoring the memory usage of web applications and then analyze the collected data
to detect excessive memory usage that could indicate a memory leak. If the data analysis
indicates the existence of an error, MemRed applies recovery actions at an appropriate
time to hide the effects of memory leaks, such as poor response time and crashes, from the
user.

The prototype of MemRed is implemented as an extension for the Chrome browser [42].
Although the Chrome browser provides high reliability by executing each web application
within a separate process [77], there are several limitations to this approach. First, Chrome
loads a page made of several iframes into the same process so that objects within different
iframes are able to refer to each other; therefore, the iframes are not isolated [100]. Second,
there is a limitation on the number of processes that Chrome will create, which depends on
the available system resources. Upon reaching this limit, new pages share a process with
currently opened pages. Third, an application within a separate process may suffer from
errors or failures due to a bug in the application code, and process separation does not
help in such scenarios. Therefore, we need new mechanisms for improving the reliability
and availability of the client side of web applications. Our evaluation on MemRed shows
the effectiveness of recovery actions in lowering the memory usage of web applications.
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1.4 Contributions

In this thesis we make the following novel and significant contributions:

• We demonstrate the existence of memory leak in GMail application [82]. The memory
leak in GMail is later reported by Google [56]. We demonstrate memory leaks in
Facebook and Yahoo Mail, as well. To the best of our knowledge, we are the first
one to demonstrate the specific memory leaks in these applications.

• We develop a profiler for JavaScript applications that makes it possible to collect
data about object allocations, accesses, and references created on the objects during
the runtime of applications.

• We develop a tool, LeakSpot, for detection and diagnosis of memory leaks in JavaScript
applications. LeakSpot not only detects leaked objects, but also identifies the areas
of code for a developer to examine for removing the causes of the leaks. More specif-
ically, similar to previous work, LeakSpot reports leaky allocation sites and last-use
site of the leaked objects. In addition, LeakSpot reports: (a) the allocation-site
graph, which reduces the number of allocation sites to just those that are the likely
cause of the leak and/or are useful in finding the cause of the leak, (b) all the ac-
cumulation sites which are the points in the program where objects are kept alive
by unwanted references, e.g., from a library data structure (c) all the locations in
the code that a reference is created to the objects which is useful for finding the
unwanted references that prevent the leaked objects from being garbage collected.
This information guides the developer to fix the leaks quickly and easily.

• We evaluate LeakSpot on complex JavaScript benchmarks and open-source web ap-
plications, thereby demonstrating the effectiveness of LeakSpot in finding the leaks
and guiding the developer in fixing the memory leaks quickly and easily.

• We evaluate LeakSpot on large and popular web applications and point out the
potential locations in the code that are problematic.

• We develop MemRed [81, 82], a prototype tool for online detection of memory leaks
and recovery of the system from the effects of excessive memory use during web
application runtimes. The results of an empirical study on a real-world web applica-
tion as well as a benchmark application demonstrate the effectiveness of MemRed in
improving the memory use of web applications.
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1.5 Impact and Potential Impact

Using LeakSpot, we were able to find and easily fix two instances of memory leaks in
Octane benchmark [70], one of the most complex JavaScript benchmarks. The fix for one
of the memory leaks is already confirmed by developers of Octane and submitting the fix
for the second one is in progress.

Also, using LeakSpot we were able to find and fix two instances of memory leaks in
the TodoMVC [93] project, a set of open-source web applications that are created to help
developers in choosing the appropriate JavaScript library. We submitted patches for these
memory leaks and these fixes are already merged into the main repository of the project.
This experiment allowed us to test LeakSpot on many different JavaScript libraries.

In addition, LeakSpot is used to find memory leaks in large web applications such as
GMail. While this experiment demonstrated the scalability of LeakSpot, we could not fix
the leak since the obtained code is obfuscated and we do not have access to the unobfuscated
code; however, the fact that LeakSpot was able to guide us in fixing the memory leaks in
Octane benchmark and open-source web applications assures us that it would be useful
for other web applications. In the case of GMail the number of leaky allocation sites is
reduced to 6 which strongly suggests that it would be quick to check the relevant sites and
fix the leaks.

As the potential impacts of this work, LeakSpot facilitates developing leak-free appli-
cations by helping the developers of JavaScript applications find the causes of memory
leaks. Preventing leaks results in more memory efficient web applications, which, in turn,
results in applications with higher performance. In addition, the technique proposed for
managing leaks at runtime have the potential to improve user experience.

1.6 Overview of the Thesis

The rest of this thesis is organized as follows. It starts by discussing the background
and related work in Chapter 2. Then, it presents the implementation and evaluation of
LeakSpot, including the details of the profiler, in Chapter 3. Next, it explains the approach
that is taken for runtime management of memory leaks in Chapter 4. Finally, it concludes
in Chapter 5 by summarizing the thesis and describing future work.
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Chapter 2

Background and Related Work

This Chapter first provides the definitions and background information needed for full un-
derstanding of the thesis, including full description of the system, fault, and failure models.
Next, previous approaches for solving memory leaks are presented with the explanation of
their differences from and similarities to the work in this thesis.

2.1 System Model

The system model specifies the system under study. This section describes the system
model in this work, including its components and the motivations for choosing the specific
model.

This thesis focuses on the client side of modern web applications1. In recent years, the
architecture of web applications has changed tremendously, with the migration of large
parts of business logic from the server side to the client side [94]. As shown in Figure 2.1,
in modern web applications, large parts of the code are moved to the client side, where the
code is written in JavaScript and run in the browser. The main technologies on the client
side of modern web applications are:

• HTML and CSS: These technologies are used for information presentation and user-
interface development. Newer versions of HTML, such as HTML5 [99], provide the
opportunity to have rich user interface features in web applications.

1Also called AJAX (Asynchronous JavaScript and XML) applications, Rich Internet Applications
(RIA), or single-page web applications.
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(a) Traditional Web Application

(b) Modern Web Application

Figure 2.1: Architecture of traditional and modern web applications

• Document Object Model (DOM): DOM is a structural representation of the HTML.
It is structured as a tree, whose nodes are objects with properties and methods. The
client side of JavaScript applications is composed of JavaScript code embedded into
HTML pages. To interact with the pages and access and modify HTML documents
dynamically in JavaScript, DOM APIs are used. In typical browsers, the JavaScript
version of the DOM API is provided via the document host object. The methods
and properties supported in DOMs are defined in DOM specifications, i.e., documents
developed by W3C group2 to standardize access and manipulation of HTML and
XML objects.

• Asynchronous JavaScript and XML (AJAX): This technology is used to exchange
data between the client and server in an asynchronous way, while XML is used to
wrap data.

• Javascript: This is the main language used for browser development. Message han-
dlers or user-event handlers, which change the content or structure of a web page,
are implemented using JavaScript.

2The main international standard organization for the World Wide Web (WWW).
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The changes in the architectures and development technologies of web applications
have made modern web applications more responsive than traditional web applications,
so they are more like desktop applications: First, in modern web applications, computa-
tion has moved closer to the client, avoiding unnecessary network round-trips for frequent
user actions. Second, asynchronous communication between client and server as well as
modifications to a page using DOM APIs allow parts of the page to be updated, instead
of refreshing the whole page upon a change in part of the page. Finally, the existence
of a rich user interface in modern web applications makes users feel more like they are
working with a desktop application. Examples of modern web application are GMail [37]
and Google Docs [38], in which lots of application code is run on the client browser. GMail
allows the user to handle email through a browser and Google Docs allows the user to write
documents or use a spreadsheet through a browser.

Ideally, AJAX applications are independent of a specific operating system, virtual ma-
chine, plug-ins in the browser, or external programs installed in the user’s desktop com-
puter. These applications need only a modern browser with access to the Internet on
the client side; however, some aspects of the HTML and JavaScript environments are not
implemented consistently among browsers, so these applications are not completely in-
dependent of the browser in which they run [51]. To hide the cross-browser differences,
JavaScript libraries and frameworks [18, 36, 45, 49] are used for application development,
which can introduce some problems in the application, including memory leaks, as will be
discussed in Section 2.3.2.

2.1.1 Motivation

This section presents the motivation for working on the client side of web applications.
The changes in architecture and development technologies of web applications have made
the client side more complex compared to traditional web applications. Recent studies of
modern AJAX-based web applications indicate that front-end execution contributes 88%-
95% of execution time, depending on whether the browser cache is full or empty [53]. As the
client side has grown, so too has the need for mechanisms to improve the dependability of
the applications by improving the reliability and availability of the client side. In addition,
as users tend to keep their browsers open with many applications for a long time, an error
in one web application can affect the reliability and availability of the whole browser [77]
and the underlying system.
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2.2 Threats to System Dependability

Threats to system dependability are faults, errors, and failures [7]. A fault is a flaw in
the system that results in an error when activated. An error is the corruption of the
system state and a failure is a deviation in system behavior that can be observed by the
user. The system may misbehave but there is no failure as long as it does not generate
incorrect output. Figure 2.2 shows the relationship between faults, errors, and failures.
Symptoms are the side effects of errors in the system; e.g., the existence of memory leak in
one application (fault) can cause memory usage of the system to go up (sysmptom). The
following subsection presents the assumptions made about the faults and failures explored
in this thesis.
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Figure 2.2: Relationship between fault, error, and failure [83]

2.3 Fault Model

A fault model is the set of assumptions that a designer makes about the faults in a system.
Faults in software systems can be classified into Bohrbugs and Heisenbugs based on their
phase of creation [95]. Bohrbugs are permanent design faults that can be identified easily
and removed during the testing and debugging phase of the software life cycle. Bohrbugs
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are also referred to as deterministic faults since they result in repeatable failure. Heisen-
bugs are design faults which are activated rarely or are not easily reproducible. They are
extremely dependent on the operating environment, such as other programs, operating
system, and hardware resources. The occurrence of failures due to Heisenbugs cannot be
predicted. If a fault is activated in one run of the system, it may not be activated after a
system restart. Therefore, these faults result in transient failures.

Faults that result in software aging are labeled as aging-related faults [95]. Aging-
related faults can fall under Bohrbugs or Heisenbugs depending on whether the failure is
deterministic (repeatable) or transient. Software-aging faults degrade the system gradually
and may eventually result in crashes or poor response time [24]. Memory leaks, memory
fragmentation, storage-space fragmentation, and data corruption are some examples of
software-aging issues. Like any other software system, web applications are prone to dif-
ferent types of faults. This thesis focuses on memory leak faults. In the next section, the
definition of a memory leak used in this thesis will be specified in more detail.

2.3.1 Memory Leak

Memory leaks, that is gradual loss of memory, are a threat to the reliability of software
systems. They result in performance degradation and may cause the program to crash, in
the worst case. Memory leaks are mainly occurred because of the two following reasons [50,
13]:

• Lost pointers: losing all pointers to objects that the program forgets to free.

• Unnecessary references: keeping pointers to objects the program never uses again.

In languages with explicit memory management, such as C/C++, objects may be leaked
in both ways mentioned above; while, in managed languages, such as Java/JavaScript,
objects are leaked because they are kept alive by unnecessary references. In managed
languages, memory management is done automatically using garbage collection; therefor,
such memory leaks caused by lost pointers do not happen. The two most common garbage
collection techniques are:

• Reference-counting garbage collection: This algorithm considers an object as garbage
if no reference is pointing to it. An object is said to reference another object if the
former has an access to the latter, either implicitly or explicitly. For instance, a
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10 var div = document.createElement("div");
11 div.onclick = function(){
12 doSomething();
13 };

Figure 2.3: Example of a memory leak due to circular references

JavaScript object may have a reference to its prototype (an implicit reference) and
to its properties values (an explicit reference).

This algorithm has the limitation that if objects reference one another and form
a cycle, they may not be used anymore and yet not considered a garbage. For
example, Internet Explorer 6, 7 are known to have a reference-counting garbage
collector for DOM objects. For both, a common pattern is known to generate memory
leaks systematically. Figure 2.3 demonstrates this pattern of memory leak in which
a cycle is created between a DOM element and a JavaScript function. The div
variable (DOM object) has a reference to the event handler (JavaScript object) via
its onclick property. The handler also has a reference to div since the div variable
can be accessed within the function scope. The cycle created between div and the
handler function will cause both objects not to be garbage-collected, which results
in a memory leak. This pattern of memory leaks caused by the interaction between
DOM and JavaScript has already been solved by major browsers.

• Mark-and-sweep garbage collection: This algorithm assumes the knowledge of a set
of objects called roots, e.g., global variables or stack variables. The garbage collector
periodically starts from these roots and finds all the objects that are reachable from
the roots. The objects that are not reachable from the garbage collection roots are
garbage and are collected by the garbage collector. This algorithm works better than
the the reference-counting garbage collector since it removes cycles. For this approach
to work, the objects need to be made explicitly unreachable. If the programmer
forgets to remove some references, then unneeded memory remains alive on the heap,
resulting in a memory leak.

Thus, a memory leak in a garbage-collected language occurs when a program maintains
references to objects that it no longer needs, preventing the garbage collector from reclaim-
ing space. Having mentioned the different garbage collection techniques, the garbage is
next categorized into two types:
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Figure 2.4: Live objects and garbage on the heap

• Semantic garbage: Any object or data which will never be accessed by a running
program, for any combination of inputs to the program.

• Syntactic garbage: Objects or data within a program’s memory space that are un-
reachable from the program’s root sets.

Garbage collectors collect syntactic garbage but in this work we are interested in finding
semantic garbage. The semantic garbage is maintained on the heap by unwanted references.
Objects and/or data which are not syntactic garbage are said to be live. Figure 2.4 shows
the relationship between different types of garbage and live objects on the heap.

Detecting unused memory is undecidable The problem of precisely identifying un-
used memory is an undecidable problem [96, 105]. Consider a simple program as follows:

allocate an object X
run an arbitrary program P
use X

The above program uses X if and only if P finishes. Determining whether P finishes or not
would require the halting problem3 to be decidable. Since, we know the halting problem is

3 In computability theory, the halting problem is the problem of determining, from a description of
an arbitrary computer program and an input, whether the program will finish running or continue to run
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undecidable, we conclude that the problem of identifying unused memory is undecidable.

2.3.2 Examples of Memory Leaks

This section provides examples of memory leaks in JavaScript. The unnecessary refer-
ences that prevent an object from being released, and thus result in its being leaked, are
maintained because of programmer errors. Some characteristics of the language and devel-
opment environment may lead the developers to easily forget to remove references. Two
of the most common reasons for memory leaks in JavaScript are the data structures in the
JavaScript libraries and the closure variables that are widely used in JavaScript.

Library data structures As mentioned by Pienaar etal. [74], JavaScript libraries and
development environments [18, 36, 45, 49], which are mainly used to hide cross-browser
differences and to ease the development of large web applications, are one of the main
causes of memory leaks [74]. Figure 2.5 shows an example where leaked objects are re-
tained unintentionally by a container (a data structure in the library code) [39]. This is
the example code that the developers of LeakFinder [39] used to demonstrate how their
tool works. In this code snippet, objects handle2 and handle3 are leaks since they
are intended to be deleted by the programmer (set to null in lines 22 and 23), but are
retained live by the library data structure (goog.Disposable.instances_). These
objects are an instance of MyObj, which inherits from goog.Disposable. In its constructor,
good.Disposable assigns the objects to a container (lines 3 and 4).

JavaScript closures Another common cause of memory leaks in JavaScript involves
closures [25, 72]. JavaScript is a functional programming language and its functions are
closures, i.e., function objects get access to variables defined in their enclosing scope, even
when that scope is finished. Local variables captured by a closure are garbage collected once
the function they are defined in has finished and all functions defined inside their scope are
themselves garbage collected. Figure 2.6 shows a simplified example. The closure func-
tion, which is returned by ClosureGenerator, encloses closurevariable. Therefore
the memory allocated by closurevariable is not released as long as reference is
alive, even though closurevariable is not used by the closure function. Please note
that although the closurevariable is not used by the closure function, it is used
in the other function, leakgenerator. Since leakgenerator and closure share

forever.
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1 ------Library Code---------
2 goog.Disposable = function() {
3 goog.Disposable.instances_[goog.getUid(this)]
4 = this;
5 };
6 ------User Code------------
7 MyObj = function() {
8 goog.base(this);
9 }

10 goog.inherits(MyObj, goog.Disposable);
11 MyObjCreator = function() {}
12 MyObjCreator.prototype.Create = function() {
13 return new MyObj();
14 }
15 var creator = new MyObjCreator();
16
17 // Not a leak
18 var handle = creator.Create();
19
20 // Objects habdle2 and handle3 are leak
21 var handle2 = creator.Create();
22 var handle3 = creator.Create();
23 handle2 = null;
24 handle3 = null;

(a) Simplified code of memory leak

handle1

window

user codegoog

goog.Disposable.instances_

handle2handle3

(Library data structure)

(b) Heap view

Figure 2.5: Example of the memory leak used in LeakFinder
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1 function ClosureGenerator() {
2 var closurevariable;
3 function closure(){}
4 return closure;
5
6 function leakgenerator() {
7 var temp = closurevariable;
8 }
9 leakgenerator();

10 }
11 var reference = ClosureGenerator();

Figure 2.6: Example of a memory leak caused by closures in JavaScript

lexical scope, closurevariable is enclosed by both closure and leakgenerator.
if closurevariable were entirely unused, recent JavaScript engines would optimize it
out of existence. Since the objects that are bound to the closure may not be used at all, a
staleness-based heuristic is a good approach for finding memory leaks caused by closures.

2.4 Failure Model

The failure model specifies the assumptions about the system behaviour in case of fail-
ure [89]. The circumstances of when and how a fault causes a failure and the behaviour of
the failure determine what a system must do to tolerate the failure.

The work in this thesis focuses on crash failures and timing failures [6, 15]. A crash
failure happens when the system stops behaving correctly, e.g., a web application fails
to produce any output. A timing failure occurs when the system responds correctly but
in an unacceptable time; e.g., a web application fails to respond to a user request in
an acceptable time. Performance failures are regarded as timing failures. Memory leaks
caused by unnecessary references degrade the performance of an application by increasing
memory requirements and consequently garbage collector workload [50]. In addition, a
growing data structure with unused parts may cause the program to run out of memory
and crash. Even if a growing data structure is not a true leak, application reliability and
performance may suffer.
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2.5 Related Work

The work in this thesis builds on a large body of work on memory leak detection and
diagnosis in other programming languages. It also draws inspiration from work on error
detection and recovery on the server side of applications. This section presents the pre-
ceding work that is related to and that inspired the work in this thesis, highlighting the
similarities and differences.

2.5.1 Memory Bloat

Memory bloat is a more general problem than memory leaks and specifies the inefficient use
of memory in software systems. The work targeting memory bloat attempts to find, remove,
and prevent performance problems due to inefficient use of memory in the application [106].
Dufour etal. [21] assume temporary data structures as a source of inefficient memory usage
and propose a tool for identifying excessive use of temporary data structures. Mitchell et
al. [61] propose an approach for distinguishing effective from excessive use of memory by
making a health signature based on data from dozens of benchmarks and applications.
Unused objects remaining alive due to unwanted references are a special kind of memory
bloat that can be detected by LeakSpot.

2.5.2 Memory Leak Detection in Other Programming Languages

The memory leak problem has been addressed extensively in the context of other languages
such as Java/C++. Because of the limitations of static analysis, heuristics based on dy-
namic analysis are used. The different dynamic-analysis approaches use various techniques
such as heap growth [50, 60], heap analysis [39], object staleness [8, 29], or ownership
profiling [76] to determine leaked objects.

Leakbot [60] and Cork [50] are based on heap growth. Cork uses types whose number
of instances continue to grow to determine the leaky types in the application. It then
needs extra work by the developer to find the cause of the leak since knowing the types
of objects is not sufficient for finding the causes of the leaks. Leakbot works by analyzing
the heap to find a suspicious data structure and then tracks the specific region in the
data structure to find any growth. Since LeakSpot collects runtime information about
objects, it has detailed information that can be useful in locating the leaks. In addition,
LeakSpot could be slightly modified to find problematic data structures automatically by
monitoring patterns of reference creation Moreover, the approaches based on heap growth
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must be implemented at the JavaScript engine level, which makes the portability of these
approaches difficult.

Xu etal. [107] assume that specific data structures are causing the leaks and apply
heuristics to find those data structures. They monitor any addition and deletion to the data
structures used in the application by annotating the corresponding library functions. The
data structures for which objects are added but are not deleted are suspected of being leaky.
This approach cannot be applied in JavaScript since there is no prior knowledge about the
runtime behaviour of an object because of the dynamic typing in JavaScript. Although
LeakSpot does not find problematic data structures, it finds the problematic points in the
program, e.g., the points that objects are added to a problematic data structure.

Bell [8] and SWAT [29] report stale objects as leaked objects. They monitor object
allocations and accesses by instrumenting the Java virtual machine and report those objects
that have not been used for a long time as stale. LeakSpot borrows the idea of staleness-
based heuristics from Bell and SWAT, and makes it possible to use these techniques in
the context of JavaScript, but LeakSpot makes different design decisions. First, Bell [8]
and SWAT [29] encode allocation sites and last use sites in the object header, which limits
the amount of information that can be collected about an object; however, the code-level
instrumentation of LeakSpot makes it possible to record all the modifications and accesses
to objects. This detailed information guides developers in fixing the memory leaks quickly
and easily. Second, to reduce instrumentation overhead SWAT [29] uses adaptive profiling.
As a consequence, this approach does not record all accesses to an object, which can
result in false positive results; however, the different design decision of LeakSpot make it
possible to apply optimizations that reduce performance overhead without decreasing leak-
detection accuracy. Applying the optimizations makes it possible to use LeakSpot in an
online setting. In long-running applications, small leaks can take a long time to manifest.
Such bugs are notoriously difficult to find, so having an online tool would be helpful in
such cases.

The object ownership profiling [76] technique has been used to find memory leaks in
Java applications. This technique uses different information about an object such as its
size, allocation interval, active interval, method calls, and field accesses, as well as the heap
structure to find leaked objects. While this approach can accurately locate leaked objects,
the different categories of information used by the technique makes it more heavyweight
than LeakSpot.

Leakpoint [13] finds memory leaks in applications developed using C++ and proposes
fixes to the developers. To find memory leaks caused by lost pointers, Leakpoint tracks
the number of references created to objects or removed from the objects to determine the
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leaked objects. To find memory leaks caused by unwanted references, Leakpoint reports all
the objects that are not deallocated at the end of program execution. Monitoring reference
creation, removal, and object use make it possible for Leakpoint to propose fixes to the
developer. Similarly, LeakSpot guides the developer in fixing the leaks by monitoring
reference creations and modifications as well as accesses to the objects.

A series of tools have been developed [62, 63] to help in finding memory leaks in the
Firefox browser, an application developed using C++. For example, LeakGauge [62] is a
tool that can be used to detect certain kinds of leaks in Gecko [62]. It works by instru-
menting Gecko (which is developed in C++) and processing the generated log file to find
leaked DOM objects; however, the leaks found by LeakGauge are the leaks that are caused
by the browser, an application developed in C++. These are not JavaScript memory leaks.

2.5.3 Memory Leak Detection in JavaScript

In the context of JavaScript, JSWhiz [48], which is an approach based on static analysis,
has been proposed. JSWhiz is based on the assumption that objects are allocated and
deallocated manually. This assumption does not hold in general for JavaScript, which
manages memory automatically using garbage collection. JSWhiz addresses programming
environments where object allocations and deletions are done explicitly using library func-
tions such as the Closure library [36]. In these cases, objects should be explicitly removed,
and a failure to do so results in a memory leak. JSWhiz relies on annotations provided by
the programmer to infer object types. LeakSpot works more generally based on standard
methods of object allocation, access, and reference creation in JavaScript. Unlike JSWhiz,
LeakSpot does not require any specific action during code development, i.e., a code an-
notated with types information. In addition, it does not rely on specific mechanisms for
object allocation and deallocation.

LeakFinder [39], which is a tool for finding memory leaks in JavaScript applications,
works by analyzing the heap of applications. It is based on the assumption that leaked
objects are retained only by library data structures. An object is said to be leaked if
all the paths from roots to the object go through the library data structures. Having
the heap graph of the application as well as the name of those library data structures, it
traverses the heap graph of the application to find leaked objects, i.e., objects that that are
retained only from the specific data structures. This approach assumes knowledge of the
name of the suspected data structure in the library whereas LeakSpot can automatically
find suspected points in the program that objects are added to the data structures. In
addition, LeakFinder does not report the location of the leaked objects in the code.
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Tools like Chrome Developer Tools [34] provide a good view of the objects on the heap,
but they cannot be used for finding the causes of the leaks. Approaches like three-way
heap snapshots [74] can be used for finding the leaked objects under a specific scenario,
without pointing out the causes of the leaks; however, LeakSpot can automatically find
the leaked objects and point to the locations in the code that are causing the leaks.

There are a large number of tools for profiling Node.js applications [28]. These tools
provide the same profiling data for Node.js [43] applications that Chrome Developer Tools
provide for browser applications. While these tools provide a good view of the heap, they
have the same limitations as Chrome developer tools. They need intensive work by the
developers to find the cause of the leaks.

2.5.4 Web Application Profiling

To monitor web applications, Richards etal. [79] instrument the Javascript engine of Safari
and collect data consisting of read and write activities on objects. These data are not
enough for detecting memory leaks in web applications since they do not contain lifetime
of the objects. In addition, this technique is limited to a specific browser and JavaScript
engine.

Kiciman etal. [51] have developed a framework for profiling web applications through
a proxy called AjaxScope. This tool is not available online. AjaxScope [51] instruments
Javascript code before sending it to the client. The instrumented code running on the client
browser sends data about application states and user interactions to the proxy, which ana-
lyzes the data and sends the report back to the server upon detecting an error. The authors
have discussed the potential of their tool, AjaxScope, for memory leak detection; however,
they only discussed a specific kind of leak that happens because of circular references, a
situation that has been resolved in many browsers. In this work, in addition to developing
the proxy-based profiler, we provide modifications that allow us to collect a rich set of
runtime data that is useful for detecting and diagnosing memory leaks.

JavaScript instrumentation has been done for different purposes such as program anal-
ysis [85] or record and replay of web applications [78], and has inspired the specific instru-
mentation for memory leak detection in LeakSpot.

2.5.5 Runtime Error Detection and Recovery

The goal of runtime management of errors is to make the web applications dependable
by making them capable of detecting errors (predicting failure) and then taking action
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to return the system to a healthy state automatically. In particular, we need tools for
detecting excessive memory usage and taking action to remove its effects.

To predict failures, prior work on the server side has learned and modelled system
behaviour based on system metric data or failure data. The models are then used during
runtime to detect errors or predict failures. Grottke etal. [26] modelled system behaviour
while the server is under artificial workload and then used this model at runtime to predict
system failures. Alonso etal. [3] collected failure data and then used machine-learning
techniques to estimate time-to-failure of a web server. These approaches cannot be used for
failure prediction on the client side of web applications, where many different applications
are running inside the browser and modelling the behaviour of one specific application is
not useful.

Web applications are subjected to different types of failures. Functional errors in web
applications have been studied by Ocariza etal. [69]. They categorize errors in Javascript-
based web applications and study the correlation between application properties and failure
frequencies. Failures due to security bugs have been studied in the past [27]. To diagnose
errors, Mugshot [58] and WaRR [4] record events on a Javascript page and replay them
after failure to find the causes of the failures. In this thesis, we focus on excessive memory
usage due to memory leaks that degrade software systems gradually and result in poor
response times or crashes.

To return the system to a healthy state, we need to apply recovery actions. The strategy
for recovery adopted in this work is based on recovery-oriented computing [73], which tries
to minimize the mean-time-to-recovery. This approach is in contrast to traditional fault-
tolerant systems that focus on minimizing the mean-time-to-failure by redesigning the
system. More specifically, instead of changing the browser or web applications to make
the client side of web applications fault-tolerant, our goal is to make the web applications
capable of recovering from failures automatically. Software rejuvenation [10, 11, 14, 31],
which involves rebooting the whole or part of a system periodically to clean its state,
has been used before. It inspired us to use similar recovery actions for web applications.
The important point is that we need finer-grain actions on the client side. For example,
machine reboot is a reasonable recovery action on the server [46] because it will have
little effect on system throughput if it can take advantage of replication; however, machine
reboot is not an appropriate recovery action on the client since we have only one machine.
In Microreboot [10], the authors proposed to reboot a part of the system; however, to
achieve this goal, they had to change the application server architecture, which limits their
approach to custom applications. In the browser environment, we can leverage the browser
structure to implement recovery actions that reboot a specific part of the system.
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Chapter 3

Detection and Diagnosis of Memory
Leaks in JavaScript Applications

This chapter presents the design, implementation, and evaluation of LeakSpot, a tool
developed to address memory leaks during development of JavaScript applications. It starts
by explaining a running example that will be used throughout this chapter to describe
different aspects of LeakSpot. This example is a memory leak in an open-source web
application that was found and fixed using LeakSpot.

3.1 Running Example

This section describes a memory leak example that was found and fixed in the Todo-
Dojo [93] application1. This application was developed using the Model-View-Controller
(MVC) concept in the the Dojo library [18]. Todo-Dojo is part of the TodoMVC [93]
project, in which the same application is developed using the MVC concept with different
JavaScript libraries. The leak discussed here happens when we repeatedly add Todo tasks
to the list and then remove them.

Figures 3.1 and 3.2 show simplified versions of the code required to understand the
memory leak in the Todo-Dojo application, including the relevant parts of the Dojo library
in Figure 3.1 and the developer code in Figure 3.2. To make it easier to refer to lines of
code in the library and developer code, the line numbers in the two figures do not overlap.
Therefore, when referring to a part of the code, only a line number is used.

1We sent the fixes to the developer and they changed the repository accordingly.
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10 // dijit.registry module
11 define([array, window], function (array, win) {
12 var hash = {};
13 var registry = {
14 add: function(widget){
15 hash[widget.id] = widget;
16 this.length++;
17 },
18 remove: function(id) {
19 delete hash[id];
20 this.length--;
21 }
22 }
23 //_WidgetBase Module
24 define([], function() {
25 var _WidgetBase = declare("dijit._WidgetBase", [], {
26 id: "",
27 create: function() {
28 registry.add(this);
29 },
30 destroy: function() {
31 registry.remove(this.id);
32 }
33 });
34 return _WidgetBase
35 });

Figure 3.1: Simplified code of the memory leak in Todo-Dojo application: library code
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40 //app.html
41 <ul id="todo-list" data-dojo-type="todo/TodoList"
42 data-dojo-props="children: at(${id}_listCtrl, "model")"
43 data-mvc-child-props="uniqueId: at(this.target, "uniqueId")"
44 </ul>
45
46 //CssToggleWidget Module
47 define([_WidgetBase], function( _WidgetBase) {
48 return declare(_WidgetBase, {
49 ...
50 });
51 });
52 //TodoList Module
53 define([CssToggleWidget, WidgetList], function (WidgetList, CssToggleWidget) {
54 return declare([WidgetList,...], {
55 childClz: declare([CssToggleWidget,..], {
56 onRemoveClick: function(){
57 this.parent.listCtrl.removeItem(this.uniqueId);
58 this.destroy(); //To fix the leak
59 }
60 });
61 });
62 });
63 //TodoListRefController Module
64 define([ModelRefController], function( ModelRefController) {
65 return declare(ModelRefController, {
66 addItem: function(title) {
67 this[this._refModelProp].push(new Stateful({title: title, completed: 'false'}));
68 },
69 removeItem: function(uniqueId) {
70 var model = this[this._refModelProp];
71 var index = find_the_index_to_be_removed(uniqueId);
72 this[this._refModelProp].splice(index, 1);
73 });
74 });

Figure 3.2: Simplified code of the memory leak in Todo-Dojo application: developer code

27



Whenever a task is added to a list, one item is added to the data model (line 67).
Also, an object of type TodoList (line 53 defines TodoList) is created and added to
the list of widgets (user interface components representing the task) on the page (lines
41-43). The TodoList module inherits the CssToggleWidget module which inherits
the _WidgetBase module. Therefore, whenever a task is added to the list, an object of
type _WidgetBase is created and a reference to the object is created from the hash data
structure in the dijit.registry module (line 15 creates the reference). Whenever a
task is removed from the list, the item is removed from the model list (line 72), while the
corresponding widget from the registry is not removed, causing the leak. To fix this leak,
the developer needs to remove the TodoList widget by calling the destroy function
(this is added at line 58 of the code). When called, the destroy function calls the remove
function (line 18) which removes the reference from the hash data structure (lines 19 and
20).

For this example leak, LeakSpot returned 10 leaky allocation sites, one of them the
allocation site in line 67 and the others at various locations in the library code. In addition,
LeakSpot reported 11 reference sites, one of them is the reference created at line 15. Having
this information helped us to fix this leak quickly and easily. We did not have any prior
knowledge about the Todo-Dojo application.

Figure 3.3 shows a simplified view of the memory leak on the heap of the application.
Whenever a task is added, two objects are created: T* and M*, e.g., T1 and M1, and two
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Figure 3.3: Heap view of the memory leak in Todo-Dojo web application
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references are created for each object: one from ModelList (line 67 in Figure 3.2) and one
from the hash data structure (line 15 in Figure 3.1); however, whenever a task is removed,
only the reference from ModelList to M* is removed (line 57 in Figure 3.2). The reference
from dijit.registry.hash to T* is not removed, thereby preventing the objects from
being released, e.g T2, M2, T3, and M3, which are leaked. This example demonstrates
the type of leak that garbage collection cannot handle, since garbage collection collects
only unreachable objects, whereas the unused objects here (T2, M2, T3, and M3) are
reachable from garbage collection roots (window). Since determining the unused objects
is an undecidable problem [76], all the solutions resort to heuristics.

This example is a good representative of the type of memory leaks that are common
in JavaScript applications, i.e., memory leaks caused by unwanted references. It is similar
to the synthetic example that the authors of LeakFinder [39] used to demonstrate the
effectiveness of their tool, as mentioned in Chapter 2; however, to find such a leak, Leak-
Finder needs the name of the library data structure (e.g., dijit.registry.hash). In
addition, LeakFinder does not point to the locations in the code that allocate the leaked
objects or create references to the leaked objects. It only identifies leaked objects on the
heap, i.e., it reports objects T2, T3, M2, and M3 as leaks. It requires extra effort by the
developer to find the relevant location in the code. JSWhiz does not work for this example,
as it works only for the code developed using the Closure library [36]. In addition, this
example demonstrates that LeakSpot does not rely on any specific mechanism for object
allocation. The leaked objects in the example are allocated using a mechanism specific to
the Dojo library. The TodoList objects are allocated by setting specific properties of
an HTML element, e.g., data-dojo-type and data-dojo-props in lines 41 to 43 in
Figure 3.2, which is a mechanism specific to the Dojo library. This example demonstrates
that LeakSpot does not rely on any specific mechanism of object allocation, unlike JSWhiz,
and can work in general.

3.2 System Overview

LeakSpot is composed of three main components: Profiler, Logger, and Leak Reporter, as
shown in Figure 3.4. Profiler modifies the web application code to make it possible to
monitor all allocations, accesses made to the objects, and references created on objects.
The modified code, which is generated in the proxy, is sent to the client browser, along with
a profiler library that contains the definitions and implementations of logging functions.
The Logger records all the profiling data at runtime and sends the records back to the
proxy periodically. Leak Reporter analyzes the profiling data to find those parts of the
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Figure 3.4: LeakSpot architecture

program that are generating leaked objects. The proxy is meant to sit anywhere between
the client and the server. In cases in which the the developer has access to the server
side, placing the proxy on the server side reduces performance overhead, as discussed in
section 3.6.5. In the following, the components of LeakSpot are explained in more detail.

3.2.1 Profiler

Profiler modifies the code by intercepting object allocations, accesses, and reference cre-
ations in the code. Instrumenting the code provides a mapping between objects on the heap
and the location in the code and the time during execution they are allocated, accessed,
modified, or referenced. As shown in Figure 3.4, to instrument the JavaScript code, the
profiler parses the code to generate the Abstract Syntax Tree (AST). It then traverses the
AST and inserts required changes. Finally, it generates the new code from the modified
AST.

Dynamically Generated Code In JavaScript, code may be generated during runtime,
e.g., in the eval function. The dynamically generated code is not modified by the proxy
in the first pass; therefore, it is sent to the proxy to be modified during runtime. The eval
function is wrapped, so that it sends the code to the proxy and waits for the modified code,
before executing it. The functionality needed to wrap the eval function is included in the
profiler library.
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3.3 Logger

To make the modified code run flawlessly in the browser, the proxy injects the profiler
library into every HTML page/iframe. The profiler library provides several logging func-
tions. A logging function takes as its parameter the object, its properties (if applicable),
and the line number of the code where the action was performed on the object. When
executed, a logging function assigns a unique id to the object, if an id has not been as-
signed before. The id is assigned to the object by dynamically adding a property named
__objectID__ to the object. The id is added as a non-enumerable property so that it
is not visible to the code during execution, i.e., when iterating through the properties of
an object, the id is not seen as a property. The assigned object id will be used in the Leak
Reporter to track all activities on the object.

Following its execution, the logger function inserts the profiling data into a memory
buffer. Each record of the profiling data is composed of three main pieces of information:
first, the location id (LN), which specifies the line number in the code where the action has
taken place; second, the type of action on the object, i.e., whether an object is allocated,
accessed, modified, or has a reference created on it; finally, the id that is assigned to the
object by the Logger. The Logger periodically sends the profiling data to the proxy.

3.4 Leak Reporter

To determine leaked objects, LeakSpot first makes a heap model based on the profiling
data. Then it applies heuristics to find leaked objects and subsequently, the locations of the
code that are allocating the leaked objects or preventing the objects from being released.
A more-detailed description of how LeakSpot determines leaked objects follows.

3.4.1 Heap Model

To keep track of the object allocations, accesses, and references created on an object,
LeakSpot creates a heap model based on the profiling data. Data structures used in the
proxy to keep the heap model are shown in Figure 3.5. The heap model implements three
interfaces: ObjectAllocated, ObjectAccessed, and ReferenceCreated. Upon receiving a log
record indicating that an object is allocated, the function implementing the ObjectAllo-
cated interface is called, which creates an object descriptor and saves the information about
the object into a map data structure, ObjectRecencyMap, as shown in Figure 3.5. This
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Figure 3.5: Data structures in Leak Reporter

data structure maps an objectID to the object descriptor, where the objectID is the id
assigned to the object by the logger and the descriptor contains all the information about
the object.

The function implementing the ObjectAccessed interface is called when the log record
indicates that an object has been accessed and the function implementing the Reference-
Created interface is called when a reference is created on an object. These functions update
the object descriptor or create a descriptor, if one has not been created before.

Another data structure used for making the heap model is LivenessMap, as shown
in Figure 3.5. The purpose of LeakSpot is to find those leaked objects that cannot be
collected by garbage collection; however, the profiling data received from the client consist
of information about all the objects that are created and used during program execution,
i.e, both reachable objects (live objects) and unreachable objects (garbage). Therefore,
LeakSpot determines the live objects and uses the LivenessMap data structure to store
the liveness information. In Section 3.5.3 we will describe the process of determining live
objects.
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3.4.2 Determining Leaked Objects

This section describes the heuristics that LeakSpot uses to determine leaked objects and,
consequently, specify those parts of the code that are allocating leaked objects or main-
taining unwanted references to objects. In the following, the heuristics are described in
more detail. Before going further, few definitions are provided.

Object staleness: This term refers to the length of time since the last access to an
object. The staleness of an object, Staleness(O), is computed as follows:

Staleness(O) = TR − TLA(O)

where TR is the time of report generation and TLA(O) denotes the time of last access to the
object. Time is measured by the number of allocation or access events. In other words,
every call to a logging function that records allocations of objects or accesses to objects
advances the time. Since web applications are interactive, using this definition for time
helps reduce inaccuracy when the web application is idle [29]. Figure 3.6 visualize the
staleness for an object, Staleness(O), along with other timing information related to an
object such as lifetime, last access time, and so on.

Collective staleness: This term describes a staleness summary for a set of objects.
Inspired by the work of Novark etal. [68], the collective staleness is defined to be the
cumulative distribution function (CDF) for the staleness of the objects. To compute the
collective staleness for a set of objects, LeakSpot first computes the relative staleness of
each object. The relative staleness for each object is computed by normalizing the staleness
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value for the object to the maximum staleness value for all the objects on the heap. In
other words, the relative staleness of object O is computed as follows:

RelativeStaleness(O) =
TR − TLA(O)

MaxStaleness + 1
where maximum staleness is computed as follows:

MaxStaleness = Maximum {Staleness(O)} ∀O ∈ Heap

where Heap is the set of all objects on the heap according to the profiling data.

The collective staleness for a set of objects, SL ⊂ Heap, is the CDF (Cumulative
Distribution Function) of the relative staleness values for objects in the set. In other
words,

CollectiveStaleness(SL) = CDF {RelativeStaleness(Oi)} ∀Oi ∈ SL

where
SL = {O1, O2, O3, . . . , Oi, . . .} ⊂ Heap

L could refer to an allocation site or reference site and, hence, SL refers to the set of objects
allocated at allocation site L or the set of objects referenced at reference site L.

Time Count: For a set of objects, it is a graph showing the number of objects added to
the set over time, e.g., the number of objects allocated at an allocation site or the number
of objects referenced at a reference site over time.

To find leaked objects and the leaky locations in the code, LeakSpot groups objects
based on their allocation sites or reference sites and, consequently, determines whether the
group of objects are leaked or not. The SiteMap data structure shown in Figure 3.5 is
used for categorizing objects; it maps every allocation site or reference site to the set of
objects allocated or referenced at that site. More specifically, LeakSpot uses the following
two heuristics to determine leaked objects and leaky locations in the code:

• Allocation-Sites Heuristic (ASH): This heuristic finds the locations in the pro-
gram that allocate stale objects. To achieve this goal, it groups objects based on
the location in the code that they are allocated, i.e., their allocation site. It then
generates the collective-staleness and time-count graphs for each group of objects.
If a collective-staleness graph indicates a leak, i.e., the collective staleness graph is
diagonal, or if a time-count graph indicates a leak, i.e., the corresponding graph has
positive slope, the corresponding group of objects are reported to be leaked and the
corresponding allocation-site is reported to be leaky.
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Figure 3.7: Examples of collective-staleness and time-count graphs

• Reference-Sites Heuristic (RSH): This heuristic categorizes objects based on
the locations where a reference is created to them. It then computes the collective-
staleness and time-count graphs for the set of objects to determine whether the
corresponding reference site is leaky or not. In this way, LeakSpot can identify
those locations in the program that accumulate objects. This heuristic is especially
useful for finding objects that are no longer used but are alive because of unwanted
references from library data structures. As mentioned by Pienaar etal. [74], data
structures are one of the common causes of memory leaks in JavaScript.

Figure 3.7(a) shows the collective-staleness graph for several allocation/reference sites
that are leaky or not leaky. The graph corresponding to L15, which is close to a diagonal
line, denotes a leak that increases steadily over time. L15 is the reference creation point
in Dojo library, line 15 in Figure 3.1. The graph corresponding to L3 indicates that L3
is a leaky allocation site. L3 is an allocation site in the code-load.js test case as shown in
Figure 3.8.

Figure 3.7(b) shows the time-count graphs for the corresponding sites in Figure 3.7(a).
As can be seen, the collective-staleness graphs and time-count graphs provide similar in-
formation. This similarity is due to the use of relative staleness values in generating the
collective-staleness graphs, which provide a view of the time during the execution of an
application that objects are allocated or a reference is created on them. For example, L11
is an allocation site in the Box2d test case where objects are not stale. From the corre-
sponding time-count graph in Figure 3.7(b), it is clear that objects are allocated close to
the end of the execution.

The only difference between the collective-staleness and time-count graphs in Figure 3.7
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is the presence of allocation site L17 in Figure 3.7(b), which represents a leaky allocation
site in the pdf.js test case of Octane benchmark, i.e., line 17 in Figure 3.14. This memory
leak is due to a log buffer that is accessed for debugging purposes at the end of the execution
of the pdf.js program, i.e., in the tearDownPdfJS function in lines 41 to 48 in Figure 3.14.
The memory leak occurs because the log buffer is not emptied at the end of one run of
the program. Since all the objects inside the log buffer are touched in the for loop at the
end of one run, the staleness values of all the objects in the buffer are reset. Therefore, an
approach based on staleness cannot be used for detecting these leaked objects.

This difference in the graphs and the shortcoming of collective-staleness graph reflects
a limitation of the staleness-based heuristics [50]. For example, data structures such as
arrays and hash tables occasionally touch all the objects, e.g., in a re-hash of the table,
which results in false negatives in staleness-based techniques.

3.4.3 Finding Related Leaky Allocation Sites

This section presents the technique LeakSpot uses for refining the list of reported leaky
allocation sites. This refinement reduces the number of reported leaky allocation sites to
those that are the main causes of the leaks, thus enabling a developer to fix the memory
leaks faster.

Although reporting leaky allocation sites is useful, in many cases, allocation sites are
related. Allocating an object, e.g., object O, may result in the allocation of many other
objects. Therefore, if the allocation site of object O is reported to generate leaked objects,
all the other allocation sites are reported as leaky.

To take advantage of the aforementioned relation and provide more visibility for the
cause of a leak, LeakSpot makes a graph based on all the allocation sites and their cor-
responding relations. Every node in this graph represents a leaky allocation site and an
edge from node X to node Y means that the object allocated at allocation site X has a
reference to the object allocated at allocation site Y. The label on an edge indicates where
in the code the reference is created, i.e, the line number in the code. Having the graph
of allocation sites, LeakSpot refines allocation sites by removing nodes from the graph: a
node X is removed if all the objects allocated at allocation site X are being referenced
only by the objects allocated in one of the allocation sites inside the graph. In other words,
if the reference-bearing allocation sites are outside the graph, we do not remove X. The
obtained graph is visualized using visjs [9], which provides more insight to developers about
the causes of leaks.
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1 function runClosure() {
2 ( function() {
3 var src = " var googS = {};
4 googS.addDependency =
5 function (a, b, c) {}
6 googS.exportPath_ =
7 function (a, b, c) {}";
8 ...
9 ...

10 var result = eval(src);
11 //To fix the leak
12 eval("googS = {}");
13 })();
14 }

(a) Simplified code of the memory leak

L3

L6 L4

L5
L7

(b) Allocation-sites graph. LN cor-
responds to line number N in the
code. L3 is the allocation site in
line 3 where googS object is cre-
ated, L5 is the allocation site in line
5 where a function is allocated, and
so on.

Figure 3.8: Memory leak in the code-load test case

Figure 3.8 shows a simplified version of the memory leak in the code-load test case.
It also shows the simplified allocation-site graph. As can be seen, objects allocated at
allocation site L3, which is the main cause of the leak, keep objects allocated at allocation
sites L7 and L5 alive; therefore L5 and L7 are reported as leaky allocation sites. After
applying the above-mentioned refinement, one allocation site remains, i.e., L3, which is the
main cause of the leak.

Please note that the list of reported reference sites can be refined by keeping only those
sites that refer to the objects allocated in one of the refined allocation sites. This technique
of refining leaky allocation sites has been possible by monitoring reference creation points
as well as object modifications to know which object is creating the reference. In the case
of context references, LeakSpot monitors only the points where a reference is created, and
do not monitor the object function that is creating the reference. Monitoring the objects
creating context references is left for future work.
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3.5 Implementation

This section describes the implementation of the individual components of LeakSpot. The
proxy in LeakSpot is implemented in Node.js [43]. It intercepts all the messages between
the client and the server, over both HTTP and HTTPS connections; the HTTPS con-
nections are handled by implementing a man-in-the-middle (MITM) proxy, and the SSL
certificate issues are addressed by making the certificate authority known to the browser
and using multi-domain certificates. The details of the proxy implementation are provided
in Appendix A.

3.5.1 AST Modifications

The profiler uses the Esprima library [30] to generate the AST and uses the Escodegen
library [88] to generate code from the modified AST. Figure 3.9 shows a graphical repre-
sentation of the AST of a simple JavaScript statement as well as the same AST in JSON
format. The generated AST is compatible with the Mozilla JavaScript parser API [66]. Ta-
ble 3.1 provides the list of node types that are modified by LeakSpot, along with examples.
In this table, $ denotes the profiler library. For presentation simplicity, only one applicable
instrumentation for each statement is shown. The modifications that are performed on an
AST are described in the following.

Object allocations: As shown in Table 3.1, to make the code capable of monitoring
object allocations at runtime, six types of AST nodes are modified: NewExpression,
to monitor allocating objects by calling function constructors; ArrayExpression and
ObjectExpression to monitor object allocations by object literals and array literals;
FunctionDeclaration and FunctionExpression to monitor allocation of objects
by function declaration, since in JavaScript declaring a function allocates a callable object;
and CallExpression to handle the cases in which objects are allocated by calling specific
functions such as Object.create.

Object accesses and modifications: Objects are accessed by reading the value of a
variable or object properties. In addition, objects are modified when a value is written
to the object. To monitor accesses and modifications, CallExpression is modified
to intercept accesses to the functions, Identifier is modified to monitor reading of
variables, and MemberExpression is modified to monitor when an object property or
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(a) Tree representation

{
"type": "Program",
"body": [
{
"type": "ExpressionStatement",
"expression": {
"type": "AssignmentExpression",
"operator": "=",
"left": {
"type": "Identifier",
"name": "a"

},
"right": {
"type": "Literal",
"value": 1,
"raw": "1"

}
}
}
]
}

(b) JSON format

Figure 3.9: AST of a simple JavaScript statement: a=1
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var qa="createElement";
var c=J[qa]("script");
c.type="text/javascript";
c.async=!0;c.src=a;c.id=b;
var d=J.getElementsByTagName("script")[0]

Figure 3.10: Dynamic aliasing in the JavaScript code of Twitter

gbar_.S=function(a,c)
{var d=c||window.document,e=null;
d.querySelectorAll&&d.querySelector?e=d.querySelector("."+a):e=fe(a,c)[0];
return e||null};

Figure 3.11: Dynamic aliasing in the JavaScript code of GMail

element is being read. The nodes that are needed to monitor object modifications are
listed in Table 3.1.

Reference creations: There are three types of references in the JavaScript heap: a
Property reference created when an object is assigned as the property of another object
or added to a map data structure, an element reference created when an object is added
to an array, and a context reference created implicitly between a function object and a
variable defined in its enclosing scope. To modify the code so as to make it possible
to monitor reference creations during runtime, four types of nodes in the AST are modi-
fied: AssignmentExpression (MemberExpression), to monitor the location in the
program where a property or element reference is created; AssignmentExpression-
(Identifier) and VariableDeclaration, to monitor those locations in the pro-
gram where a context reference is created; and CallExpression, to handle the cases
where a reference is created between two objects by calling specific functions such as
Array.push

3.5.2 Handling Dynamic Aliases in JavaScript

Because of dynamic aliasing in JavaScript, any function call could potentially be a call
to a function that allocates an object, or create references between objects. The code
snippet in Figure 3.10 shows an example of dynamic aliasing in the JavaScript code of
Twitter, where J[qa] is equivalent to document[createElement]. Another example
of dynamic aliasing in GMail code is shown in Figure 3.11.
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Function name and arguments

3 logFuncCall(LN, func)

3 logNewFunction(LN, func)

3 logGetFieldDot(LN, object, propertyname)

3 logGetFieldBracket(LN, object, propertyname)

3 logMethodCall(LN, object, methodname)

3 logNewObject(LN, object)

3 3 logPutFieldDot(LN, object, propertyname)

3 3 logPutFielBracket(LN, object, propertyname)

3 3 logRightSidePutBracket(LN, object)

3 3 logRightSidePutDot(LN, object)

3 logRead(LN, object)

3 logVarDeclaration(LN, object)

3 3 logWrite(LN, leftObject, rightObject)

Table 3.2: The logging functions defined in the profiler library

Dynamic aliasing is especially problematic for cases that object allocations, accesses,
or reference creations occur by calling a specific function, e.g., object.create which
allocates an object or Array.push which creates a reference between objects. Because of
aliasing, the Profiler treats the specific function call as a regular function call and modifies
the code so that only accesses to the function object are recorded during runtime – not
the allocation, access, or reference creation that occurs by calling the function.

To address this case, the JavaScript functions of interest are wrapped [80]. Wrapping
a function means another function (the wrapper) calls the original function (the wrapped
one), rather than the original function getting called directly. Therefore, it is possible to
execute some code right before and after calling the original function, including logging
the information of interest. The wrapped functions are sent to the client browser and
are executed in the browser before the application is executed. Therefore, any call to the
original function will be redirected to the newly wrapped function. Figure 3.12 shows an
example of how a function is wrapped.

In the current implementation of LeakSpot, we chose to wrap two functions, as shown
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function WrapDomFunction(func, extra) {
return function() {
//before function execution code goes here
var wrappedfunction=func.apply(this, arguments);
//after function execution code goes here
return wrappedfunction;
}
}
document.createElement = WrapDomCreateElement(document.createElement)

Figure 3.12: An example of how a function is wrapped

in Table 3.1, i.e., Object.create which is a factory method, and array.push which
creates a reference between an array and the element inserted into it. To get the location
in the code where a function is called, the AST modifications to monitor function calls are
still required.

3.5.3 Extracting Live Objects

To make the heap model in Leak Reporter using only live objects, LeakSpot needs to
determine which objects are live. To do so, a heap snapshot is collected manually using
the facilities provided in Chrome Developer Tools [34]. The heap snapshot is collected after
performing a full garbage collection; therefore, the unreachable objects (dead objects) are
not on the heap. For each object in the profiling data, Leak Reporter checks whether
the object is on the heap. Then, it creates a data structure that maps every object id
(the id assigned to the object by the logger) to a boolean value that indicates whether
the object is on the heap (live). Please note that the heap-snapshot is collected only once
at the time of report generation. As an alternative approach, determining the list of live
objects could be done by implementing a modified version of reference-counting garbage
collection. Implementing this technique requires more instrumentations to make sure that
all object references are monitored and recorded at runtime, including context references.
It also requires a smart reference-counting that can handle the shortcoming of reference
counting garbage collection, i.e., when two object are referencing to each other. We leave
implementing this technique as future work.

3.6 Evaluation

This section aims to answer the following questions:

1. What is the accuracy of LeakSpot?
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Figure 3.13: Complexity of JavaScript benchmarks and web applications

2. What is the effectiveness of LeakSpot in finding and fixing memory leaks?

3. What is the performance and computational overhead of LeakSpot on the client?

3.6.1 Experimental Setup

To perform the experiments, three machines are used. One machine is set up as the web
server and used only when studying JavaScript benchmarks; another machine is set up as
a proxy running LeakSpot; and a third machine is used to run he client browser and is
configured to use the proxy. The proxy machine has a 2.10GHz CPU, with 12 GB of RAM;
the client machine has a 800MHz CPU, with 2 GB of RAM; and the web server has a 2.40
GHz CPU, with 4GB of RAM and is used when running experiments on benchmarks. We
used Google Chrome 36.0.1985.125 for running the web applications under test. To avoid
the memory leaks caused by inline cache or optimized code [47] and to avoid the false
report of increasing memory in the case of incremental marking [12], Chrome is run with
the following command line flags:

–js-flags="–nouse-ic –nocrankshaft –gc-global –noincremental marking "
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To perform the evaluation on JavaScript benchmarks, Octane benchmark [70] is chosen
because it has higher complexity than other well-known JavaScript benchmarks such as
SunSpider [92] and V8 [40]. Figure 3.13 compares the complexity of different test cases
in JavaScript benchmarks and web applications in terms of lines of code. Table 3.3 shows
some statistics about the Octane benchmark including lines of code, size of heap snapshot,
and size of profiling data.

3.6.2 Accuracy of LeakSpot

To study the accuracy of LeakSpot, it is necessary to have cases that are known to be leaks
and then see how LeakSpot performs in those cases. To obtain such known cases, each
test case in Octane benchmark is executed repetitively to see whether it is leaky2. To find
whether a repetitive execution of a program generates leaked objects, the heap-size graph
is produced, which shows the size of live objects on the heap of an application over time.
The time is measured in the size of objects allocated on the heap, similar to the approaches
in previous research [1, 17]. To make sure that each point on the heap graph is the size of
live objects at that time, garbage collection is performed before measuring the size of live
objects. In a repetitive scenario, an increasing trend on the heap-size graph indicates that
all the allocated objects have not been released.

To identify the leaky test cases, all of the test cases are run repetitively. The results are
shown in Table 3.4; the Leaky column highlights the test cases that are leaky. To detect
leaked objects and leaky sites in each test case, the collective-staleness and time-count
graphs for all the allocation sites and reference sites in the test case are generated. To
find whether a collective-staleness graph or time-count graph indicates a leak, a line is
fitted over the data using linear regression. A time-count graph indicates the existence
of a memory leak if the correlation coefficient of the line fitted to the data is larger than
0.7 and the slope is positive. A positive slope indicates that the number of objects over
time are going up. If the set of actions are repetitive, even a slight increase in number of
objects denotes memory leak. A collective-staleness graph indicates a leak if it resembles a
diagonal, e.g., it is similar to the graphs of L3 and L15 in Figure 3.7(a), and the correlation
coefficient of the line fitted to the data is larger than 0.7. The correlation coefficient is a
threshold value that should be determined based on the desired level of sensitivity.

As shown in Table 3.4, for the non-leaky test cases, LeakSpot does not report any
allocation or reference sites, as expected; but for the two leaky test cases, it reports a

2This method is chosen instead of the less strong method of injecting known leaks into the code of a
test case.
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Test Case Lines of Code Heap Snapshot Sizes Profiling Data Sizes
Benchmark Unmodified Modified

box2d 8508 5.2 MB 6.1 MB 125 MB
code-load 1485 4.1 MB 4.7 MB 190 KB
crypto 1665 3.6 MB 3.9 MB 60 MB
deltablue 858 3.6 MB 3.8 MB 6.4 MB
earley-boyer 4681 4 MB 4.5 MB 107 MB
gbemu 11098 4.2 MB 4.7 MB 358 MB
mandreel 277373 7.9 MB 10.1 MB 2 GB
navier-stokes 387 3.5 MB 4 MB 68 MB
pdf.js 33028 9.1 MB 13.9 MB 85 MB
raytrace 894 3.6 MB 3.8 MB 21 MB
regexp 1766 3.6 MB 4.2 MB 27 MB
richards 502 3.5 MB 4 MB 4.4 MB
splay 388 3.5 MB 3.7 MB 69 MB
typescript 25842 4.8 MB 5.6 MB 1.3 GB
zlib 2494 3.6 MB 4.1 MB 5 GB
Common Code 9791 – – –

Table 3.3: Statistics about Octane benchmark
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Collective Staleness Time Count

Test Case Leaky
Allocation
Sites

Reference
Sites

Refined
Allocation
Sites

Allocation
Sites

Reference
Sites

box2d No 0 0 0 0 0
code-load Yes 41 42 1 41 42
crypto No 0 0 0 0 0
deltablue No 0 0 0 0 0
earley-boyer No 0 0 0 0 0
gbemu No 0 0 0 0 0
mandreel No 0 0 0 0 0
navier-stokes No 0 0 0 0 0
pdfjs Yes 0 0 0 1 2
raytrace No 0 0 0 0 0
regexp No 0 0 0 0 0
richards No 0 0 0 0 0
splay No 0 0 0 0 0
typescript No 0 0 0 0 0
zlib No 0 0 0 0 0

Table 3.4: Results of evaluating LeakSpot on test cases in Octane benchmark

number of allocation sites or reference sites as leaky. Figure 3.15(a) and Figure 3.15(b)
show the heap-size graphs for the two leaky test cases in Octane benchmark, i.e., code-load
and pdf.js, before and after fixing the leaks.

For the pdf.js test case, LeakSpot reports one leaky allocation site and two leaky ref-
erence sites. Looking at the code of the pdf.js test cases, the one leaky allocation site
based on time-count graph findings, is site L17 in Figure 3.14. Since LeakSpot monitors
references created to an object and modifications to the object, it is possible to easily find
where a reference is created and what object created the reference. Two references are cre-
ated on the objects allocated at L17; one in line 38 from a data structure, canvas_logs,
and one in line 17 from this object.

For the code-load test case, LeakSpot reports 41 allocation sites as leaky, which reduces
to one allocation site after refining the reported allocation sites. Figure 3.8(a) shows a
simplified version of the parts of the code in the code-load test case that cause the memory
leak. The leaky allocation site that is causing the leak, L3, denotes the object allocated

47



10 var canvas_logs = [];
11 var PdfJS_window = Object.create(this);
12 function PdfJS_windowInstall(name, x) {
13 Object.defineProperty(PdfJS_window,
14 name, {value: x});
15 }
16 PdfJS_windowInstall("Context", function() {
17 this.__log__ = []; //L17
18 this.save = function() {
19 this.__log__.push("save","\n");
20 }
21 })
22 PdfJS_windowInstall("Canvas", function() {
23 this.getContext = function() {
24 return new PdfJS_window.Context();
25 }
26 });
27 PdfJS_windowInstall("document", {
28 getElementById : function(name) {
29 if (name === "canvas") {
30 return new PdfJS_window.Canvas();
31 } } });
32 function runPdfJS() {
33 var canvas = PdfJS_window.document.
34 getElementById('canvas');
35 var context = canvas.getContext('2d');
36
37 //reference creation point
38 canvas_logs.push(context.__log__);
39 }
40 function tearDownPdfJS() {
41 for (var i = 0; i < canvas_logs.length; ++i) {
42 var log_length = canvas_logs[i].length;
43 ...
44 }
45 }
46 delete this.PDFJS;
47 delete this.PdfJS_window;
48 canvas_logs = []; // To fix the leak
49 }

Figure 3.14: Simplified leaky code in the pdf.js test case
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Figure 3.15: Heap-size graphs for the two leaky test cases in Octane benchmark
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at line three and put into googS variable. The memory leak is fixed by setting the value
of the googS object to an empty object at the end of the code of code-load test case.

3.6.3 Case Studies on Open-Source Web Applications

In the following experiments, the effectiveness of LeakSpot in guiding the developer in
fixing the leaks quickly and easily is studied. The experiments are performed on Todo web
applications [93] developed using three different libraries, i.e., Dojo [18], AngularJS [33],
and YUI [45]. These Todo applications are examples of single-page web applications [59]
that LeakSpot targets. Table 3.5 shows some statistics about the open-source web appli-
cations under study including lines of code, size of heap snapshot, and size of profiling
data.

To expedite the effects of the memory leaks in the web applications, a set of actions is
performed repetitively on the page. In the Todo web applications under study, a series of
tasks are added and removed to/from the todo list, repetitively. Table 3.6 highlights the
leaky applications as well as the results of evaluating LeakSpot on these open-source web
applications.

LeakSpot does not report any leak for the Todo-AngularJS application, as expected,
since the heap-size graph corresponding to this application does not indicate a leak. For
the other two web applications, LeakSpot reports a number of the allocation sites and
reference sites as leaky. Table 3.6 also presents the number of Refined Allocation Sites for
each web application, i.e., the number of leaky allocation sites after applying the refinement
technique explained in Section 3.4.3. As can be seen, this technique reduces the number
of reported allocation sites significantly and empowers developers in fixing the leak. The
time-count graph numbers are higher than those from collective-staleness graphs due to the
false-negative issues inherent in a staleness-based techniques, as discussed in Section 3.4.2.

Figure 3.17 shows the heap-size graphs of the leaky web applications before and after
fixing the leaks. The small vertical lines in each graph indicate when a garbage collection
is performed, i.e., after addition and removal of five tasks to/from the todo list. For the
Todo-Dojo application, LeakSpot reported 10 leaky allocation sites and 11 leaky reference
sites after refinement. One of the reference sites, i.e., line 15 in Figure 3.1 was causing the
leak as explained before.

Using LeakSpot, it was also possible to find and fix a memory leak in the Todo-YUI
application. After refining the leaky allocation sites, LeakSpot reported 12 allocation sites.
One of them was a leaky allocation site in the developer code and directed us to fix the
memory leak. Figure 3.18 shows a simplified version of the Todo-YUI code. The part of
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Lines of Code Heap Snapshots Sizes Profiling Data Sizes
WebApp Unmodified Modified

TodoAngular 10211 4.8 MB 5.2 MB 146K
TodoDojo 44206 5.9 MB 7.9 MB 11 MB
TodoYUI 44206 6.5 MB 9.1 MB 11 MB

Table 3.5: Statistics about the open-source web applications

Collective Staleness Time Count

WebApp Leaky
Allocation
Sites

Reference
Sites

Refined
Allocation
Sites

Allocation
Sites

Reference
Sites

TodoAngular No 0 0 0 0 0
TodoDojo Yes 52 33 10 52 33
TodoYUI Yes 47 66 12 47 66

Table 3.6: Results of evaluating LeakSpot on the open-source web applications

the code that is causing the memory leak and the code added to fix the memory leak are
highlighted. In this application, whenever new todo tasks are added, changed, or removed,
the program goes through all the items in the todo list and assigns a view object to each
item (line 56 in Figure 3.18) without properly removing the previously added view object,
which causes the leak. Figure 3.16 shows the simplified heap view of the memory leak. As
shown in the heap graph, unwanted references to the view objects have not been removed
because of programmer error.

In the open-source web applications studied in this section, it was possible to easily
fix the leaks for two reasons. First, the refinement technique reduced the number of leaky
allocation sites to a small number of allocation site to investigate. Second, knowing the
code locations where references are created to the objects sped up the process of fixing the
leaks and saved considerable developer time.

3.6.4 Case Studies on Large Web Applications

The following experiments demonstrate the existence of memory leaks in large and popular
web applications. In addition, the results of applying LeakSpot on the data collected
during the execution of web applications is presented. The web applications under study
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Figure 3.16: Simplified heap view of the memory leak in Todo-YUI

Lines of Code Heap Snapshots Sizes Profiling Data Sizes
WebApp Unmodified Modified

GMail 325906 46 129 205
Calendar 111755 20 40 100
YMail 191892 27 39 378
FaceBook 128082 29 71 838

Table 3.7: Statistics about large web applications

are chosen based on their popularity according to the Alexa [32] web site, and also based
on their development technology. LeakSpot targets single page web applications [59] and,
therefore, those web applications that fully or partially follow this application model are
chosen. Table 3.7 shows some statistics about the web applications under study.

For every web application, a set of repetitive actions is done repetitively that may or
may not generate leaked objects. Table 3.8 shows the list of actions performed on web
applications under study and Figure 3.19 shows the corresponding heap-size graphs. The
small vertical lines in the figures indicate when a garbage collection is performed.

Table 3.9 shows the results of applying heuristics. LeakSpot does not report any leaks
for Calendar, as expected, since there is not an increasing trend in its corresponding heap-
size graph (Figure 3.19). For the other web applications, LeakSpot reports a number of
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Figure 3.17: Heap-size graphs for the leaky open-source web applications
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10 YUI.add('todo-app', function (Y) {
11
12 var TodoApp;
13 var TodoList = Y.TodoMVC.TodoList;
14 var TodoView = Y.TodoMVC.TodoView;
15
16 TodoApp = Y.Base.create('todoApp', Y.App, [], {
17
18 initializer: function () {
19 this.set('todoList', new TodoList());
20 var list = this.get('todoList');
21 list.after(['add', 'remove', 'reset', 'todo:completedChange'],
22 this.render, this);
23 },
24
25 render: function () {
26 var todoList = this.get('todoList');
27 var completed = todoList.completed().size();
28 var remaining = todoList.remaining().size();
29 var footer = this.get('footer');
30
31 footer.one('#filters li a').removeClass('selected');
32 footer.all('#filters li a')
33 .filter('[href="#/' + (this.get('filter') || '') + '"]').addClass('selected');
34 this.addViews();
35 },
36
37 addViews: function () {
38 var models;
39 var fragment = Y.one(Y.config.doc.createDocumentFragment());
40 var todoList = this.get('todoList');
41
42 switch (this.get('filter')) {
43 case 'active':
44 models = todoList.remaining();
45 break;
46 case 'completed':
47 models = todoList.completed();
48 break;
49 default:
50 models = todoList;
51 break;
52 }
53 models.each(function (model) {
54
55 //The following line is causing the leak
56 var view = new TodoView({model: model});
57
58 fragment.append(view.render().get('container'));
59 });
60 //To fix the leak add the following line
61 this.get('container').one('#todo-list').destroy({recursivePurge: true});
62
63 this.get('container').one('#todo-list').setContent(fragment);
64 }
65 });
66 })

Figure 3.18: Simplified code of the Todo-YUI web application
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WebApp Repetitive Actions
GMail (Google Mail) Opening and closing the compose window.
Calendar (Google Calendar) Creating and deleting events.
YMail (Yahoo Mail) Opening and closing the compose window.
Facebook Opening and closing an image in the news

feed.
Todo Adding a series of tasks and removing them

repetitively.

Table 3.8: Repetitive actions performed on the web applications

Collective Staleness Time Count

WebApp Leaky
Allocation
Sites

Reference
Sites

Refined
Allocation
Sites

Allocation
Sites

Reference
Sites

GMail Yes 19 20 6 20 35
Calendar No 0 0 0 0 0
YMail Yes 117 120 47 117 84
FaceBook Yes 97 107 30 97 107

Table 3.9: Results of evaluating LeakSpot on large web applications

allocation and reference sites as leaky.

As can be seen, the technique used to refine the reported allocation sites reduced
the number of leaky allocation sites significantly. For GMail, it reduced the number of
reported allocation sites to six, and for Facebook and Yahoo, it reduced the number of leaky
allocation site to less than one third of the originally reported numbers. These experiments
demonstrate the existence of memory leaks in large and popular web applications and
LeakSpot’s potential to find the cause of such memory leaks. We could not fix the leak
since the obtained code is obfuscated; however, the fact that LeakSpot was able to guide
us in fixing the memory leaks in Octane benchmark and open-source web applications and
the low number of allocation sites strongly suggests that it would be quick to check the
relevant sites and fix the leaks. In addition, evaluation of LeakSpot on large and complex
web applications demonstrates the scalability of LeakSpot.
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Figure 3.19: Heap-size graph for large web applications

3.6.5 Measuring Performance Overhead

This section studies the performance overhead of LeakSpot. The purpose of measuring
overhead is to highlight any bottleneck in performance. Measuring the overhead of different
components of LeakSpot can guide us in choosing the optimizations required to reduce the
overhead. Since LeakSpot is designed to work during development mode, we are not
worried about the overhead; however, the design decisions of LeakSpot make it possible
to use LeakSpot in an online setting (beyond the development stage), if the overhead is
reduced.

Loading and running the modified version of an application is slower compared to using
the original one. There are several factors affecting the performance:

• Modification Overhead: LeakSpot makes loading of a page slower since it modifies
the code inside a proxy before sending it to the client, as shown in Figure 3.4.

• Communication Overhead: This overhead is caused by the communication be-
tween the Logger and the proxy to transfer profiling data.

• CPU Overhead: Running instrumented code is more CPU-intensive compared to
unmodified code.

To find the bottlenecks in performance overhead, the load time is measured in different
configurations:
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1. Baseline: There is no proxy in place.

2. Unmodified: The code goes through proxy and all modifications are applied, but the
unmodified code is sent to the client. The purpose of this configuration is to measure
modification overhead.

3. Modified: The modified code is sent to the client and executed in the browser but the
log records are not buffered and are not sent to the proxy. The purpose of having
this configuration is to measure the CPU overhead associated with executing the
instrumented code in the browser.

4. Full: The modified code is executed in the client browser and the profiling data are
sent back to the proxy. This configuration highlights the communication overhead
compared to the previous configuration.

Since the page load time is a key performance metric for web applications [102], the over-
head is studied by measuring the load time of web applications in different configurations.
Moreover, while the use of LeakSpot results in a significant delay in the loading of a page,
the response time of an application during execution is not degraded substantially. This
is true for interactive single-page web applications that LeakSpot targets, where a large
chunk of JavaScript is loaded into the browser, while the JavaScript code that is executed
in response to user events is short. The load time is measured by using the Navigation
Timing API [65]. A page load is complete when the load event is fired in the browser.
Since a web page may consist of several iframes, we take the maximum time to load the
iframes as the load time of the the page. We did every experiment ten times and used
WebDriver [84] in Java to automate the process of repeatedly loading a page.

Figure 3.20 shows the load times for the web applications under study. The load-time
value for each web application is normalized to its load time value in Full configuration. As
can be seen, a jump in the load times happens between the case of Baseline and Unmodified.
This jump in load times highlights the modification overhead, including having a proxy
and all the parsing and code generation involved. This overhead is not inherent to the
approach used in LeakSpot. There are many optimizations that can be done to remove
this overhead, such as using a more powerful machine as the proxy or using a multi-
threaded implementation for the proxy. In addition, LeakSpot is intended to be used by
system developers, who have access to the server side, and therefore can send instrumented
code and profiler library to the client directly, which eliminates modification overhead. In
this work, the use of the proxy on the client side provides the opportunity to evaluate
LeakSpot on common web applications that are not open source.
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Figure 3.20: Load time of Web applications

The difference in load time between Unmodified and Modified configurations demon-
strates the CPU overhead caused by the code executed during the page load. This overhead
can be optimized in different ways. The data shown in Figure 3.20 reflects the case where
all the JavaScript code included in a page is modified, including the application code and
library code; however, modifying all the code is not always required. For example, for the
Todo-YUI application, we controlled the proxy so that only the developer code is modified
– not the code of the YUI library. Loading the page in this case and measuring overheads,
we did not notice any difference in the load time between Modified and Unmodified con-
figurations. It is worth mentioning that the reported leaky allocation site in the developer
code was enough for detecting the leaks and finding the fix. We found similar results when
repeating this experiment for Todo-Dojo and Todo-Angular. This experiment could not
be repeated for the applications that are not open-source, but similar results are expected.

In addition, the source-level instrumentation technique used here allows the application
of many optimizations without reducing the accuracy of the leak detection. One optimiza-
tion that can be applied to reduce CPU overhead is to modify the code partially and use
the redeployability [51] characteristics of web applications to send different code to different
users. This is one of the advantages of web applications which allows us to send different
versions of the application to different users, where in every version a different subset of
the code is instrumented. In this way, the overhead will be distributed among users, and
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the overhead experienced by each user will be negligible. To automatically select those
parts of the code that are related and dependent, program slicing [23, 54] techniques can
be used. These kinds of code-initiated optimizations are not possible with previous ap-
proaches based on dynamic analysis techniques that collect runtime data of an application
by instrumenting the Java virtual machine, like SWAT [29] and Bell [8].

Comparing the load times of applications in Full and Modified configurations highlights
the communication overhead. Since the communication between a client and the proxy is
done asynchronously, the communication overhead due to transfer of data between the
browser and the proxy does not have much impact on the performance of an application.
The more code is executed during load time, the larger the size of profiling data, and so the
higher the effect of communication overhead. For example, in the Calendar application,
the amount of profiling data is lower than the other popular applications and so is the
effect of communication overhead. Table 3.7 shows the size of profiling data during the
load time.

In addition to the above mentioned overheads, there is memory overhead caused by
adding a unique id to every object and loading the library code into the browser. Table 3.7
show the size of heap snapshot of each web application, once measured when the code
is not modified, and once measured when the code is modified. The above-mentioned
optimization techniques are effective in reducing memory overhead, as well.

3.7 Discussion and Limitations

LeakSpot modifies object allocations, accesses, and references as specified by the third
edition of the ECMAScript language specifications [22]. It also supports functionali-
ties for object allocation specified in the fifth edition, such as Object.create. While
LeakSpot modifies the code to make it possible to monitor activities on objects according
to JavaScript standards, it can be extended to monitor object allocations, accesses, and
reference creations using the custom allocation methods in the libraries. For example,
if there are functions defined in the library for object allocation, the instrumentation in
LeakSpot could be changed accordingly to monitor this new method of allocation. In addi-
tion, LeakSpot can be easily extended to collect more information about the objects, such
as special functionalities for setting and getting object properties, as specified in the 5th
edition of ECMAScript.

The heap of a web application is composed of JavaScript objects and DOM objects.
LeakSpot focuses on finding JavaScript objects that are leaked. Since JavaScript objects

59



and DOM objects refer to each other, finding leaked JavaScript objects also results indi-
rectly in the removal of many leaked DOM objects. Both examples of memory leaks in the
Todo-Dojo and Todo-YUI web applications caused many DOM objects to be leaked, as
well. To monitor DOM object allocations, accesses, and reference creations, LeakSpot can
be extended by wrapping DOM APIs [64]. Appendix B discusses the differences between
DOM and JavaScript objects and lists some of the functions that need to be wrapped. Full
modification and wrapping of all the functions in DOM APIs is an engineering effort.

To find the leaky allocation sites, LeakSpot computes the collective-staleness and time-
count graphs for all the allocation/reference sites in the application. LeakSpot shows
these graphs to the developer, who can go through them to get an idea of the behaviour
of different sites. In the case of large applications, where there are large numbers of
allocation sites, to make the developer’s task easier, LeakSpot fits a line over the data
to find the problematic allocation or reference sites automatically using linear regression.
The threshold values are chosen so that the graph of the data represents a trend in the
data statistically. As mentioned in [75], a threshold value larger than 0.7 indicates a strong
linear relationship. The developer can set this value based on the desired level of sensitivity.

The Logger, in LeakSpot, assigns an id to the objects by adding the id as the prop-
erty of objects. The property is named __objectID__; therefore, if the object already
has a property with this name it may result in errors. It is easy to change the name
on the fly if it has already been used by the application code. In addition, although
the id is added as a non-enumerable property to make it invisible during execution, it
can be still visible. For example, the Object.getOwnPropertyNames function re-
turns all property names irrespective of their iterable nature [52]. To prevent such a
problem, if the application code happens to use the Object.getOwnPropertyNames
function, this function could be wrapped to exclude reporting any property with the spe-
cific name __objectID__. It is worth mentioning that the property name used currently
in LeakSpot, i.e., __objectID__, has not introduced any problem in our experiments.

As discussed in Section 3.4.2, the staleness-based technique used in LeakSpot may
report false negative results. To overcome this shortcoming, which is inherent in staleness-
based heuristics, LeakSpot also reports time-count graphs for the allocation/reference sites.
This technique of finding the leaky allocation sites or reference sites by tracking the number
of objects over time can be used if the increasing trends in the the graphs are not the
expected behaviour of the program. For instance, in the case of a repetitively executed
program one would not expect to see an increasing trend in the number of objects. If there
is an increasing trend there is a leak.

Since LeakSpot uses staleness and growth in number of live objects, it may result in
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false positives and report cases that are not real memory leaks, but could be sources of
memory inefficiency. One example occurs when there is a cache data structure in the
application or in the library used by the application, but there is no limit on the cache,
resulting in memory bloat in long-running applications [109].

The techniques used in LeakSpot does not introduce additional false positives. First,
the staleness-based method precisely identifies memory not being used, since LeakSpot
monitors all accesses to the objects, unlike the approach by Hauswirth etal. [29] that uses
adaptive profiling to reduce overhead, which, in turn, decreases the accuracy of memory
leak detection. Second, since LeakSpot combines staleness information with allocation or
reference sites, it significantly reduces the chances of false positives. Reporting objects
based only on staleness values, i.e., reporting an object as a leak if the staleness value is
larger than a threshold value, produces significant false positive results since many objects
are allocated at the beginning of the program that are not used but are needed, such as
the objects used for presentation and visualization of the application [107].

As discussed by Bond etal. [8], one of the disadvantages of memory leak detection
based on per-object site data, is that the calling context is limited to the inlined portion
and so may not be enough to understand the behaviour of the code causing the leak. Bond
etal.mentioned that efficiently maintaining and representing dynamic calling contexts is
an unsolved problem. Although LeakSpot collects per-object site data, it provides more
context about the objects than the approach used by Bond etal.. The profiling data
contains a history of all the references and all the accesses made to the object, which
provides more data about the calling context compared to just monitoring allocation sites
and the last-use site method used by Bond etal.. In addition, the calling context can be
more specific by taking advantage of the approaches proposed by Novark etal. [67], i.e.,
identifying the sites with bounded context sensitivity, e.g., the last four functions on the
call stack.

In this work, we have focused on client-side web development since we are inspired by
the problems in the client side of web applications; however, memory leaks are an even
bigger problem for server-side JavaScript, e.g., running on Node.js [43], as these programs
often implement long-running servers [28]. Especially in the Node.js community, people
have for a long time recognized the memory leak issue and commercial services exist to help
developers gain insight into the behaviour of their JavaScript server program [5, 44]. We
think that with slight modifications, LeakSpot can be used in these environments. The fact
that the instrumentation is done by modifying the source code makes it portable (among
different browsers) and also usable in different environments (like Node.js). Currently, our
profiler library works for Node.js applications. We have tested the test cases in Octane
benchmark in the Node.js environment as well as in the browser. In terms of memory
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leaks, the results are the same. Evaluating LeakSpot on the server-side applications can
be a direction for future work.

3.8 Conclusion

A memory leak, which is the existence of unused objects on the heap of an application,
is prevalent in JavaScript applications. In this chapter, we introduced LeakSpot, a tool
for detecting and diagnosing memory leaks. LeakSpot works by modifying the code in a
browser-agnostic way to monitor object allocations, accesses, and the references created to
the objects. LeakSpot reports allocation sites and reference sites that are generating the
leaks. In addition, it helps developers in fixing the leaks by refining allocation sites and
reporting all the code locations that create references to the objects. LeakSpot is shown
to be effective in finding and fixing memory leaks in JavaScript benchmark and open
source web applications. Using LeakSpot, we were able to find and fix two leaks in Octane
JavaScript benchmark and two leaks in open-source web applications. Our results show
that the source-level instrumentation along with the redeployability characteristics of web
applications provide the opportunity to apply many optimizations that make it possible
to use LeakSpot beyond the development stage. In future work, we intend to apply the
discussed optimizations to reduce LeakSpot overhead. In addition, we are planning to work
on heuristics, specifically those that are aligned for JavaScript applications, to reduce the
imprecision associated with staleness-based heuristics.
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Chapter 4

Runtime Management of Memory
Leaks

This chapter presents an approach for managing memory leaks at runtime. Avoiding
the leaks at runtime requires fixing them during development; they cannot be fixed on a
running system. Therefore, the goal is to improve memory efficiency of web applications by
making them capable of automatically recovering themselves from errors due to memory
leaks. Doing so means more memory is available to the page, which results in better
performance and increased time-to-failure for the specific page under study and the whole
system. This result is achieved by applying recovery actions to remove the errors in the
system, permanently or temporarily.

This approach is implemented in a prototype tool called MemRed. The architecture of
MemRed is shown in Figure 4.1. It consists of three main components: monitoring, error
detection, and recovery. MemRed monitors the web application running in a browser tab,
to get data about memory usage of the application. Then, it analyzes the collected data to
find whether it indicates an error in the system. Finally, if the system is detected to be in
an error state, the system takes proper actions to return the system to a healthy state and
remove the effects of errors. In the following, we describe each component in more detail.

4.1 Monitoring

To make a system capable of automatically removing errors, it is necessary to continuously
monitor its components to find whether there is an error in the system. The monitoring
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Figure 4.1: MemRed Architecture

provides useful data about system behaviour that will be analyzed by the analysis compo-
nent to predict failures. The monitoring component periodically collects data about two
different aspects of a web application. First, it collects memory usage data, which will
be used by the analysis component to detect any signs of excessive memory usage in the
system. Second, it monitors the status of the tab with respect to user visibility and focus.
This data is used by the recovery component to apply recovery actions in such a way that
user interruption is minimized. In summary, the monitoring data is useful for deciding
whether to apply a recovery action and, if so, in identifying an appropriate time.

4.2 Error Detection

Error detection helps to apply recovery actions at an appropriate time to prevent failures
from happening while minimizing user interruption. In this step, the collected data about
the memory usage of an application is analyzed to detect any sign of excessive memory use.
An application is said to be using memory excessively if the memory used by the application
is continuously going up while the application is in the same state. A state is defined from
the user’s point of view. Two application states are the same if they look the same to
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the user. An application state is approximated by the DOM tree of the application. This
approximation makes sense since the user interface of web applications is developed using
the DOM. Therefore, comparing states can be done by comparing the DOM trees of an
application. Continuous growth of memory usage over the same states indicates a memory
leak in the system. Figure 4.2 pictures this definition of memory leak. In Figure 4.2, each
triangle represents a state of the web application and each circle denotes the memory used
by the application in that state (a larger circle means more memory use). MemRed does
not monitor application states and assumes that the state of the application is known at
each data collection point. It is a direction for future work to monitor application states.
Techniques like the one proposed by Alimadadi etal. [2] would be useful in this regard.

To find the trend in the memory usage, the linear least squares method [101] is used to
fit a line over data. The quality of the line fitted to the data is measured by computing the
correlation coefficient [101] of the line. A positive slope together with a high correlation
coefficient shows an increasing trend in data. The higher the correlation coefficient, the
more accurate the slope of the line fitted to the data. We cannot make any conclusion
about the existence of any trend in the data if the correlation coefficient is low. The slope
and correlation coefficient are threshold values that should be determined based on the
desired level of sensitivity.
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4.3 Recovery

After an error is detected, the next step is to recover the system by removing the effects of
errors. In MemRed, this is achieved by applying recovery actions on the page. Figure 4.3
shows the effects of recovery actions in different states of an application. The goal of
applying the recovery actions is to return the system to a healthy state from a failure/error
state, or to slow down system degradation by returning the system to an acceptable state.
An acceptable state means a state where the effects of errors/failures are removed partially.
The possible recovery actions in the web applications are:

• Reloading a page: This action loads the web application again; therefore, it cleans
the internal state of the application and deletes all the leaked and unused objects.

• Closing the page and opening it in a separate process: This action restarts
the process corresponding to the page by closing the page and opening it in a sep-
arate process. Therefore, all the components of the page are restarted. As shown
in Figure 4.1, a browser tab is a separate process having three components: the
JavaScript engine, which is called V8 [41] in Chrome and executes the JavaScript
code of a web application; the DOM bindings, which are responsible for binding the
JavaScript engine and browser code; and the HTML renderer, which displays the
web page on the screen, based on the HTML code and cascading style sheets (CSS)
of the web application. Closing the page restarts the states of all these components.

• Snapshot-Reload: It is important that the recovery actions not result in the user
losing any data. In some AJAX-based web applications such as GMail, every state is
represented with a URL and also benefits from an auto-saving mechanism; therefore,
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data loss does not happen with reloading a page; however, all applications do not
benefit from auto-saving mechanisms. Therefore, we need to enrich our recovery
actions to achieve recovery without data loss. To achieve this goal, the recovery
actions need to be enriched by check pointing the application state. In other words,
we need to save the state of a web application before performing the recovery. The
state of a web application consists of a snapshot of its DOM tree as well as JavaScript
functions and variables. After recovery, the application is taken to the state before
the failure. We leave implementing this recovery action as future work.

• Force Full Garbage Collection: This action collects all the syntactic garbage
on the JavaScript heap of the application. This recovery action is mentioned as an
action for cleaning the internal state of an application in past studies on the server
side [24]. In the context of web applications run in browsers, if a large amount of
memory is not reclaimed because the browser is waiting for some threshold to perform
garbage collection, the result may be excessive memory usage for some period of time.
Forcing a garbage collection can help in such cases. This is true especially in the case
of browsers like Chrome, where every tab is in a different process, having its own
JavaScript engine. Since a full garbage collection requires traversing all the objects
on the heap, we need to make sure that this action does not result in unacceptable
response time.

To implement the recovery actions in the context of a browser, we can leverage its
structure, which allows fine-grain control over its components; for example, in closing and
opening a tab. In addition, we can take advantage of the unified user interface of web
applications, which is based on the DOM.

4.3.1 Type and Time of Recovery

The decision criteria for applying recovery actions are what recovery actions to choose
and when to apply a recovery action. The selection of a recovery action depends on its
effectiveness in removing the error and the cost it imposes on the underlying system, in
terms of user interruption and performance. With the current prototype, our goal is to
study the effectiveness of the recovery actions.

The time of applying a recovery action is important. First, to prevent failures from hap-
pening the recovery actions should be applied at an appropriate time. The first indication
of the time to start applying a recovery action comes from the detection phase. Second, as
the systems under study, i.e., web applications, are interactive, the recovery actions should
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hhhhhhhhhhhhhhhhhhTab Status
Memory Status

Healthy Error Failure

Not Visible U R, S, U, G, N R, S, N
Not Focused/Visible U U, G, PR, PS, PN R, S, N
Focused U U, G, PR, PS, PN PR, PS, PN

R = Reload N = Snapshot-Reload PR = Prompt Reload
PS = Prompt Restart S = Restart U = Update Snapshot
G = Garbage Collection PN = Prompt Snapshot-Reload

Table 4.1: Acceptable recovery actions

be transparent to the user. To minimize user interruption, the recovery action should be
applied at an appropriate time. Therefore, knowing whether the monitored tab is visible
to the user is essential. For instance, if it is necessary to reload a page that is in the user
focus, we need to wait until the page is out of the focus and then apply the recovery action.
If the page does not go out of the user focus before the estimated time-to-failure, then we
ask for user permission before applying a recovery action, i.e., prompt before reloading.
Table 4.1 shows actions that are allowed in different scenarios considering the application’s
health and user visibility/focus.

4.4 Implementation

MemRed is implemented as an extension to the Chrome browser [42]. The Chrome browser
has been chosen for several reasons. First, as shown in Figure 4.4, the usage share of
Chrome is higher than that for all other browsers [87]. Second, the Chrome browser pro-
vides useful APIs to access its internals and develop browser extensions. In the following,
we describe the implementation of different components of MemRed.

4.4.1 Monitoring and Analysis

The memory usage of an application is estimated by its heap usage. To monitor the
memory usage of a web application, MemRed connects to a browser page to get data. The
communication between MemRed and the browser page is done using the ChromeDevTools
protocol [35], an API provided by Chrome browser to get debugging information from a
page, including memory-related information such as the heap snapshot of the page.
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MemRed collects snapshots of the JavaScript heap periodically. The heap snapshot
contains the size and number of all the JavaScript objects on the heap as well as the
heap structure. MemRed analyzes the collected heap snapshot to extract the metrics
shown in Table 4.2. The TotalHeapSize (JS) metric measures the memory allocated
by JavaScript engine for the heap, and JsLive metric denotes the size of live objects
on the heap. While other metrics are useful for diagnosing the causes of the leaks, in
this prototype we do not have a diagnosis step and leave that for future work. Worth
mentioning is that the ChromeDevTools protocol performs full garbage collection before
taking a heap snapshot. Therefore, the resulting snapshot contains all reachable objects
on the JavaScript heap.

To analyze the collected data by fitting a line to the data, i.e., TotalHeapSize or
JSLive over time, Weka [71] software is used. weka is an open source machine-learning
library for data analysis.

4.4.2 Recovery

The recovery actions are implemented inside a browser extension by taking advantage of
the Chrome extension APIs. Implementing the recovery actions inside a Chrome extension
provides the opportunity to have the recovery actions at a fine granularity, compared to
implementing the actions at the level of the operating system or process, which limits them
to being coarse-grained actions such as rebooting a process, rebooting an operating system,
or check-pointing the process.

To be able to automatically apply the recovery actions, appropriate automatic control
of browser components must be available. Currently, the following recovery actions are
implemented so that they can be performed programmatically:

• Reloading a page.

• Opening and closing a browser window or tab.

• Garbage collection.

In the current prototype, upon detecting an error, MemRed waits until the monitored
tab is not visible to the user or the user is not actively interacting with the page, before
applying the recovery actions. Garbage collection can be applied at any time.
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Metric Description
TotalHeapSize (JS) The amount of memory al-

located to JavaScript heap
by V8 (JavaScript engine of
Chrome [41]).

JSLive
Size of all live objects on the heap.

NodeCount
Total number of all objects of the
application, including objects on
the JavaScript heap as well as
browser objects.

ArraySelf
Sum of shallow sizes of all objects
that are instantiated using the ar-
ray constructor function.

ArrayCount
Total number of objects that are
instantiated using the array con-
structor.

HiddenSelf
Sum of shallow sizes of hidden ob-
jects, i.e., objects that are created
behind the scene by V8.

HiddenCount Number of hidden objects.
DocDomCount Number of DOM objects.

DetachDomCount
Number of objects that are de-
tached from the DOM tree.

Table 4.2: Metrics extracted from a heap snapshot
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4.5 Evaluation

This section examines the effectiveness of recovery actions in removing or reducing exces-
sive memory usage in web applications. To perform these experiments, two single-page
web applications are used. The first one, Tudu [20], is an AJAX-based open-source web
application used for managing personal todo lists. The client side of this application con-
sists of 3K lines of code as well as AJAX libraries [57]. Please note that this application is
different from the Todo applications used in Chapter 3 for evaluation of LeakSpot 3.

The second application under study is the GMail [37] application, which is developed
mostly using JavaScript and AJAX technology. Tudu is an example of a simple and small
web application into which we can simply inject memory leak bugs. On the other hand,
GMail is one of the largest web applications in wide-spread use that has been developed
by high-quality engineers.

In every experiment, we monitored the web application while a user navigated through
the page and generated events. To expedite the effects of memory leaks, we simulated user
navigation using the WebDriver API [84] for Java. To alleviate the need for application-
state monitoring, as discussed in Section 4.2, we forced the simulated user to do a set
of specific tasks repetitively; therefore, the application state remains unchanged. An in-
creasing trend in memory usage over time for such a repetitive scenario indicates excessive
memory usage in the application, since it implies that all the memory allocated is not
released.

Scenario Description

TuduNoAction Simulated user is navigating through the Tudu page and
doing the set of actions repeatedly.

TuduReload
Simulated user is navigating through the Tudu page sim-
ilarly to the TuduNoAction case; the page is reloaded
periodically.

TuduDiff
Simulated user is navigating through the Tudu page sim-
ilarly to the TuduNoAction case; the page is closed and
opened in a new tab (actually in a new process) period-
ically.

Table 4.3: Different cases of data collection on the Tudu application
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The experiments are performed on a 2.4 GHz quad-core PC with 4GB of RAM. In the
following, the case in which a leak is injected into the Tudu application is presented, first.
Then, the results of experiments on the GMail application are shown.

4.5.1 Tudu Experiment

This section presents the results of experiments studying the effectiveness of recovery ac-
tions on Tudu. To do the experiments, a memory leak is injected into the Tudu application.
The memory leak is so that every time the user adds a list, some objects are created on
the JavaScript heap but are not used or deleted which results in a memory leak in the
application. As defined earlier in Chapter 2, a memory leak means the existence of unused
objects, i.e., objects that are accessible from the garbage-collection roots but are never
used by the application [76]. To expedite the effects of a memory leak, after logging into
the Tudu application the simulated user does the following actions iteratively while waiting
four seconds after every action:

1. Add a new todo list.

2. Edit the list.

3. Delete the list.

These actions are performed so that at all times, there are at most two lists in the
system. To see the effects of recovery actions, data is collected while the Tudu application
is run under different scenarios as specified in Table 4.3. The TuduReload case, in which
the page is reloaded periodically, shows the effectiveness of reloading a page. The TuduDiff
case, in which the browser tab executing the application is periodically closed and opened,
shows the effectiveness of opening/closing a tab. The TuduNoAction case provides a base-
line for comparison with the cases where recovery actions are applied. In every test case,
monitoring data is collected every minute. Note that in the interactive web applications
under study, the memory leak is a function of the number of events occurring on the page;
however, since the user is repeating the same set of tasks and the time interval between
repetitions is equal, time is a good approximation of the number of events occurring on
the page.

Figure 4.5 shows the size of live objects on the heap (JSLive) for different scenarios
on the Tudu application. As shown in the figure, there is an increasing trend in size of
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objects on the heap in the TuduNoAction. This increase occurs because there is a memory
leak in the application but no recovery action is applied. As shown in Figure 4.5, there is
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Figure 4.5: JSLive over time for different test cases on the Tudu application

no increasing trend in the cases where recovery actions are applied. The oscillation in data
values is due to performing a recovery action periodically.

To measure the trend in data mathematically, a line is also fitted to the collected data to
compute any trend in this data. The slopes and correlation coefficients of the corresponding
lines are shown in Table 4.5. A positive slope accompanied by a high correlation coefficient
(larger than 0.7) indicates an increasing trend. Please note that the graph in Figure 4.5 is
similar to the time-count graph in Chapter 3, in which a positive slope indicates a memory
leak, unlike the collective-staleness graph in which a diagonal line indicates a memory leak.
To compute the slope for the TuduReload and TuduDiff test cases, the data is smoothed
using ten neighboring points to remove the effect of data oscillation on trend estimation.
As can be seen, there is no trend in the data when recovery actions are applied periodically.
These results support the idea that excessive memory usage by a web application can be
mitigated by applying recovery actions.
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4.5.2 GMail Experiments

Scenario Description

GmailNoAction
Simulated user is navigating through the page and do-
ing the set of actions repeatedly; no recovery action is
applied.

GmailReload
Simulated user is navigating through the page as in the
GmailNoAction case; the page is reloaded periodically.

GmailDiff
Simulated user is navigating through the page as in the
GmailNoAction case; the tab is closed and opened in a
new tab (actually in a new process) periodically.

GmailIdle The Gmail page is open and being monitored but the
simulated user does not do any action.

GmailIdleFullGC
Gmail page is open and being monitored; the simulated
user does not do any action; periodically a full garbage
collection is performed.

Table 4.4: Different cases of data collection on the GMail application

This section discusses the result of experiment on GMail. The simulated user, after
logging into her GMail account, performs the following actions iteratively while pausing a
few seconds after every action:

1. Composes an email (she just clicks on the compose button without sending any email
to prevent generating new objects).

2. Clicks on the list of important emails.

3. Clicks on the Inbox button.

4. Reads an email (the same email is read in each iteration to avoid new object gener-
ation).

Different test cases on GMail application are shown in Table 4.4. As can be seen in
Figure 4.6, in the case of the GmailNoAction where no recovery action is applied on the
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Figure 4.6: JSLive over time for different test cases on the GMail application

page, the total size of objects on the heap increases. In this test case, the simulated user is
doing a repeated set of tasks without generating new objects (it is not sending or receiving
any email). Therefore, any growth in the heap size indicates the existence of memory leaks
in the GMail application. The existence of memory leaks in GMail has been discussed
by the developers of Google [56]. Note that since the ChromeDevTools protocol performs
a full garbage collection before taking a heap snapshot, this growth cannot be related to
a delay in garbage collection. The important point is that this application suffers from
excessive memory usage. It is possible that the application is intended to function in this
way. For example, the application may keep a history of all the states; the user may not
refer to them in the future, which results in a growth in the number and size of the objects
on the heap. This behaviour is not acceptable in an operational context since it results in
unbounded memory growth, which affects the reliability and response time of the system.
Therefore, having a mechanism to reduce excessive memory usage is crucial.

Figure 4.6 also shows the result of the GmailReload test case, where we periodically
reload the page, and the GmailDiff test case, where we periodically close and open the page.
We do not see an increasing trend when recovery actions are applied, since the recovery

76



 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  50  100  150  200  250  300

S
iz

e 
(M

B
)

Time (minutes)

JS GmailIdle
JSLive GmailIdle

JS GmailIdleFullGC
JSLive GmailIdleFullGC

Figure 4.7: JSLive and JS over time for different test cases on the GMail application

JSLive

Slope CC

TuduNoAction 0.26 0.9976

TuduReload 0 0.1283

TuduDiff 0 0.1267

GmailNoAction 0.017 0.7011

GmailReload 0 0.306

GmailDiff 0 0.0807

GmailIdle 0 0.1019

Table 4.5: Slope and correlation coefficient (CC) of JSLive for different cases

actions delete leaked objects from the heap. The results shown in Table 4.5 also confirm
this. Table 4.5 shows the slopes and correlation coefficients of the lines fitted to the data;
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the unit of slope is MB/minute. To compute the parameters of this line, we smoothed each
data point using ten neighboring points. The reason for this smoothing is that the data
values for GmailReload and GmailDiff are oscillating between two boundaries because of
periodic recovery actions. As can be seen, there is no increasing trend when the recovery
actions are applied.

To measure the effectiveness of the garbage collection action, we need to look at the
memory allocated by V8 for the heap, which is measured by the TotalHeapSize (JS) metric,
as shown in Table 4.2. To study the garbage collection action, we perform two experiments,
with the user idle in both cases. In GmailIdleFullGC, we periodically collect all garbage and
in GmailIdle, we apply no recovery action. Figure 4.7 shows the values of the JSLive and
JS metrics over time. As can be seen, the memory that is allocated by the V8 JavaScript
engine for the heap, i.e., JS, is going up for the GmailIdle experiment; however, we do not
see such a trend when garbage is collected periodically. Also, there is no increasing trend
in the size of objects on the heap (JSLive). Note that even though the simulated user is
idle, there are some events fired on the page using a timer.

The increasing trends observed in metrics collected from the GMail application repre-
sent memory leaks in a commonly used web application where the user is doing a set of
simple tasks. In a real world scenario in a browser, we are dealing with large numbers of
tabs, each one executing a different web application. We also need to consider that GMail
is a well-engineered application, which is not the case for all those applications running in
different tabs. Therefore, we need a mechanism for improving the reliability of the client
side of web applications.

4.6 Conclusion

In this chapter, we presented our approaches for managing memory leaks at runtime on
the client side of web applications. We presented the overall solution and the architecture
of MemRed, a prototype tool for removing/reducing leaked objects at runtime. MemRed,
which is implemented as an extension to the Chrome browser, monitors the memory us-
age of a web application by periodically collecting heap snapshots. It then analyzes the
collected data to detect trends in memory usage of the corresponding web application.
Upon detecting a possible memory leak, it applies a recovery action to remove the effects
of failures or slow down system degradation. It tries to apply recovery actions at an appro-
priate time, so that the impact on the user is minimal. Our evaluation demonstrates the
existence of memory leaks in a complex and popular web application and the effectiveness
of recovery actions in removing/reducing the effects of the leaks.
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Chapter 5

Conclusion and Future Work

This chapter summarizes the contributions of the thesis in Section 5.1 and discusses direc-
tions for future work in Section 5.2.

5.1 Summary

Memory leaks, the existence of unused objects on the heap of an application, result in per-
formance degradation and even crashing of the application. With the rise of single-page
applications, long-running JavaScript is becoming more prevalent and with it the potential
for memory leaks. This thesis has studied the extent of memory leaks in JavaScript applica-
tions and proposed two different approaches for tackling this problem. First, it introduced
LeakSpot, a tool for detection and diagnosis of memory leaks during the development of
applications. LeakSpot is shown to be effective in finding and fixing memory leaks in com-
plex benchmarks and open source web applications. In addition, LeakSpot is shown to be
scalable by applying it to real and complex web applications such as GMail. The effec-
tiveness of LeakSpot in highlighting the potential causes of leaks in web applications has
also been demonstrated experimentally. Second, it proposed MemRed as a tool to improve
the memory efficiency of web applications. MemRed works by detecting excessive memory
use in web applications and applying recovery actions to increase memory efficiency and
reduce the effects of memory leaks. MemRed is shown to be effective in reducing memory
usage of benchmarks and open-source web applications.
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5.2 Future Work

This section discusses different directions for future work.

5.2.1 Runtime Management of Memory Leaks: A Different Ap-
proach

To manage memory leaks at runtime, this thesis proposed MemRed to remove the leaked
objects. As another approach, the leaked objects could be tolerated by moving them to
disk. The idea of tolerating memory leaks has already been used in other programming
languages. Plug [67] has been proposed for C/C++ applications and LeakSurvivor [90]
and CRAMM [108] have been proposed for garbage collected languages; however, these
tools cannot be used with JavaScript, e.g., in browsers.

Implementing this approach requires two main components. First, it needs to determine
which objects should be moved to disk. To select these objects, the techniques developed
in LeakSpot can be used. Second, it requires a mechanism to move objects to disk and a
reclamation policy to get those objects from the disk, if needed, without affecting program
execution. Such a policy should take care of all the references to the objects.

This new approach of moving the unused objects to the disk could improve the per-
formance of the memory management system. First, as studied by Aigner etal. [1], the
performance of the memory system, e.g., the allocation time of objects, depends on the size
and liveness of objects on the heap. Therefore, moving long-lived unused objects to disk
can improve the performance of memory management systems. Second, moving objects
to disk means lighter workload for garbage collection, which results in shorter pause times
and less frequent garbage collection.

5.2.2 Online Use of LeakSpot

Although LeakSpot helps developers in finding and fixing leaks during development. The
design decisions in LeakSpot make it possible to use it in an online setting. First, the
source-level instrumentation and use of a proxy make LeakSpot portable across different
browsers. In addition, monitoring runtime behaviour of objects by modifying the source
code of the applications makes it possible to apply optimizations to improve performance
without decreasing leak-detection accuracy. In future work, we intend to apply the dis-
cussed optimizations in Section 3.6.5 to reduce LeakSpot overhead.
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5.2.3 Memory Leak Detection Based on State Monitoring

In MemRed, to detect memory leaks at runtime, we used heap growth as an indication
of memory leaks. To make it more precise, we could combine state monitoring with heap
growth to detect memory leaks in a page. To achieve this goal, we need to monitor the
DOM state of a page to find any changes in that state.

5.2.4 Alternative Heuristics for Memory Leak Detection

One direction for future work is to apply different heuristics or improve the current heuris-
tics to find the causes of memory leaks in LeakSpot. First, the profiling data could be
used to find the causes of memory leaks by tracking the number of references created to
or removed from the objects, similarly to what is done in LeakPoint [13] for detecting
leaked objects. Implementing this approach requires monitoring reference removals. Sec-
ond, the allocation sites and reference sites heuristics in LeakSpot could be improved by
categorizing objects based on different criteria such as the number or type of references
to the objects. Third, another heuristic would involve monitoring the reference creation
and removal history for each object, including the time of reference creation/removal and
the type of references. The idea behind this approach is that all the references to objects
that are temporally close to each other need to be added or removed in the same time
frame. This technique would be especially useful for finding closure memory leaks. This
kind of memory leak happens when some of the references are gone (local references) while
other references (references from the enclosing functions) keep the closure variables alive.
Finally, while LeakSpot focuses on finding the problematic locations in the program, the
object-level data could be used to find problematic data structures by studying and find-
ing the patterns of reference creation or removal to objects. Achieving this goal requires
monitoring reference removals in addition to the reference creation monitoring currently
supported in LeakSpot.

5.2.5 Enriching Recovery Actions

In the current prototype, MemRed applies recovery actions to remove the effects of leaked
objects; however, some of the actions, such as reloading a page, may cause the data of a page
to be lost. To achieve recovery without data loss, the recovery actions need to be enriched
by check pointing the application state. The applications used for evaluating MemRed,
such as GMail and Tudu, are designed so that they preserve the state of applications at
every moment.
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5.2.6 Applicability to Other Domains

This thesis has focused on client-side web development, even though memory leaks are
still a bigger problem for server-side JavaScript [28, 44], e.g., applications running on
Node.js [43], as the server-side programs often implement long-running applications. The
techniques used for memory leak detection on the server side either focus on performance
profiling [5] or tools to navigate through the heap [28] that are not sufficient for finding
the causes of the leaks. The techniques used in LeakSpot can be used for JavaScript on
the server side, since we are not limited by computational resources on the server side.
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Appendix A

Implementation of Proxy

This appendix first explains the architecture of proxy used in LeakSpot. Then, it describes
how the proxy handles SSL-related errors.

A.1 Proxy Architecture

To modify the JavaScript code of a page, the proxy intercepts all the messages between
the client and server. To make it possible for the proxy to work for all different web pages,
it handles both HTTP and HTTPS connections:

• HTTP connections: In the case of an HTTP connection, the proxy simply forwards
the request from the client to the server, modifies the replies from the server, and
forwards the modified replies to the client.

• HTTPS connections: The HTTPS proxy just relays the data without knowing any-
thing about its content. In this case, to be able to intercept data, the MITM proxy
sits in the connection between the client and the server. It replies to the initial re-
quest by the client, so the client assumes it is the server, while acting as the client
for the server. As shown in Figure A.1, the HTTPS proxy forwards data between the
client and MITMP proxy without knowing anything about the content of the data
by creating a secure channel (pipe). It cannot view or manipulate the data since the
data is encrypted. Please note that such a secure channel is not needed for HTTP
connections.
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A.2 Dealing with SSL-Related Errors

Whenever there is a man-in-the-middle attack, the SSL protocol detects and lets the
browser know that there is a problem and, so, it gives a warning. It is possible to develop
the proxy in a way so that the browser is not notified, as discussed by Marlinspike [55];
however, going into these details is beyond the scope of this work. To avoid the warn-
ings generated because of man-in-the-middle attacks, the different warning messages are
handled as follows.

• Certificate authority is not trusted by the browser: The certificate used by
the MITM proxy, when acting as a server, is self-signed, so it is not trusted by the
client, i.e., browser. The browser allows the communication to proceed by giving
the user a notification. To avoid this warning, the certificate authority needs to be
known to the browser.

• " This is not probably the site you are looking for": This warning is generated
when the domain name in the common name field of the certificate differs from the
domain requested by the client. This error is especially problematic when the client
needs to connect to a page containing several domains. When connecting to a single
site through the browser, it is possible to manually accept the SSL certificate and
move forward; however, in cases where it is necessary to connect to different domains
to fully load a page, using a single-domain certificate results in the page not loading
fully. To avoid this problem, multi-domain certificats are used. Creating multi-
domain certificates for a page requires knowledge of the different domains in the
page. This data can be extracted by accessing the page through the proxy, and
recording all the different domains. This process is done just once for every page.
Implementing the proxy so that the certificates are generated on the fly for every
domain could be a subject of future work.
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Appendix B

DOM Objects

LeakSpot works by monitoring the allocations, accesses, and reference creations of JavaScript
objects. The heap of a web application is composed of JavaScript and DOM objects. DOM
objects behave differently from ordinary JavaSceript objects in terms of allocations, ac-
cesses, and reference creations. For example, a new div element is created with a call
to document.createElement('div'), not with new HTMLDivElement, although
all div elements inherit from the HTMLDivElement.prototype [48]. In addition,
references are created between objects by calling specific functions such as element.-
AppendChild which creates a reference between two DOM objects. Therefore, to moni-
tor activities on different types of objects, all the different ways that objects are allocated,
accessed, or referenced should be considered. In addition, managing the memory of DOM
objects is done differently in various environments. This appendix explains why allocat-
ing and releasing the memory of DOM objects are done differently than is the case for
JavaScript objects. Then, it lists some of the DOM APIs that are used for allocations,
accesses, and creating references on DOM objects.

B.1 DOM Object Allocations and Memory Manage-

ment

This section discusses why DOM object creations are different from JavaScript object cre-
ations and why DOM does not address memory management. DOM APIs are designed
to be compatible with a wide range of languages; they are interfaces rather than classes.
Thus, an implementation of DOM APIs needs only to expose methods with the defined
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names and specified operation, not implement classes that correspond directly to the in-
terfaces. Therefore, DOM APIs can be implemented in a wide variety of environments
and applications where scripts within an HTML document are one case. Since DOM APIs
are interfaces, ordinary object constructors (in the Java or C++ sense) cannot be used to
create DOM objects. Therefore, factory methods are defined to create instances of objects
that implement the various interfaces. Objects implementing some interface X are created
by a createX() method on the Document interface since all DOM objects live in the
context of a specific Document.

Moreover, DOM does not handle memory management issues at all. The Core DOM
APIs need to operate across a variety of memory management systems, from those (no-
tably Java) that provide explicit constructors but provide an automatic garbage collection
mechanism to automatically reclaim unused memory, to those (especially C/C++) that
generally require the programmer to explicitly allocate object memory, track where it is
used, and explicitly free it for re-use. To ensure a consistent API across these platforms,
the DOM does not address memory management issues but instead leaves these for the
implementation.

B.2 DOM APIs

This section provides an example list of the interfaces and their functions and properties
that need to be intercepted in order to monitor DOM allocations, accesses and reference
creations. In the listings presented here, only properties that may be modified by the
application are listed, since some properties may be read-only. In addition, the complete
wrapping of all the functions, which is a significant engineering effort, could be tackled
as a community effort. The full list of methods and properties is available [99]. The
DOM presents documents as a hierarchy of Node objects that also implement other, more
specialized interfaces such as Element, Node, and HTMLElement [97].

• Document: The Document interface represents the entire HTML document. Con-
ceptually, it is the root of the document tree, and provides the primary access to
the document’s data. Since elements, text nodes, comments, processing instructions,
etc., cannot exist outside the context of a Document, the Document interface also
contains the factory methods needed to create these objects. Table B.1 lists some of
the methods and properties that allocate an object of this type or create a reference
to an object of this type.
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• Node: Every DOM node object should implement the Node interface. Table B.3
lists some of the methods and properties that allocate, access, or create references to
these types of objects.

• Element: Table B.4 lists some of the methods and properties that allocate, access or
create references to objects of this type. For example, DOM objects could be created
by setting the innerHTML properties of DOM elements to a string, such as:

element.innerHTML = "<iframe id='testframe'>";

To monitor this method of object allocation, we need to add more functionality to
the $.logPutFieldDot logging function to provide different handling for cases in
which the name of the property is innerHTML.

• HTMLDocument: All Document objects must also implement the HTMLDocument
interface. The HTMLDocument interface has several functions that create or remove
DOM objects, such as write, open, and writeln. Table B.2 lists some of the
methods and properties that allocate, access, or create references to these objects.

The functions and properties of the NodeList interface need to be considered as well.
This interface handles ordered lists of Nodes, such as the children of a Node or the el-
ements returned by functions such as getElementsByTagName, which is a method of
the Element interface. As well, the functions of the HTMLCollection interface should be
cosidered, since the output of many functions is an HTMLCollection.

The event handlers that are bound to a DOM element also need to be considered, since
they create references between the DOM element and the event handlers. There are three
methods for registering event handlers for DOM elements in JavaScript [2], depending
on which DOM Level1 they are using. The event handler registration in DOM Level 2 is
done programmatically using the addEventListener function, i.e., e.addEventListener
methods [98] in the JavaScript code. In DOM Level 1, the event handlers are bound to a
DOM element by assigning the attributes of an HTMLElement, e.g, e.onclick=functi-
on(event){}. In both cases, to monitor the references created between objects, the cor-
responding functions are wrapped so that the DOM element, the event listener attached,
and the reference created between them are logged during runtime. In DOM Level 0, event
handlers are inlined in the HTML code, for example:

1 DOM Levels are the versions of the specification for defining how the DOM should work. Each new
level of the DOM adds or changes specific sets of features. DOM Level 0 supports accesses to a few HTML
elements, most importantly forms and images. DOM Level 1 defines the core elements of the Document
Object Model. DOM Level 2 extends those elements and adds events. DOM Level 3 extends DOM level
2 and adds more elements and events.
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Type Name Return Value

Object
Allocation

Methods

createElement Element
createDocumentFragment DocumentFragment
createTextNode Text
createComment Comment
createAttribute Attr
createElementNS Element
createAttributeNS Attr
createRange Range
importNode Node

Properties innerHTML –

Object
Accesses

Methods

getElementsByTagName NodeList
getElementById Element
getElementsByTagNameNS NodeList
querySelector Element
querySelectorAll Element
elementFromPoint(Number
x, Number y)

Element

Properties
documentElement Element
childNodes NodeList

Reference
creation

Methods – –

Table B.1: Document object interface

<button onclick="handler()">.

Monitoring the object and the reference created using this method can be done using
the techniques proposed by Alimadadi etal. [2], i.e., removing the inline-registered listener
from its associated HTML element, annotating the HTML elements, and re-registering the
listener using the addEventListener function. In this way, the event handlers can be
handled similarly to the previous two cases.
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Type Name Return Value

Object
Allocation

Methods
open HTMLDocument
open window
close, write, writeln void

Object
Accesses

Properties

body HTMLElement
images HTMLCollection
embeds HTMLCollection
plugings HTMLCollection
links HTMLCollection
forms HTMLCollection
anchors HTMLCollection
scripts HTMLCollection
childNodes NodeList object
activeElement Element

Methods
commands HTMLCollection
getElementsByName NodeList
getElementsByClassName NodeList

Reference
creation

Methods – –

Table B.2: HTMLDocument object interface
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Type Name Return
Value

Object
Allocation

Methods cloneNode –

Object
Accesses

Properties

nodename Node
nodeValue Node
nodeType Node
parentNode Node
childNodes Node
firstChild Node
lastChild Node
previousSibling Node
nextSibling Node
attributes Node
childNodes NodeList
ownerDocument Document

Methods normalize –

Reference
creation

Methods
appendChild Node
replaceChild Node
insertBefore Node

Table B.3: Node object interface

Type Name Return Value

Object
Allocation

Properties
innerHTML –
outerHTML –

Object
Accesses

Properties

getElementsByTagName NodeList
getElementsByTagNameNS NodeList
getElementsByClassName HTMLCollection
querySelector Element
querySelectorAll NodeList

Reference
creation

Methods insertAdjacentHTML void

Table B.4: Element object interface

94



References

[1] Martin Aigner, Thomas Hütter, Christoph M Kirsch, Alexander Miller, Hannes
Payer, and Mario Preishuber. ACDC-JS: Explorative benchmarking of JavaScript
memory management. In Proceedings of the 10th ACM Symposium on Dynamic
languages, pages 67–78. ACM, 2014.

[2] Saba Alimadadi, Sheldon Sequeira, Ali Mesbah, and Karthik Pattabiraman. Under-
standing JavaScript event-based interactions. In Proceedings of the 36th International
Conference on Software Engineering, pages 367–377. ACM, 2014.

[3] Javier Alonso, Jordi Torres, Josep Lluis Berral, and Ricard Gavalda. Adaptive on-
line software aging prediction based on machine learning. In Dependable Systems
and Networks (DSN), 2010 IEEE/IFIP International Conference on, pages 507–516.
IEEE, 2010.

[4] Silviu Andrica and George Candea. Warr: A tool for high-fidelity web application
record and replay. In Dependable Systems & Networks (DSN), 2011 IEEE/IFIP 41st
International Conference on, pages 403–410. IEEE, 2011.

[5] AppDynamics. Performance analytics for node.js. http://nodetime.com/. [Ac-
cessed March 2015].

[6] Naveed Arshad, Dennis Heimbigner, and Alexander L. Wolf. A planning based ap-
proach to failure recovery in distributed systems. In Proceedings of the 1st ACM
SIGSOFT Workshop on Self-Managed Systems, pages 8–12. ACM, 2004.

[7] Algirdas Avizienis, J.-C. Laprie, Brian Randell, and Carl Landwehr. Basic concepts
and taxonomy of dependable and secure computing. Dependable and Secure Com-
puting, IEEE Transactions on, 1(1):11–33, 2004.

[8] Michael D Bond and Kathryn S. McKinley. Bell: Bit-encoding online memory leak
detection. ACM Sigplan Notices, 41(11):61–72, 2006.

95

http://nodetime.com/


[9] Almende B.V. Dynamic, browser-based visualization library. https://github.
com/almende/vis. [Accessed March 2015].

[10] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Armando
Fox. Microreboot-a technique for cheap recovery. In OSDI, volume 4, pages 31–44,
2004.

[11] Vittorio Castelli, Richard E. Harper, Philip Heidelberger, Steven W. Hunter,
Kishor S. Trivedi, Kalyanaraman Vaidyanathan, and William P. Zeggert. Proac-
tive management of software aging. IBM Journal of Research and Development,
45(2):311–332, 2001.

[12] Chromium Issues. High memory usage when periodically loading a new document in
an iframe. https://code.google.com/p/chromium/issues/detail?id=
359401. [Accessed August 2014].

[13] James Clause and Alessandro Orso. LEAKPOINT: Pinpointing the causes of memory
leaks. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pages 515–524. ACM, 2010.

[14] Domenico Cotroneo, Roberto Natella, Roberto Pietrantuono, and Stefano Russo.
Software aging analysis of the Linux operating system. In Software Reliability Engi-
neering (ISSRE), 2010 IEEE 21st International Symposium on, pages 71–80. IEEE,
2010.

[15] Flavin Cristian. Understanding fault-tolerant distributed systems. Communications
of the ACM, 34(2):56–78, 1991.

[16] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson,
and Andrew Warfield. Remus: High availability via asynchronous virtual machine
replication. In Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation, pages 161–174. San Francisco, 2008.

[17] Sylvia Dieckmann and Urs Hölzle. A study of the allocation behavior of the
specjvm98 java benchmarks. In ECOOP99 Object-Oriented Programming, pages 92–
115. Springer, 1999.

[18] The Dojo Foundation. Dojo toolkit. http://dojotoolkit.org/. [Accessed
April 2014].

96

https://github.com/almende/vis
https://github.com/almende/vis
https://code.google.com/p/chromium/issues/detail?id=359401
https://code.google.com/p/chromium/issues/detail?id=359401
http://dojotoolkit.org/


[19] Ben Dolmar. Understand memory leaks in JavaScript applications.
http://www.ibm.com/developerworks/library/wa-jsmemory/
index.html?utm_source=tuicool. [Accessed April 2014].

[20] Julien Dubois. Tudu lists. http://www.julien-dubois.com/tudu-lists.
[Accessed March 2015].

[21] Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. A scalable technique for
characterizing the usage of temporaries in framework-intensive java applications. In
Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 59–70. ACM, 2008.

[22] ECMA International. Ecmascript language specification, 3rd edition, ECMA-262.
http://www.ecma-international.org/publications/standards/
Ecma-262.htm. [Accessed April 2014].

[23] Asger Feldthaus, Max Schafer, Manu Sridharan, Julian Dolby, and Frank Tip. Ef-
ficient construction of approximate call graphs for JavaScript IDE services. In 35th
International Conference on Software Engineering (ICSE), pages 752–761. IEEE,
2013.

[24] Sachin Garg, Aad van Moorsel, Kalyanaraman Vaidyanathan, and Kishor S. Trivedi.
A methodology for detection and estimation of software aging. In The Ninth In-
ternational Symposium on Software Reliability Engineering, pages 283–292. IEEE,
1998.

[25] David Glasser. A surprising JavaScript memory leak found at
meteor. http://point.davidglasser.net/2013/06/27/
surprising-javascript-memory-leak.html. [Accessed August 2014].

[26] Michael Grottke, Lei Li, Kalyanaraman Vaidyanathan, and Kishor S. Trivedi. Anal-
ysis of software aging in a web server. Reliability, IEEE Transactions on, 55(3):411–
420, 2006.

[27] Salvatore Guarnieri and V. Benjamin Livshits. Gatekeeper: Mostly static enforce-
ment of security and reliability policies for JavaScript code. In USENIX Security
Symposium, volume 10, pages 78–85, 2009.

[28] Mozilla Hacks. Tracking down memory leaks in node.js a
node.js holiday season. https://hacks.mozilla.org/2012/11/

97

http://www.ibm.com/developerworks/library/wa-jsmemory/index.html?utm_source=tuicool
http://www.ibm.com/developerworks/library/wa-jsmemory/index.html?utm_source=tuicool
http://www.julien-dubois.com/tudu-lists
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://point.davidglasser.net/2013/06/27/surprising-javascript-memory-leak.html
http://point.davidglasser.net/2013/06/27/surprising-javascript-memory-leak.html
https://hacks.mozilla.org/2012/11/tracking-down-memory-leaks-in-node-js-a-node-js-holiday-season/
https://hacks.mozilla.org/2012/11/tracking-down-memory-leaks-in-node-js-a-node-js-holiday-season/


tracking-down-memory-leaks-in-node-js-a-node-js-holiday-season/.
[Accessed Febuary 2015].

[29] Matthias Hauswirth and Trishul M. Chilimbi. Low-overhead memory leak detection
using adaptive statistical profiling. ACM SIGPLAN Notices, 39(11):156–164, 2004.

[30] Ariya Hidayat. Esprima. https://github.com/ariya/esprima. [Accessed
April 2014].

[31] Yennun Huang, Chandra Kintala, Nick Kolettis, and N Dudley Fulton. Software re-
juvenation: Analysis, module and applications. In Twenty-Fifth International Sym-
posium on Fault-Tolerant Computing, pages 381–390. IEEE, 1995.

[32] Alexa Internet Inc. Alexa: The top 500 sites on the web. http://www.alexa.
com/topsites. [Accessed March 2014].

[33] Google Inc. AngularJS: HTML enhanced for web apps. https://angularjs.
org/.

[34] Google Inc. Chrome developer tools. https://developers.google.com/chrome-
developer-tools/docs/overview. [Accessed May 2012].

[35] Google Inc. Chrome Devopers Tools protocol. http://code.google.com/p/
chromedevtools/wiki/ChromeDevToolsProtocol. [Accessed May 2012].

[36] Google Inc. Closure library. https://developers.google.com/closure/
library/. [Accessed May 2013].

[37] Google Inc. GMail: A Google approach to email. http://gmail.com. [Accessed
May 2012].

[38] Google Inc. Google docs. https://docs.google.com/. [Accessed May 2012].

[39] Google Inc. LeakFinder for JavaScript. http://code.google.com/p/
leak-finder-for-javascript/. [Accessed Febuary 2013].

[40] Google Inc. V8 Benchmarks. http://v8.googlecode.com/svn/data/
benchmarks/current/run.html. [Accessed August 2014].

[41] Google Inc. V8 JavaScript engine. http://code.google.com/apis/v8/
design.html. [Accessed May 2012].

98

https://hacks.mozilla.org/2012/11/tracking-down-memory-leaks-in-node-js-a-node-js-holiday-season/
https://hacks.mozilla.org/2012/11/tracking-down-memory-leaks-in-node-js-a-node-js-holiday-season/
https://github.com/ariya/esprima
http://www.alexa.com/topsites
http://www.alexa.com/topsites
https://angularjs.org/
https://angularjs.org/
http://code.google.com/p/chromedevtools/wiki/ChromeDevToolsProtocol
http://code.google.com/p/chromedevtools/wiki/ChromeDevToolsProtocol
https://developers.google.com/closure/library/
https://developers.google.com/closure/library/
http://gmail.com
https://docs.google.com/
http://code.google.com/p/leak-finder-for-javascript/
http://code.google.com/p/leak-finder-for-javascript/
http://v8.googlecode.com/svn/data/benchmarks/current/run.html
http://v8.googlecode.com/svn/data/benchmarks/current/run.html
http://code.google.com/apis/v8/design.html
http://code.google.com/apis/v8/design.html


[42] Google Inc. Chrome browser. https://www.google.com/chrome, 2012. [Ac-
cessed May 2012].

[43] Joyent Inc. Nodejs. http://nodejs.org. [Accessed Nov. 2012].

[44] Joyent Inc. Walmart node.js memory leak. https://www.joyent.com/
developers/videos/walmart-node-js-memory-leak-part-1. [Ac-
cessed March 2015].

[45] Yahoo Inc. Yahoo JavaScript library (YUI). http://yuilibrary.com/. [Ac-
cessed April 2014].

[46] Michael Isard. Autopilot: Automatic data center management. ACM SIGOPS Op-
erating Systems Review, 41(2):60–67, 2007.

[47] V8 JavaScript Engine Issues. Memory leak caused by inline caches. https://
code.google.com/p/v8/issues/detail?id=2683. [Accessed May 2014].

[48] Simon Holm Jensen, Magnus Madsen, and Anders Møller. Modeling the HTML
DOM and browser API in static analysis of JavaScript web applications. In Proceed-
ings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, pages 59–69. ACM, 2011.

[49] JQuery Foundation. JQuery. http://jquery.com/. [Accessed April 2014].

[50] Maria Jump and Kathryn S. McKinley. Cork: Dynamic memory leak detection for
garbage-collected languages. ACM SIGPLAN Notices, 42(1):31–38, 2007.

[51] Emre Kiciman and Benjamin Livshits. AjaxScope: A platform for remotely mon-
itoring the client-side behavior of Web 2.0 applications. ACM SIGOPS Operating
Systems Review, 41(6):17–30, 2007.

[52] Erick Lavoie, Bruno Dufour, and Marc Feeley. Portable and efficient run-time mon-
itoring of JavaScript applications using virtual machine layering. In ECOOP 2014–
Object-Oriented Programming, pages 541–566. Springer, 2014.

[53] Benjamin Livshits and Emre Kiciman. Doloto: Code splitting for network-bound
Web 2.0 applications. In Proceedings of the 16th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pages 350–360. ACM, 2008.

99

https://www.google.com/chrome
http://nodejs.org
https://www.joyent.com/developers/videos/walmart-node-js-memory-leak-part-1
https://www.joyent.com/developers/videos/walmart-node-js-memory-leak-part-1
http://yuilibrary.com/
https://code.google.com/p/v8/issues/detail?id=2683
https://code.google.com/p/v8/issues/detail?id=2683
http://jquery.com/


[54] Gen Lu and Saumya Debray. Automatic simplification of obfuscated JavaScript code:
A semantics-based approach. In IEEE Sixth International Conference on Software
Security and Reliability (SERE), pages 31–40. IEEE, 2012.

[55] Moxie Marlinspike. New tricks for defeating SSL in practice. http://www.
thoughtcrime.org/software/sslstrip/. [Accessed March 2015].

[56] John McCutchan and Loreena Lee. Effectively managing memory at
GMail scale. http://www.html5rocks.com/en/tutorials/memory/
effectivemanagement/. [Accessed April 2014].

[57] Ali Mesbah. Analysis and testing of AJAX-based single-page web applications. PhD
thesis, Delft University of Technology: TU Delft, 2009.

[58] James W Mickens, Jeremy Elson, and Jon Howell. Mugshot: Deterministic capture
and replay for JavaScript applications. In NSDI, volume 10, pages 159–174, 2010.

[59] Michael S. Mikowski and Josh C. Powell. Single Page Web Applications. Manning
Publications, 2013.

[60] Nick Mitchell and Gary Sevitsky. Leakbot: An automated and lightweight tool
for diagnosing memory leaks in large Java applications. In ECOOP 2003–Object-
Oriented Programming, pages 351–377. Springer, 2003.

[61] Nick Mitchell and Gary Sevitsky. The causes of bloat, the limits of health. ACM
SIGPLAN Notices, 42(10):245–260, 2007.

[62] Mozilla. LeakGauge. https://developer.mozilla.org/en-US/docs/
Mozilla/Performance/Leak_Gauge. [Accessed March 2015].

[63] Mozilla. Performance. https://developer.mozilla.org/en-US/docs/
Mozilla/Performance. Accessed Aug. 2014.

[64] Mozilla Developer Network and individual contributors. Gecko DOM reference.
https://developer.mozilla.org/en/Gecko_DOM_Reference. Accessed
2013.

[65] Mozilla Developer Network and individual contributors. Navigation tim-
ing API. https://developer.mozilla.org/en-US/docs/Navigation_
timing. [Accessed April 2014].

100

http://www.thoughtcrime.org/software/sslstrip/
http://www.thoughtcrime.org/software/sslstrip/
http://www.html5rocks.com/en/tutorials/memory/effectivemanagement/
http://www.html5rocks.com/en/tutorials/memory/effectivemanagement/
https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Leak_Gauge
https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Leak_Gauge
https://developer.mozilla.org/en-US/docs/Mozilla/Performance
https://developer.mozilla.org/en-US/docs/Mozilla/Performance
https://developer.mozilla.org/en/Gecko_DOM_Reference
https://developer.mozilla.org/en-US/docs/Navigation_timing
https://developer.mozilla.org/en-US/docs/Navigation_timing


[66] Mozilla Developer Network and individual contributors. Parser API.
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/
SpiderMonkey/Parser_API. [Accessed June 2014].

[67] Gene Novark, Emery D. Berger, and Benjamin G. Zorn. Plug: automatically toler-
ating memory leaks in C and C++ applications. University of Massachusetts, 2008.

[68] Gene Novark, Emery D. Berger, and Benjamin G. Zorn. Efficiently and precisely
locating memory leaks and bloat. ACM Sigplan Notices, 44(6):397–407, 2009.

[69] F.S. Ocariza Jr, K. Pattabiraman, and B. Zorn. Javascript errors in the wild: An em-
pirical study. In Proceedings of 22nd International Symposium on Software Reliability
Engineering, 2011.

[70] Octane. Octane Benchmark, 2014. Accessed Aug. 2014.

[71] The University of Waikato. Weka–data mining with open source machine learning
software. [Accessed May 2012].

[72] Stack Overflow. Memoy leak due to JavaScript closure exam-
ple. http://stackoverflow.com/questions/19798803/
how-javascript-closures-are-garbage-collected. Accessed May
2014.

[73] David Patterson, Aaron Brown, Pete Broadwell, George Candea, Mike Chen, James
Cutler, Patricia Enriquez, Armando Fox, Emre Kiciman, Matthew Merzbacher, et al.
Recovery-oriented computing (ROC): Motivation, definition, techniques, and case
studies. Technical report, UCB//CSD-02-1175, UC Berkeley Computer Science,
2002.

[74] Jacques A. Pienaar and Robert Hundt. JSWhiz: Static analysis for JavaScript mem-
ory leaks. In Code Generation and Optimization (CGO), 2013 IEEE/ACM Interna-
tional Symposium on, pages 1–11. IEEE, 2013.

[75] Bruce Ratner. The correlation coefficient: Definition. http://www.dmstat1.
com/res/TheCorrelationCoefficientDefined.html. [Accessed March
2015].

[76] Derek Rayside and Lucy Mendel. Object ownership profiling: A technique for finding
and fixing memory leaks. In Proceedings of the Twenty-Second IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pages 194–203. ACM, 2007.

101

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Parser_API
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Parser_API
http://stackoverflow.com/questions/19798803/how-javascript-closures-are-garbage-collected
http://stackoverflow.com/questions/19798803/how-javascript-closures-are-garbage-collected
http://www.dmstat1.com/res/TheCorrelationCoefficientDefined.html
http://www.dmstat1.com/res/TheCorrelationCoefficientDefined.html


[77] Charles Reis and Steven D. Gribble. Isolating web programs in modern browser
architectures. In Proceedings of the 4th ACM European Conference on Computer
Systems, pages 219–232. ACM, 2009.

[78] Gregor Richards, Andreas Gal, Brendan Eich, and Jan Vitek. Automated construc-
tion of JavaScript benchmarks. ACM SIGPLAN Notices, 46(10):677–694, 2011.

[79] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis of the
dynamic behavior of JavaScript programs. ACM Sigplan Notices, 45(6):1–12, 2010.

[80] Tom Robinson. Automagically wrapping JavaScript callback functions. http://
tlrobinson.net/blog/2008/10/wrapping-javascript-callbacks/.
Accessed 2013.

[81] Masoomeh Rudafshani and Paul AS Ward. Towards dependable clients: Improving
the reliability and availability of the browsers. In Proceedings of the 9th Middle-
ware Doctoral Symposium of the 13th ACM/IFIP/USENIX International Middleware
Conference. ACM, 2012.

[82] Masoomeh Rudafshani, Paul AS Ward, and Bernard Wong. MemRed: Towards
reliable web applications. In Proceedings of the Workshop on Secure and Dependable
Middleware for Cloud Monitoring and Management. ACM, 2012.

[83] Felix Salfner, Maren Lenk, and Miroslaw Malek. A survey of online failure prediction
methods. ACM Computing Surveys (CSUR), 42(3):10, 2010.

[84] Selenium. Selenium: Browser automation framework. https://code.google.
com/p/selenium. Accessed Oct. 2014.

[85] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. Jalangi: A
selective record-replay and dynamic analysis framework for JavaScript. In Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering, pages 488–
498. ACM, 2013.

[86] Stelios Sidiroglou, Oren Laadan, Carlos Perez, Nicolas Viennot, Jason Nieh, and
Angelos D Keromytis. Assure: Automatic software self-healing using rescue points.
ACM SIGARCH Computer Architecture News, 37(1):37–48, 2009.

[87] StatCounter. StatCounter Global Stats. http://gs.statcounter.com/. [Ac-
cessed May 2012].

102

http://tlrobinson.net/blog/2008/10/wrapping-javascript-callbacks/
http://tlrobinson.net/blog/2008/10/wrapping-javascript-callbacks/
https://code.google.com/p/selenium
https://code.google.com/p/selenium
http://gs.statcounter.com/


[88] Yusuke Suzuki. Escodegen. https://github.com/Constellation/
escodegen. [Accessed October 2013].

[89] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving the reliability of
commodity operating systems. ACM SIGOPS Operating Systems Review, 37(5):207–
222, 2003.

[90] Yan Tang, Qi Gao, and Feng Qin. LeakSurvivor: Towards safely tolerating memory
leaks for garbage-collected languages. In USENIX 2008 Annual Technical Conference,
pages 307–320. USENIX Association, 2008.

[91] The Meteor Project. An interesting kind of JavaScript mem-
ory leak. https://www.meteor.com/blog/2013/08/13/
an-interesting-kind-of-javascript-memory-leak.

[92] The WebKit Open Source Project. SunSpider JavaScript benchmark. https:
//www.webkit.org/perf/sunspider/sunspider.html. [Accessed August
2014].

[93] TodoMVC. TodoMVC: Helping you select an MV* framework. Accessed Oct. 2014.

[94] Omer Tripp, Pietro Ferrara, and Marco Pistoia. Hybrid security analysis of web
JavaScript code via dynamic partial evaluation. In Proceedings of the 2014 Interna-
tional Symposium on Software Testing and Analysis, pages 49–59. ACM, 2014.

[95] Kalyanaraman Vaidyanathan and Kishor S. Trivedi. A comprehensive model for
software rejuvenation. Dependable and Secure Computing, IEEE Transactions on,
2(2):124–137, 2005.

[96] viterbiSearcher. Garbage collection. http://everything2.com/title/
garbage+collection. [Accessed March 2015].

[97] W3C. Document Object Model (DOM) core level 2 specification. http://www.
w3.org/TR/DOM-Level-2-Core/core.html. [Accessed March 2015].

[98] W3C. DOM level 2 events specification. http://www.w3.org/TR/
DOM-Level-2-Events/. [Accessed July 2014].

[99] The World Wide Web Consortium (W3C). HTML5. http://www.w3.org/TR/
html5/. [Accessed March 2015].

103

https://github.com/Constellation/escodegen
https://github.com/Constellation/escodegen
https://www.meteor.com/blog/2013/08/13/an-interesting-kind-of-javascript-memory-leak
https://www.meteor.com/blog/2013/08/13/an-interesting-kind-of-javascript-memory-leak
https://www.webkit.org/perf/sunspider/sunspider.html
https://www.webkit.org/perf/sunspider/sunspider.html
http://everything2.com/title/garbage+collection
http://everything2.com/title/garbage+collection
http://www.w3.org/TR/DOM-Level-2-Core/core.html
http://www.w3.org/TR/DOM-Level-2-Core/core.html
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/


[100] Gregor Wagner, Andreas Gal, Christian Wimmer, Brendan Eich, and Michael Franz.
Compartmental memory management in a modern web browser. ACM SIGPLAN
Notices, 46(11):119–128, 2011.

[101] Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying Ye. Probability
and Statistics for Engineers and Scientists, volume 5. Macmillan New York, 1993.

[102] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. Demystifying page load performance with WProf. In Proceedings of the
10th USENIX Conference on Networked Systems Design and Implementation, pages
473–486. USENIX Association, 2013.

[103] Shiyi Wei and Barbara G. Ryder. Practical blended taint analysis for JavaScript. In
Proceedings of the 2013 International Symposium on Software Testing and Analysis,
pages 336–346. ACM, 2013.

[104] Edmond Woychowsky. Creating Web Pages with Asynchronous JavaScript and XML.
Prentice Hall, 2007.

[105] Andrew Wright. Garbage collection. http://www.cs.princeton.edu/
courses/archive/spr96/cs441/notes/l13.html. [Accessed March 2015].

[106] Guoqing Xu, Michael D. Bond, Feng Qin, and Atanas Rountev. Leakchaser: Help-
ing programmers narrow down causes of memory leaks. ACM SIGPLAN Notices,
46(6):270–282, 2011.

[107] Guoqing Xu and Atanas Rountev. Precise memory leak detection for Java software
using container profiling. In 30th International Conference on Software Engineering
ICSE’08., pages 151–160. IEEE, 2008.

[108] Ting Yang, Emery D. Berger, Scott F. Kaplan, and J. Eliot B. Moss. CRAMM:
Virtual memory support for garbage-collected applications. In Proceedings of the
7th symposium on Operating systems design and implementation, pages 103–116.
USENIX Association, 2006.

[109] Kevin Yank. How not to write JavaScript. http://www.sitepoint.com/
google-closure-how-not-to-write-javascript/. [Accessed February
2015].

104

http://www.cs.princeton.edu/courses/archive/spr96/cs441/notes/l13.html
http://www.cs.princeton.edu/courses/archive/spr96/cs441/notes/l13.html
http://www.sitepoint.com/google-closure-how-not-to-write-javascript/
http://www.sitepoint.com/google-closure-how-not-to-write-javascript/

	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Background
	Solutions
	Detection and Diagnosis of Memory Leaks
	Runtime Management of Memory Leaks

	Contributions
	Impact and Potential Impact
	Overview of the Thesis

	Background and Related Work
	System Model
	Motivation

	Threats to System Dependability
	Fault Model
	Memory Leak
	Examples of Memory Leaks

	Failure Model
	Related Work
	Memory Bloat
	Memory Leak Detection in Other Programming Languages
	Memory Leak Detection in JavaScript
	Web Application Profiling
	Runtime Error Detection and Recovery


	Detection and Diagnosis of Memory Leaks in JavaScript Applications
	Running Example
	System Overview
	Profiler

	Logger
	Leak Reporter
	Heap Model
	Determining Leaked Objects
	Finding Related Leaky Allocation Sites

	Implementation
	AST Modifications
	Handling Dynamic Aliases in JavaScript
	Extracting Live Objects

	Evaluation
	Experimental Setup
	Accuracy of LeakSpot
	Case Studies on Open-Source Web Applications
	Case Studies on Large Web Applications
	Measuring Performance Overhead

	Discussion and Limitations
	Conclusion

	Runtime Management of Memory Leaks
	Monitoring
	Error Detection
	Recovery
	Type and Time of Recovery

	Implementation
	Monitoring and Analysis
	Recovery

	Evaluation
	Tudu Experiment
	GMail Experiments 

	Conclusion

	Conclusion and Future Work
	Summary
	Future Work
	Runtime Management of Memory Leaks: A Different Approach
	Online Use of LeakSpot
	Memory Leak Detection Based on State Monitoring
	Alternative Heuristics for Memory Leak Detection
	Enriching Recovery Actions
	Applicability to Other Domains


	APPENDICES
	Implementation of Proxy
	Proxy Architecture
	Dealing with SSL-Related Errors

	DOM Objects
	DOM Object Allocations and Memory Management
	DOM APIs

	References

