1,531 research outputs found

    Matrix probing and its conditioning

    Full text link
    When a matrix A with n columns is known to be well approximated by a linear combination of basis matrices B_1,..., B_p, we can apply A to a random vector and solve a linear system to recover this linear combination. The same technique can be used to recover an approximation to A^-1. A basic question is whether this linear system is invertible and well-conditioned. In this paper, we show that if the Gram matrix of the B_j's is sufficiently well-conditioned and each B_j has a high numerical rank, then n {proportional} p log^2 n will ensure that the linear system is well-conditioned with high probability. Our main application is probing linear operators with smooth pseudodifferential symbols such as the wave equation Hessian in seismic imaging. We demonstrate numerically that matrix probing can also produce good preconditioners for inverting elliptic operators in variable media

    Real-time Feedback of B0 Shimming at Ultra High Field MRI

    Get PDF
    Magnetic resonance imaging(MRI) is moving towards higher and higher field strengths. After 1.5T MRI scanners became commonplace, 3T scanners were introduced and once 3T scanners became commonplace, ultra high field (UHF) scanners were introduced. UHF scanners typically refer to scanners with a field strength of 7T or higher. The number of sites that utilise UHF scanners is slowly growing and the first 7T MRI scanners were recently CE certified for clinical use. Although UHF scanners have the benefit of higher signal-to-noise ratio (SNR), they come with their own challenges. One of the many challenges is the problem of inhomogeneity of the main static magnetic field(B0 field). This thesis addresses multiple aspects associated with the problem of B0 inhomogeneity. The process of homogenising the field is called "shimming". The focus of this thesis is on active shimming where extra shim coils drive DC currents to generate extra magnetic fields superimposed on the main magnetic field to correct for inhomogeneities. In particular, we looked at the following issues: algorithms for calculating optimal shim currents; global static shimming using very high order/degree spherical harmonic-based (VHOS) coils; dynamic slice-wise shimming using VHOS coils compared to a localised multi-coil array shim system; B0 field monitoring using an NMR field camera; characterisation of the shim system using a field camera; and designing a controller based on the shim system model for real-time feedback

    Developing, Implementing, and Assessing Decoupling Control for UTP Air Pilot Plant

    Get PDF
    This paper aims to develop, implement and assessing MIMO system for Universiti Teknologi PETRONAS (UTP) Air Pilot Plant. MIMO system is far more complex than SISO system as MIMO system has multiple interactions. Condition number which often related to MIMO system is the measurement parameter for degree of interaction between variables of the system and variable interaction is the dynamics between manipulated-process variable and controlled-process variable pair. The higher the condition number, the higher the degree of process interaction. Those systems can be very challenging to adjust or control one input from affecting another output because the outputs are reliant to more than one input. Small changes or disturbance in inputs can resulted into a major chaos in the output. Usually, a multi-loop control configuration is applied to MIMO system. However, if the process interaction is significant, it is wise to consider multivariable control strategies such as decoupling control

    A novel block non-symmetric preconditioner for mixed-hybrid finite-element-based flow simulations

    Full text link
    In this work we propose a novel block preconditioner, labelled Explicit Decoupling Factor Approximation (EDFA), to accelerate the convergence of Krylov subspace solvers used to address the sequence of non-symmetric systems of linear equations originating from flow simulations in porous media. The flow model is discretized blending the Mixed Hybrid Finite Element (MHFE) method for Darcy's equation with the Finite Volume (FV) scheme for the mass conservation. The EDFA preconditioner is characterized by two features: the exploitation of the system matrix decoupling factors to recast the Schur complement and their inexact fully-parallel computation by means of restriction operators. We introduce two adaptive techniques aimed at building the restriction operators according to the properties of the system at hand. The proposed block preconditioner has been tested through an extensive experimentation on both synthetic and real-case applications, pointing out its robustness and computational efficiency

    Reducing "Structure From Motion": a General Framework for Dynamic Vision - Part 1: Modeling

    Get PDF
    The literature on recursive estimation of structure and motion from monocular image sequences comprises a large number of different models and estimation techniques. We propose a framework that allows us to derive and compare all models by following the idea of dynamical system reduction. The "natural" dynamic model, derived by the rigidity constraint and the perspective projection, is first reduced by explicitly decoupling structure (depth) from motion. Then implicit decoupling techniques are explored, which consist of imposing that some function of the unknown parameters is held constant. By appropriately choosing such a function, not only can we account for all models seen so far in the literature, but we can also derive novel ones

    Robust Preconditioners for the High-Contrast Elliptic Partial Differential Equations

    Get PDF
    In this thesis, we discuss a robust preconditioner (the AGKS preconditioner) for solving linear systems arising from approximations of partial differential equations (PDEs) with high-contrast coefficients. The problems considered here include the standard second and higher order elliptic PDEs such as high-contrast diffusion equation, Stokes\u27 equation and biharmonic-plate equation. The goal of this study is the development of robust and parallelizable preconditioners that can easily be integrated to treat large configurations. The construction of the preconditioner consists of two phases. The first one is an algebraic phase which partitions the degrees of freedom into high and low permeability regions which may be of arbitrary geometry. This yields a corresponding block partitioning of the stiffness matrix allowing us to use a formula for the action of its inverse involving the inverses of both the high permeability block and its Schur complement in the original matrix. Singular perturbation analysis plays a big role to analyze the structure of the required subblock inverses in the high contrast case which shows that for high enough contrast each of the subblock inverses can be approximated well by solving only systems with constant coefficients. The second phase involves an efficient multigrid approximation of this exact inverse. After applying singular perturbation theory to each of the sub-blocks, we obtain that inverses of each of the subblocks with high contrast entries can be approximated efficiently using geometric multigrid methods, and that this approximation is robust with respect to both the contrast and the mesh size. The result is a multigrid method for high contrast problems which is provably optimal to both contrast and mesh size. We demonstrate the advantageous properties of the AGKS preconditioner using experiments on model high-contrast problems. We examine its performance against multigrid method under varying discretizations of diffusion equation, Stokes equation and biharmonic-plate equation. Thus, we show that we accomplished a desirable preconditioning design goal by using the same family of preconditioners to solve the elliptic family of PDEs with varying discretizations

    Aspects of solving non-linear boundary value problems numerically

    Get PDF

    Quantum Markovian Subsystems: Invariance, Attractivity, and Control

    Full text link
    We characterize the dynamical behavior of continuous-time, Markovian quantum systems with respect to a subsystem of interest. Markovian dynamics describes a wide class of open quantum systems of relevance to quantum information processing, subsystem encodings offering a general pathway to faithfully represent quantum information. We provide explicit linear-algebraic characterizations of the notion of invariant and noiseless subsystem for Markovian master equations, under different robustness assumptions for model-parameter and initial-state variations. The stronger concept of an attractive quantum subsystem is introduced, and sufficient existence conditions are identified based on Lyapunov's stability techniques. As a main control application, we address the potential of output-feedback Markovian control strategies for quantum pure state-stabilization and noiseless-subspace generation. In particular, explicit results for the synthesis of stabilizing semigroups and noiseless subspaces in finite-dimensional Markovian systems are obtained.Comment: 16 pages, no figures. Revised version with new title, corrected typos, partial rewriting of Section III.E and some other minor change
    • …
    corecore