EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Aspects of solving non-linear boundary value problems
numerically

Citation for published version (APA):

Kramer, M. E. (1992). Aspects of solving non-linear boundary value problems numerically. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR367530

DOI:
10.6100/IR367530

Document status and date:
Published: 01/01/1992

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023


https://doi.org/10.6100/IR367530
https://doi.org/10.6100/IR367530
https://research.tue.nl/en/publications/1293bf56-e6a9-481f-9aca-6daf6813275e

Aspects of solving
non-linear boundary value problems

numerically

M.E. Kramer



Aspects of solving
non-linear boundary value problems

numerically

Proefschrift
ter verkrijging van de graad van doctor aan de Technische
Universiteit Eindhoven, op gezag van de Rector Magnificus,
prof.dr. J.H. van Lint, voor een commissie aangewezen door

het College van Dekanen in het openbaar te verdedigen op
dinsdag 25 februari 1992 om 16.00 uur.

door
Martina Elijda Kramer

geboren te Leidschendam



Dit proefschrift is goedgekeurd door de promotoren

prof.dr. R M.M. Mattheij

prof.dr. G.W. Veltkamp



Aan mijn ouders



Contents

Preface
1 Conditioning and dichotomy of boundary value problems .. ............... 1
1.1 Conditioning of linear BVP’s .. ... ... ... . . . i, 2
1.2 Dichotomy and conditioning .. ............ .. .. .. ... 8
1.3 The influence of perturbations on conditioning and dichotomy ...... 15
1.4 Conditioning of non-linear BVP’s .. ... ... ... ... ... ... ... .... 21
2 Solution methods for boundary value problems . . . ... .. ... ... . L ... 27
2.1 Initial value techniques .. ....... ... . i 28
22Globalmethods ... ... . i e 34
2.3 Solution methods for non-linear BVP’s ... ... .. ... ........... 39
3 Davidenko-like equations and a special integration method .. ............. 47
3.1 Davidenko-like equations . ........ ... ... i 48
3.2 Theintegration method . . .. ..ottt i it ce e 54
3.3 Implementation of the mixed Eulermethod .................... 58
34 Numerical resnlts . ... .. .. i e 63
4 Preconditioned time stepping in combination with multiple shooting .. ....... 71
4.1 Construction of the preconditioner . ........... .. ..., ..., 72
4.2 Comparison of the preconditioner with ~J R 87
43 Numerical results . . .. .. ... e e e 94
5 A generalised multiple shootingmethod .. ................ ... .. .... 101
5.1 Unbiased multiple shooting . .. ........ ... ... ... 102
S2C0NVEIGENCE . . v ittt e e e 110
S3Numerical results .. ..., ... . e 114
S4Parallel computation .. .. ... ... . i e 117
APPendiX A e e e e 121
Appendix B L. e 123
Appendix C: Logarithmic norm ... ... .. ... iun it iinnnnnneennns 127
Appendix D : Convergence domain of Newton’s method .. ............... 130
Appendix E : Convergence of the mixed Eulermethod . ................. 132

Appendix F : Boundedness of the Riccati-matrices of the preconditioning process 134



R eTenCEs . o it e e e 139

INAEX e e e e e e e, 144
Samenvatting (in het Nederlands) . ........ . ... .. ... .. .. ... .. ... 147
Dankwoord .. ... e e e 149



Preface

In this thesis we study solution methods for well-conditioned boundary value problems
{(BVP’s) of the form

(P.1a) ) = h(x,y) ,a<x<b ,y:{abl >R and h: [ab]xBR* SR,
(P.1b) gta).yd) = 0 .8 R'xRB"-R" .

Let y*(x) denote an isolated solution of (P.1). The BVP is considered to be well-conditio-
ned at y*(x), if small changes in the functions % and g induce a small change in the solu-
tion only. A more precise definition is given in chapter 1. An important property of a
well-conditioned BVP’s is that its linearization at y*(x) is dichotomic, i.c. the solution
space of the linearization can be split into a subspace of non-decaying modes and one of
non-growing modes and the angle between both subspaces is bounded away from zero.
Moreover, well-conditioning implies that both solution modes are well controlled by the
boundary conditions (BC). In particular, if the boundary conditions are separated (see
§1.1), the growing modes are controlled at the end point x = b and the decaying modes at
the initial point x = a.

A well-known solution method for BVP’s is multiple shooting. For this method the inter-
val [a,b] is split into N subintervals [x; , x;,,], with

(P.2) A=X <Xy<...<Xy,; =b
and on every subinterval, an initial value problem (IVP) is defined :

(P.3a) yx) = h(x,y) y Xp<X<Xp,q s
(P.3b) yxp) = 8¢ , 5,€R" .

The shooting vectors s, have to be determined such that the solutions of the local IVP’s
form a continuous function on [a,b] that satisfies the global BC (P.1b). The vector of these

nN non-linear equations will be denoted by f(s) = 0, where §* = (s;r ,s; . ..,s;,) and
f: RN BN

The local IVP’s (P.3) will not be well-conditioned if the ODE (P.1a) contains exponential-
ly growing modes (indeed, there are no end-point conditions to control them). This may
cause some problems, like error amplification, non-existence of the local solutions and
high sensitivity of f(s) for changes of s in some directions. Generally one tries to reduce
these problems by choosing small subintervals, thus diminishing the effect of the exponen-
tially growing modes. In particular for non-linear BVP’s the high sensitivity of f{s) is
important, because most non-linear solvers, including Newton’s method and its variants,
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are not really equipped to handle this.

These features of the multiple shooting method have been the starting point for the re-
search presented in this thesis. We will describe two solution methods, based on multiple
shooting, that do more justice to both the growing and decaying solution modes of the
BVP. The first method, (preconditioned) time stepping, is an alternative solver for
J(s) = 0; the second method, unbiased multiple shooting, tackles the problem at an earlier
stage in defining BVP’s locally instead of IVP’s.

The first method is based on the time stepping idea, i.e. f(5) is embedded in an IVP

(P.4a) % - M&)fs) >0,
(P.4b) s(0) = s° , SPeR™ |

where the preconditioner M(s) : B™ - RN i5 such that the requested zero s* of f(s) is
a stable steady state of (P.4); i.e. it can be reached by integration of the IVP through time.

An important point is to find a suitable preconditioner. Hereto we construct a transforma-
tion that fully decouples the growing and decaying modes of the discretization of the l-
nearized BVP. The preconditioner we construct applies these transformations and inverts
the increment of the growing modes, thus reversing the integration direction for those
modes.

Another point of research concerning the time stepping method to solve f(s), is the inte-
gration method for (P.4). The method does not necessarily have to give a good approxima-
tion of the solution s(¢) of (P.4); we only want to reach the limiting state as quickly as
possible, i.e. take larger steps. Since for most explicit integration methods, stability impo-
ses a bound on the step size, we like to use an implicit method. On the other hand the pre-
conditioner can be obtained, only after the Jacobian J(s) of f(s) is computed. Since compu-
tation of M(s) is (relatively) expensive, we would prefer to use a method that is not impli-
cit in M(s). We found a compromise between these two requirements in following method:

(P.5) = sl emMGh ™Yy 20,

with hj the step size. This method, named mixed Euler, is explicit in M(s), thus reducipg :
the computational costs, and implicit in f{s), thus allowing for larger time steps once s/ is
close to the stationary point, as we will show in chapter 3. This integration method to find
the solution of the non-linear equation f{s) = 0, requires at every step the solution of the
non-linear equation (P.5). However, these equations can be solved by Newton’s method
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for sufficiently small A, if s/ is far from the stationary point s*, and for all hj, once s/ is
sufficiently close to s*. If the preconditioner is chosen equal to -J"l(s), then the IVP
(P.4) can be considered as the closure of Newton’s method. Indeed, integration with the
explicit Euler method and step size 1, yields Newton’s iteration. And integration of (P.4)
with mixed Euler converges to Newton’s method if the step size approaches infinity.

The second method to improve the performance of multiple shooting on non-linear BVP’s,
allows for the character of growing modes before discretization. This leads us to consider
the use of boundary conditions on the subintervals, ie. try to solve on every subinterval a
BVP:

(P.6a) y&) = h(xy) » Xp <X <Xpyq s
(P6b) Ak}’(xk) +Bky(xk*l) = sk N Skenn .

If the local BC are such that (P.6) is well-conditioned for every ke (1, . ., N}, the resulting
set of non-linear equations for s, i.e. f{s), will not be overly sensitive for changes in s in
any direction. In fact both the Jacobian of f(s) and the Lipschitz constant of the Jacobian
can be bounded in terms of the conditioning constant of the local BVP’s (P.6). Hence we
expect Newton’s method to perform satisfactorily. However, on every subinterval we have
to solve again a non-linear boundary value problem (which is our original problem).
Nevertheless, an implementation of this idea, using collocation or finite differences for the
local BVP’s, yields a stable algorithm for non-linear BVP’s, that can easily be implemen-
ted on a parallel computer. Moreover, in a sequential setting the memory use of this algo-
rithm will be considerably less than for collocation or finite differences on the entire inter-
val [a,b].

The structure of the thesis is as follows. In chapter 1 we review the conditioning of both
linear and non-linear BVP’s and the relation between conditioning, dichotomy and boun-
dary conditions. In chapter 2 we briefly describe existing solution methods for BVP’s and
derive an estimate for the Lipschitz constant of the Jacobian of f{s). The two subsequent
chapters deal with preconditioned time stepping. Convergence and implementation of the
mixed Euler integration method are described in chapter 3. The formulation and properties
of the preconditioner are the subject of chapter 4. Finally, chapter 5 considers the generali-
zation (P.6) of multiple shooting.



1 Conditioning and dichotomy of boundary value problems

This thesis deals with numerical solution methods for non-linear boundary value problems
(BVP’s). Since these methods always introduce errors {e.g. rounding, discretization), it is
important to be able to assess the influence of small perturbations on the solution of the
problem. Therefore we dedicate this first chapter to the description of the conditioning of
BVP’s.

Over the past decade the conditioning of linear BVP’s has been studied by many authors,
see e.g. [Ma82,dHMa85,dHMa87]. Especially the link between well-conditioning, the
boundary conditions (BC) and dichotomy, i.e. the splitting of the solution space into non-
increasing and non-decreasing modes, has turned out to be a very useful tool in understan-
ding the nature of BVP’s and in the development of solution methods. In the first three
sections we will state the commonly used definitions of well conditioning of linear BVP’s
and of dichotomy. Additionally we give an account of some relevant relations between
these concepts and the influence of slight perturbations of the BVP on conditioning and
dichotomy.

The conditioning of non-linear BVP’s has not received much attention in literature thus
far. In §4 we will give a definition of well-conditioning of non-linear BVP’s that slightly
differs from the one given in [Ma89] and investigate the link between conditioning of a
non-linear BVP and its linearization.



$1.1 Conditioning of linear BVP’s

Consider the linear boundary value problem

(Lllla) 9y =q , yeCl(labl -R" ,

(1.L.1lby By =8,

with ge C([a,b] — R") and Pe R", where the operators & : C!([a,b] >R™) — C([a,b]—R") and
B : C(la,b] » R — R" are defined by

]

(LL1) Y apony Vel (@)@ = 300 - A0y
and
(1.1.1d) VyeCklapov™ © BY = BoY@) +Byy(b) ,

with Ae C([a,b] — R™") and BB, e R™".

A well-known concept regarding linear ordinary differential equations (ODE’s) with initial
conditions only, is the fundamental solution, i.e. a matrix function ®e Cl((a,b] = R™™ that
satisfies

(1.1.2) @) = A D) , a<x<b

and has » independent columns at every xe[a,b]. The existence of such a matrix is based
on the fact that if we start out at x = a in n independent directions and integrate the ODE
(1.1.1a) with ¢ =0, the solutions will remain independent (see e.g. [Be53]). The funda-
mental solution is not uniquely determined; the matrix function ®H is also a fundamental
solution, for any non-singular He R™".

Any solution of (1.1.1) can be expressed in terms of a fundamental solution & by
(1.1.3) yx) = S)c + L‘d)(xw-‘(:)q@)dt,

where the vector ¢ is determined by the boundary conditions, viz.

(1.1.4) [B®Plc =B - Bbj:’d)(b)(b'l(t)q(t)dz.

Hence we see that (1.1.1) has a unique solution for every B and ¢ iff 8 & is non-singular.
In this thesis we assume that (1.1.1a) has a fundamental solution & such that this is true
(in which case this property holds for all fundamental solutions). Consequently this
property holds for all fundamental solutions of (1.1.1a) and we assume without loss of
generality that @ is scaled such that

(1.1.5) B @ = B,®(a) + B,Ob) =1,
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with 7, the nxn identity matrix. Consequently rank( (B, | By)) = n and

rank(B,) + rank(B,) = n.

The relation (1.1.3) gives an expression of the solution of the linear BVP (1.1.1) in terms
of the fundamental solution, the inhomogeneity ¢ and the boundary value B. However, this
form is not suitable for analyzing the conditioning of the BVP, because, as we see from
(1.1.4), the vector ¢ depends on both B and ¢. If the formula (1.1.4) is substituted into
{1.1.3) we obtain the Green’s function

®B, @) , 1<x,

(1.1.6) Glxr) = { -dWB, MmO, 1>x

and the solution of (1.1.1) now reads
(1.1.7) y(x) = BEP + LbG(x,t)q(t)dt .

The form of the Green’s function for BVP is in fact a generalization of the one for initial
value problems, where By = 0 and B, ®(a) =1,

The representation (1.1.7) for y(x) can now be used to estimate the influence of the
boundary value and the inhomogeneity on y(x). But first we have to introduce some

notational conventions concerning norms.

1.1.8 Notation
The single lines | . | » denote the p-Holder norm of a vector or a matrix, i.e.

lp

a
[x; 1P , 18p<oo,
(1.1.8a) Vg x|, := le /
max |x; , p=o

and
(1.1.8b) Viegr  |A[, 1= max A%, .

¢ P 0 T,
The double lines | . . . will denote the r-Hélder function norm with respect to the p-

r’ p
vector norm, i.e. with f e L (Ia,b] - R") or f €L ([a,b] — R
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(L“" | £() [;dx)”’ , 1<r<o,

2, 10 e

(1.1.8¢) 1£1,,, =

The somewhat unusual choice of vector norm notation is due to the fact that we want to
distinguish explicitly between function and vector norms. In this thesis we generally use
the Euclidian vector norm; therefore the subscript p will be omitted if p = 2.

1.1.9 Definition
The conditioning constant Ky, of the BVP (1.1.1) is max(k,,K,), where

(1.1.92)  x; = |@].,

1.1.9b = G| .

( ) K, aé‘,‘i‘?‘sb' (0 |

L)

Hence

(1.1.10) IYlo < % (B + Kpllglly < %, (B ] +qly)

Often one refers to a condition number as a quantity that measures the maximum ratio of
the relative error due to relative perturbations; hence it is invariant under scaling (cf. the
condition number of a matrix). Here, we use the terminology conditioning constant on
purpose {cf. [AsMaRu]) as it refers to absolute errors instead. So the conditioning constant
is uniquely defined only, if the scaling of the problem is standardized.

By default we will use the natural scaling of the ODE-part as given in (1.1.1a), where all
the derivatives have coefficient 1, unless stated differently; this might for instance occur
for singularly perturbed problems where a more desirable scaling is instead

(1.1.1D () = ey00) - Ay ., a<x<b.

The scaling of the BC requires somewhat more care. As was pointed out in {dHMa85,
AsMaRu] the straightforward scaling

(1.1.12) max(|B,|,|B,|) = 1

may lead to a rather unbalanced situation, like

(1.1.13) B ° =" °
" a o 10 "% o 103"
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A more satisfactory scaling is obtained if we consider both matrices together. Consider the
QR-factorization

(1.1.14) (%) - QR ,
b

with Qe R orthogonal and Re R™” upper triangular. Then (1.1.1b) reads

1.1.15 R7O7[X®D ] .
(L.L.15) 0 [y@} B

and balanced BC emerge if the equation is premultiplied by (R™)~!. Note that R must be
invertible if we require the BVP to have a solution for every vector e R”. Hence we make
the following assumption.

1.1.16 Assumption
The matrix (B, | By) has orthonormal rows.
¢

Boundary conditions that satisfy this assumption can be written in a special form, see e.g.
[dHMa835, AsMaRu].

1.1.17 Lemma
There are orthogonal matrices Q,,0,VeR™" and non-negative diagonal matrices
I, 5, R™ such that

(11.17a) B, =VZI,Q] and B, =VZ,0, .

Moreover
(L.L17b)  E2+52=1,.
L4

Due to this decomposition of the matrices B, and B, it is meaningful to review the notion
of separared boundary conditions. Generally the BC are called separated if some, say r,
conditions only involve y(a) and the remaining (n-r) only involve y(b). However, consider
the BC

B, = [C"S“ OJ . B, = ['Sim 0} L aeR\(Zk [keNyU-Ny ).

sina 0 cosa O

They appear to be non-separated, but the decomposition (1.1.17a) reads
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B__cosa—sina 10110 ’B_cosa—sina 00|01
%" lsina cosa |0 0)10 1] 7% |sina cosa)lO 1]\1 0

Hence premultiplication of the equation B, y(a) + B, y(b) = B by V" yields separated BC
and we give the following definition of separated and partially separated boundary condi-
tions.

1.1.18 Definition

The boundary conditions are called separated if rank(B,) + rank(B,) = n.

The boundary conditions are called partially separated if rank(B,) < n or rank(B,) < n.
*

1.1.19 Remark
The decomposition (1.1.17a) has a special form for (partially) separated BC. For separated

BC we have
{1.1.192) \'fj : (21),-; =0 V (22)}.}, =0

and without loss of generality we can assume that

00 ., 0
AL1B)  By= o [and =)0

with r the rank of Z,.

Partially separated BC satisfy the relation
(1.1.19¢) 3 (E)=0 V (Zp;=0

+

From definition (1.1.9) it seems to follow that two quantities have to be evaluated to
determine the conditioning constant. However, it was pointed out in |[dHMa85,AsMaRu}
that there is the following relation between the fundamental solution ¢ and the Green’s
function G :

PP = Ga)Gix.a)™ + Gb)Gl.b)™

Since we use the Euclidian vector norm this yields the following lemma,

1.1.20 Lemma
(1.120) ¥ <42 x,

¢
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Hence x, gives sufficient qualitative insight in the conditioning constant of a boundary
value problem.

Generally one is mainly interested in an upper bound for the conditioning constant,
However, it is also intriguing to ask for a lower bound. For instance the (relative)
condition number of a matrix can never be less than 1. For BVP we prove that the lower

bound is at least %\ff and for partially separated BC even 1.

1.1.21 Lemma
(1.1.21a) K, 2 _;.\/2_.

If the boundary conditions are (partially) separated, then
(1.1.21b) K 21.

*

Proof

Let V,0,,0,,%,,Z, be as in lemma 1.1.17 and let v; and e denote the j ! column of V and
I, resp.. Then

B, ®(a) + B,O®) =1,
® I,0/0@) + T,0,0%) = VT
& Vi ()6 0 @@y, + (Zp)¢] Oy PbYY; = 8
= V1S (Z);]e Q[ @@v;] + (Ty);;]e] Q) DB,
(») S (T 1P@] + (2| B) |
< @2+ 2 {|0@ 2+ |00 2

—AIo@ 2+ |0®) | .

Hence |@(a)]| 2 %JZ_ or |®MB)| 2 %\[2— . For (partially) separated BC a more precise

result can be obtained from (*), viz.
3}- : (El)jj=0 = | dBH)iz1,

3 (5);=0 = Id@I21.



§1.2 Dichotomy and conditioning

When considering well conditioning of an initial value problem (often called stability in
this context), it is important that there are no (rapidly) growing solutions. The situation for
a BVP is quite different: there is no bias towards forward integration with respect to the
independent variable x ; indeed if the BVP is rewritten in terms of the variable & = ~x, we
again obtain a BVP, but all decaying solutions of the original BVP are transformed into
growing ones and vice versa. So it is natural to assume that the fundamental solution of a
well conditioned BVP has both growing and decaying modes and that the conditioning
depends on the ability of the boundary conditions to control them properly.

The first descriptions of the solution space of linear ODE’s in terms of growing and deca-
ying modes (i.e. dichotomy) were made in papers about the existence of solutions on [0,e<)
or R of linear ODE’s for certain classes of inhomogeneities, cf. [Pe,MaSc58,MaSc66,
Co78]. Later on, it was noted by several authors, cf. [Ma85], that dichotomy is closely
related to well conditioning of BVP’s and the choice of its boundary conditions.

1.2.1 Definition

The ODE (1.1.1.3) is dichotomic if there is a fundamental solution Y(x), a projection
PeR™" and non-negative constants K\ and |1, K of moderate size, such that

(1212) V,e,ccp : |YOPY()| < Ke D,

(L21b) VY e cicp - !Y(x)(ln”‘p}yﬁl(’)! < Ke B0

The ODE is exponentially dichotomic if A and i1 can both be chosen positive. We say that
Y(x) is dichotomic with projection P and constants (K, A\0).
L4

On an infinite interval, an inappropriate choice of P,A or u would make it impossible to
satisfy (1.2.1a,b) for a finite value of K. However, on a finite interval the inequalities can
be satisfied for any projection and any constant A, at the expense of enlarging K. Hence
on a finite interval the dichotomy concept can be meaningful only if X is of moderate
size. Note that K is always at least 1, because

K> |Y@PY~a)| = max JYOPY] 5 4
P @ = o ¥y

Some authors, see €.g. [AsMaRul, require the projection P to be orthogonal. However, this
is a superfluous requirement. Indeed, if Y(x) is a fundamental solution satisfying (1.2.1a,b)
with a nonorthogonal projection P of rank p, then there is an invertible matrix Ce R™"

8
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00
such that P = C{

07 }C”I. Now let C = UEZVT be the singular value decomposition of C
P

and define Z(x):= Y(x)UZ. Then Z(x) is also a fundamental solution of the ODE,

- 00 ,

P:= VT-[O 7 ]-V is an orthogonal projection and Y(x)PY Y = Z0)PZ "1(£). Hence the
P

ODE has a fundamental solution which satisfies the dichotomy conditions with an ortho-

gonal projection.

The definition of dichotomy states that no solution of the ODE can switch from stongly
increasing to strongly decreasing or vice versa. For (1.2.1a) implies that

(1.2.2) v, <i1sx<b vcelln : |Y(x)PCi s Ke_k(x*t) !Y({)PC* »

a

ie. the set §; := { Y()Pc | ceR" } consists of the solutions of the homogeneous ODE that
do not grow very strongly (for moderately sized X). And analogously does the set

Sy == { Y()U,-P)c | ceR" } consist of solutions that do not decrease rapidly. The dicho-
tomy of an ODE involves more than just this splitting into non-increasing and nondecrea-
sing solution modes. If the angle ¥ between the two subspaces S, and § is defined by

(1.2.3) 9 := min {min{ A@X),w(x)) |xe[a,b]} | ues, , wes,},

then cot 4 < K (for a proof see e.g.[dHMa87]). This means that the angle is bounded away
from zero and that solutions of a different type cannot get arbitrarily close to one another.
The best result that can be obtained from this estimate is 9e (0,51, because K 2 1 (9e (}.5]
cannot be concluded).

In [dHMa87] a proof was given that well-conditioned BVYP’s with separated BC are dicho-
tomic. We will give an account of their proof (adapted to our notation), because it gives
some insight into the structure of the problem.

1.2.4 Lemma ({dHMa87] Th.3.2)

If the BVP (1.1.1) has separated BC, then B,®(a) is an orthogonal projection and ®(x)
satisfies (1.2.1) with projection P = B, ®(a) and constants (,,0,0).

Proof

From (1.1.5) and decomposition (1.1.17a) it follows that

*) VI, 0 @@ + VE,Q,®0) =1, .

Since the boundary conditions are separated, we may assume without loss of generality
that
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s |09 .a 1,0
1o, )BT o)
Premultiplication of (*) with Z,V7 yields

2,0/®@ =Z,V",
ie. B,®() = VI,Q, ®@ = VI ,V"

is an orthogonal projection and with P := B, ®(a) :

Vs, @ |[®@@PO 0| = [®®B, @' = |G| < K, ,
v | @@ I ,-P)® )| = |®WB,&B)® ()| = |Gxp)]| < x, .

x<t

Similarly exponential dichotomy follows from an exponential bound on the Green’s func-
tion. In [dHMa87] dichotomy for BVP’s with not (fully) separated BC was proven as well.
The proof is based on constructing separated BC for the same ODE. We will just state the
result.

1.2.5 Lemma

The BVP (1.1.1) has a fundamental solution Y(x) for which the dichotomy relations hold
with K = ky + 45,2 and A = pu = 0.

¢

The dichotomy lemma 1.2.4 for separated BC already sheds some light on the relationship
between well-conditioning and boundary conditions. In [AsMaRu} Ch.3 a somewhat more
explicit relation is given.

1.2.6 Lemma
Suppose (1.1.1) is well-conditioned and has separated BC. If Y(x) is a fundamental
solution with dichotomy projection P, then

(1.2.6a) ker(B,) nrange(Y(a)P) = {0},
(1.2.6b) ker(B,) Nrange(Y(b)({,-P)) = (0} .
¢

This lemma states that the homogeneous solutions that end in a non-decreasing direction
are controlled by the end point conditions and that those that start in a non-increasing di-
rection are controlled by the initial point conditions.
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Not only does well-conditioning imply dichotomy, if an ODE is dichotomic and the boun-
dary conditions are such that k; is bounded, then the norm of the Green’s functions has to
be moderately sized as well.

1.2.7 Lemma ({AsMaRu] Th.3.103)
If the ODE (1.1.1) is dichotomic, then x, < K(2x; + 1).
¢

However, if the boundary conditions do not fit with the dichotomic behaviour of the ODE,
¥; will be large and so will x,. It has been noted in several papers that for any dichotomic
ODE appropriate BC can always be found. Therefore we mention a lemma which is only a
slight modification of [dHMa85] Lemma 2.3.

1.2.8. Lemma ([dHMa85])
Let EeR™ and Y(x) be a fundamental solution of (1.1.1a). For any c,d €{a,b] withc < d
define

YOO EY () , c<t<x<d,

(1.2.83) G(xst) = {Y(x)(E_[n)Y‘l({) s cLx<t<d .

Then there exist boundary conditions B, and B, scaled as in assumption 1.1.16 such that
G(x,1) is the Green's function of

(1.2.8b) {5’ = ARy . c<x<d

B.y(c) + Byy@d) = B .

1.2.9 Corollary
) If (1,1.1a) is dichotomic, then there are boundary conditions such that the conditioning
constants of the resulting BVP satisfy

(1.2.9a) kK, <K and ¥ € y2K.

(i) If E is a projection, then the boundary conditions B, and B, are separated.

Proof of (ii), due to [Ve].

V‘E(C’a.) : B.G(e,H+B,GAH) =0 = B YU, ,~E) = BY(dE .

Hence rank(B)) + rank(B,) = rank(B, ®(c)) + rank(B,D(d)) < rank(E) + rank(/,-E) = n,
if E is a projector.

¢
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The fact that well-conditioned BVP’s may contain growing modes, has given rise to stabi-
lity problems for some solution methods. If we want to tackle those problems, it would be
very helpful if the growing modes can be isolated. Let ¥ be the fundamental solution of

017

00
the BVP (1.1.1), that satisfies the dichotomy relations for P = [ ] , then with Y(x) par-
P

titioned as Y(x) = (Yl(x) §Y2(x)) )
wp P

we have S, = range(Y 1(.)) and §; = range(Y 2(.)), ie. the first columns of ¥ monitor the -
behaviour of the most dominant modes. However, these modes are uniquely defined when
considered on a (half) infinite interval only. When integrated forward over a finite subin-
terval, as is done in some solution techniques for BVP’s (see Ch.2), the subspace of in-
creasing modes is not uniquely determined.

In practice any linear combination of increasing and decreasing solution modes will even-
tually show up as a growing solution and the influence of the decreasing modes will dimi-
nish rapidly. In order to isolate the growing solutions it would be most preferable to know
the starting matrix Y(a), but based on the foregoing one can also do with a fundamental
solution whose first (n-p) columns contain at least components of the (n-p) growing
modes. Therefore we define, analogously to [AsMaRu}, the notion of consistency.

1.2.10 Definition
A fundamental solution Z of (1.1.1a) is consistent with Y if

(1.2.10a) range(Z1(a)) ~range(Y%(a)) = {0}
¢

If the non-singular matrix H, such that Z = YH, is partitioned into
gl g2
HZI ng

with H 22 RP*P, then we can give the following relations.

1.2.11 Lemma (AsMaRu] Lemma 6.12)

(i) Z is consistent with Y iff H'! is non-singular.

(ii) Z is consistent with Y iff  Vyeiop ¢ 1ange(Z'(0) Nrange(Y(x)) = {0} .

¢
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The criteria mentioned in this lemma of course uniquely determine consistency, however,
numerically it is difficult to distinguish between a singular and a nearly singular matrix.
Since the basic thought behind it, is that the influence if ¥ 2(x)H*! on an arbitrary solution
should not exceed the influence of Y'(x)H'!, a better criterion for consistency would be
that the consistency constant L, defined by

t YZ(a)H2l |

(1.2.12) L= TWF 1
glb(YYayH')

is of moderate size.

The considerations above give us a handle to split the solution modes into a directional
part and a part describing the growth behaviour. Suppose that Z is a consistent fundamen-
tal solution. Since Z({x) is a continuous function there exist two continuous matrix func-
tions Q(x) and U(x) that together form the QU-decomposition Z(x) = Q(x)U(x) for every
xe [a,b], with Q(x) an orthogonal matrix and U(x) an upper triangular matrix with positive
diagonal elements. Now we expect the left upper block of U(x) to contain information on
the growth behaviour of the most dominant modes. Henceforth we consider the following
splitting of U(x) :

B(x) Cx)
1.2. = .
(1.2.13) Ux) 0 E®

with B(x)e R P*(2) and E(x)e BRP*P. Then we can derive the following lemma, which is
a slightly stronger result than the one derived in [AsMaRu] Ch.6.

1.2.14 Lemma

Voey<icp ¢ |BOB®| < Kexp(-pt-v) ,
Vocicxcp ¢ |E®ET @] < Kexp(-Ax-0) ,
2
with K = K- 1+LK and ® as defined in (1.2.3).

Vsin®8 + [max(cos® -LK?,0)]?
Proof see Appendix A.
Note that if the consistency constant L = 0, then K = K. Fortunately, the structure of

BVP’s with separated boundary conditions is such that a consistent fundamental solution
can easily be found.
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1.2.15 Lemma ([AsMaRu] Th.6.33)
Suppose that (1.1.1a) is well-conditioned and that the BC (1.1.1b) are separated with

0 -
B, = [BaZ Ji; P LetZ bea fundamental solution of (1.1.1a) , then Z is consistent if it

satisfies

(1.2.152)  BpZl(a) = 0.

Proof
Let Y be the fundamental solution of (1.1.1a) with BY =1, , then Y is dichotomic with
00 . .
projection o1 | according to lemma 1.2.4. Now let H be the invertible matrix such
2

that ZH =Y. Then

0 0 0 0
01, H = B,Y(@)H = B,Z(a) = 0 B,z%a) |’

ie. H2! = 0. Thus the H'! is invertible, because H is invertible.
*

Finally we want to consider the inverse of a fundamental solution.

1.2.16 Lemma
Let Y(x) be a fundamental solution of (1.1.1a). Then Y™ 7(x) is a fundamental solution of
the ODE

(1.2.16a) y = -AT(x)y ,a<x<b .

Moreover, if Y(x) is dichotomic with projection P and constants (K,\,W), then Y7 (x) is
dichotomic with projection I, -P™ and constants (K,u,A).

Proof
Veep) * YWY '@ =1, = YOY'0+Y0Y® = 0
e Yl = Y wioyew = -Ywaw
& VW = —ATWY TR,
And
Vocrsxso ¢ YT -PHXTE) !, = [YOU,-PI)Y @) |, < Ke M50,
Yosxarsy ¢ Y T@PTET@) ], = [YOPY )|, < Ke ™MD



§1.3 The influence of perturbations on conditioning and dichotomy

At several points in this thesis we will consider linear BVP’s that are slight perturbations
of each other. Therefore it is useful to summarize the relationship between their funda-
mental solutions, Green’s functions, conditioning constants and dichotomy behaviour. The
first three itemns follow straightforwardly from the definitions and the possibility to regard
the difference in the homogeneous term as an inhomogeneity of the original BVP. Since
this has already been presented by various authors, e.g [dHMa85,AsMa], we omit proofs.

Consider the boundary value problems

(1.3.1a) y = A(x)y , a<x<b,
(1.3.1p) By = B

and

(1.3.23) 7= Az , a<x<bh,
(1.3.2b) Bz =f .

Define the matrices S8A(x):=A(x) -A(x) , 8B,:=B,-B, and 8B,:=B,-B, and
the scalar quantities €5 = |[8B,| + |8B,| and €, =|8A].

Let ®(x) and ®(x) denote the fundamental solutions of (1.3.1), (1.3.2), respectively. Then
(13.3) dx) = dWBE) + J;b G(x,5)8A()D(s)ds .

If 8A(x) = O then the relation simplifies into, see e.g. [dHMa85],
(1.3.9) dx) = d(BD)

or equivalently

(1.3.5) d() = ) (BO)! .

Let G(x,t) and G(x,r) denote the Green’s functions of (1.3.1), (1.3.2), respectively, then
(1.3.6) Gix,p) = Gx.p) + PO(BG(..D)) - ﬁ G(x,$)8A(s)G(s.)ds .

The previous relations yield the possibility to compare the conditioning constants of two
neighbouring BVP’s.

15
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1.3.7 Lemma

Let x,,X, denote the conditioning constants of (1.3.1) and let ¥, and K, denote the condi-
tioning constants of (1.3.2).

If x| 85+ %, 8, <1, then

X
(1.3.7a) R € ot
1-x85-K,€,
and
. L)
(1.3.7b) N
.

This lemma indicates that a well-conditioned BVP remains reasonably conditioned if A(x)
and the boundary conditions are only slightly perturbed. A disadvantage, inherent to this
type of error estimates, is that no upper bound is obtained for perturbations with €,,&p =
O(1) and that the estimates for the conditioning constants grow quite rapidly if either g,
or gy increase. Also, the upper bounds for X, and K, are not always sharp estimates, as
the following example shows.

1.3.8 Example
Consider the BVP

. _|B 0
y(x)-[o —Jy(x) , O<x<1,

00 10
[o lJ.)*(O)Jr(o OJy(l)-'B,

\

with A,pueR. Then

0 0
, X2t
JRITCS N 0 eMxh *
() = d G =
@=1 0 x| OS2 e
, X<t
0 0

If we take positive A and y for the original (unperturbed) problem, then for all X,;l 20,
we have K| =k, =1 and K, =K, = 1, even if x; £, > 1. On the other hand if we set out
from A =1 =0 and take X = € and I = g, then &, = K, = ¢°. And the estimate
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K < x(1 —KzsA)'l = (1-g)7! is a good approximation of ef for small e, but a poor

one for £ > %
.

Next we look at the influence of perturbations on the dichotomy of ODE’s (i.e. only the
value of A plays a role); in literature this is often referred to as roughness. In [MaSc66]
dichotomy and roughness are described in a topological context for a much larger class of
differential equations, viz. where y(x) may be a mapping into an infinite dimensional
Banach-space. Here we state a result that was derived in {MaSc58] and [Co67], and has
been reformulated into our notation.

1.3.9 Theorem

Suppose that the ODE (1.3.1a) has an exponential dichotomy, with the fundamental solu-
tion B(x) satisfving (1.2.1) for the projection P and constants (K\,1). Then for all

€ < min(A, W) there is a positive constant 8, depending on P KA+ and € such that

I SAH <8 = thereis a fundamental solution ® (x) of (1.3.2a) satisfying

|BxPH (@) | <Ke P-0IGD for x>t
and |®@UI-PY® )| <Ke ®-DED  for x<y,

with K depending on K and P.
¢

This theorem is not appropriate for practical use, as 8, though existing, may be very small,
A quantitatively more useful result can be found in [Co78]. Unfortunately the proof cannot
deal with A = W, hence it renders a weaker result than one could hope for.

1.3.10 Theorem ({Co78] Ch.4)

Define o = min(A,W), then, under the same assumptions as in Th.139, g, < %aK -2
implies that (1.3.2a) is exponentially dichotomic and moreover that there is a fundamental
solution and a projection P such that (1.2.1a,b) holds for the constants

GK?, a-2Ke, , a-2Ke,).

)

The literature on roughness of ordinary dichotomy is not very extensive. However, the re-
sults stated in §1.2 about the relations between conditioning and dichotomy give some
more insight into the matter.
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1.3.11 Lemma
If (1.3.13) has an ordinary dichotomy with constants (K,0,0) and Ke, < 1, then there is a

Sfundamental solution of (1.3.2a), which is dichotomic with constants (K(1 -K¢ A)'l ,0,0).

Proof
Application of lemma 1.2.8 and corolarry 1.2.9 with E = P yields that there are separated
BC

(1.3.11a) B, y@ + B,y® =B,

such that the norm of the Green's function of (1.3.1a)+(1.3.11a) is bounded by K. Let K,
denote the norm of the Green’s function of the perturbed BVP (1.3.2a)+(1.3.11a). Lemma
1.3.7 implies that

K

R, < :
27 T-Ke,

Application of lemma 1.2.4 yields that the ODE (1.3.2a) is dichotomic with constants
(K(1-Key)™,0,0).
L4

There is quite an analogy between the dichotomy of perturbed ODE’s and the eigenvalues
of perturbed matrices. If the dichotomy constants A and p are far away from zero (i.e.
there is a clear splitting in growing and decaying modes), then small pertﬁrbations do not
seriously change the dichotomy of the system and similarly if eigenvalues of a matrix are
sufficiently separated, the influence of small perturbations will be moderate. On the other
hand, even small perturbations of an ordinarily dichotomic ODE may yield a non-dicho-
tomic ODE, as we will show in example 1.3.13, and eigenvalues of a matrix with multiple
eigenvalues may change considerably under small perturbations (see e.g. [GoLo}).

The generic upper bounds derived in Lemmas 1.3.10 and 1.3.11 are of course not necessa-
rily sharp as will be demonstrated in example 1.3.12. However, perturbations of an ordina-
rily dichotomic ODE may cause behaviour of the solution modes that is far from dichoto-
mic, see example 1.3.13.
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1.3.12 Example
Consider the BVP
(1.3.12a) y=0 , O<x<l,

10 00
(1.3.12b) [0 o] ¥(0) + [0 1})7(1) =B.

It has an ordinary dichotomy with constants (1,0,0). Now consider the perturbed BVP

(1.3.12¢) Y o= [g i] yx) , 0<x<l,.

This one has an exponential dichotomy with constants (1,A,1). However, if A > 0, then the
dichotomy does not properly fit the BC and the conditioning constant will grow, causing
lemma 1.2.4 to render a rather pessimistic view.

2

1.3.13 Example
Again consider the BVP (1.3.12a,b). Now we choose another perturbation of the ODE-
part, viz.

€ . 0<x<l1-3
A(x) = fx) 0 with f(x) = { ¢ 5-1 (1 1 5<2<1 5
0 0 € (—i.—X) R 3— _x_5+
-£ , 1is<x<i s
2

with £ > 0 and 6e (0,0.5) define. The fundamental solution reads

1

exp(ex) , 0<sx<_-&

O _ |0 ith y = 1 1,1 2 1 2 1
x) = 0 1 with g(x) = exp(.i.s(l—S—S' (3~x) 1) , .2.-55xs3+5
exp(e(l ~x)) , %+6 <x<1,

i.e. the solution function g(x) first increases exponentially and then decreases exponential-
ly. So for larger g-values the problem becomes non-dichotomic (and ill-conditioned), as is
demonstrated by the plot of g(x) for € = 1 and & = 0.005.
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§1.4 Conditioning of non-linear BVP’s

For linear boundary value problems the concept of well-conditioning and topics related to
it, like dichotomy and the influence of boundary conditions, have been studied extensively.
There is not much literature available about the conditioning of non-linear BVP’s,

The main difference between the linear and the non-linear case is, that the size of the per-
turbations plays an essential role; multiplying a perturbation by some factor, may cause a
considerably larger change in the solution than the original perturbation. Therefore we in-
clude the size of the perturbation in the definition of conditioning,

Consider the non-linear boundary value problem

(1.4.1a) ¥ = h(x,y) , a<x<b,
(1.4.1b) g(@).y®d) = 0,

which is assumed to have an isolated solution y*(x), i.e. there is a tube
{ yeC({a.b] — RH ||y -y* ] <a} around y* in which there is no other solution of the
BVP. '

1.4.2 Assumption
Let a > 0 be a constant such that the convex neighbourhood

D, := {yeC((abl>R") | |y-y*|<a)

of y*(x) satisfies
" a. y* is the only solution of (14.1) in D,
b. the upper bound Cgk on the first and second derivatives of h(x,y) with respect to
y and on the first and second (partial) derivatives of g(u,v) is of moderate size.

Moreover, for all yeD, the conditioning constant of the linearization of (1.4.1) at y(x) is
denoted by ¥, ().
+

In order to determine the conditioning constant of the BVP, we have to consider a slightly
perturbed BVP

(1.4.3a) v = h(xy) + 8h(x,y) , a<x<b,
(1.4.3b) g(@).y®) + dg(¥@).yb)= 0.

For the non-linear BVP, we now introduce the following conditioning concept.

21
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1.4.4 Definition
Let y*(x) be an isolated solution of (1.4.1). For every € > O define

(144a) D) := {(8g,8h)eC(R"xR" R x C([a,b] xR" -»R") |
() (1.4.3) has a solution y(x) € D},, which is unique in Dy,
and (i) |5g(y(a).y(h)) | <€ and |8A(..y(.)l<e.}.

Now define the conditioning constant x(€;y*) of (1.4.1) by
(1.4.4b)

K(ey®) t= inf (>0 | Vg, smene © 17> 15c(|82G@F®) | + 18R F(NI)) -

The BVP is well conditioned ar y*(x) if there is an € such that x(g;y*) is of moderate
size.
4

Note that we do not consider solutions of all BVP’s with | 8¢ | and | 8k | bounded by
€, but only those that have a unique solution in Dy. The reason for this is that if the
original BVP (1.4.1) has several solutions, x(&;y*) would have no finite value for any €.
This definition of conditioning constant differs from the one proposed in [Ma89] in two
ways. Firstly we consider a somewhat smaller class of perturbations in order to guarantee
existence of k(g;y*). Secondly, definition 1.4.4 is a generalisation of the definition of con-
ditioning for linear BVP, unlike the definition in [Ma89], where in effect the conditioning
constant is defined as the least upper bound on the quotient of § y*-y | and

max{ | 8¢ |, | 8k | ). Hence that definition is not a generalisation of the one for linear
BVP’s. Notice that k(g;y*) is a non-decreasing function of € and that for linear problems
¥(g;y*) is constant.

Since the linearization of a BVP describes the first order effect of small perturbations on
the non-linear BVP, we expect the conditioning constant of the linearized BVP not to be
considerably larger than that of the original non-linear one. Define

oh{x,v)

(1.4.5a) AQxy) o=
ov

vey()

and B,(y) := 280@Y)

(1.4.5b) B () = J8y®)
u=y(a) I vyt

Ju

and consider the linearized BVP with inhomogeneities g(x) and B

{ 2x) = Ay)z(x) + g(x) , a<x<b ,

(14.6) B ) 2(a) + By()z(b) = B .
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1.4.7 Lemma
If the conditioning constant K, (y*) of the linear BVP (1.4.6) is finite, it does not exceed

(1.4.7a) inf x(g;y™).
g>0

Proof

Let € > 0, g(x)e C([a,b] — R™ and BeR" And let z(x) be the solution of the linearized
BVP (1.4.6) at y*(x). For any & > 0, the function az is solution of (1.4.6) with inhomoge-
neity og and boundary value ofd. Define Y{x;at) := y*(x) - az(x). Then ¥{(x;00) satisfies the
perturbed BVP (1.4.3) with

h(xy*) - h(xy) - Ay " -y) - ag),
g0 @y ®) - gy - BN u-y*@) - ByHv-y* (b)) + af .

Sh(xy) :
dgluy) :

And this perturbed BVP can be rewritten into the following form :

{)‘? = Ay Dy + [h(xy™) -Alsy M)y - aq)] , a<x<b,
B, y"y(@) +B,o")yb) = af + gy @y ®) ,

i.e. the linearization of (1.4.1) at y*(x). Hence its solution y(x;ct) is unique if x;;,(v*) is
finite. If & is sufficiently small, the solution Y(x;00) will be in Dy and the size of the per-
turbations that are bounded by

*  |8g1<3C,0%z1? + o|B| and 18RS Cyol )zl - alql,
will be smaller than €. Now application of definition 1.4.4 yields
alzll < xE;y*) AClz1P0? + o|B| + algh)
= |zl < &y @acylzI? + |B| + lqb) .

Finally let o approach zero.
L4

From this lemma we see that, if a non-linear BVP is well conditioned, even on a small
domain, then its lincarization is well conditioned, too. This in turn implies that the lineari-
zed BVP is dichotomic, i.e. the solution space can be split into a subspace of non-decrea-
sing modes and a subspace of non-increasing modes, where the angle between the two
spaces is bounded away from zero.

Two remaining questions are whether well-conditioning of the linearized BVP induces
well-conditioning of the non-linear one and whether well-conditioning is maintained under
small perturbations. Since the proof of the latter uses the conditioning of the linearized
BVP, both questions can be answered by one lemma.
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1.4.8 Lemma
Let y(x),2(x)e D, be unique solutions of (1.4.3) in D, Jor the functions Shy, Sgy and dh,,
dg,, respectively, and suppose that ¥, (y) is bounded. Define
(1.4.82) g, := |3g,(@)y(h) -8g,((@,z(®))| and ¢, := |Shy(. . y(.))-8h,(. ,.2(N].
Then
(14.8b) e, ve, < _l.z__ = Iy-zl < 2,00 (e, +p) -
uscgh K

Proof
Define w(x) := y(x) —~ z(x). Then it satisfies the linearized BVP (1.4.6) at y(x) with

(%) = h(xy@) - hx.z() - AEY)WE) + 3h(xy() - 8k, (x2() ,

B = 20(@®)) - 2z@,2)) + B, 0)W(a) + By wib)

+3g,((a).yb)) - 8g,(z2(@).z(b)) .

Now the norm of w(x) can be estimated by
2
Iwl = K;;RO?)(4C3;,IIW|| +Ey +€,) .

And because of the continuity with respect to € and g, we can easily derive that

1 -‘/1 -16C,, k> (V) (e, +€
eg+ek<.__1_2_ =|w| < chk 1Y) (€g + €4)
16C;, K5, ) o X1in)

265,00 (€, +€;)

1 +J1 ~16C, K, () (e, +£4)

2K,0) (€, +€p) -

A

1.4.9 Corollary

(i) Application of the previous lemma for y = y*, ie. 8}zy = 0 and Sg}, = (), yields that
well-conditioning of the linearized problem implies well-conditioning of the non-linear
BVP for small perturbations.

(if) The previous lemma also yields continuity of well conditioning of non-linear BVP’s.
Indeed, if a non-linear BVP is well conditioned at a solution y*, then its linearization at y*
is well conditioned, too. Hence, if yeD, is an isolated solution of a neighbouring BVP,
lemma 1.3.7 shows that for | y*-y | sufficiently small x;, (y) can be bounded in terms of

Kpin(¥*)
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Kfiﬂ(y *) . * -1
(1.4.92) KO <€ " Sif y* -yl <(5Cg;,‘<gm()’ N7
1-5%;,0 )Cgh Iy* =¥l

Now the lemma 1.4.8 yields that the neighbouring BVP is well conditioned, too, though
possibly on a small domain.
[

We see that well-conditioning of the linearization implies well-conditioning of the original
BVP, but possibly, for very small perturbations only. Therefore we have chosen to define
conditioning of non-linear BVP’s not in terms of the linearized BVP, but in terms of the
original BVP. As we saw in §1.3, the situation can be significantly better than stated in
the lemma, but it gives a realistic upper bound for the worst case (cf. example 1.3.8).

Finally, we want to mention a pitfall. Based on the definition of conditioning one may be
tempted to make the ’inverse’ statement, that any neighbouring function of y*(x) will
satisfy a neighbouring BVP. However, conditioning is concerned with the influence of per-
turbations in the derivative on the primitive function, whereas here we perturb the primi-
tive function and ask for the influence on the derivative. And it is well-known that inte-
gration is a ’smoothing’ operation, but differentiation may have the inverse effect as the
following example shows.

1.4.10 Lemma
Let y*(x) be the solution of (1.4.1). Then

(14.100)  Yeigcecn Yy>0 Jyeciapiomn | IY-YTI<e

A y(x) satisfies (1.4.3) with |Sh| 2y .
Proof
Take y(x) = y*(x) + %arctan(a (x —%(a«rb)) -& for some unit vector Eg R and e R. Then
¥{(x) is continuously differentiable and il y-y* Il < g. Its first derivative reads

J0) =900 +Ax) with foo) = 2E%, 1
T 1+a2(x~%(a+b))2

Hence y(x) satisfies (1.4.3) with dh(x,y) = h{x,y) - h(x,y*) + fx) and
1;8}:]12287“ ~Cye -

Now take a sufficiently large.
+
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2 Solution methods for boundary value problems

In this chapter we give a brief description of some solution methods that are commonly
used for solving BVP’s. Roughly speaking these methods can be divided into two classes,
viz. methods based on IVP techniques, like invariant embedding and multiple shooting,
and ’global’ methods, like collocation and finite -differences. We will not mention all im-
portant variants, adaptations and features of both method classes, but only highlight items
which are actually used in the remainder of this thesis. A more complete survey can be
found in e.g. [AsMaRu,Ke76] and some references therein.

In section 2.1 we describe the IVP-based solution methods of multiple shooting and inva-
riant embedding and pay special attention to a reorthogonalization process. The second
section is devoted to global methods, viz. finite differences and collocation. The method
descriptions in the first two sections are given for linear BVP’s. In the third section we
consider the adaptation of those methods for non-linear BVP’s and pay special attention to
the conditioning of the arising non-linear equations.
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§2.1 Initial value techniques

The development of approximative solution methods for initial value problems (IVP’s) has
matured earlier than the development of such methods for BVP’s. One of the obvious rea-
sons is that IVP’s can more easily be treated locally: the starting point is known before-
hand and information about the local direction field can be used to approximate the solu-
tion at neighbouring points. However, BVP’s are essentially non-local; there is no starting
point available and information from both ends of the interval is needed everywhere. One
way to circumvent this problem, is to guess the missing initial conditions and employ
available IVP-software to approximate the solution. Of course this ’solution’ is very likely
not to satisfy the endpoint conditions. Nevertheless, the information from the integration
step can be used to improve the initial point guess iteratively. In analogy to the familiar
military technique of aiming a cannon correctly by trial and error, this process is called
shooting. The mathematical description is as follows: consider the linear BYP

@2.1.1) {5’ = A(x)y +q(x) , a<x<b,

B, y(a) +B,y(b) = B .

A shooting attempt is equal to solving the IVP

¥ = Ay +g(x) , a<x<b,
2.12) {y(a) Lo

for some vector s& R, The exact solution will be denoted by y(x;s). Solving (2.1.1) is now
equivalent to solving the equation

(2.1.3) B,s+Byybs) = B .

Application of this method may encounter problems, due to the essential difference be-
tween IVP’s and BVP’s. Whereas a well-conditioned (stable) IVP will have no exponen-
tially growing solution modes, a well-conditioned BVP may very well have them, as we
saw in Ch.1. However, all stability considerations and error bounds of numerical methods
for IVP’s are based on the absence of exponentially growing modes. Another problem is
that computational errors may be magnified by a factor exp(i(b-a)), if p is the growth
factor of the strongest growing solution mode.

These drawbacks can be overcome to some extent by a more refined shooting process, ge-
nerally referred to as mudtiple shooting. Here the interval is split into several subintervals
[xp Xp1)s 1 Sk €N, for some NeN, with

(2.1.4) =X <Xp<.... <Xy, =h

and the shooting process is applied to every subinterval, i.e. the IVP’s
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vy = A(x)y + g(x) , X <X<Xp .y,
(2.1.5) {y Y k kel

yxg) = 54

are solved for the shooting vectors 5, R”, 1 < k < N. The solutions are denoted by

yi(x;5; ). We now have a two level discretization : a coarse level grid

{x;»xy,.,.,xy,; } determining the shooting intervals and a fine level grid per subinter-
val used by the IVP-solver.

Before considering the choice of the coarse grid we first review the process to obtain the
correct shooting vector s briefly. Not only has the set of unknowns been enlarged as com-
pared to single shooting, but also, as to be expected, there are more conditions to be satis-
fied. Besides satisfying the BC, the solution pieces y, together should form a continuous
function on the entire interval eventually. For notational convenience we introduce an
additional shooting vector sy, ,, representing the value of the solution at x = b. Now the
vectors 5, are determined by

. T T T
f(s) = 0 Wlth ST = (sl !Sz""’SNQ.l)

and feClU(R"™W+D LpAN+1)y

(2.1.6)

and f(s) defined by
y1(xp389) ~ 55

¢4 T yN(xN+1;‘;N) SN

Bsy +Bysy.y -B

Since the BVP is linear its solution can be described as
(2.1.8a) yx) = d)k(x)sk+ vx) , xe g, xeqd s
where @,(x) is the fundamental solution on [x; x; ] with
(2.1.8b) D xp) =1,

and v(x) is the particular solution with v (x;, ) = 0. Now (2.1.6) is equivalent 10 the linear

equation
o,x) -, 5 (%)
®y00) I, 5, -v,(x3)
(2.1.9) -
Dnay) Ay || VNG
B, B, ||sna B
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This equation can be solved in several ways. A very simple idea, induced by the specific
form of the Jacobian, is compactification. Here the first N block rows are used to express
S, k22, interms of 5, :

(2.1.10) Sk - ¢k_1(xk)"¢l(xZ)sl +§k ’
k-2
with & = v 106) + Y (D10 =Dy, (x1,2)1v,06;,1)
j=1

and obtain an equation for s, from the last block row:

(2.1.11) [B, +B,®n(xy, )@ (x)]s; = B -B,Ey,; -
Notice that this is equivalent to
(2.1.12) {Ba +Bb¢1(xN+1)]S1 = B —Bbvl(xN*l) .

A major disadvantage of compactification is that the influence of rounding errors may be
considerable. The fundamental solutions @ (x,,;) and the particular solutions v,(x;,,) are
likely to contain errors of the size €, (€, being the machine precision). It was shown in
[AsMaRu} that, with §; the solution of the error containing version of (2.1.11)

| §; = 5, | = OC | @,(xn41) | €. For exponentially dichotomic BVP’s the norm of the
latter matrix will be considerable.

Another, generally more stable, solution method for (2.1.9) could be LU-decomposition.
Especially for BYP’s with separated BC, several other efficient solution methods can be
used, ¢.g. an LU-decomposition for almost block diagonal matrices [dBWe] and alternate
row and column pivoting [Va]. Later in this section we will describe how a stable com-
pactification algorithm can be performed in case of separated BC.

The linear IVP’s on the subintervals will generally have (exponentially) growing modes.
This has two major consequences. Firstly, the norm of &, (x) will increase exponentially
for larger x. Secondly, in every column of ®,(x) there will be a component of the strongest
growing direction, either right from the start or eventually due to computational errors, and
for larger x the influence of this mode will become dominant. Hence ®,(x) becomes
(almost) singular and vital information about the non-dominant modes may be lost. Often
multiple shooting codes use an adaptive choice for shooting points based on these two
considerations; i.e. a new point is inserted if either the ’size’ of @ (x) (e.g. the absolute
largest element or the | . |) becomes too large or if the condition number of & (x)
becomes too large, see e.g. [HeBeMaSt].

In the given setting we automatically restart at every shooting point with the identity
matrix. Since multiple shooting is traditionally a method that progresses in the x-direction,
a quite natural step is to apply an orthogonalization process to ®,(x,, ) before its columns
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have become (almost) dependent. This idea was first introduced for separated BC in
[{Go,Con]. If for instance a QU-decomposition @y (x;, ;) = Q,,,U, is made, the orthogonal
matrix Q. can be used as a starting value for the fundamental solution on [x;,;, x,,].
This process can be performed at the end of every subinterval, yielding fundamental solu-
tions that are transformations of the ones used in (2.1.9). Hence some additional matrix
vector multiplications have to be performed to solve for the vector s. Schematically the
process can be described as

- choose an orthogonal matrix @,

- determine QU-decomposition of @, (x,, )0, = Qp Uy, k = 1,.., N, yielding O,

and the upper triangular matrix U/
Equation (2.1.9) now reads

.
s -
0, U, -, 9 1 "1?"2;
T R =V X
Q3 Ug ']n Q2 2 23
On. Uv n Oy Sy -Yn(XN )
I | By B,Ony
" 4 * Q}.\’ri»l SNl B

This process is not just a way to maintain independence of the columns of the fundamen-
tal solution. In [Os,Ma82] it was noted that this process can also be used to decouple the
growing and decaying modes. Here we use the notion of consistency introduced in §1.2.
Suppose that the ODE (2.1.1) is dichotomic and that ¥ is a fundamental solution with

00
dichotomy projection P = [ 07 ] . If the fundamental solution Z,, with Z;(a) = @,, is
p

consistent with ¥, then every fundamental solution Z , scaled such that Z,(x,) = Q, ,
is consistent with Y. Indeed,

Z}(x) = d)}(x)Ql

@2(3»')(1)1(3{3) Q1
@0V,

(2.1.13)

QU1 Upp - Uy
= Zk(x)Uk_l "'Ul

and the product of upper triangular matrices is again upper triangular. Hence if the first
(n-p) columns of Q, span the subspace of growing modes at x = a, then the first (n-p)
columns of @, will span the same subspace integrated up 10 x = x; . In order to apply the
consistency results from §1.2 we partition the matrices U} as
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By Cy
2.1.14 U, = N
( ) 1o g

with B, € RPX0P) ¢, e RWP¥P and E, e RP¥.

2.L1S5 Lemma

- -1 ~
@115) Y., : |Bi...B.l ] < Kexp(-p(x,-x)) »
(2.1.15b) VY.,  |E.,...E,| < Kexp(-A(x;-x,)) ,

with K as in lemma 1.2.14.

Proof

The result follows from lemma 1.2.14 applied to Z, and the relation
L) = Qg - - Uy

.

This decoupling feature can be used in several ways. In [AsMaRu] it was pointed out how
it can be used to compute the vectors s, stably. Especially for separated BC the lower p
clements can be obtained by forward substitution, after which the upper (n-p) elements
can be computed stably by backward substitution. In chapter 4 we will use the decoupling
principle in a solution process for the equations arising for non-linear BVP’s.

The discrete decoupling performed at the shooting points as described above, has a conti-
nuous analogue, named invariant embedding. Here we only give a brief outline of the
idea, further details and theoretical background can be found ¢.g. in [vLo,Me73]. Since we
need to partition matrices and vectors we use the following notation :
c!! c12
@2.1.162)  Vegma : C = , CleRPx0=p) | CRppP,
c? 22

1
z |ln-p
(2.1.16b) Vzen" Dz=l, R
7 )ty

Instcad of solving the BVP (2.1.1) in its original form, we now seek a continuous linear

transformation T(x) such that the new variable w := T‘ly satisfies the ODE

(2.1.17) w o= Uw) + T gk , a<x<b,
with U(x) block upper triangular. Hence T has to satisfy the Lyapunov equation
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(2.1.18) T =AT-TU .

This transformation is beneficial to stability, if the differential equation

1=U?z , a<x<b and zeCl((ab] - RP),
contains no rapidly growing solution modes and the differential equation

t=U%2 |, a<x<b and zeC'(lab] - R"P),
contains no rapidly decreasing solution modes. In that case the function w(x) can be deter-
mined stably in a two-phase process, analogously to the discrete case, where first wA(x) is
obtained by forward integration of

(2.1.19a) w2 = U2w? (T719)?
and thereafter the remaining elements of w are obtained by backward integration of

(2.1.19b) wl = UMWl U202 4 (71t

The requirements on U(x) will be fulfilled if the span of the first (n-p) columns of T{(x)
contains components of all growing solution modes of (2.1.1) (cf. the consistency of a fun-
damental solution §1.2).

A variant of invariant embedding is the Riccati method. Here the transformation T is re-
quired to have the special form

I, 0
(2.1.20) T() = , Rx)eRP*(-P) | yelab] .

R(x) Ip
Now U(x) is in block upper‘ triangular form iff R(x) satisfies the Riccati differential

equation

(2.1.21) R =A% +ARR -RAYM _RAVR .



§2.2 Global methods

An idea for solving BVP’s, which is conceptually different from the ones described in
§2.1, is used in 'global’ methods. Here one employs only one grid, comparable to the fine
level grid in shooting. On this grid a discrete difference operator, approximating the origi-
nal continuous one, is defined.

In this section we briefly describe a few simple one-step finite difference schemes and
give a sketch of a stability proof for this method, because it shows some similarity
between the finite difference method and the shooting method; moreover, some of the
intermediate results are used later in this thesis. Finally we briefly describe the collocation
method.

Let the set of points {x,} with
(2.2.1) a=x;<X,<...<xXy,;=b,

define a grid on [ab]. The finite difference method tries to generate a vector y& R”(N“),
subdivided into N+1 vectors of length n :

M
@2 y=| 2 |, yew,

YN

such that y, is an approximation to y*(x; ), where y*(x) is the solution of the BVP (2.1.1).
A well-known one-step scheme, for instance, is the trapezoidal rule

Yiet = Yi

(223) = 1A e +AGDY, + 214 +a@)]

k

where iy = x;,; - x, . We define iz=max { /4 | 1 £k <N }, a measure for the mesh
size.

All one-step schemes can be written into the following generic form:

(22.4) L.y=9q,

with ge RV depending both on g(x) and B and the scheme used and &, a linear opera-
tor from R*™*D 1o R"MD defined by

34
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Sy Ry
S, Ry
(2.2.5) vyenn(mn A

1]
=

The blocks S, and R, e R™" can be written as
(2.2.6a) Sp = —hy L+ 0k
(2.2.6b) Ry = R, +¥y0hy)

where ¥, and ¥, are method depending functions, which we assume to be bounded on
[a,b] x [0,4], for some A > 0.

Next we want to estimate the error in the approximation y of the solution y*(x). Since y
and y*(x) are incomparable quantities, we introduce a projection
O C(C(la,b] —» RBY — R 1), defined by

z(xy)

| #&
(2.2.7} VZE C({a,b} __)k}‘l) : Pz := .

z(xf;h-l)

Now we would like to estimate the global discretization error e(h),

2.2.8) eh) := Oy* -y
and establish convergence of the method, ie.
2.2.9 lim |e(h) |, =0.

hi0

This can be done indirectly : assume that the method used is consistent, ie.
(2.2.10) Jes0 TpeN Viar [T4y*] | S CRP

where the local discretization error 1,[y*] is defined by

(2.2.11) Tl =0yt -Ly .

Then convergence follows if &, has a bounded inverse, i.e. if the method is szable. In the
literature several stability proofs can be found, see e.g. [Ke76,AsMaRu]. Essentially they
are all based on the fact that the matrix of (2.2.5) is closely related the matrix occurring in
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multiple shooting with, additionally, discretization errors. To be more precise, if Y(x) is a
fundamental solution of (2.1.1), then -R,”'S, is an approximation of ¥(x,,,)Y '(x, ).
Since every column of ¥(x) is a solution of the homogenous part of (2.1.1), consistency
implies that

0
(22.12) |2 0Y -¢|.. = Oh?) , with ¢ = 0 ,
BY
{i.e. solve (2.2.4) for n different inhomogeneities simultaneously). Therefore
(2.2.13) S Y0 + R Y(x,,p) = OGPy,
and since | R,™! | = O(h) this yields
(22.14) RS, = Y, DY "\ xy) « OP*Y)

This induces the following relation between $ and the Jacobian occurring in the multiple
shooting method :

(2.2.15) diag (<R, -Ry oo <RI )L, = T+E
with E a block diagonal matrix with | E | = O(h”*') and
Vi) -,
Yoxs) -1,
(2.2.16) ] =
YNGyg) -,
B,

The matrix J is identical to the Jacobian of f(s) in the multiple shooting process. The
norm of its inverse is Nx;;, (see Appendix B). Now we can derive

@ = (J+E)diag(-R;",-R; .. ,~R;,1 1)
= Uynay+J BN diag(-R;",-R; ., -RGI)

L7 |, S (L +O(P) (K (b-a) +OR)) = Ky (b -a) + O -

Another, though related, class of global solution methods is collocation. Here again a grid
is chosen on the interval [a,b]. Now the solution of the BVP is approximated by a func-
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tion y e C([a,b] — R"), which is a polynomial of degree m, for some fixed meN, on every
subinterval [x; , x;,,]. The continuity at grid points plus the boundary conditions give Nn
relations for the N(m+1)n unknown polynomial coefficients. In order to form the remain-
ing relations we choose canonical points {p;} , 1 < j < m, with

22.17) 0<p <py<...<p,s1

and require that y, satisfies the ODE (2.1.1a) at the points

2.2.18) x‘-j=x£+}zipj , je{l,..m} , ie{l,.,N},

ie.

(2.2.19) yn(xij) = A(x‘-j)yﬁ(xij)-»q(xij) , Jjef{l,..m} , ie{l,.,N}.

It was first shown by Weiss [We] that an implicit Runge-Kutta scheme can be formed
with canonical points Pj such that y, restricted to [x; , x;,,] is the interpolant of the auxi-
liary RK points Vi (estimates of y(x;)). Hence the consistency and stability results of
Runge-Kutta schemes (which are one-step finite difference schemes) apply and no additio-
nal analysis in this respect is necessary. The use of Gaussian points as canonical points is
appealing since it gives a local truncation error of O(hz’”).

Thus far we have not considered higher order differential equations, mainly because they
can easily be transformed into first order ODE (cf.[AsRu}). However, especially for collo-
cation methods one can make an implementation without reducing it to a first order ODE.
This has been considered in [AsChRu,BaAs] and implemented in the package COLNEW,
which we have used for several numerical experiments in Chapter 5.

Consider the ™ order BVP for ye C("'l)([a,b] - R)

k-1

(2.2.20a) YO =¥ ciayP g, a<x<b , m21,
Jj=0
y@ ¥b)

(2.2.20b) Ba H + B i -

b ;
y*Da) y& D)
Its solution can be approximated by a function y e C(“'l)([a,b] ~3» R), which is a poly-

nomial of degree k+m-1 on every subinterval. Now again the coefficients follow from the
{N-1)k continuity relations, the k boundary conditions and the Nm requirements

@221 yPup - z ety 0 + atxy)
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An important issue in the actual implementation of global methods is the grid choice.
During the process decisions about the redistribution and refinement of the grid have to be
made, in order to equidistribute the error and decrease it until the accuracy requirements
are met. This item is investigated by several authors, see e.g [Ru].

Comparing global methods with IVP-methods we see that the first type encounters less
trouble from exponentially growing modes, partly because only relatively small subinter-
vals are used, partly because only global methods allow for discretization schemes that are
capable to conserve the dichotomic character of the solution space.

From a philosophical point of view one could say that IVP-methods use compactification
on the fine grid, retaining information on the coarse grid only. Consequently using these
-methods requires less memory space and leads to the solution of smaller linear systems
than using global methods, where information on every fine grid point is retained.

Finally we mention that parallelization of these solution methods consists of two parts:
parallelization of the assembly of the large matrix and parallel solution of the resulting
linear system. For the latter several stable methods have been developed, see e.g. [AsPC,
PaGl,Wr]. For 1VP-methods parallelization of the assembly is straightforward since every
subinterval can be assigned to a different processor. However, for global methods one
needs a proper splitting of the interval into subintervals, especially for non-linear BVP's.
We address this issue in Chapter 5.



§2.3 Solution methods for non-linear BVP’s

In the previous sections we described solution methods for linear BVP’s. Of course the
same ideas can be used to solve non-linear BVP’s. However, the equation resulting from
discretization will generally be non-linear. In this section we will briefly describe the
adapted solution methods for non-lincar BVP’s and consider in particular the use of
Newton’s method to solve the arising non-linear equations. More specifically we estimate
the size of the convergence domain according to the Newton-Kantorovich theorem, see
e.g. [OrRh],[DeHe].

Consider the non-linear BVP

2.3. y = hlxy(x)) , a<x<b,
@3 {g(y(a),y(b)) =0.

The application of the multiple shooting method to it, starts out in the same way as the
application to a lincar BVP, i.e. we choose a grid

(2.3.2) @=X;<X3<... <Xy, =b
and define locally non-linear IVP’s :

{)’J = h{x,y(x)) > Xp<x<xy,, , 1SksSN,

2.3,
@33 Yoxp) = 5 . s,ER".

The solutions of the local problems, if existing, are denoted by y,(x;s, ) and y(x;s) is the
function, defined on [a,b], that is equal to y,(x;5; ) on (x; , x;,,] and satisfies

¥(a;s) = yy(a;s;). The unknown vectors s, have to be determined such that the local solu-
tions together form a continuous function that satisfies the boundary conditions. Hence
they have to be a solution of (2.1.6),(2.1.7). However, this time f{s) is a non-linear func-
fion, Its solution will be denoted by s* and the corresponding solution of (2,3.1) will be
denoted by y*(x) := y(x;5*).

An often used solution method is Newton’s method : let s be the initial guess for the
shooting vectors. Then the next iterates are determined by

(2.3.4) st =siel | 20,
with & the solution of
2.3.5) JsHE = ~f(s7)

d
and J(s) the Jacobian of f{s). The derivatives ﬁ can be determined in a special way, viz.
Sk

39
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9 sy Ah(x,v) 9y ((X354)
2.3.6 e e F e R(X, ; R .
with

dy(x,;
@3gy e

ds;

W is a fundamental solution of the linearized ODE at y,(x;s;). Since we will often

s

refer to this linearization, we introduce some simplifying notation.

ie.

2.3.7 Definition
The derivative of h(x,y) at y(x;5;) is

2.3.7a) Lxs) = .a_h(x,v)l s Xp<X<Xp, s
av v=y (s,

and the derivative of the boundary conditions are

@370 B = Eﬂ‘%‘f}l ys, B0 ag(asi,v) .
This leads to the local linearized systems

2.3.70) { j’n:(;,;(xz;sgz‘ s Xp<X<Xp .y k=1,. N,

L4

The Jacobian of f{s) for non-linear BVP's has the same structure as its counterpart for
lincar BVP’s, only in the first case the non-zero blocks are fundamental solutions of the
linearized ODE and not of the original one.

Inherent to a BVP is that the underlying ODE may contain exponentially growing modes.
For the well-conditioning of the problem it is vital that those modes are controlled at the
endpoint. However, on the subintervals only initial conditions are imposed. Due to this, a
method based on shooting encounters several drawbacks. We have already seen for linear
problems that computational errors may be increased considerably. This may of course
also occur for non-linear problems. For the latter class of BVP’s two other problems may



41 §2.3

be encountered as well. Firstly the solution of a local IVP (2.3.3) may not exists over the
entire subinterval. And secondly, since f(s) may be overly sensitive to changes in the vec-
tor ¢ in certain directions, the convergence domain of Newton’s method might be small.
To demonstrate this we will estimate the convergence domain according to the Newton-
Kantorovich theorem, see e.g [OrRh]. The theorem guarantees convergence of Newton's
method with initial guess so, if the product By | J '1(so)f(s0) | <05 ; here vy is the Lip-
schitz constant of J(s) near s* and B is an upper bound on | J'l(so) | (see Appendix D
for a precise formulation). We are aware that generally the convergence domain may be
larger, but the results of the theorem give an indication about the performance of the
method.

2.3.8 Assumption

Let Dy be a convex neighbourhood of y*(x) such that
- y¥(x) is the unique solution of (2.3.1) in D,
- the function g(u,v) is twice continuously differentiable in both variables and h(x.y) is
twice differentiable with respect to y and all partial derivatives are bounded by a
moderate constant, say Cy,.

Let the set D be defined by D := { se R" M | y(x:5)e D, ). Finally assume that for all

1 < k < N there is a constant X such that

vseDs : the conditioning constant X(€;y,(x;5,)) of (2.3.3)

is bounded by x; , with € =max{ |s; -0, | | s,0eD,} .

.
2.3.9 Theorem
| J(s)-J(0) |.. 3
(2.3.9a) VS’GGDS _Ta_'__ = O(Cgh mkax [ Oy X0
Proof

Let s,0e D, Furthermore let Y (x;5,) and Gi(x,t;s;) denote the fundamental solution and
the Green’s function of (2.3.7¢) respectively, where the fundamental solution is scaled
such that Y (x;s5;) = I, . Now for each of the first (N~1) block rows of J(s) we estimate
the difference in the fundamental solutions

X,
Y (x:0,) = Yilxisy) + Lk’”l Gplxtis ) (L (t0,) L85, ) Y (1;0,)de .

Since | Lyx;s,) -Lyx;0,) | € Cghf Yix38e) -y (0,) | < Cghvck|sk—oki ,
this yields
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2
m?xl Y (x35,) =Y (x50 | S K (X, -%,) max [L(t;s,) - Lilt;04) |
3
< Cghkk(xk‘_l "xk) l Sk—o'k| .

For the last block row we have the estimate
| By(s) =By0) | < Cop|syey ~Opar] + Copl sy -07] € 2C,,[s-a] .
For the block containing the endpoint conditions an analogous upper bound can be found.

Combining these estimates we get (2.3.9a).
.

For an exponentially dichotomic BVP with the strongest growing mode growing like e,
one can easily prove that x, = O( exp(l(x;,1-X; )) ). Hence taking smaller subintervals
does diminish the Lipschitz constant of J(s). However, one has to solve a larger system.

Furthermore we need to estimate | J7'(s%) | and | J7'(%ys%) |. For linear BVP’s the
inverse of the Jacobian is essentially bounded by N times the conditioning constant of the
global BVP (see Appendix B, Corr. B.6). Hence, | J~}(s%) | will be of the order of mag-

nitude of N-liir(n) K(e;y(x;s*)) and by a continuity argument | J~'(s) | will be reasonably
£

bounded for s sufficiently close to s*. However, this bound may become large, because
¥(x;s) will generally be discontinuous, possibly causing a disruption of the dichotomy
behaviour of the linearized BVP and thus have a negative effect on the conditioning.

From the above considerations we see that the convergence of Newton’s method to solve
J(s) = 0 may be jeopardized by a large Lipschitz constant of the Jacobian, i.e. the influen-
ce of the second order term in the expression

F(s*) = £5) + I (s*=5) + [ s+2(s* -5)) - IO 5" - 5)

may not be negligible.

An alternative for the mulitple shooting method, which we study in more detail in chap-
ter 5, is to use local boundary value problems instead of local initial value problems. The
function f{s) will again consist of continuity requirements and the global boundary condi-
tions, but now the Jacobian will consist of fundamental solutions that reflect the condition-
ing of the local BVP’s.

Unlike multiple shooting, the finite difference method for non-linear BVP’s differs from
the one for linear BVP’s almost right from the start : let { x, 1 k=1,.., N+1 } be a grid
on [a,b] with
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(2.3.10) =X, <Xy<... <Xy, =b

and let ye R™™*D be the concatenation of N+1 vectors y,eR" :

(2.3.11) DR S AN A

Now for a one-step scheme the vectors y, have to satisfy

@3.12) B Gra-¥e) = Y0¥k . ke{1,.NY,

where Y describes the method used; i.e. we seek the solution of AL [y] = 0, with the non-
linear operator A(,, : RV g+ gefined by

-1
[AVARES D (VS MRS AN Y , k#N+1,
(2.3.13) A v]) ={ £ ka1 % PR7RE NN
VR T g0 ynan) , k=N+1.

Analogously to the linear case we define consistency, stability and convergence as follows,
cf. [AsMaRu,Ke76].

2.3.14 Definition
The local discretization error 1,{y*] is defined by

23.142)  1,0y*] = AL [0y ()

The finite difference scheme is consistent of order p if
(23.14b)  Fpo Fcs0 Vgrdshsh, [T TSCRT.

The scheme is stable at y*(x) if there is a bail
Sp,,;(}’*) = { ueR™W+D | |u-Oy*| ., <p ) around &* and a constant K of moderate
size such that

(2‘3‘_14‘:) aho vgrids,hsixo Va,vesp I : |u'v L”g K l %n[u] - Nn["] |oo .

Finally the scheme is convergent if
(2.3.14d) lim |@y*-y|,=0.
alo

L4

As in the linear case convergence is implied by consistency and stability. Generally con-
sistency of a method can easily be established; stability is sometimes more difficult to
prove. The following lemma gives sufficient conditions (on the linearization of A(,) for
stability. The derivative of A, with respect to y will be denoted by &, [y] (for a linear
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BVP this is equal to the definition in §2.2). Hence with

1 ar(“v)’ku,xk,hg)

@352 S, = -k, - |
au U=y

and k

- Y (v, v, X, hy)
(2.3.15b) R, = h'l, -_@l‘__*_LI ,

av v:yk+1
Sl Rl
S, R,

(23.16) @ =

Ba Bb

2.3.17 Lemma (sec ¢.g. [AsMaRu,Ke76}))

Let Sp,x(y*) be as in definition 2.3.14. Let &, [y] be consistent and stable for all

ye Sp,,;()’*) and let the partial derivatives of Y with respect to its first and second argu-
ment be bounded in the same tube. Furthermore, let there be a 'partial’ Lipschitz constant
K; such that

(2.3.17a) vmisp o0 | ] - [0y*] | < K |u-0y* |, .

Then A is stable on Sp’n(y*) and | QK'I[V] | is uniformly bounded on Spﬁ(y*).
*

In §2.2 we have shown that | Qﬂ‘l[@y*] | is bounded by the conditioning constant of
the linearization of (2.3.1) at y*(x) for & sufficiently smail. Now a continuity argument
yields stability for the linearization at neighbouring vectors y. Hence the first conditions of
the lemma can be met for well conditioned BVP’s,

For multiple shooting we found that the Lipschitz constant of the linearization (&) could
become large. However, recall from §2.2 that -~hk'1S,"1 and Izk'lkk‘l approximate a fun-
damental solution of the linearized BVP at x = x; , x = x;,, respectively. The matrices
-h, §; and Ay R, are, according to lemma 1.2.16, approximations of the fundamental
solution ®(x) of

(2.3.18) o= ( ); oy (x)] .z » Xp<X<Xpq,
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with & satisfying the BC
1, ®(xg) +1, O, y) = 20, + Ohy) .

Hence the Lipschitz constant of & can be related to the conditioning constant of this
BVP. Since these boundary conditions are non-separated, a poor condition of the BVP can
be caused only by rotational activity of the different solution modes. However, this pro-
blem can be overcome if we choose the grid sufficiently fine.
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3 Davidenko-like differential equations and a special integration
method

We have seen in chapter 2 that the convergence domain of Newton’s method when ap-
plied to the non-linear equation encountered in multiple shooting, may be small. And
apparently this is not the only type of problems, where Newton’s method does not perform
flawlessly, for in literature several alternative solution methods can be found. One class of
alternative solution methods is (parameter) continuation : a series of non-linear equations
is solved as a (possibly artificial) parameter is varied, using the solution of the previous
problem as initial guess for the next one, sec ¢.g. [Me68,Was,OrRh,KuHI,RoSh,DePeRe].
An idea that is theoretically related, though different in implementation, is to embed the
non-linear equation into a differential equation, see e.g. [Wa, OrRh,Da]. Indeed, Newton’s
method can be considered as the application of the explicit Euler integration method with
step size 1 on the IVP

& ey, >0,
(3.0.1) dt
x(O) =Xy -

This differential equation is often called Davidenko’s equation. In this chapter we look at
a variant of this method, viz. solving the IVP

dx —
(3.02) — = M) -, >0,
x0) = xy .

in order to obtain a zero x* of flx). We will derive sufficient conditions on M(x) to gua-
rantee that (3.0.2) is asymptotically stable at x = x*. Morcover, we introduce an implicit
integration method for the IVP, that is computationally cheaper than implicit Euler, but
that does have its asymptotic stability properties.
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§3.1 Davidenko-like equations

In this chapter we introduce and investigate a path following method for solving non-
linear equations. The setting will be guite general and not specifically aimed at the equa-
tions arising in multiple shooting (this will be the subject of chapter 4). Therefore we con-
sider in this chapter a function fe C’®™ — R™) with a zero x*. The Jacobian of fix) is
denoted by J(x).

Newton’s method for finding a zero of f{x) reads

(3.1.1) V= xi gl ey, j20 , xPeR™.

The justification of the method lies in the relation

(.1.2) x*-x = I -f0) ol @) | 1x*-x)?) .

Here we see that the new update x/*! will be closer to x*, only if the second order term is
small, i.e. the convergence area may be small either if the Jacobian is (nearly) singular or
if the Jacobian has a large Lipschitz constant. This is not only a theoretical consideration;
when solving BVP’s with exponentially growing modes with the multiple shooting
method, we actually encountered problems with Newton’s method (see chapter 4).

Hence we investigate other solution methods for non-linear equations. It has been noted by
many authors, see e.g. [Da,KuH1,OrRh], that Newton’s method can be considered as a dis-
cretization (with the explicit Euler scheme and step size 1) of the continuous initial value
problem :

& lofe) L 150,
(3.1.3) dt
x(0) = X0,

i.e. an artificial time dependency of x is introduced. The latter differential equation, often
called Davidenko's equation, see [Da], is sometimes referred to as the closure of Newton’s
method. Notice that discretizing (3.1.3) with the explicit Enler scheme and a step size less
than 1, yields damped Newton.

This view upon Newton’s method induces the idea to look at a larger class of initial value
problems :

& _mwre . >0,
(3.1.4) ar
x(0) = 2%,
with M(x)e CR™ — R™™) The matrix function M{(x) is called the preconditioner. It is ob
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vipus that any zero x* of f(x) induces a constant solution x = x* of (3.1.4) and that vice
versa any constant solution of the IVP corresponds to a zero of f(x), if M(x*) is non-
singular.

Embedding techniques are also used for solving problems in physics and chemistry. In
particular elliptic problems can be embedded into a dissipative time-dependent (hyper-
bolic) partial differential equation, without any preconditioner (or M(x) = 1). These em-
bedding methods, which are often referred to as false transient or time stepping, have
proven to be very helpful in solving difficult problems in chemical engineering and com-
bustion, see e.g. [KuHL,SmMiKe].

Solving the IVP (3.1.4) in order to obtain a zero of f{x), is appropriate, only if the ODE is
asymptotically stable, i.e.

(3»1.53) 380 v0<€<80 38>0 VXO,IIO —x‘( l<8 M
the solution x(f) of (3.1.4) with x(0) =x9 satisfies

Vieo ¢ |x®-x"|<e A lim x(@) = x*.

A stronger stability requirement is local contractivity, which is defined by

(3.1.5b) = P on-l L ox* (<5 |x(#) -x* | decreases monotonically to zero,
with x(¢) the solution of (3.1.4) with x(0) =xY.

The remainder of this section we will investigate under what conditions the preconditioner
satisfies this stability requirement.

A useful concept in this case is the one-sided Lipschitz constant and related to it the
logarithmic norm. Both will be formulated for the following general ODE :

(3.1.6) X = h(t,x) , >0,
Let <., .> denote the Euclidian inner product and | . |, the corresponding vector
norm in R™.

3.1.7 Definition

Let T > 0. Let the functions ¢e C([0,T] —> R™) and ye C([0,T] — (0,0)) define a family of
balls, depending on t :

(3.1.7a) D@ = (EeR" 1 [E-0()|<Sy® } , 0T,

A piecewise continuous function v(t) : [0,T] — R, is a one-sided Lipschitz constant of
(B.1.6) on DO if
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(3.1.7b) Vieor) Veyen © <D -hEY).x-y> < V@ |x-y]; .
L]

The one-sided Lipschitz constant is not unique : if v satisfies the definition, then any pie-
cewise continuous function ¥V with V(&) 2 v{f), is also a one-sided Lipschitz constant.
Moreover, if the function A(z,x) is Lipschitz continuous with respect to x, say with constant
L, then v = [, is a one-sided Lipschitz constant. The one-sided Lipschitz constant is for

instance used in the following stability results, see [DeVel.

3.1.8 Theorem
Let x(t) and X(t) be solutions of the ODE (3.1.6) and assume that

(3.1.83) va 6,71 N x(I)ED(t) A f(f)ED(I) .

Let v(2) be a one-sided Lipschitz constant of (3.1.6) on D(t). Then

(3.1.8b) Vogf151257~ DXy -y |, £ exp(f;2 v(t)dt) [x(e) -t |, -
1

The ODE (3.1.6) is locally contractive, if there is a negative one-sided Lipschitz constant
and asymptotically stable if

lim [Fv)dt = -oo.
Teso0a 40

In the literature, special attention has been given to the autonomous linear ODE in connec-
tion with this concept. So consider

(3.1.9) X = Ax , 120,

with Ae R™", In this case all solutions are of the form

(3.1.10) x(t) = exp(A1).§ , for some EcR" .
Hence we can derive a relation, similar to (3.1.8b), for any two solutions x(¢) and £(?) :
3.1.11) Vos:,sxls'r Do x(g) Xty | £ |exp(A(ty-1))) ] |x(t) -X(2) | .

So instead of the one-sided Lipschitz constant, which is defined for inner product norms

only, we can use a bound on | exp(4s) | for all vector norms. According to e.g. [St], the

¥4 mThA |-1
h

minimum of { 8 | V5, : lexp(Ar) | <e% } is equal to }1115% . And this
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formula is generally used as definition of logarithmic norm :

3.1.12 Definition
For any matrix Ae R™™ the logarithmic norm p[A] with respect to | . | is defined by
[, +hA|-1

3.1.12 Al 1= li
( a) pial hlfé h

The logarithmic norm with respect to the Euclidian norm, denoted by |1,[A], can be related
to the one-sided Lipschitz constant; since

<AE.E>
1. A] = e 1
(3.1.13) Ho[A] max LIS

see €.g. [Dah], p,{A] is the smallest one-sided Lipschitz constant of (3.1.9).

In Appendix C we have gathered a collection of properties of the logarithmic norm that
can be found in the literature. Here we mention only two properties that relate the loga-
rithmic norm to the eigenvalues of a matrix.

3.1.14 Property

Let Ae R™™,

@iy For all eigenvalues A of A : Re(A) < ulAl, in any vector norm.
(i) y[Al = max (X | A eigenvalue of %(A+AT) }.

)

The logarithmic norm can be used in a stability result, similar to theorem 3.1.8.

3.1.15 Theorem ([Dah])
Let | . | be a given norm. Let v : [0,T] — R be a piece wise continuous function satisfying

(1152 Viepr Yeenn p.[%(r,x) REMC

x=
Then for any two solutions x and % of (3.1.6) that lie in D(1) for all te[0,T],

GLISH) Yooy cper ¢ X -Ee) [Sexpl [2 v de) [x0) -5 -
1
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Let us now return to the starting point of this section. We want to establish asymptotic
stability of the IVP (3.1.4) around x = x*. From Theorems 3.1.8 and 3.1.15 we see that a
sufficient condition for this is that either

(3.1.162) <x-x*,M(x)f(x)>

lx-x*[5
or
(3.1.16b) u[%(M(x)f(x))]

is bounded by a negative constant on a neighbourhood of x*. However, in chapter 4 we
will form a preconditioner for the function arising in multiple shooting (see (2.1.7)), for
which R[M(x)J(x)] is negative on a neighbourhood of x*.

Let B(x*;R) denote the set [ xeB™ 1 |x-x* | <R }.

3.1.17 Assumption
Suppose there is a ball B(x*;R) such that

o S O VxeB(x‘,R) D [MEJX)] € o

(iiy  The functions f(x), J(x) and M(x) are bounded on B{(x*,R) by constants Cf ,Cr and
Cyp, respectively.

(iiiy  The functions J(x) and M(x) are Lipschitz continuous on B(x*R) with Lipschitz
constants Ly and Lyy, respectively.

3.1.18 Definition
The constant C is defined by
<x-x*,M(x) fo VTGt +1-x ) -0 -x ) de>

(3.1.18a) ¢ := max
xeBE* R ix—x‘ !3

Based on the proof of lemma 3.1.8, we can derive the following stability lemma.

3.1.19 Lemma
If r < min{oeC -1 R), then

(3.1.192) Vo the solution x(t) of (3.1.4) with x(0) = x° remains

eBE*:n
in B(x*;r) and |x()-x*| < exp({(-t +ér)t)|x0—x‘ .
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Proof v
Let r < min{aC~1,R) and let x(¢) be a solution of (3.1.4) with x(0)e B(x*;r). Then for t 2 0

% () -x* [ = 2<x(t) -x* , ME@O)FG@)> .

For notational convenience we drop the argument ¢ of x(2).

<x~x*,M(x)f(x)>
= <x-x* , M) x-x*)> + <x-x* , M) -JE) (x-x*))>

= <x-x* MEIX) & -x")>
r<x -x*,folM(x)[z(x* PO -x*) -JEO) 1 (x-x ) ds> .

Hence _% [x()-x* |2 < 2(-0+Cr) |x@-x*|?, ie. | x(f)-x* | is a descending function

and x(#) remains in the ball B(x*;r) for all ¢t =2 0.
¢

Next we compare the contraction domain of (3.1.4) according to lemma 3.1.19 to the con-
vergence domain of Newton’s method. According to the affine invariant Newton-Kantoro-
vich theorem the latter domain exists of those points x0 that satisfy

OO |y < 2
with v an upper bound on

17710 ) -700) |
[x-y]

b

where x,y are in a convex neighbourhood of x0 (for a more precise formulation see Appen-
dix D). Comparing this to lemma 3.1.19 for Davidenko’s equation (3.1.3), ie.
MXx) = ~J ‘1(x), we see that vy is of the same order of magnitude as ¢ and that

770G | = 1x0-x7
can be identified with r. Since =1 (= —u[~J'1(x)J(x)] ), the lemma shows a contraction
domain for Davidenko’s equation of approximately the same size as the convergence
domain of Newton’s method according to the Newton-Kantorovich theorem.

Hence a non-Davidenko choice for the preconditioner can be beneficial if either the value
of € is reduced or the value of « is increased.



§3.2 The integration method

In this section we introduce a special integration method for the IVP

(3.2.12) W) = MEOFx)  , >0,
(3.2.1b) x(0) = x°

and investigate its properties. Remember that our aim is to obtain a zero x* of fx); not to
obtain an accurate estimate of the solution x(#) of (3.2.1).

When using explicit integration methods, numerical stability considerations invariably lead
to step size restrictions. For our purposes this can be a disadvantage, since the solution x(¢)
approximates the contraction point x* better if the solution is followed over a larger
interval.

However, not all implicit methods necessarily have profitable stability properties for larger
step sizes. The trapezoidal scheme as used in {Bo] does not yield ultimate fast conver-
gence for large step sizes since x /1 x* = x*_xJ. So we are interested in a method that
allows large step sizes as x(f) approaches the contraction point and gives rapid final con-
vergence. As we do not require a very small discretization error, we look for a ’least
work’ , i.e. low order method. The simplest method that answers this description, is of
course Euler backward, i.e.

(32.2) = e MDY, 20

However using an iterative scheme to solve (3.2.2) involves several evaluations of M(x) at
each step. This will not be necessary, if we use the following mixture of implicit and
explicit Euler, to be referred to as mixed Euler

(32.3) = e MEDETY , j20.

Solving this equation requires essentially less work than the equation encountered in the
implicit Euler method, but, as we prove later on, the mixed Euler method has stability
properties similar to those of the implicit Euler method.

Some authors reject the use of implicit integration methods in this case, see e.g. [AbBrl.
An often used argument is that implicit integration methods require the solution of a non-
linear equation, which was our original problem. However, equation (3.2.3) contains the
step size h; . We show in §3.3 that this non-linear equation can alnways be solved with
Newton’s method, if hj is sufficiently small. And, moreover, once x/ is close to x*, New-
ton’s method converges for all step sizes h; > 0.

First we show that the mixed Euler method is consistent of order one.
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3.2.4 Lemma
The discretization error 8(tjx,h;) of the mixed Euler method defined by

(3.2.4a) d(tjx,hy) = k;1~{x(l},._l)"x(tj)_ij(x{tj))f(x({,\.l))] ,
is bounded, as follows :

1 ) .
(3.2.4b) [8¢;,x,h) | < -5";' ie}zi?u X | +h; [MG@E)NTV,) | etg?;il x| ,

with v, a convex combination of x(tj) and x(:j L1
Proof
The estimate follows immediately from the relation

8%, h) = by (x () -5 () - RMEEFE )
= b7, =X () - RME DS + MEE)- FE ) -FE G, D) -

3.2.5 Remark
For the choice M(x) = -J '1(3:) with J "1(x) bounded, the bound on the discretization error
can be sharpened to

(3.2.52) |8Gjx.h) | < 2h; max 1¥@)|+h; max X0 + O®)) .

E[’j"jd] ie[fj,lj+1

Since the mixed Euler method is a consistent one-step scheme, it is a convergent integra-
tion method if M(x)Ax) is locally Lipschitz continuous on an appropriate domain. For
completeness the convergence proof is given in Appendix E.

Thus far we looked at the properties of the mixed Euler method as an ODE-solver. Now
we investigate its behaviour as a ’root-finder’. Let assumption 3.1.17 hold; this means in
particular that

(3.2.6) 3 v

xeBx"*R)
We show that, if x/ and x/*! are both in B(x*;), with r < min(aC™", R), and &; is suffi-
ciently small, then x /*! is in the small sphere shown in figure 3.1. The larger doted
sphere shows the bound that is usually derived in this kind of situation.

a>0 RIMO)J ()] < -o .
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3.2.7 Theorem (convergence of the iterative process to x*)

Let r < min(oC '1, R) and let x? be in B(x*;r) and suppose that fzj is sufficiently small to
guarantee that x M s in Bk, If a—ér-—C_,LM{xj—xj*l | > 0, then the constant b}-
defined by

(3.2.7) b= 1ah(a-Cily |x/ =X | -C|x)-x*|) .

. J_y*
is larger than 1 and |x/*!-x*| < 1xl-x7]

- and, moreover, the vector x/* is in the

J
sphere with
. j_ *
(3.2.7b) centre |1 L x* +__1_xf and radius E__’l_z .
2bj bj bj
Proof

Define €= x4 - x*. From (3.2.6) we get

<ej1r8j1> = <€j,1,€;> +hj<ej+1,M(x{)f(xj*1)>
<€js1r€j> "j‘eﬁl*M(xﬁ_l)J (xj+1.)ei+1> .
+ <, (M) -MGT ) FO -f(x*) >

+hj<e;,, ,M(xj“)f()1 [Jac* +sG* 1 -x*)) —J(.xj"l)]ejdds> .

i

Hence
™ e 12 < <e,1.€> + €, |2h}-(—(x +LpyCy|xd -1 +(§{ej§1 1.

This means that if o-Cr-C Ly |x/-x/*1| 2 0, then |x/*!-x*| < [x/-x*|.
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And (*) shows that b;|e;,; 12 < <ej,y.€;> , which in turn implies that

j 1 I jp2 2 1 12,2
PIALINYS DU O A LI 2 A LI ) 2l g 0.+ () e,
l ( 2b/) Zb] ’ | j+1; ij J+l2 (ij) ’ Jl
1 1 T2, 2
S KO 1,€;> — € 1,8 > e
b}- $A0 S b, fh0 S +(2bj) ! .!’
= (_1__)2|xjmx‘jz.

2b;
*

Once x/ is in B(x*;r) this theorem can be applied, since a suitable choice of the variable 4;
can guarantee that

() x*is in B(x*;p),

(@oa>Cr+Cily | x/ -x .
As soon as | xJ - x* | < (@ - Cnf2C 7Ly » the constant b; is larger than 1 independent
of }zj , i.e. the restrictions on hj are lifted. In that case it is favourable to choose h; large
since that yields superlinear convergence, viz.
fim X i 1 0, iflimh =,
joe )l ox | o 1+hj(a-C1LM§xf—x"‘1|) joe

In the next section we prove that if LeB(x*;p), it is indeed possible to choose a step size
sequence {hj} such that the corresponding sequence of mixed Euler elements {x’} conver-
ges 10 x* and reaches B(x*; (& - Cr)/C Ly, ) in a finite amount of steps.

Finally we mention that a result similar to theorem 3.2.7 can be derived for the iterates of
the implicit Euler’s method showing the similarity between the convergence behaviour of
mixed and implicit Euler's method.

3.2.8 Remark
Let the ODE (3.2.1a) satisfy condition (3.2.6) and let xjeB(x*;R). Let hj be such that x7*!
defined by
PALISY th(xj*l)f(xj“)
exists and lies in BOx*;R). Then x /1 lies in the ball with

. Joy*
1 * ! x! and radius [x/-x" |

centre |1 - X’ + LA
2(1+ahj) 20 +ahj) 2(1+akj)




§3.3 Implementation of the mixed Euler method

In the previous sections we addressed convergence of the mixed Euler method. For imple-
mentation the following aspects are of interest

(f) the choice of the preconditioner M(x)

(if) a method to obtain the next iterate x/*!

(iii) step size control

The choice of the preconditioner M(x) is strongly problem dependent. In some cases the
Davidenko choice M(x) = -J"1(x) is appropriate. In the next chapter we will derive a pre-
conditioner for the non-linear equations arising from the multiple shooting method applied
to a class of non-linear boundary value problems.

To obtain the next iterate x/*! in the mixed Euler process from formula (3.2.3), we have
to solve the non-linear equation

(331a)  gOulh) =0,
with
(331b) gk = b (y-x)) - MGHG) .

We show that convergence of the Newton method with starting point x7 can be influenced
by the choice of the step size h; . Let the Newton iterates on g(y;x j,hj) be denoted by
{1, ie.

= ):j N

32 . : . -1 .
632 y =y‘—(ii§(y‘;r’,k;)J giy'xlhy) -, i20.
dy

3.3.3 Lemma
Let x/e B(x*:R). Then under the assumptions 3.1.17 the following statements hold.

1 e Ip2 ;
- - Jif IR, > \fa))
) 2
or < (2ChLs 1)
i =
1+ahj . 2R ‘ L if ..l_RzLJS If(xj)| X
Cy(R2L;+2|fx)y ) 2

then the Newton process (3.3.2) on g(yix Y ,h}-) converges.
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anif | f(xf Y] < min( .%.RzL 1), then the Newton process (3.3.2) converges for

all step sizes h}- > 0.
Proof
The first derivative of g(y;x f,hj) with respect to y reads

g’(y;xj,}z}-) = hj'llm -M(xj)J(y) . The logarithmic norm of M@x)J(x) can be used to
estimate |(xg'(y;.xtj,k},-)‘1 | :

Veegm ¢ <G08 L, -MGHIGHIE> 2 (7 - pIMGD I [§ 2 2 (A +o) & 2

1 h;

4
lgalx k)l = —— S —
glby(g'(x/sx/pyyy  1+ahy

The conditions of the Newton-Kantorovich theorem now read, that with v defined as

- h 2 j
Vo= [MTCMLJVOC )[ s

v has to satisfy

1
ey VSE

and

@) R> 1-y1-2v _ 1-y1-2v f(x-’)

h(1+ah) CylL, W Ly

Some calculus shows that (2) is satisfied for all ve [0,3), if |f(x/)|< .;.RzL ;- Otherwise
(2) imposes the condition
4R*L;|fG)|
RLe2|fah|?

This proves (i) after the definition of v has been inserted in the conditions. And (i) can be
obtained from (i) with some simple calculus.
.

This lemma disproves an often used argument to reject implicit integration methods for
Davidenko’s equation, viz. it requires at each step solving a non-linear equation, which is,
wrongly, considered to be equal to the original problem. For in this case convergence is
guaranteed for appropriate values of h;.
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Now we are able to proof a statement already stated in §3.2, viz. that it is indeed possible
the form: a sequence of step sizes {izj} such that the corresponding mixed Euler sequence
does not stall, but converges to x*,

3.3.4 Theorem
Let r < min(@C~Y, R) and x°cBG*,r). There are £ > 0 and h > O such that the mixed
Euler sequence (x7?} with step size h exists, lies in B(x*,r) and satisfies

,x;}l_x*! < 1

3.3.4a A .
( ) 20 lx/'_x*l 1+e

J

Proof

Define h := min(%c Z‘“Src : L, 22' )
JeMeMbr fzciijCf Cy(roL;+Cy)

and € := (e -Cr-hCyLyCpyCp) .

Since Cr2 | f(xo) |, the latter two terms of the definition of k imply that the requirements
of theorem 3.3.3 are satisfied (with R replaced by r). Hence x! exists and lies in B(x*,r).
This is one of the requirements of theorem 3.2.7; the other one is

a-Cr-CiLy|x'-x°] >0 & a-Cr-CLyh|MGOF(x")| > 0
& 0-Cr-hCyLyCyCr >0
o-Cr

o h< —— e .
CJLMCMCf

Hence we may conclude that | x! - x* | < | %% — x* | and, moreover, that

1_ . »*
[x-x{( 1

1x0-x*|  1+h(@-Cr-hCiLyCpyCp)

The parabola in the denominator takes it maximum value at _1_ __oz-_C‘_r_ . An induc-

tion argument concludes the proof.
+

3.3.5 Remark

() If we do not use the estimate C; > | fixd) | in the proof of 3.3.4, we are able to
form an increasing sequence of’step sizes {hj} such that the mixed Euler elements
still remain in B(x*,r), with | x/ ~ x* | decreasing more rapidly.
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()  The sequence {x/} formed in theorem 3.3.4 reaches after a finite amount of steps
the ball around x*, where neither the Newton-Kantorovich theorem nor theorem
3.2.7 imposes any bound on the step size 4. Hence the super-linear convergence as
predicted in §3.2 is reached eventually.

*

If we use —J~1(x) as a preconditioner, the first Newton step on g(y;xf,}zj) reads

hl

1+hj

(3.3.6) yl = xf - Iy,

i.e. a damped Newton step for the original problem f(x) = 0.

There are two major differences between damped Newton and our algorithm. First of all
we generally perform several Newton steps on (3.3.1). So y! is not the next iterate, but
only an intermediate result. Secondly, and more importantly, we base our choice of the
damping factor on controlling the discretization error and not on iteratively adapting the
damping factor until the value of some object function decreases. However, once the itera-
tes x/ approach x* the first Newton iterate on g(y;x j,hj) is accepted as x 1. At the same
time /; tends to infinity, so the implementation of the mixed Euler method tends asympto-
tically to the ordinary Newton method. This shows that in this case our method has second
order convergence eventually.

Since we want to limit the amount of work per time step, the actual implementation uses a
modified Newton method, viz.

0

oy
(33.7) {y,. v
y

ey giaihy e udhy) P20,

Now only one evaluation of the preconditioner M(x) and the Jacobian J(x) per time step
are necessary. As convergence criterion we used the size of | g’(x/;x ’,hj y! g(y;r",kj) |

The Newton process described above, is just an auxiliary tool to follow the path x{(s).
Hence the step size is determined by a control mechanism on the discretization error. We
compute the solution x(f) with given absolute and relative tolerances ATOL and RTOL
respectively. Hereto the discretization error is estimated by

J_yi-1 i-1_,j-2
(3.3.8) EST := 1p? | XX -2 2

5% .
2 hj—l hj__z ﬁj—l +kj—2
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In our algorithm we require EST to be approximately equal to ATOL + RTOL | x J | .
Small values of RTOL and ATOL increase the robustness of the method, but require many
time steps (= work) to reach x*. In practice values like 107! or 1072 work very well.

Based on the above considerations the step size kj is determined at every step as follows :

3.3.9 Algorithm (step size determination)
- take h; equal to h;_,
- double the step size if it has not been changed in 3 consecutive steps, to prevent
conservatism.
- if the Newton process has not converged in 3 iterations, halve the step size until
convergence is reached. (If hj has not been changed we do not expect non-conver-
gence, unless the path has entered a troublesome area, i.e. J(x) is nearly singular or
J(x) has a large Lipschitz constant.)
- at every step compute the quantity TEST := EST/ATOL + | x/ | RTOL) .
If TEST € [0.25 , 4] the step is accepted.
If TEST > 4 the discretization error is too large and x7/ is recalculated for
the step size

h
(3.3.92) hooo=__ 94

If TEST < 0.25 the path is followed ’too accurately’. Now accept x/ and
increase h; according to (3.3.9a).

Remark

We have used the algorithm outlined above to test the ideas presented in this chapter. But
we are well-aware of the fact that various refinements and modifications can improve its
efficiency. However, the results obtained with this program, as presented in §3.4, already
indicate a relatively good performance.



§3.4 Numerical results

In {AbBr] several explicit integration methods for Davidenko’s equation are studied and
tested on some problems. We have applied the mixed Euler implementation described
above to those test problems, in order to illustrate the performance of the method and to
compare it with the explicit integration methods presented in [AbBr] and with damped
Newton. First we describe the (8) test problems briefly.

1+2 A function, to be found in [Bo],

X ) xf-xg«r-l

4.
(34.1) f(xz x -COS(%’.’z)

The sought solution is x* = (0,1) and the initial value is
- (1,0) for the first test problem (1)
- (-1,-1}) for the second test problem (2).
There are several curves where the Jacobian of fis singular, viz.

(3.4.2) nx, s'm(;xz) = -1,

In Figure 3.2 we have plotted two of those singularity curves and the direction field of
Davidenko’s equation (the lenght of each vector has been divided by 6 to keep overview).
One can see that coming from (-1,~1) the "path’ approaches a singularity curve rather
closely and this is where the Newton update -J 'l(x)f(x) becomes large.

X .;.sin(xlxz) -:_2 - 5‘_21
(3.43) f( ‘) - n

1 2x; £Xxy
(I-——)(e " -e)+ — -2ex,
4r T

with initial guess (0.6 , 3). the correct solution is (0.5 , 7).
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4 The gradient of Rosenbrock’s function :

(3.4.4) ¥ (

X

with initial guess (~1.2 , 1.0). The solution is (1,1). The Jacobian is singular on the para-
bola xl2 = x, - 0.003, but any zero-finding procedure has a strong tendency to follow the
neighbouring parabola xlz = x5, In fact the latter parabola can be seen as a narrow gorge
with very steep walls, (a 3-dimensional plot of the situation is given in [Br]). Indeed, the
path from (-1.2 , 1) towards the solution immediately heads for the curve x12 = X, and

then follows it up to (1,1).

5 A function found in [Br] :

W —

f
i

Figure 3.2

xl) _ 400x, (Jcl2 ~Xy) +2(x;-1)
—200(x12—x2)

X, 2sin(2n x,/5) sin(2 1 x3/3) - x,
(3.4.5) flx =1 25 -x3+01xsin(2ntxy) ~x; |,
X3 1 +0.1sin(2mx,) - x5

with initial guess (0,0,0). The correct solution is (1.5, 1.809.. , 1.0).
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6
(3.4.6) fi®) = Ycot(Bx) 5 ie(l,2,..,6) ,
j=1
J#i
where the coefficients B; are 2.249x1072 , 2.166x1072 , 2.038x10°2 , 2.0x1072 ,

1.918x1072 , 1.835x1072 , for i = 1,2,..,6, respectively. With initial guess x; =73 and cor-
rect solution approximately (121.9, 1142, 93.6, 62.3, 41.3, 30.5).

7+8 A discretization of the BVP

35y +32 =0 , O<t<1,
(3.4.7) JO) = 0,
»1) =20,

gives rise to the equations
A= 3x(xy-2x)) + X214,

(3.4.8) Fi = 3 - 2%+ ) + O x4, i=2,0,m-1
fo = 3%,(20-2x,+x, ;) +(20-x,_)*/4 .

]

I

3/4

The solution of the boundary value problem is y = 20¢°'". The initial guess is x; = 10,

i=1,..,n For problem 7 n = 10 and problem 8 n = 20.

We test the mixed Euler algorithm described in §3.3 on the problems considered in [AbBr]
with M(x) = -J~1(x). As a measure for the amount of work we use the number of function
calls () plus m (= dimension of the system) times the number of Jacobian evaluations
(#/). Only at problem 7 and 8 we multiply #7 by 3, since the Jacobian is tridiagonal. This
is also done in [AbBr]. We set the tolerances ATOL = RTOL = 1071, ie. we require the
approximation of the path x(¢) to have approximately one correct number. Of course this
large discretization error may jeopardize the convergence of the process if the iterates
stray off the correct path. On the other hand larger tolerances for the discretization error
allow larger step sizes and hence require less function evaluations. For the tolerances
RTOL = ATOL = 107!, the mixed Euler method converges for all eight test problems.
The amount of function evaluations to obtain an approximation x/ with error

| 7' HRx S | < 1075, is listed in Table 3.1. Note that #/ is equal to the amount of
steps.
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Results of the mixed Euler method for the test problems with RTOL=ATOL=10"1
and required accuracy 1075,

problem no. 1 2 3 4 5 (] 7 8

#f 13 28 9 111 23 18 18 24

#7 11 16 6 31 13 10 13 14

#f+mit] 35 60 21 173 62 78 57 66
Table 3.1

We describe the performance of the mixed Euler method on the problems 1,2 and 4 in
more detail. In Figure 3.3 we plot the path of the mixed Euler method for test problem 4,
together with the curve on which J(x) is singular. The path runs very close to the singula-
rity curve. Since the Lipschitz constant .of the Jacobian is large, the step size hj is deter-
mined by the Newton process on g(xx f,hj ); the estimated discretization error is at every
step smaller than the bound 107(1 + | x/ |). Indeed, if we apply the mixed Euler method
to problem 4 with ATOL = RTOL = 1072, the process requires 32 steps, ie. just 1 more
than for the previous case.

o- -0 = mixed Euler iterates
..... = singularity curve of J(x)
Figure 3.3
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Problem 1 and 2 are concerned with solving the same function (3.4.1) from two different
starting points. The path from the first starting point (1,0) to the solution x* = (0,1) leads
through a region without singularitics of J(x) and with moderate sizes of the direction vec-
tors —J~}(x)f(x). The mixed Euler approximation of the path with ATOL = RTOL = 10~}
is plotted in Figure 3.4 by a solid line; the iterates are marked with an ’x’. The path from
the starting point (-1,-1) leads through the fourth quadrant and runs close to a singularity
curve (cf. the direction field Fig. 3.2). The mixed Euler approximation of the path is
plotted in Figure 3.4. by a dashed line and the iterates are marked with an 'o’

..... = singularity curve of J(x)
x—x = mixed Euler iterates of problem 1
o- -0 = mixed Euler iterates of problem 2
Figure 3.4

In Table 3.2 we list information about the mixed Euler iteration on the second test pro-
blem. The step size h; is reduced in the third and fourth step, because the ’internal’
Newton iteration on g(x,r*’ h) does not converge in 3 steps. This is due to the fact that x?
and x2 are close to a smgulanty curve. Based on the size of the discretization error the
step size never reduces, but it increases in steps 2, 7, 12, 14, 15 and 16.



ik eh
0 0 17
1 0 17
2 0 19
31 15
4 2 13
S 0 15
6 0 15
70 15
8 0 18
9 0 21
10 0 24
11 0 30
12 0 35
13 0 39
14 0 40
15 0 40
16 0 40

1.0E-01
8.1E-01
4.1E-01
1.0E-01
1.0E-01
1.0E-01
1.2E+00
1.2E+00
1.2E+00
2.5E+00
2.5E+00
SA4E+00
SA4E+00
1.7E+01
4 4E+01
2.8E+02

x{1}]

- 1.00O0000E+00
-8.7461150E-01
~2.4989789E-01
3.0763125E-01
1.3540093E+00
1.2824901E+00
1.2139238E+00
8.3025972E-01
5.4915147E-01
3.4919992E-01
1.6708166E~01
6.8875102E-02
1.6043028E-02
2.8480671E-03
1.7000806E-04
3.8169407E-06
1.3509525E-08

number of function calls : 28
number of Jacobian evaluations : 16

Stop criterion

1T AHRx ) 1 < 1078,

x[2]

- 1.000000CE+00
-9.7804973E-01
~8.3995892E-01
~-5.6831302E-01
3.0039046E~01
3.4063594E-01
3.7755508E-01
5.7794945E-01
7.1131096E-01
8.1044260E-01
9.0522819E~01
9.5984007E~-01
9.9040489E-01
9.9828467E-01
9.9989720E-01
9.9999769E~01
9.9999999E-01

Discretization error control : ATOL = RTOL = 107\,

Table 3.2

EST | 7Y@ |

1.4E+00
3.0E-03 L3E+00
1.2E-01 9.3E-01
8.2E-02 1.6E+00
1.8E-01 1.1E+01
S.6E-01 7.0E-01
1.7E-03 6.8E-01
3.7E-01 3.8E-01
5.1E-02 2.8E-01
4.1E-02 1.9E-01
1.6E-01 99E-02
42E-02 5.0E-02
1.1IE-01 14E-02
2.0E-02 2.7E-03
3.0E-02 1.7E-04
49E-03 3.8E-06
92E-4 14E-08

bl =
|x1-x

|2/ ~x*

J + number of time steps,
k : number of changes in the step size hj during step J,
¢(J) : condition number of J(x/),
EST : approximation of the discretization error according to (3.3.8),

] yand T

*

| x-x |

2.236E+00
2.163E+00
1.857E+00
1.598E+00
1.524E+00
1.442E+00
1.364E+00
9.314E-01
6.204E-01
3.973E-01
1.921E~01
7.973E-02
1.869E-02
3.325E-03
1.987E-04
4461E-06
1.579E-08

_ ®-D
en.

b-l

9.672E-01
8.585E-01
8.607E-01
9.536E-01
9.462E-01
9.460E-01
6.827E-01
6.661E~-01
6.404E-01
4.834E-01
4.151E-01
2.345E-01
1.779E-01
5.976E-02
2.246E-02
3.539E-03

0.3389
0.2024
0.3976
04780
0.5589
0.5609
0.3959
04270
0.4783
0.4309
0.5684
0.6092
0.8625
0.9246
0.9879
0.9983

vE§

89
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The last two columns show the behaviour of

[xf -x
=,
|x/7t-x*|

i

349 b=

cf. §3.2. As predicted by theorem 3.2.7, b~} tends to zero if x/ approaches x*. Moreover,
the factor t satisfying

b =1+t
(cf. (3.2.7b)) converges to 1 = —u[-J 1 x)J(X)).

We also compare the results of the mixed Euler method with the results from other expli-
cit integration methods as presented in [AbBr]. Table 3.3 gives the amount of work mea-
sured by #f+m.#J . This shows that the mixed Euler method performs better on all eight
test problems, than the two explicit integrators used here and the trapezoidal rule.

#f+m#t] for the test problems

1 2 3 4 5 6 7 8
ME 35 60 21 173 62 78 57 66
RK3 64 89 55 334 113 169 280 280
AB3 ) 95 43 299 109 127 221 229
PECE 133 157 115 337 185 309 347 355

ME = Mixed Euler

RK3 = third arder Runge Kutta

AB3 = Adams-Bashforth variable siep method order 3
PECE = Trapezoidal rule as described in {Bo]

Table 3.3

Time stepping methods are introduced, because in some cases the convergence domain of
Newton’s method is too small for practical use. Hence for comparison we applied a ver-
sion of damped Newton :

(3.4.8¢c) x/*1 =xf-xjr1(xf)f(x»") , J20, Ne@©l1],

to the test functions. The damping factor }\,j is first chosen to be 9&,- = min(Z%_l , 1), but
if some object function does not decrease, ij is halved until it does or k}- < 1073, In the
latter case the process is terminated, which is denoted by FAIL in Table 3.4 (N.B. the
mixed Euler process on the test problems converged with a step size h; 2 1071,
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Three different object functions were used :

m | fXnen) | »
) | T o M) |
G) T ) | s

where x,,, is the last accepted Newton iterate and x,,,, is the update obtained using ;. If
the object function decreases the update is accepted.

Table 3.4 shows the number of iterations necessary to reach convergence :

] J "l(x j}f(x j) | < 10'6, for the three different object functions. Damped Newton’s
method with either object function could not solve the second problem, whereas our im-
plementation of the mixed Euler method converged in 20 steps. For the most reliable (and
expensive) choice | J‘l(x,ww)ﬂx,ww) | damped Newton failed to converge in three cases.

Number of iterations with damped Newton

| | 1 i) | 1T G ke |

1 8 6 6
2 FAIL FAIL FAIL
3 4 4 4
4 250 23 FAIL
5 2 6 FAIL
6 6 6 6
7 7 7 7
8 8 8 7
Table 3.4
Conclusion

We have seen that the mixed Euler method has stability properties similar to those of the
implicit Euler method. The price for this is a restriction on the step size if we are far from
the steady state. On the other hand every time step requires only 1 computation of the pre-
conditioner M(x), so with respect to computational effort the method is competitive with
explicit integration methods. On approaching the steady state the step sizes can increase
without jeopardizing stability or existence of the next iterate, yielding a superlinear con-
vergence rate. If the preconditioner M(x) equals -J~!(x) our algorithm tends asymptoti-
cally to Newton’s method.

¢




4 Preconditioned time stepping in combination with multiple shooting

In chapter 2 we have irtvestigated the multiple shooting method for non-linear BVP’s, We
have found that the resulting set of non-linear equations, denoted by f{(s) = 0, may be very
sensitive to changes in the vector s in the presence of exponentially growing solution
modes of the BVP. This sensitivity may have a negative effect on the performance of
Newton’s method to solve f(s) = 0. Hence now we try to construct a more robust solution
method, that better controls the influence of the growing modes.

In chapter 3 we considered preconditioned time stepping for solving non-linear equations,
not for f(s) specifically, but in a more general setting. In this chapter we focus on applying
the time stepping method to f{s) and deriving a suitable preconditioner, if the underlying
BVP has separated BC and its linearization at the solution is exponentially dichotomic.
The idea for the preconditioner is partly inspired by the fact that we would like to have an
appropriate information flow if a BVP is embedded into a hyperbolic (time dependent)
system and it is partly based on a sensitivity analysis of MJ for changes in s, with J the
Jacobian of f(s).

In section 4.1 we derive a preconditioner M for the non-linear equations arising in multi-
ple shooting and prove that the logarithmic norm of M(s)J(s) is negative, if s is suffi-
ciently close to the solution. In the second section we investigate the sensitivity of MJ for
changes in the shooting vector s. In the last section some numerical results of time step-
ping with this preconditioner are presented and are being compared with the performance
of the (damped) Newton method.
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§4.1 Construction of the preconditioner

In this chapter we investigate the use of preconditioned time stepping (cf. chapter 3) to
solve the non-linear equation occurring in muiltiple shooting. The outline of the section is
as follows. We start with the multiple shooting formulation for separated BC and give a
decomposition of the Jacobian, leading to0 a sort of ‘basic’ form for the Jacobian.
Subsequently we derive a preconditioner for this ’basic’ Jacobian based on considerations
about properly embedding continuous BVP’s into hyperbolic time dependent systems and
considerations about the influence of small changes in the Jacobian. Finally we adapt this
preconditioner to make it suitable for use in combination with the original Jacobian.

Consider the BVP with separated boundary conditions :

% = h(xy(x)) , a<x<b and yeCl(fa,b] - RY) ,

@.L1) g0B) =0 and g0@) =0
with g, :R" > R"” and g, :R" >R’ , 1<p<n,

that satisfies the following assumption.

4.1.2 Assumption

The BVP (4.1.1) is well-conditioned at its solution y*(x), the linearization at y*(x) is
exponentially dichotomic and the space of growing solution modes has dimension n-p.

*

Recall from §2.3 that application of the multiple shooting method to the BVP, starts out
by choosing a grid
(4.1.3) a:xl<x2<.‘.<xN*l=b

and defining non-linear IVP’s locally :

¥ = h(xy(x)) , Xp<x<x,, , 1SksSN,
(4.1.9) {

y(xk) = sk M skERn N

The solutions of the local problems, if existing, are denoted by y,(x;5,) ; y(x;8) is the
function, defined on [a,b], that is equal to y,(x;s; ) on (x; .x;,,] and satisfies
y(a:s) = y,(a;s,). The vectors s, are determined by

4.1.5) £ =0 with 57 :=(s].5,,.,.,5y,) . feCYRVD_pr+D)

and f(s) defined by
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/ .
y1{(xi5)) - 5
Vo(x5:85) - 55

(4.1.6) f(s) :=
YNENLSN) ~ S
FAGYRY;
22(sp)

The solution of (4.1.5) that corresponds to y*(x) is denoted by s*. The Jacobian J(s)-of
f(5) can be related to the linearization of (4.1.1) at y(x;s). Therefore we repeat the notation
introduced in §2.3 about this.

4.1.7 Notation
The derivative of h(x.y) at y,(x;s}) is

4.1.7a) Li(x;s,) := i h(x,v)I ,’ X <X<Xpp s
v v=y,(Xs,)

and the derivatives of the boundary condition functions are

@170)  Bs) = | 8@ | \ and Bys) = |~ ’

du L"Sl 0

B (s) , B,(s) eR™" . For ke (1, .. , N}, the matrix function Y, (x;s; ) is the fundamental
solution of

(4.1.7¢) Z = L(x;8,)z » Xp<X<Xpoq

that satisfies Yi(x;s; ) =1,
¢

The Jacobian J(s) of the non-linear multiple shooting equation (4.1.6) is given by

Nigs) -,
Yylx3isy) -,
(4.1.8) ) =
YnOvassy) - Iy

B (s) B,®) |
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The large Lipschitz constant of J(s) (as established in §2.3) is due to the fact that the
exponentially growing solution modes of the BVP are not properly controlled by the local
initial conditions. A first step towards constructing a preconditioner that reduces this
effect, is to separate the growing and decaying modes. To this end the concept of
consistent fundamental solutions (see §1.2) can be used. Since the BVP is well-condi-
tioned and the BC are separated, it follows from lemma 1.2.15 that a fundamental solution
can be constructed, whose first (n-p) columns span a space of growing solution modes. In
section 2.1 we have sketched an orthogonalization process for the linearized multiple
shooting equation that retains this property. Hence we choose an orthonormal matrix Q,,
that satisfies

0 o
@

a

(4.1.92) B, =
0B

for some full rank matrix B a(z) eRP? (0, may for instance result from a QU-decomposi-
tion of B,", rendering a lower triangular matrix Ba(z) or ; may be such that Ba@) =1).
Subsequently we determine orthogonal matrices @, as the QU-decomposition of

(4.1.9b) Y0500 = Qe Uy 5 k=1, ,N+1.

Writing the Jacobian in terms of the fundamental matrices U, , can be realized by
differentiating f{s) with respect to a transformed variable. Define

(4.1.10a) Q := diag (Q,.Q;, - - - . .0n1) »
(4.1.10b) 0 := diag(Q,.03, - . .On.1oly)
then
4.1.1D)
U, -0, U
Q3U2 —Q3 U2 _]ll
df(s) _ -0
d T
Q’s OnvaUn —Ona Uy -1,
B0, B0 1 B0, ByOn.y )

So in fact at every subinterval-endpoint x, ,; the fundamental solution is decomposed into
an orthogonal matrix @, ., that contains information on the evolution of the directions of
the various modes and an upper triangular matrix U, , that contains information on the
growth behaviour of those modes. This growth behaviour can be described in terms of the
dichotomy of the problem and so we can relate the magnitude of the elements of U, to the
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dichotomy constants. Let the upper triangular matrix U} be partitioned into four blocks as
in
By Gy

4.1.12) Ve=|y
k

with B,eR"P*"P) and E,cRP*P.

Recall from lemma 2.1.15 that
(4.1.13) Y ¢ Bl KeM17®  and B < Ke MOk r)

Note that the constant K of lemma 2.1.15 equals K, because the consistency constant L is
zero for the particular choice of fundamental solution, we use.

This shows that, as expected, both | E; | and | B,™' | become small as we integrate over
larger intervals. The part C, would be zero if the increasing and decreasing modes were
orthogonal to each other. This is highly desirable, from a mathematical point of view, as it
would give a complete decoupling between the two modes. However, by a non-orthogonal
local coordinate system transformation such a decoupling can be obtained. To this end we
employ discrete Riccati-transformations, cf. §2.1, recurring backward from x = b.

From equation (4.1.11) one can see that, due to the zero structure of B, (; and B,Qy,;,
non-singularity of the Jacobian J(s) implies non-singularity of the left upper block Bb(l) of
ByOns
BbQNH = Bgl) B§>2) ) Bb(l)e R-PIx(n-py
0 O

In other words the endpoint conditions control the space spanned by the first columns of
QOn.1» 1€ approximately the space of growing modes. The endpoint conditions can be
‘concentrated’ in the upper (n-p)x(n-p) block by a Riccati-like transformation, viz. if
Ry 4y is defined by

-1
1 2
(41.14a) Ry, := (ng) B,

then
a
@115 g BY 0|Tap Rua
b=N+1 ~ 0 I
0 p

This type of transformation can be used to decouple the growing and decaying modes
fully. If the Riccati-matrices R, € R®"P)*P are determined by the backward recursion :
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(4.1.14b) Ry = Bgl(Cka;lEk) for k=N downto 1 ,
then
1 By €\ [I -R B, -ByR,+Cy+R;,E B, 0
(4.1.16) Rin ATk TR 3 P R A e o B -
0 I 0 E |0 T 0 E, 0 E,

Again this transformation can be interpreted as a change of the variable to which f(s) is
differentiated. Define the matrices

I R
(4.1.17) Slc - ( k] , Skennxn ,

0 1

and
(4.1.18) S := diag($,,5,, . . . ,Sy.;) and § := diag(S,,S5, . . . JSy..l,) -
Then

B, 0 -,

E, 0 4,
B, 0 -,
E, 0 -,
4119 _df® _ 5.¢-1.
dsQ’s By O I,
Ey 0 -l
0 0 B 0
0 BY | 0 0

These transformations have created a complete decoupling of the growing and decaying
modes. Moreover, the right most matrix of (4.1.19) can be interpreted as a discretization
of two ODE’s, one of dimension p with initial conditions and another of dimension n-p
with end point conditions. The decoupling is more apparent after a permutation of the
variables. Define
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L, 0:00 0
01, 0 0
Iu-—p 0 E 0 0
. 0o: I 0
(4.1.20) P - : p
I, 0
0: I, )
Then
Bl _In—p E
BN _In“ps
BN
4.121) afs)  _G§ P |0 SR
dP'sQ"s E -,
E EN '“Ip
1 p®@
'8, 0

The right most matrix in this expression will be denoted by J, i.c.

(4.1.22) J:=PSQ71QSP .

This matrix is called the basic form of the Jacobian. At this point it is important o note
that the matrices @ and S used in the decoupling depend on the vector s (although we did
not make this explicit in the notation). Indeed, if Q and § were constant, this would mean
that with respect to a transformed basis, the original BVP exists of two fully independent
ODE'’s, one with initial conditions and another with end point conditions, i.e. the essential
character of a BVP is not present.
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We set out to find a preconditioner M(s) such that the TVP

(4.1.23a) .‘Z_;. - ME)fGs) >0,
(4.123b) S(0) = 5 -

is asymptotically stable at 5 = s*. In chapter 3 we saw that a sufﬁciem condition for this is
(4.1.243) aa>0 3R>0 VSGB(S';R) . M[M(s)](s)] S "a -
Moreover, if B(s*;ry) denotes the largest ball such that

VeeBitrg - SO =5 = ‘1_1:2 s(t) = s*,

then theorem 3.1.18 gives a larger lower bound for r, if

(4.1.24b) max  M©U(s)-J(0)) |
5,0eB(s"R) [s-0|

is smaller. Based on these considerations we will construct an appropriate preconditioner
M for J. Thereafter M will be adapted to suit the original Jacobian J(s).

We first concentrate on the requirement (4.1.24a). Based on the form of J, we consider
how a totally decoupled BVP can be embedded into a time dependent partial differential
equation. To this end we employ a simple model problem with n = 2 and p = 1, ie. a 2-
dimensional BYP with 1 growing and 1 decaying maode :

) | _ (B0 | {uw

(4.1.25a) [\‘z(x)] = [0 2 [v(x)] ,a<x<b ,A,u>0.
A properly scaled analogue of the linearized BC is

(4.1.25b) v =a,ub =p.

These boundary conditions fit the dichotomy of the problem well. If we embed the ODE
for ¥ in a time dependent PDE, we obtain a hyperbolic system :

@1268) %% - y[M_pul L a<x<b, 0.
ot ox

The sign of ¥ has to be chosen in such a way that the streamlines (or characteristics) of
(4.1.26a) spread the information of the end point condition u(b) = [ over the interval, ie.
v>0.

Since the ODE for v(x) has an initial condition, in this case the streamlines should go
from a to b, i.c. a well-posed hyperbolic problem for v(x) is
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@r26) 5[ .av]  a<x<h,1>0.
ot ox
with 8 < 0.
=05
1 AN i \
1F3 AN \
\\ \
Y.z‘\\.s \\ \\
~u \\\
~ \\
\\\\
a b

The size of the constants ¥ and & is not important, since they can be absorbed in 7, just
causing a scaling of (the artificial) time; there is no reason to have a different time scaling
for the two equations. Hence we shall use

y=1and &= -1
for the embedding of the test problem.

Let u,y e RM*! be vectors that contain approximations in the grid points of u(x) and v(x),
respectively, i.e.

u = u(xg ), v =v(n ).
Define h; := x;,, - x, . The discretization of (4.1.26) can be done in several ways. Some
simple methods like Euler (forward or backward) and trapezoidal rule, all yield a system
with a negative logarithmic norm, if a uniform grid is used. For instance a first order
discretization of (4.1.26) yields

(4.1.27)
~-1-ph 1 ~ 0
1k 1! 0
A T w), | A8
drl v : -1 V4 h'la
YAk -1 0
E 1-Ar -1 0
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Usually, the approximations at the boundary points u; and vy, are incorporated in the
inhomogeneity. Here we have chosen to keep them as variables and use the dime-deriva-
tives :

duN+1

1 dv, -1
dt = -h (“N+1‘B) ) et ‘h (VI—CL) .

dt

The reason for this is that the BC of the BVP are inherently part of the Jacobian of the
multiple shooting method and that we want to establish a similarity between that Jacobian
and the matrix used in this time-dependent system. Note that uy,,(0) = B and v,(0) = o
lead to the steady states uy,,(t) = B and v;(2) = ..

The logarithmic norm of the matrix in (4.1.27) is equal to the largest eigenvalue of its
symmetric part (cf. App.C) and with the use of Gershgorin’s circle theorem, one can easily
derive that this is negative if ske (0,2).

The differential equation (4.1.27) can be rewritten as

(4.1.282)
1+uh -1 . )
1+ph -1° 0
1 -1
A8 R IDPT | e LA e
dt 1-Ah -1 vy hla
: 0
: 1-2 -1 0
Pl 0
with
(4.1.28b) D := diag(-1,...,-1,1,...,1)
[ — N
(N+2)x Nx
and
fwwepi
(4.1.28¢) P = ; EINp , N.B. in this case p=1 and n-p=1 .
Hp!

The matrix in the right hand side of (4.1.28a) corresponds to an approximation of J (cf.
(4.1.21)), because (1+uh) and (1-Ah), approximations of e* and e“”‘, respectively, fulfil
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the same role as B, and E, in J.

Let J be the basic form of the Jacobian obtained by applying the multiple shooting method
to (4.1.25) and assume without loss of generality that B, = exp(h, ) and E; = exp(-Ahy ).
We see from the above that a dissipative system

(4.1.29) = =MJs,

can be obtained if

4.1.30) M = DP",
Then MJ has the following form
C R \
- -1
(4.1.31) BJ = |-
E, -1

This choice for M does satisfy the requirement (4.1.24a). Let us now consider the other
requirement, viz. that (4.1.24b) is moderately bounded. Suppose that the BVP (4.1.25)
depends on a parameter s, for instance

(4.1.32) [“ _|He 0 [“J
o v 0 M) \v)°

For any two parameters s and ¢

| M(s)(J(s) -J(0) |,
|diag (B,(s) - B{(0),..,Bp(S) -Bpn(6),0,0,E,(s) -E(0),..,Ex(s) ~Ep(0)) |,
m’?x (max (| B(s)-B(0)[,)).

[ () - (o) |, |A(s) -M0) |,
an

Suppose that . © e 2
|s-cl, [s-ol,

are moderately bounded, say by v. Now
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the differences in E, and B, can be estimated by
le—us)h’**e-uc)h“ l, = Ee'm)h" (1- e(l(S)—?u(G)}kg) I,

|E($) - E40) |

- e—MS)hk |(2‘(s) _X(c)) Izhk + O(!s -G ’;hkz)

< ‘y}zke_m)h" [s-0|+0(|s-o |§h2) .

and

h h h Gy - ]
in(S)-Bk(O') ‘2 - ‘eﬂ(s) k_ell(G) gh - lell(s) k(lwe(u( ) - 1(S)) k)[Z

eu(s)hk l(u(s) ~p(o)) *2}% + 0(|s Y 1311:)

<yh e |s-c| +0(s-o 22 .

Hence the local Lipschitz constant for the E,-components is of the same order of magni-
tude as v, but a similar constant for the B,-components may be considerably larger than y
if p(s) > 1 and h is not very small. If we want the Lipschitz constant of MJ to be of the
same order of magnitude as ¥y, the B-components should be scaled by, for instance,
B, !(s). This leads to the following preconditioner M :

(4.1.33) M(s) = diag(-B; (), ~B; ()...., By (8). Ly Ty L yeisd ) PT .
L —
Nx
In this case
-1 B! E
-1 By
@134 WIS = | RO ,
-1
LB, -1
E Ey -1

has again a negative logarithmic norm, because the symmetric part of MJ(s) is diagonally
dominant with negative diagonal elements. Moreover
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(4.1.35)

MO T o JBCOBE B BB
|s-c|, k |s-o], |s-ol,

it

2
¥ max hk+0(!s—6§2rr;‘ax hy) .

The preceding relations were derived for the discretization of the 2-dimensional miodel
problem (4.1.25). Let us now return to the starting point, where J was the basic form
(4.1.22) of the original Jacobian. The same idea’s as used for the preconditioner for the
model problem can be used. If either p or n-p is larger than 1, Gershgorin’s circle
theorem may not be suitable to estimate the logarithmic norm of MJ, because

[Bk‘l | < 1and | E, | <1 for sufficiently large interval sizes (cf. (4.1.13)) does not
imply that any sum of absolute values of row elements is less than 1 as well. Instead a
theorem from [St] can be used (cf. Appendix C) which requires the logarithmic norm of
the diagonal blocks of MJ and the norm of the off-diagonal blocks.

The boundary conditions require special attention. If (4.1.33) is used to precondition J,
then in (4.1.33) the (N+1)® and (N+2)™ diagonal block would be -B,(D and -B, @,
respectively. Both blocks are non-singular and well-conditioned (see Appendix F).
However, the scaling requirements on boundary conditions as made in §1.1 do not
guarantee that ],Lz[-—Ba(Z)] and pQ[—Bb(“] arc negative. Hence it is more convenient to
incorporate them in M and use

(4.1.36) M:=B'lpT,
with
4 : (D 2
(4‘1‘37) B = dlag(—Bl,-Bz,...,—BN,—Bb ,—Ba ’Ip”"’lp) .
R —
Nx

yielding -1, and -1, , at the (N+1)™ and (N+2)™ diagonal block of MJ.

Note that the scaling of M with the Bk‘l-components, which was induced by a sensitivity
analysis of MJ, is also favourable in estimating 1,[MJ] in a higher dimensional case; an
estimate of )Bk'l | is available, but uy[-B, ] < O may not be concluded from the requi-
rements on By .

This preconditioner M for the basic form of the Jacobian yiclds the following form of the
product MJ, this matrix will be denoted by Jf:



-1 ' 3
-1, , B 5
g
'Innp BN :
(4.1.38) Femi-l Thpr
: T
LE, -l
: Ey -1
N N T

4.1.39 Lemma

Let 0 < & < 1 and suppose that the interval length x,,~x, is sufficiently large so that
-1

(4.1.39) Ve : |E¢ly<e and |B; |y<e.

Then

(4.1.39b) WIJ] < -1+¢ .

Proof
Applying theorem C.4 (see Appendix C) with the same partitioning of blocks as has been
used in this section in combination with Gershgorin’s circle theorem and the relationship
Holf] = max { t1t e o((J+J)/ 2) } gives
b, ,+b €, _,+e
L I T 1 B

p.z[f]s max (max{-1+ s
1<k<N+

N+l 2 2 28

with by := { |B;'l, if 1<k<N,
0 ifk=0 ork=N+l ,

if 1<k<N
d e, :={ Bl ? ’
and ek { 0 ifk=0ork=N+l.

From this we obtain u,z[f] < -1+€,
¢
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We now finally arrive at the original goal of this section, viz. to obtain a preconditioner
M(s) for the Jacobian J(s) of the multiple shooting method. Since

J=08B-J-F7sQ",
a natural choice for M would be
M=T-B'P"-F7$07,
where T is a matrix, which we will choose such that W[MJ] < 0. This choice for M yields
(4.1.40) MJ] =T-J-B75Q7 .
Now lemma C.5 states that ug[f] < 0 implies, that for every non-singular matrix V :
W LVTIVY < wid1 vt

(i.e. the sign of the logarithmic norm is invariant under a congruent transformation).
Comparison with (4.1.40) induces the choice

(4.1.41a) T =Q0S"P,
ie.

(4.1.416)  M(s) = QSTP-B'PT-PTSQT .
The logarithmic norm of MJ is cstimated by the following theorem.

4.1.42 Theorem
Let 0 < € < 1 and suppose that the interval length x;,, - x; is sufficiently large so that

(4.1.42a) Vy : |Eglp<e and | B[l I <€ .

Let X, be the conditioning constant of the linearized BVP at y(x). Then

@1420) M IMJ1 < __-l+e

2

(Kyin *Kgin*1)
Proof
From lemma 4.1.39 we obtain pz[f] < ~1+4e. Now we apply Lemma C.5 (see Appendix
C) with V := PTSQT, yielding WIMJ] < pa[f] | v! |2'2. One can easily prove that
| R | < %y, (see Appendix F) and thus | V™! |,2 < (k2 + K, + 1), hence
wIMJ] < -lve
(K ¥ g+ 1)
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Conclusion

Based on the proper information flow for the embedding of BVP’s in hyperbolic time
dependent systems and the requirement to reduce the sensitivity of MJ for changes in s we
formed the preconditioner

(4.1.43a) M(s) = QSTP-B-'PT-PTSOT .

Hence

(4.1.43b) MJ =QS"P-J-P7SQT .
The preconditioner essentially does three things :
- decouple the growing and decaying solution modes,
- place the initial conditions before the integration of the decaying modes (which is
a more natural ordering),
- invert the integration of the growing modes on every subinterval.
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In this section we will compare the preconditioner M(s) of the previous section with the

Davidenko preconditioner -J 1. in particular we compare their formula’s and the ratio of
[ M(s)(J(s)-J(6)) ]

| - M) (J(s) -J(0)) |

for any two vectors s,6 near s*. Additionally we investigate the form of J(s)-J(o) for a
simple problem in more detail.

4.2.1)

Recall from the previous section that

(4.2.2) J =08 BJPSQT = J' = QS \AIIPTSOT

and
(4.2.3) M =QSF-B'PT-PTSO".
First we assume that Q;, = S, =1, , ke {1, .., N+1}, to obtain the ’skeleton’ versions of M

and -J7 L. In the previous section we found that the permutation matrix P (4.1.28c) can be
used to transform J into a block form, with the left upper block representing the integra-
tion of the 'growing modes and the right lower block representing the integration of ithe
decaying modes :

J1U oo
(4.2.4) J = PJPT = PP PT,

0 J??
with

B, -, Bf}
. . E, -I

(4.2.5) "= B g | ad JP |71 TP

N “n-p .

B Ey -1,

The inverse of J can also be expressed in terms of J '! and J 2% :

4.2.6) Jl =P

87
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(4.2.7a)

and
4.2.7b)

(_ju)" -

(-r2)” -
-1 -1,-1
ﬂBl _Bl 82
-1
0  -B;
0

The matrix M reads

(4.2.8)

M = PEPTET
-1
=ﬁdiag(—B{l,~B£1,..,—B§1,~(3§,1)) ,*(3

2

88

-1
@
82)
-1
E, ( B <2>)

a

-1
-EZEI(BEP)

-1
-B;

-1
_32

ENEN-I"EZ

-1

B, .. -B

-1

-1
83 '.BN

_.BN

a

-1 -
1

-1 51 -1 (1)

@

1\
15-1 -1 5 (D}
B, ..By (Bb )

-1

-1
~1{ n(1)
-8;(8%)

-1
(1)
’(Bb )

-1
TPT
) ,I;,,..,IP)P P

These relations show that, after an appropriate permutation, M is only the diagonal part of
-J L Apparently the required minus-signs, derived in the previous section from the cor-
rect information flow in hyperbolic problems (and hence from the condition that the loga-
rithmic norm of MJ is negative), are naturally preseat in -J L.

Let s and © be two vectors in R™M1 in the neighbourhood of s*. Define 8J := J(5)-J(0).
Since the transformations Q and § are not necessarily suitable for 8J, we give the explicit
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form of M in order to estimate | M3J |.

-B;' 0! L0 0
0 o o ~(B(2))—1
......... A N S A
o 0! -8 o!
o ng 0 0?
4.2.9) M =
10 OE-B,;,I 0§
LS I
;0 02-(33’)_1 0
;0 !pg 0 0

One can see that M picks up every block in 8J exactly once, yielding
{4.2.10)

(M3 |,

-1 -1
< max(1(0 [BZ) ) By(0)-Bo@ o 1(BL) 10)(By6)-By(0)) .
> max| (B 10 (¥ 1330 =Y 05,136 |+ | (O 1D (¥ 359 - ¥ 6y i60) ) ) -

If we assume that | B,(s) - B,(0) | and | B(s) - B,(0) | are negligible compared to the
differences in Y;(x;,,) (the latter difference will be of the order of magnitude of the condi-
tioning constant of the local IVP), then

(4.2.11) [M8J |, ~ |8, .

In 1“15] there is a build-up of errors, which originates from the fact that J(s) represents
the integration of the BVP over [4,b). Hence the difference between the p lowest rows of
Y,(xy;81) - Y (x9;0,) is ’picked-up’ during forward integration of the decaying modes and
contaminates (in a damped form) all subsequent J~'8J components. Similarly are the up-
per (n-p) rows of Ypn(xy,;i5n) - Ya(xy, ;0N present in all components J~18J due o0
backward integration of the growing modes. A closed form for the error in ~J~'8J cannot
easily be obtained. However, | -J~18J | may be up to N times larger | M&J |.
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Since we have assumed that Q) = §; = I, the left upper (n-p)x(n-p) block of ¥,{(x;s) con-
tains the growing solution modes. If | s-0 | is sufficiently small, we expect that the same
block of Yk(x,c) also contains a major part of the growing solution modes of the corres-
ponding BVP. Due to the scaling of the local fundamental solutions the changes in the
growing modes may be unpleasantly large. Fortunately, both M and -Jt premultiply
these changes by a damping factor Bk'l. This worked well for the model problem used in
§4.1. However, Bk'l is not always able to control differences in Y, sufficiently, in particu-
larly not if the directions of the solution modes change. We will illustrate this with an
example.

4.2.12 Example
Suppose that, after a change of coordinate system, J(s) is a discretization of the BVP

uwo o0
(4.2.12a) z= Az withA={0v 01}, pvi>0andpu>v,
00 -A
with boundary conditions
600 100
(4.2.12b) 000|z@ +|010zb)=B.
001 000

To simplify matters we assume that A,p and v do not depend on x. The situation may
occur that for some @, near s, the Jacobian J(o) with respect to the same coordinate sys-
tem as J(s), can be viewed as the discretization of

¢ -d 0
(4.2.12c) 1=QAQ"z withQ=|d ¢ 0| ,0<c,d<landc?+d%®=1.
00 1

The left upper block of Q is a plane rotation (we use d, instead of s to denote the sinus-
value to prevent confusion with the shooting vector s). Generally the values of A, and v
will have changed as well, however, this type of changes has already been considered in
§4.1, here we want to concentrate on the effect of changes of direction. The difference in
the BVP’s can be estimated by
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p-cZp-dv  cdv-p 0
|A-QAQ |, = || ecdtv-p) v-c2v-d?p 0|la = H-Vv)d.
0 0 0 o
In a multiple shooting context this difference is bounded by x| s-6 |, with k¥ an upper

bound on the conditioning constants of the IVP’s on the subintervals. The difference in the
fundamental solution Y,(x) can be described by

eAMk Qe T
(1-cer-a?e" M -cd(eh-eVM) 0
—cd(eMr-eVi)  (1-cHeVhd®e e 0
0 0 0

"

Y Gga138) - Y (g ,150)

The second row of this difference contains d- exp(jth, ). This term will be large for large

Why

0
| and since B, = ¢ W | e see that premultiplication of the difference in Y, (x;, )
0 '™
B;' 0 . .
by reduces the difference in the second row by a factor exp(-vh, ) only. Hence
0 0

if all subintervals have the same size

w~-vih
IM8J |, = cde® "Vt = £ |s5-c]
H-v
and
N-1 W-V)h | _,-v(b-a)
| -J718T |, = cde™ VIR ¥ Vit <k ¢ 1-e |s-0|
=0 -V 1. vk
1 "e—v(b—a) e(u—v)k § s |
= . 5-G|.
v(b-a) TR
.

This example illustrates that small changes in the directions of the growing modes may
cause an error in By(s) -~ B,(c) which is not controlled by Bk‘l(s). The adverse effects on
| M3J | of changes in the directions of the solution modes may be overcome by multi-
plying the preconditioner M by a factor exp(-uh). However,

wle My = e My imiy,
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i.e. the logarithmic norm will be closer to zero. Consequently the premultiplication does
not result in an enlargement (or reduction) of the size of the convergence area of
ds
— = M()f(s) ,
dr

as described in lemma 3.1.18. Although this example assumed a simple structure of the
solution space, similar effects may well occur for more complex BVP’s.

The structure of M and -J ! as depicted in (4.2.8) and (4.2.6),(4.2.7) is valid if

Oy = S; = I, . Otherwise the situation is more complex. Let ~J7! and M be partitioned
into (N+1)2 square blocks of size nxn : (—J'l),-}- and (M),-j respectively. And let the ortho-
gonal matrices Q, be partitioned according to

(4.2.13) Q = (Qk,l !Qk,z) :
" Y

Some calculus shows that

4.2.14)
T R o
-0, B; By By Q11+ R Q700 0) , iSj<N,
-J 7= (Qi2-Qi\RDE By B}y O  J<iSN+1,
. " I
-15-1 -1] {1} 2
(-Q;1B; Bi,1--By (Bb ) {(Q:',lRé‘Qi,z)gi—lgi—?'gl(sz)) )
,f=N+1.
and
-1 .
~(Qi 1+ Qi 2RDB. (@) 1+ R0 Qi) S i=)
Qi,ZQiTz s i=j+1,
-1
42.15) (M), ; = (01'Q1,2(3f)) ) ieNelii=1.
-1
1 .
(—(QN+1,1+QN+1,2RI:+1)(B§) )) tO) ,i=j=N+1.
0 , otherwise

The preconditioner M is sparse, in particular for larger values of N, while ~J -1 cannot be
expected to have a special zero-structure, The block diagonal and the first lower subdiago-
nal of M and -J~! are not identical unless R, = 0, ie. the subspaces of growing and
decaying modes are orthogonal. The difference between the two matrices can be inter-
preted as follows. Let Z(x) be the fundamental solution on [a,b] of the linearized BVP of
(4.1.1) at y(xs), such that
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Z@ = Q, .

According to the consistency theory in §1.2, the first n-p columns of Z(E) span the space
of growing modes integrated up to x = &. From the relationships between Q, and R one
can derive that

(4.2.16a) range (Z(x,)(I-P)) = range(Qk’l),
(4.2.16b) range(Z(x,)P) = ker(Q; | +R,0; ,) = range(Q; 1+ 0 HR; y
range(Qk’z-—QmRk),

#

00
with P = [ 01 ] . {see Appendix F). Hence the diagonal blocks of M project into the sub-
P

space orthogonal to the subspace of decaying modes, while the diagonal blocks of .
project into the space of growing modes (both subspaces are equal iff R, = 0).

Conclusion

On comparing the preconditioner M with -J -1, we have seen that M is a part of -J -t
the subspaces of growing and decaying modes are orthogonal. The matrix M treats the dif-
ferences in the fundamental solutions (as present in &J) locally, whereas -J! transports
them either to the begin or end point of the interval. Due to the 'local’ nature of M,-we
may expect that for 5,6 near s*, the value of

[ M(s)(J(s) -J(0)) |
[s~o]

may be up to a factor N smaller than

| -J Y& UE6) -To)) |

|s-o]




§4.3 Numerical results

The idea of preconditioned time stepping with the preconditioner presented in the previous
sections is implemented in a code called TS. We compare this code with two other mul-
tiple shooting codes, viz. MUSN and RWPM (see [AsMaRu,MaSt], [HeBe] resp.); both
use variants of Newton’s method to solve the non-linear equations. The resuits, presented
below, indicate that the time stepping algorithm can increase the convergence domain,
sometimes even on problems that, though well-conditioned, do not satisfy the conditions
of Th.4.1.42.

In the TS-program the required tolerance for the solution is denoted by TOL. The conver-
gence criterion used is | M(s jy(s ) |, < TOL or | M(s s #h [, < TOL, where f(s)
must be evaluated with an accuracy smaller than TOL. The program employs the precon-
ditioner M(s) defined in the previous section and uses the mixed Euler method

(4.3.1) = s M

for time integration. The discretization error hereof is bounded by the user prescribed tole-
rances ATOL and RTOL for the absolute and relative error, respectively. Based on these
tolerances the TS-program determines the step size }z The iterate s /! is obtained by a
modified Newton’s method using the Jacobian at s f only and not at any intermediate
point. We want to approximate s /! with a tolerance NTOL. If this is not obtained within
three iterations the step size ; is halved. This process continues until a sufficiently accu-
rate approximation of ARt obtamed or h drops below a (user set) minimum value. Since
the path () is followed with an error ATOL + RTOL | s/ | it would be overdone to ap-
proximate s/*! with an essentially smaller error. Hence we set

NTOL = min(ATOL + RTOL| sd s 10'2); the latter term is used to goarantee at least
two correct numbers in s+,

The local IVP’s on the subintervals are integrated using RKF45 as implemented in MUSN.
This process is controlled by a parameter ER. During the RKF45 integration we require
the discretization error to be less than ER (1 + | s/ [); i.e. ER is a combined absolute

and relative tolerance. Of course this tolerance has to be less than the required tolerance
TOL for the solution of the BVP at the end of the time stepping process. However, if the
vector s/ is still far from the solution a small value of ER will require more work without
increasing the convergence speed considerably. Most components of f(s) contain the diffe-
rence between two solutions of local IVP’s, hence cancelation will reduce the amount of
accurate numbers in f(s j), once s/ is close to the solution s*. Since at every step f(sf)
should have at least 1 or 2 significant numbers, the tolerance ER should be at most the
error in s/ divided by a safety factor, which we chose to be 100. Hence the user has to
give an initial value for ER and during the process ER is taken as the minimum of its pre
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vious value and 1072| M(s )f(s %) |.

A good indication for the computational costs of BVP-solving algorithms is the number of
evaluations of the function defining the field of directions of the BVP (h(x,y) in (4.1.1)).
In the tables in this section this quantity is denoted by #f®-calls (N.B. this is not equal:to
the number of times f{s) is computed).

4.3.2 Example 1
Consider the problem attributed to Troesch [Tt}

#(x) = Asinh(Az) , 0<x<1,
(4.3.2a) 20) =0,
Z(1) = 1.

This has been used as a test problem by many authors (e.g. [DePeRe,ScWa]). The lineari-
zation of this problem at its exact solution is exponentially dichotomic with growth factors
are of the order of magnitude of Aet and Ae™H, respectively. Due to this, forward integra-
tion becomes inaccurate over longer subintervals and the non-linear function f{s) is very
sensitive to small changes of the starting vector s/ in the direction of the growing mode;
in fact the local IVP’s are ill-posed, in particular at the end of the interval

We look at the effect of choosing too large initial values s/ and uniform (i.e. non-optimal)
subintervals for rather small values of A (A £ 5). For the parameters we choose ATOL-=
RTOL = 107, ER = 1073 and set the required tolerance TOL = 1075, The initial guess to
the solution is

(4.3.2b) z2(x) =x , #x)=1.

The results (see table 4.1) clearly show that if the Newton’s method works it requires less
iterations and function calls than time stepping, as has to be expected. However, the time
stepping algorithm can solve the problem on coarser grids, i.e. for more difficult cases.
For all choices of A the upper triangular matrices U (see (4.1.12)) satisfy the condition
that | Bk‘l | <1 and | Eg | <1, and coarser grids gave smaller values, i.e. the IVP

a5 - Mfs) >0,
dt

is stronger attractive. This does not appear from the number of required iterations, because
for coarser grids the initial value of | M(s)f(s) | is larger and the step size h; increases
slower, since the Newton process to solve (4.3.1) requires a somewhat more careful
treatment.

However, it should be clear that once the time stepping method has reached a reasonably
small residual, one should switch to full Newton in practice; this would make the comple-
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xity for the combined method lower (on top of its, more important, better convergence

behaviour).

>
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15017
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20022)°
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iter
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o

11
11

Troesch problem; TOL = 1076

MUSN

result  #0%-calls

fail 3, 350
conv 2,923
fail 16, 955
conv 6, 710
fail 38, 625
conv 12,978
exp.overflow
fail 80, 787
conv 55,875

steps

21
18
23
22
32
30
52
50
51

TS

resuli  #"-calls

conv 3, 228
conv 5, 027
conv 10, 314
conv 13, 684
conv 35, 482
conv 36, 831
conv 73, 002
conv 83, 000
conv 93, 050

* The code added two shooting points near x = 1, since the increase over the subintervals exceeded 10%

4.3.3 Example 2
The following problem has been proposed in [Ho] and describes the flow between two ro-

tating discs

(4.3.3a)

31
¥

5’3-"

Vs
¥s

it

=y2,

= Y3,
_(3-n)

2

= ys »
_G-m

2

with boundary conditions
¥10) = y,(0) = y,(0 =0,

In practice a (large) value L is taken as endpoint of the interval. Both in [RoSh] and
[DePeRe] (4.3.3) is used as a test problem with the parameter set n = 0.1, 5§ = 0.2.

In [RoSh] L = 11.3 is the largest endpoint for which convergence is reached using conti-
nuation in L. The algorithm proposed in [DePeRe] can solve the BVP by continuation in L
for L £ 15 with forward shooting and L £ 132 with backward shooting. This different

(4.3.3b)

2 2
VY3 -nyy +1 -y, +5¥,

Table 4.1

, O<x <o,

Y1¥s —(n-D)y,y,+5(34-1} ,

Yp(= =0,

)’4("") =1,
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behaviour of forward and backward shooting is due to the fact that the growth factor of
the strongest growing mode is essentially larger than the absolute value of the decay factor
of the strongest decaying mode. Hence local end point value problems are less ill-conditio-
ned than initial value problems. Using as initial guess

¥, = _x2e -x

y4 = l—e

s Yo =¥ ¥z =Y s
H y‘j:y45

(4.3.3c)

~-X
the codes tested here do not encounter this problem.

As the solution mainly shows activity near its initial point, we choose a grid which is
basically uniform, but for its first subinterval which is halved. We use three different
codes to solve this problem, viz. MUSN, the TS-code and RWPM and look for the coars-
est grid on which a solution was obtained with accuracy 1075, For the TS-code the para-
metervalues were ATOL = RTOL = 1071, hy = 101, ER = 1071, Although the linearized
problem has three eigenvalues with negative real part, the rapid rotation of two decaying
modes caused | E, | to exceed 1 on more than half the subintervals. Nevertheless conver-
gence was reached quite easily (in about 20 to 30 steps) even on coarser grids, than either
of the two other codes could handle.

L Least number of subintervals required
MUSN RWPM TS
12 13 7 6
15 20 9 8
20 27 12 10
30 39 18 14
132 169 3 58
Table 4.2

An even more interesting picture occurs if we plot the amount of BVP-evaluations versus
the number of gridpoints for a fixed value of L (L = 15 in Figure 4.1). Even though the
TS-code used is not optimal (it does not switch to the Newton method near the conver-
gence point) it performed cheaper than RWPM for coarse grids. This is due to the fact
that for those grids over 90% of the iterations in RWPM are damped Newton steps with
damping factor between 10™* and 1073, For finer grids the Newton algorithm in RWPM
speeds up considerably, whereas the TS-code does not require essentially less steps. This
illustrates that the time stepping algorithm does not only serve its purpose of enlarging the
convergence domain, but can occasionally even reduce the computational costs.
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B34
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a 8 48 11 42 18 14 1% 16
maber of subintervals

Figure 4.2

Next we want to see the effect of using different values of ER, ie. the accuracy with
which the local IVP’s are solved. To this end we solve the BVP’s (4.3.3a,b) with

L =113, n=-01,s = 0.2 and (4.3.2a) with X = 4 with the time stepping algorithm for
various values of ER with 10 equidistant shooting points, required tolerance TOL = 1079,
initial step size kg = 0.1, initial guess (4.3.3c), (4.3.2b) resp. and ATOL = RTOL = 107!,
The resuits are shown in Table 4.3 and 4.4 respectively.

For both test problems the number of time steps did not vary significantly for different
values of ER. For larger ER the norm of the residual M{s Afis 7y reduces just a little more
slowly. The value of ER has considerable influence on the amount of f ion_calls, since a
smaller initial value of ER stands for a more accurate computation of y,(x;s; ).

In order to decrease the amount of work, one should try to minimize the number of f ion_
evaluations and hence choose a large ER. However, this does harbour the danger of diver-
gence of the process, especially for sensitive problems.
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Time stepping algorithm for (433a,b) withn= 0.1 ;5=02;L =113

ER steps  #f%-calls R, lna  ax(diag(8,™) max(diag(E,))

107! 19 26, 965 [19,29] [0.6,09] [1.7,22]

1073 19 28, 784 [1.9,29] [0.6,09] 17,232

1075 19 36, 527 [19,29] [06,09] 17,22
Table 4.3

Time stepping algorithm for (4.3.2a) with A = 4

ER sieps  #0%-calls [Ry lmax  Max(diag®,™") max(diag(E,))

107! 30 28, 849 42415 0.92 092

10-3 3 30, 393 58 . 15 0.92 092

1075 31 35, 424 58+ 15 0.92 0.52
Table 4.4

The fourth column shows the development of the maximum of | R, | during the process.
This illustrates quite clearly that the decoupling of the growing modes is much better for
Holt’s problem than for the Troesch’ problem. Additionally we tabulate the range of the
maximum values of the diagonal elements of E, and B! at the various steps, these are
indicative for | E, | and | Bk'l | resp.. This shows that the conditions of Th.4.1.42 are
satisfied for Troesch’ problem, but not for problem (4.3.3a,b).



$4.3

100



5 A generalised multiple shooting method

In chapter 2 we described the multiple shooting method for non-linear BVP’s and mentio-
ned that in the presence of exponentially growing modes problems may occur, like non-
existence of local solutions, serious error amplification and/or a small convergence domain
for Newton’s method. The source of this trouble lies in the use of initial value conditions
for the local problems, which are not able to control growing modes properly.

Some global methods do not encounter the unpleasant features mentioned for IVP
methods; global methods, however, may require a larger amount of memory space. There-
fore it is an attractive idea to combine the virtues of both classes. To this end the interval
[a.b] is divided into subintervals, but now boundary conditions (rather than initial condi-
tions) are defined for a local solution. In particular, one should try and solve these local
BVP by a ’global” method rather than an IVP method. This idea has the following advan-
tages. First it results in a more economical memory usage and it renders a potential paral-
lel feature as well. Second it allows for the better convergence and stability properties of
global methods and third, as a useful byproduct, it gives an opportunity to 'localize’ un-
pleasant non-linearities, while at the same time the coarse level non-linear equation might
become ’easier’ to solve.

The outling of this chapter is as follows. In the first section we describe the proposed
method in more detail and address the choice of local boundary conditions. Local conver-
gence of the method is proven in §2 and a tolerance strategy based upon this proof is
given. As we have two types of non-linear problems, viz. a sequence of local BVP and a
global equation, it is also investigated how these two interfere. In section 3 we describe
our implementation and give some numerical results. The chapter is concluded by some
considerations about parallel implementation of the method.
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§5.1 Unbiased multiple shooting

In the section 2.3 we have seen that the convergence domain and behaviour of the
Newton’s method, as applied in multiple shooting processes, is influenced by the condi-
tioning constant of the local problems. This renders the idea that the convergence beha-
viour may be improved by defining well conditioned boundary value problems on a set of
subintervals instead of IVP’s as is done in ordinary multiple shooting. So in order to solve
the BVP

(5.1.1a) y = h(x,y) , a<x<b,
(5.1.1b) g0(@y®) = 0,

the interval [a,b] is divided into N subintervals [x, ,x;,,], 1 < k £ N, with
a=xl<x2<..<xN+1 =} .

On each subinterval we seek to solve (with a global method) the BVP

(5.1.2a) y = h(x.y) s X <X <Xy g s
(5.1.2b) Ap lim y(x) + B, lim y(x) =s,,
xlx, xTay

with 5,€ R". The local BC should be such that (4, | B, ) is of full rank and has orthonor-
mal rows (cf. assumption 1.1.16). The solutions of the local problems, assuming they
exist, are denoted by y,(x;5; ); ¥(x;s) is the function, defined globally on [a,b], that is equal
10 y,(6:5, ) on (x; ,x;,,1 and satisfies y(a;8) = y;(a;5;). An approximation of y,(x;s; ) will
be denoted by z(x;s; ) and z(x;s) will be defined similar to y(x;s) as the concatenation of
the local approximations. The unknown vectors have to be determined, such that y(x;s) is
continuous and satisfies the boundary conditions. Hence they have to be the solution of a
set of equations similar to the ones used in the “original’ shooting method (see (2.1.6),
(2.1.7)), viz.

(5.1.3) fsiz2) = 0 “with  s7:=(s],55,.,.,5y) and feCYR™ >R™)
and f{s;z) defined by

21(x5:81) — 29(x5:89)
25(X4359) - 23(x4353)
(5.1.4) fs;2(55)) 1= :

2y Genisy <) — 2Ny N)
L 8(z1 (x5 ), 20Xy, 135 A0

As in the ordinary multiple shooting method, the Jacobian of f{s;z) can be formulated in
terms of a linearization of (5.1.2). The notation used will be similar to the one used in
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chapter 4. However, in the previous chapter the linearizations were fully determined by the
shooting vector s (which referred to a solution of the local IVP’s). Here we use additional-
ly the linearization at functions that do not satisfy the ODE (5.1.1a) or (5.1.2a), for instan-
ce splines approximating a solution of (5.1.1). therefore we define the notation anew.

5.1.5 Definition
The derivative of h(x,y) on a subinterval [x,x, ] with respect to its second argument at a
Sunction w(x), which is continuous on the subinterval, is denoted by

(5.1.5a) L (x;wy(x) = _a_k(x,y) y Xp<X<Xp,y .
oy y=w,(x)

The fundamental solution Y, (x;w\ (X)) of the linearized system on [x, x,,,] is a solution of
the ODE

(5.1.5b) z = Lxw(0)z » Xp<X<Xpp s

satisfying the boundary conditions

(5.1.5¢) ALY 0w (0) + BLY (O iwi(0) = 1, .

And the derivatives of the boundary conditions are

.. 9glu,w(b) B . 9g(wia)v)
(15D Bywh) = S wl) and  By(wx)) i= S o)

NB. We suppressed the functional dependency of Y, with respect to A, and By as this
would be apparent from the context.
¢

The Jacobian J(s;2) of f(s;z) can be formulated in terms of ¥ (x;2) :
Y,(x5:2) ~Yo(X5;2)
Yz(xs;z) -Y3(x3 32)
(5.1.6)
Yy 10y -Yyleys2)
B (DY,(x;;2) B ()Y \yxy,132) )

One can easily prove that Theorem 2.3.9, which gives an estimate for the Lipschitz con-
stant of the Jacobian in terms of the conditioning constant of the local problems (5.1.2),
also holds for this more general formulation of shooting. In particular for exponentially
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dichotomic BVP a correct choice of the local BC will reduce the conditioning constant of
(5.1.2) considerably, thus increasing the convergence area of Newton’s method for f, ac-
cording to the Newton-Kantorovich theorem. In [dHMa85] and [AsMa] this formulation of
the shooting method was used to analyze the convergence and stability of finite difference
methods in a linear context. Here we investigate the actual implementation of this genera-
lisation of multiple shooting. First of all we see that if A, # 0 and B, # 0, a BVP with
linear boundary conditions is defined on every subinterval. Now it may seem unwise to
replace one problem by N problems of the same type with additional unknowns s, ,

1 £ k £ N. However, there is some merit in this splitting, as we shall show now.

We just pointed out that the use of ordinary multiple shooting may be disadvantageous.
Hence for solving the ’local’ problems we only consider the use of global methods, ie.
finite differences or collocation. A divide and conquer method is the following Unbiased
Multiple Shooting (UMS) algorithm.

5.1.7 UMS-Algorithm
- given an initial estimate for y*(x;s%), compute the vector s% from (5.1.2b).

- while | f(s Jiz j(x;sf)) | is not sufficiently small
do begin

(Al) on every subinterval compute by collocation or finite differences, a
new approximation z j(.x;s ’) to the solution of (5.1.2) for the new
value sf, with z/ s j”l) as initial guess and compute an approxi-
mation of the fundamental solution of the linearized BVP at z/ (x;s Y ).

(A2) compute the residual vector fis iz Jx;s ) and perform a Newton
iteration rendering s /*!.

end.

The two steps (Al) and (A2) do not have an equal status. An important difference is that
every update of s requires a new approximation to the solution of (5.1.1), i.e. at every ite-
ration only one update on s is made. On the other hand in step (Al) the vector s is kept
fixed and obtaining a new approximation 2 ;s may require several Newton iterations or
even choosing a new local collocation grid. In fact (A1) may stand for a call to a colloca-
tion algorithm and will generally contain what we henceforth shall call an ’inner’ iteration
loop (as opposed to the ’outer’ iteration on ).
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Notice that at step (Al) every subinterval can be treated completely separately. Thus a
major part of the memory needed for the collocation or finite difference process at one
step can be used again at the next one, as we only store information about z(x;s) and not
about the linearized system. In this way it may be possible to handle more difficult pro-
blems, that would otherwise require more memory storage.

On the other hand step (A1) lends itself to implementation on a parallel computer in a
more or less straightforward way. For every vector s7 the local BVP’s on the subintervals
can be distributed over the available processors. This could be combined with a stable
parallel algorithm to solve the linear equation JE = -f, for instance the one described in
[AsPC] or [Wr].

One may also encounter a situation where the problem at hand has a few regions where
the problem is essentially more difficult than elsewhere. This may be due to a locally poor
initial guess or to local sensitivity of the BVP. When a collocation code is applied to the
BVP on the entire interval, the internal Newton solver may require a considerable amount
of iterations. If the interval is split into smooth regions and more difficult ones, application
of the same code will generally require only a few iterations on the smooth regions; at the
same time it is to be expected that solving the BVP on the difficult subintervals does not
take more iterations than solving the BVP on the entire interval. However, these iterations
for the former require less function calls and the solution of smaller linear systems. So the
unbiased multiple shooting algorithm can reduce the computational costs of solving a
BVP, provided that determining the *shooting vectors’ s, is not too expensive. A nice class
of such BVP’s is given by singularly perturbed problems, where a reduced solution (ie.
the -outer- solution of the reduced problem) is easy to find, We shall demonstrate this by
the following example.

5.1.8 Example
Consider the singularly perturbed BVP, cf. [0'Ma],

(5.1.8a) ey = y-y3 ,0<x<1,
(5.1.8b) y0) =0,y1) =05.

The stable limiting solution for & | 0,

0 f  0<x<05,
(5.1.8¢) Y = { ; g

x-05 ,if 05<x<1,

has a discontinuity in its first derivative at x = 0.5. We solve this BVP by the collocation
code COLNEW cf. [BaAs] on the entire interval and by the UMS algorithm (for details on
the implementation and further comments see §3) up to a tolerance 105, The reduced so-
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lution (5.1.8c) is used as initial guess and the local boundary conditions were the analogue
of (5.1.8b), i.e.

10 00

The first order approximation of the solution is used to choose two grid points x, and x4
on either sides of the ’crack’ x = 0.5 such that the estimated error in s, is less than the
required tolerance 1075, In the UMS algorithm with 8&[10'2,10'4] no iterations on s are
needed as the norm of the first update on 5 is already less than 10~ The results are listed
in the Table 5.1 and 5.2 . The column "memory use’ states the number of double precision
places (in standard IBM Fortran) required for the collocation algorithm; the additional
memory used for integers is negligible. The UMS algorithm saves about 35% to 75% on
both function evaluations and memory use.

UMS on {5.1.8a,b) with tol = 10™°

E x X3 memory use #-calls
st 2nd 3rd interval
102 0380 0.620 9728 18 2968 30
102 0485 0515 14592 18 3366 2
1074 0499 0501 14592 18 3414 2
Table 5.1

COLNEW on (5.1.8a,b) with tol = 10~%

£ memory use #f-calls
1072 14592 4578
1073 58368 13140
10 58368 13500

Table 5.2

An important issue in our algorithm is the choice of the local boundary conditions (BC’s)
in such a way that the local BVP’s are well-conditioned. Occasionally local BC’s are pro-
vided naturally by the problem {e.g. (5.1.8a,b)). If we do not have sufficient understanding
of the structure of the solution space of the BVP, then it advisable to choose non-separated
BC, because separated BC increase the risk of controlling a mode on the wrong side of the
interval. The choice
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(5.1.9) A =B, =1,

often proves to be an acceptable one. Indeed, if the solution modes show only small chan-
ges in direction, we do not expect any cancelation effects to occur in

AY (x) + B Y, (x,,,). However, the complexity of most algorithms for collocation and
finite differences reduces considerably if the boundary conditions are separated. This can
of course be done by adding as many auxiliary variables as there are coupled BC, see
[AsRu]. An alternative is to compute separated boundary conditions, according to .a
method formulated in [dHMa87], which we describe below.

Suppose we have an initial guess zo(x;so) of the solution of (5.1.2),(5.1.9) and we are able
to compute the fundamental solution Y (x) of the linearized problem at zo(x;so) (ie. the
BVP is not too ill-posed). Now let U Z,V,” be the singular value decomposition of
Y4t 1)Y; 10 ). Note that this operation is not excessively expensive, since Y,(x;,;) and
Y, (x; ) have to be computed anyway for the Newton iteration on s and a SVD requires
only O(na) operations; this is essentially smaller than O\, n3), with ¥, the number of col-
location grid points, required for solving the linear equations to update z(x;s) in the collo-
cation process.
Now let p, 1 € p < n, be such that the singular values 6; 2 1, for 1 <i < p, and 5; < 1, for
p+1 S i < n. According to [dHMa87]§3 the boundary conditions

: 0 0 . B I, 0|
(5.1.10) A, 01, Ve and B, 0 0 U,
induce a BVP (5.1.2) on [x;, x;,,] with conditioning constant o + 402, where a is the con-
ditioning constant of (5.1.2),(5.1.9). This can be unsatisfactory if a is large. However, the
conditioning constant of (5.1.2),(5.1.10) can be related to that of the global BVP (5.1.1) at
D% as is shown by the following lemma.

5.1.11 Lemma

The conditioning constant of (5.1.2),(5.1.10) does not exceed ¥ + 41c2, with X the condi-
tioning constant of the linearization of (5.1.1) at 2%(x:s°).

Proof ,

According to lemma 1.2.8 there exists BC on every subinterval of [a,b] such that the con-
ditioning constant of the linearized BVP does not exceed k. The proof now readily follows
from the fact that the product Y (x, +1)Yk“1(xk) is independent of the local BC.

*

In practice one has to be careful when implementing boundary conditions such as (5.1.10).
From a computational point of view it is preferable to compute the SVD from one of the
first approximations Px;s% or zl(x;s"). However, if they differ greatly from the solution
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y*(x), both the directions and the singular values may be so inaccurate that the condition-
ing of (5.1.1) is not very good. This is demonstrated by the next example.

5.1.12 Example
Consider the boundary value problem, proposed e.g. in [Ho],
Y1 =
Y2 =¥
. 3- 2 2
51120 33 = -Eyy-nyy e 1oy esy, , 0<x<oo,
Y4 = ¥s
. 3-
ys = -4 2”)y1y5~(ﬂ-1)y2y4+5(y4—1),

with boundary conditions
(5.1.12b) YO =30 =300 =0, 39 =0, y=d

We apply the UMS algorithm to this BVP for the parameters n = s = (.2 and L = 60, with
subintervals [0,5], [5,10], [10,30] and [30,60]. First we choose the boundary conditions

Ay =By =15
This requires 6 ’outer’ iterations on s to obtain a precision of 1075, In the first and fifth
iteration the singular value decomposition of ¥,(x;,,)Y, (x, ) is computed. In both cases
we find that 3 singular values are larger than 1, implying that the problem has three non-
decreasing modes. This seems to be contradicted by the global BC’s, that have 2 end point
conditions, indicating 2 nondecreasing modes. However, only 2 singular values are consi-
derably larger than 1, ranging from ~10% at [0,5] to ~10% at the last subinterval, and the
third singular value is only just larger than 1.
This yields four different sets of separated BC for the local BVP’s ; using the SVD results
from either the first or fifth iteration and with either 2 or 3 initial conditions.

1.

Let B (i) denote the endpoint conditions on the k™ subinterval resulting from the funda-
mental solutions obtained in the /" iteration with j initial conditions. Using thrge initial
conditions, convergence is obtained with the local BC resulting from the first iteration, but
the computational costs are, as expected, higher than for the local BC resulting from the
fifth iteration. The failure on the last interval [30,60] with local BC resulting from the first
iteration with 2 initial conditions can be viewed as a standard example of ill-conditioning
due to boundary conditions. Namely, the BC resulting from the 5" jteration seem to give
rather well-conditioned local BVP’s, but the angle between the 3-dimensional subspaces of
range(B,4(1,2)) and range(B,(5,2)) is almost 90°, i.c. there is a solution mode which is con-
trolled by B,(5,2), but not by B,(1,2).
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In a parallel implementation the computing time for the UMS algorithm would be less
than for the globally used collocation algorithm, when using the coupled BC A, = B, = I
or the BC resulting from the fifth iteration. However, the reduction of computational time
would have been considerably larger if less iterations on the shooting vectors had been
necessary, as we saw for the singularly perturbed BVP in example 5.1.8.

The memory requirement for the UMS-algorithm for separated local BC is almost 45%
less than for collocation on the entire interval. When using the non-separated BC

A, = B, = I, the memory use is considerably larger than for the other, separated BC. This
is due to the fact that the collocation solver used needs separated BC; hence we have to
add 5 trivial differential equations to create the separation artificially (see [AsRu}). Appli-
cation of COLNEW to each of the subintervals does not require more grid points for the
coupled BC than for the other local BC.

UMS applied teo (5.1.12a+b), tol = 1076

#f-calls
iter {0.51 [5,10]  [10,30] [30,60] memory use
Ay=B, =1 7 2832 1192 2688 3072 88101
1% iter., 3 init. cond. 8 2960 1408 3264 4256 25961
5™ iter., 3 init. cond. 6 1952 928 2224 2560 25961
1% iter., 2 init. cond. 4 fail of COLNEW on [30,60]
5t jier., 2 init. cond. 7 2378 1408 2336 2816 25641
COLNEW applied to (5.1.11a+b), tol = 10~%
#fcalls memory use
4080 46336
Table 5.3



§5.2 Convergence

In the Unbiased Multiple Shooting algorithm as sketched in the previous section two ite-
rative processes are interacting, viz. a process on § J and another to obtain z j(x;s f);
however, the algorithm is not symmetrical with respect to both processes.

One can implement the algorithm 5.1.7 in various ways. For the "outer’ iteration on s/ we
can use well known adaptations of Newton’s method such as damping and keeping the
Jacobian fixed (cf. time stepping algorithm Ch.3). Additionally there are several ways to
perform the ’inner’ step (Al). One can call a collocation or finite difference routine to
obtain yf and estimates fkj(x) for the fundamental solutions Yk(x;z{(x;skj)) (that are requi-
red for the Jacobian J(s j;z f(x;s f) ) with certain prescribed tolerances. These tolerances
need not be kept constant during the entire process. At the first few steps, when s4 is far
away from the solution s*, it is not necessary to approximate yk(x;skj) very well. But, as
we show, eventual quadratic convergence requires the tolerance for z Jx;s ) 10 decrease
like | s/ - s* |2 and the tolerance for ij(x) like | s/ - s* | at the last few steps of the
algorithm.

Another way 1o implement step (A1) hinges even stronger on the thought that it does not
pay to compute z/(x;s /) very accurately if s/ is still far from s*. We can choose a fixed
collocation grid on every subinterval and at the J ! >outer’ iteration step we perform only
a few Newton iterations on the collocation scheme to obtain y/ (i.e. without an accuracy
requirement). This way the iteration on the vector st plays a more dominant role than in
the implementation suggested before. Once convergence of s and z/;s ) on a grid has
been established, the discretization error is estimated and the grid adjusted and refined
accordingly.

A strategy for the error tolerances for zj(x;s j) and }?kf(x) can be derived from a study on
the effects of these errors on the convergence of the outer’ loop, i.e. Newton’s iteration.
The Newton update on the vector s/ will not be computed using the real Jacobian

J(s j;y(x;s f)), but only through an approximation J I Define the errors

(5.2.1a ej (= max zjx;sj - x;sj . ej (= max ¢’ ,
) Yk e [xwfmll k( 2 },k( k)l 4 KoYk
. » o i j

(5.2.16) &), = max | Pl - YisziGasy) | and  BY T TR Erac

x€ g 41
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5.2.2 Assumption
There is a constant a > 0, such that the neighbourhood

Dy :={z: [a,b] =R | z continuous on (x;,x;,1) ,ke{1,..,N}, and |z-y*| S}

of y¥(x) satisfies the following conditions
{i) y* is the only solution of (5.1.1) in Dy R
(il the upper bound Cgh on the first and second derivatives of h(x,y) with respect
to z and on the first and second (partial) derivatives of g{u,v) is of moderate size,

Z€ Dy.

5.2.3 Definition

(i) The constant K; is an upper bound on the conditioning constant of the linearization
of (5.1.2) at z(x) on [xp.x, 4] for all ze Dy.

@in The set D is defined by D == { se RV | y(x;s)eDy }.

)

To investigate the difference between the Jacobian J{s j;y(x;s f)) and its approximation J ],
we estimate the difference between Yk(x;yk(x;skf)) and its computed approximation f,.;‘(x),
neglecting rounding errors as they are negligible compared to the approximation errors.

5.2.4 Lemmma
Let s'e D and z’(x;sf)eDy. Then

» : ) S
(5:2.42) V) ey Veelgxg,y) | TR - Yy isd) | S Copy (X -1 )84 + €7y -

If the local BVP's (5.1.2) are well conditioned there is a constant C (depending on ¥, and
Cg,, ) of moderate size such that

(5.2.4b) | (7 y00sT) - 7 |, € C(e) +€))

Proof
The matrix Y’kj(x) contains errors due to
O] the error in zf(x;s j)
(ii)  discretization errors in integrating the linearized problem

The effect on the fundamental solution of the difference between y{(x;s j) and zf(x;s j) can
be estimated similarly as in the proof of theorem 2.3.9. Since Y,(x;z¢/(x;5¢)) and
Yk(x;yk(x;skf)) satisfy the same BC, their difference can be written as
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Y iz 0es ) - Yoley sy
= fx el Glx, By 0ns)) @z )) - Ly as D) Y ileszieost)) e
k

Together with | L0r;z{0x:s7)) ~LGry,0xis)) | S Cop | 2{uis]) - yeluis]) | this yields

S . ) S ,
max |Yk(x;z;:(x;sé))-Yk(x;yk(x;si))l < Con¥g (xk+1~xk)n;ax lz,i(x;s;:)-yk(x;sln .

Now (5.2.4a) follows from the fact that the discretization error mentioned under (i) is
controlled by a parameter £’y ;.

The last block row of J(s J Y(x;s j}) contains, besides the fundamental solutions
Yk(x;yk(x;sk’)), derivatives of the boundary conditions g(u.v) and one can derive that

) . )
| B (zl(xl,sl))Yi’(xl) -B (yl(xl,sl ))Yl(xl,sl)} <C hKl(xz-xl)s;,l + cgl,,{-:’y,l
+ gh(e;’ﬁa;ﬂ)icl.

Now (5.2.4b) follows immediately from this relation and (5.2.3a).
¢

A smaller value of k; reduces the influence of the discretization error el §, on the error in
the approximation of J(s Tyl s’)), as well as it may enlarge the convergence area of New-
ton’s method applied to f. From estimate (5.2.4a) we see that the choice of ey‘k per sub-
interval can be used to equidistribute the errors in the Jacobian. This can be useful if the
bound C,, is known to vary over the subintervals.

The iterates s/ result from Newton’s method; hence we have locally quadratic conver-
gence, if the Jacobian matrices are determined with sufficient accuracy. In our algorithm
the accuracy depends on &) ; and €7y .

5.2.5 Lemma

Let sfeD and z3(x; s")eD Assume there is a moderate bound, say ¥, on | J(8) |,

| J~ 1(s) | and the Llpschttz constant of J(s) on Dy. Let C be the constant of Lemma 5.2.4,
then the following estimate holds

(5.2.52)

| /) -s* | < thsj—s* 12 + CY3(£§+ei)lsf—s*l + 2Cy,Y ai + 0(e§e§r+(£§;)2).
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Proof
Application of Newton's algorithm with the approximate Jacobian J j gives

s st = st DT (s sh)
= o -8t - N0 F(y0esh) + T (90N F(y06sh) - P s 2/ esh) .
Hence
|8/ =s* | < y2[s7-s* 2+ [TNTytns)) - UD T fisT s ) |
« [N Sy s -f(s) 2 s D) |
<y?|s/-s*[?
U -6y s’)))J’l(s’,y(x N 1. | FG7y0s7) - £ (5% iy(us*)]
+ (7 +y2el +0((a,)2)2c

<ysl-st s (v+v2e§+0(<ay> ey +eDY? |8/ =57 | + 27 Cyye]]
< Y2 -5 2+ CY3(Eprel) |5 -5%| + 27 Cyel + O(E ) +(e))?).

The ptevious lemmas prove that an implementation of the UMS algorithm where zf(ns?)
and Y J(x) are computed within given accuracy at every step, is locally convergent.
Moreover, this convergence is quadratic if eventually the tolerances are decreased such
that

eyi“nz | s/ - s | andey'z | s/ - s+ |2

The other implementation where the collocation grid is kept fixed and only a few Newton
updates for z/(x;s /) are computed before computing a new s7, can give at most a linear
convergence rate. Since Y (x) is the solution of a linear BVP the error efy ¢ is fully deter-
mined by the dlscretxzanon error, i.e. by the grid choice; hence the factor EY' | s/ - 5%
is a linear term in the error estimate (5.2.5a).



§5.3 Numerical results

In the previous sections we looked at theoretical aspects of the UMS algorithm. Next we
want to investigate its performance in practice. A code has been written for first order
ODE (a higher order can be reformulated into first order, see [AsRu]) and using the exis-
ting collocation code COLNEW, cf.[AsChRu,BaAs], to solve the local BVP’s on the sub-
intervals. Since COLNEW can deal with separated BC only, the use of coupled BC increa-
ses the memory use substantially; for dummy variables have to be added to artificially
separate the BC (see example 5.1.12). Although our numerical results show some effects
to be attributed to peculiarities of COLNEW, rather than UMS, the overall results indicate
a satisfactory agreement with the analysis. Yet, to understand the actual numbers more in
detail we shall describe our implementation below.

Our UMS implementation has two precision parameters EPSS and TOLF ], Convergence
of the algorithm is established if the norm of the update 8s on the shooting vector s is less
than EPSS. The parameter TOLF / is the error tolerance for the solution of the local
BVP’s obtained by COLNEW, hence TOLF J s equivalent to t—:}, in §2. Accordingly,
TOLF/ is rather large at first (1072,1073) and is decreased thereafter. We found that the
requirement that TOLF/ =~ | 8s/ | is not always sufficient. Sometimes it occurred that

| Rs J) | < TOLF /. Since most components of f(s J) are a difference between two values
of z/(x;s /), these components may have no significant number at all, due to cancelation.
Hence the computed direction of 8s may be inaccurate. In order to prevent this, we want
TOLF to be less than or equal to a tenth of the expected value of | f(s AL |

(ie. = | fis j) |2 ). This finally leads to the following algorithm to determine TOLF

18572
T ))

. Uiy 12
(5.3.1) TOLF/*! = ax(.E_ll)g_S_ min(TOLF/, 'f(lso)' ,

Singularly perturbed BVP’s, where the position and (approximate) width of the layers can
be obtained analytically, are very well suited to show how well the UMS algorithm per-
forms. Often one can use the reduced solution (i.e. for € = 0) to obtain a very good initial
guess for the solution at small € values. It is advisable to choose the subintervals such that
each one of them contains either an entire layer or a smooth region. Then the shooting
vector s, obtained from the reduced solution, is quite accurate and none or very few
’outer’ iterations are necessary.

When transforming a higher order singularly perturbed BVP into a first order BVP, we

have to pay special attention to scaling. In some cases (e.g. example 5.3.3) the first deriva-
tive reaches values of the order of £~1. Hence we scale the derivative term as in
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{u(x) = y(x) ,

(5.3.2) v(xy = ey(x) .

The results of applying COLNEW to singularly perturbed problems, as shown in the
examples, indicate that the memory use at for € = 107*, ke {2,34,5}, is generally a multi-
ple of that for the previous €. This is due to the fact that we do not allow COLNEW to
use its grid generator, but just let it halve the grid successively until the required toleran-
ces have been obtained. In [AsChRu] this strategy is suggested for this type of problems,
because the grid generator fails to ’see’ the layers at first and produces a grid on which no
convergence can be obtained, leading to failure of the code. We tested several initial grids
for the afore-mentioned g-values and tabulated some results. An unintentional advantage
of the UMS algorithm is that the grid generator of COLNEW worked properly on subin-
tervals that contained a layer and a small part of a smooth region only.

5.3.3 Example
Consider the singularly perturbed BVP, cf.[AsMaRu]

(5.53a) €5 = y(1-9) , O<x<1,
(5.53b)  ¥0) = 05,
(5.53¢) ) =2.

The stable solution of the reduced problem is y(x) = x+1. Since it satisfies the end point
condition, there will be a boundary layer at x = 0. Transformation (5.3.2) is used to con-
vert the problem into a first order system. As we anticipate the correctness of s, we set
TOLF,, the required tolerance for the first variable u, to 1075, The tolerance for the
second variable needs special attention. Because v = € on a mayor part of the interval and
COLNEW uses the mixed convergence criterion

|l absolute errorin v | S TOLF, (1 + v ),

the variable v has only -log(e™! TOLF)) correct digits. Indeed experiments with € = 103
and TOLF, = TOLF, = 1076 vielded a highly oscillatory ’solution’. To ensure that v has
at least 3 correct digits we imposed the tolerance TOLF, = 10"3xe.

The results tabulated in Table 5.4 show that the UMS algorithm saves both memory and
function calls as compared to COLNEW. Note, however, that the typical doubling of grid
points is a COLNEW feature and is open to improvement. The subinterval choice is clear-
ly not optimal in balancing the work load for different processors. However, splitting the
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layer region into several subintervals does not pay; because then the correct value of all
shooting vectors is not known in advance and several iterations on s are needed,

UMS, epss = 1076 COLNEW, tol = 10°%

€ X memory use #-calls memory usc  #f-calls
bl ol

le-2 15e-2 5624 1538 18 7296 1932

le~3 15e-3 6080 1610 18 7296 2484

le-4 15¢-4 12160 2890 18 29184 6204

le~§ 15¢~5 24320 5510 18 58368 12540

Table 5.4



§5.4 Parallel computation

The idea for unbiased multiple shooting was derived from the fact that any proper code
for solving BVP’s should treat growing and decaying modes correctly, unlike the original
multiple shooting algorithm. The preconditioned time stepping algorithm described in
chapters 3 and 4 can not be implemented an a parallel computer straightforwardly. But, as
we indicated in the previous sections the UMS algorithm, like the original shooting, lends
itself for parallel implementation.

In this section we briefly consider some more parallelization aspects, in particular esti-
mates of the computational costs. A straightforward parallel implementation of step (Al)
of the UMS algorithm (5.1.7) consists of assigning every local BVP to a different proces-
sor. We will assume that a sufficient number of processors is availabie. Hence the k-th
processor has to apply COLNEW to the non-linear BVP on [x; ,x,,,]. This is an iterative
process, say with my iterations and suppose the local grid consists of N, points. Then the
costs for one iteration can be approximated by

forming the linearized system : O(nsz)

solving the linear system JE=—f (by SOLVEBLOCK): O(n3Nk)

computing the new solution zk(x;sg) : O(nN,)
O(°N,)

Additionally choosing new grids and estimating the discretization error involve computa-
tions, but they require only O(nV, ) operations, which is negligible compared to the costs
of one iteration. If N, is taken as the size of the largest grid used on [x; ,x;,], then the
total costs of step (Al) on N parallel processors is

O(r® max(N, m, ).

An optimal choice for the subintervals, would be one that equidistributes m, N, as much
as possible. Hence the coarse grid should be finer in areas where the solution changes
rapidly.

Step (A2) of the UMS-algorithm essentially consists of solving a linear system. In the lite-
rature several methods are mentioned to perform this in parallel. In {PaGl] a parallel algo-
rithm is presented especially for the systems arising in collocation and finite differences.
There the matrix is partitioned into smaller pieces of the same structure, thus performing
implicitly an idea similar to unbiased shooting. (However, the choice of local boundary
conditions is not addressed, nor is it clear that the algorithm renders well-conditioned local
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BVP’s.) Under the assumption that there are more processors than local subintervals, the
computational costs of the algorithm are 0(n3N).

In [AsPC] several parallel solution methods for the linear system are considered. As a
stable method, a least squares formulation is mentioned. A stable odd/even reduction and

elimination is used to solve JTJE = —-J7f in O(#° log N) time, if O(N) processors are
available.

Finally, we mention the structured QR-decomposition described in {Wr]. This method,
which is stable for well-conditioned BVP’s, partitions the system into blocks and performs
a special QR-decomposition on every block (in parallel). If there are approximately %N
processors available (i.e. even less than we assumed for step (Al) ), the algorithm takes
O(n3 log N) operations.

Let o denote the number of outer iterations on the vector s in Algorithm 5.1.7. Then paral-
lel computation requires O(n3 o (log N + max m, N, ) ) flops. Hence we see that the
costs will be minimal if N is taken rather large, with only a few ’fine’ grid points per sub-
interval.

However, we found that this strategy is not an optimal choice for some singularly pertur-
bed problems. Indeed, if the reduced solution and the position of the layers is known, it is
favourable to choose the subintervals such that they either contain an entire layer or (a
part of) a smooth region. In this case the initial guess for the vector s°, based on the redu-
ced solution, is already quite accurate, reducing the amount of outer iterations to 1 or 2.
Of course the work load of (Al) is poorly distributed over the processors (since the layers
require essentially more effort), but this is more than compensated for by the reduction of
the outer iterations. Hence it is not useful to use more processors than the number of
layers plus 1.

Conclusion

In chapter 2 we described the multiple shooting method for non-linear BVP’s. We found
that the set of equations f{s), and also the corresponding Jacobian, could be very sensitive
for changes in the starting vector s in some directions. In fact the Lipschitz constant of the
Jacobian is bounded in terms of the conditioning constant of the local problems. Due to
this sensitivity it may be difficult to solve the non-linear equation f{s) with Newton’s
method.

Based on these considerations we investigated the consequences of defining well-condi-
tioned BVP’s on the subintervals. The resulting UMS-algorithm contains two types of ite-
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rations. First there is the iterative process on the ’shooting’ vector s, analogously to the
ordinary multiple shooting algorithm. And since every update on s requires the computa-
tion of new solutions for the local BVP’s, there is a second iterative process, solving the
local non-linear BVP’s by collocation or finite differences. Note that in the UMS-aigo-
rithm both the ’global’ equation f{s) and the local BVP’s are well-conditioned problems.

The UMS-algorithm is not only a gencralization of multiple shooting, but also of colloca-
tion and finite differences. This generalization gives the possibility to make a stable paral-
lel algorithm for solving non-linear BVP’s.

In a sequential implementation the algorithm combines the potentially stable features of
global solution methods with the more modest memory use of multiple shooting.
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Appendix A

Consider the linear BVP

(A1) ¥ = Ay +qx) , a<x<bh,
) {Bay(a) +B,y(b) =B .
Let Y(x) be the fundamental solution that satisfies the dichotomy relations (1.2.1) with

017

] and constants (K,A,)). Let Z{x) be another fundamental solution
P

0
projection P = {

and let He R™ " be the invertible mawrix such that Z(x) = Y(x)H. If H is partitioned in the
same way as the projection P, then the consistency constant L of Z is defined as

2 21
(A2) L= Y @H"|
g @) H')
Now L is zero if H?! is zero. In [AsMaRu] a bound of the form
1
max 12 D < g1 LKOWKE+1 expluix-1))  , x<t,
#0 1zYnd|

was derived from the dichotomy of ¥(x). However, the limit of this upper bound for L
approaching 0, is larger than one may expect from the dichotomy of Y(x). By carefully
studying the proof a refinement of this bound can be derived.

Lemma A.3 (Improvement of [AsMaRu] 6.14)
Consider the dichotomic ODE

(A.3a) ¥ = A(x)y ,a<x<h,

00
Let Y(xy and Z(x) be fundamental solutions; Y(x) with dichotomy projection P =[ 01 j]
P!
and Z(x) = Y(x)H. Let © denote the minimum over xe|[a,b] of the angle between
range(Y l(,1\:)) and range(Y 2(x)) (note that sin(%) =2 1/ K2+1 ). Then

1
(A.3b) max 1294 < g o) L x<t,

d#0 }Zl(t)d|

2
with K = K 1+LK

\/sinzﬁ +[max(0,cos Y —LKZ)]2

Note that if L=0 then K = K .
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Proof
If H? =0, then L = 0 and the relation follows immediately from the dichotomy of Y(x)
and Z'(0d = Y'()H1d. So assume that H 2! # 0. Since Z!(x)d = Y!(0)H!d + ¥ 2()H*'4,
2 21
1Z'wd| < |Yiwr"a| - @R d]
Y HM d|

The dichotomy of ¥Y{(x) now yields

|Y’wHd| _ |Y’oH?d| [Y'@H''d]| |Y@HYd| _ 2, ,0ema-n)
[YimH"Yd|  |YXa)H?'d| |Y'@mH"d| |Y'@)Hd]

Hence an upper bound on the numerator is {Zl(x)dl < +LK2) }Y’(x)H“d | .
So far we have followed the proof given in [AsMaRu]. However, the derivation of a lower
bound on the denominator is different. We can write

ZYnyd=|Y'(H" d| (a+b) ,

1 11 2 21
Y'od''4 ., _ YHYd
Y nH"d| [YXnH" 4|

denote the angle between range(Yl(t)) and range (¥ 2(t)). Then 8(He [13,%] and

with the vectors g and b defined by a = . Let 0(0)

la+b)22 |a|>+ |b2-2]a||blcos®® = 1+ |b|*-2|b|cosb(r)
>1+|b|2-2]b|cos® = sin®® + (cos®-|b|)? .
The smallest value will be obtained if | b | = cos0(f). However, the norm of b may not
be that large, indeed
|Y2(H?' d| < Kexp(-A(t-a)) | Y@ H? d|
and |Y'(nH'"'d| 2 K 'exp(ut-a)) Y @H 4],
we see that
|b| < K2 Lexp(-(A+p)(t-a)) < K2L .
Hence
la+b|? 2 min{ sin®®+(cos®-|b|)? | 0<|b|<KL? }
= sind +[max(0,cos1?z—LK2)]2 .
From which we can now derive that
1Z'wd| 1+LK? [Yme|

I;la())( 7 & = max 1 .
204 [Gn% + [max(©,cost -LK 2y <0 1Y Oc]




Appendix B

Consider the BVP

¥y = Ay + ¢x) , a<x<b,

(B.1) {Bay(w +B,y®) = B

and assume that it has a unique solution for every PeR” and ge C({a,b] - R™. Let G(x;)
denote the Green’s function of (B.1) and let ®(x) be its fundamental solution with

B.2) B, @) +B, @) =1,.

Both in multiple shooting and global solution methods we encounter two types of matrices
of almost the same form, viz.

((®,0) Do) -
Dylx3)  -P5(x3)

(B.3a) L =
Oy (ry)  ~Pplxy)
B, ®(x)) Bb(DN(de)
and
Py(r))  ~Paxy)
Dy(x3) -P3(x3)
(B.3b) L, :- ,
Dy Gy —Dpxy)
<I)1'\3"(‘%"1\»1) -1
B,®,(x)) By

where @ ,(x) are fundamental solutions of (B.1) satisfying the condition
(B.4) Ay D x)+B, D (x,,) =1, .

Again we assume that A, and B, are such that ®(x) is uniquely determined.
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B.S Lemma
The matrices L and L, are invertible. If L1is partitioned into N 2 blocks of size nxn,
then

—A‘-G(xi,qu_l) ‘B"G(x'+l,xj+l) +B‘5"} s j?EN,

i

-1y _
(B.5a) (L )ij - { Aid)(xi) +B,‘d)(xi+l) =N,

and if L;l is partitioned into (I\l'+1)2 blocks of size nxn, then

-AzG(xi,Xhl) —BIG(XHl ,xj+1) +Blsl,j s iSN,jSN,
. ADE,) +B,D(x ) , iSN,j=N+1,
L, _ i i i i+l
(B.5b) &L, )= GOy K1) , i=N+1,j<N,
D(xy, ) . , i=j=N+l.
Proof

First we will consider the ’standard’ multiple shooting choice A, = ], and B;, = 0. Several
authors have looked at either the inverse of L, e.g. [LeOsRu], or at the inverse of L, e.g.
[dHMa85). However, a combined proof can be given.

Let the function v,(x) be the solution of

{ v, (x) = Ay, (x) +q(x) s X <X <X
vk(xk) = O .

Then the solution y(x) of (B.1) can be expressed as
yx) = @ x) 5, + v (x) forxelx, x4,
for some s,e R”, with in the L, case the additional relation
YOny1) = Sny -
Now the vectors s, have to be determined by the continuity of y(x) and the boundary
conditions, i.e. either

3
s ~v(X,)
5y -vy(xy) ! L2
L = or Lytsy.y |=| -Vl
Sn_ -y xp)
N-1 N-1WYN Sy -vN(xN 1)
+
SN B -ByvnGiy,y) s B
N+1

Here we see that L contains the same equations as L, (only the variable sy, ; has already
been solved). From

¥®) = @@ + [ Grnq@d:

(see §1.1) we obtain the inverse of L, immediately :
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sp = ¥ = B&OP + Z f»“‘ Glx, ) qlo) dt

1=1

= DB + ): Glxex;,) f 10,0, )0 (gt

N

= O(x)B +E G(xk,xﬁl)v (x; +1) .
Jj=1

For L™ the last term of the sum has to be rewritten as :

Gy Xy VNG = ~ B By @ 0y, )P iy, Dy, = - PGB, vy(ay,)) -
Now consider any other set of local boundary conditions and denote the related fundamen-
tal solutions with @, (x) and the equivalent of (B.3) with L and L, respectively. Let
He R™ be such that

&0 = O H,,
then Hy = [A,®(x;) + B,®,(x,,)17! = [A; + By, )17
Hence L = Ldiag(H,,H,,...Hy) and L, = L diag(H ,H,,...Hy.1,) .
Since one can show that @ (x;, ) P(x;) = ®(x, ;) forall ke {1,.., N}, the relations
for i # j follow straightforwardly. If j = i, then
H Gk, X, = AGKx;,) - B®(x;, ) BX)B, DGy, DO (x;,)

= A;Glx;,x;,) - B@(x, ). (I, - B, @)D\ (x, )
= A;G(;.x;,) +B,GO %) - B;

B.6 Corollary
If the local boundary conditions (B.4) satisfy the assumption (1.1.16), i.e. if for all k, the
matrices ( Ay | B, ) has orthonormal rows, then

(B.6a) L7, < Vn 2Nk, + 1),

(B.6b) L. < n (2N +2)%g,+ 1)
with X, the conditioning constant of the BVP (B.1).
Proof

Recall that the conditioning constant was defined in chapter 1 with respect to the Eucli-
dian norm. Now the results of lemma B.5 yield
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N-1
|L"1 |oc Sn’iax { E IA[G(xl,xd)+B‘G(x”1,xﬂl)—3‘8i’1 ioc+ ‘A,@(xx)'i-B{q)(le) ’m}

j=1

N-1
j=1

< n (2Nxg, +1).

For L +'1 a similar estimate can be made.
¢



Appendix C : Logarithmic norm

Let AeR™ " and let | . | denote any vector norm. The logarithmic norm is defined by
[I,+hA| -1
(C.1 H[A] := —

The logarithmic norm depends on the vector norm used.
Define p(A) = max{ Re(A) | A eigenvalue of A }.
The logarithmic norm has the following properties, see e.g. [St,Dah,DeHa]

C.2 Properties
(@ -|A| < -p[-A] € ~p(-A) < p{A) s u[A] £ |A].

&) pleAl
(¢) ulA+zI,] = pulA] +Re(z) , zeC.

cplA] , ¢c20.

(d) max(u[A]-u[-B], u[B]-ul-A}) < plA +B] < p{A]+u[B] .
(e) convexity : e[o T wlcA +(1-¢)B] < cula] + (1-o)ulB] .
() continuity : |P[A]-p[B] | < max(|p[A-B]|,|uB-A]]) < |A-B] .

(g) greatest lower bound . min j_AE.l 2 max(-pu[-A], -p[A]);
£20 ||

hence if A is non-singular, then 2 max{ -u[-A], -u{A]) .

|a™!

For some Holder norms an explicit expression of the logarithmic norm can be derived. Let
up[ . ] denote the logarithmic norm with respect to the p-Holdernorm.

C.3 Relations
(@ wlAl = m@x(Ajj+E }Aiji).
j Lt

t#}

®) wlAl = pax f;: = p(LA+ATY).

© WAl = max(Ay + Y [Ay]). .

J#i
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Of some special interest are matrices, whose diagonal blocks are -/, (i.e. their logarithmic
norm can easily be seen to be -1) and have small off-diagonal blocks. In order to estimate
their logarithmic norm a theorem from [St] can be used (cf. chapter 4).

Let the space R™ be written as the Cartesian product of lower dimensional spaces, i.e.

x N
Viemm : X=| i |, where xieRm" and Yy m;=m.
Xy i=1
Furthermore let | . |; denote a monotonic norm on R™ and | . |, 2 norm on RY. Let ;
be the logarithmic norm based on | . |;. Partition any matrix AeR™ "™ into N? blocks A4
. Ax|:
with A€ R™™™. Let [Aj;];j = sup [43% . Finally let a2 norm on R™ be defined by
Ij#o ’x] i}
1% 15
Vxelm : !Xi o= i g()
BN

and let u be the related logarithmic norm.

C.4 Theorem [St]
Let AcR™™. Let Be RV be defined by

HilAn] (Al |An i

[A21 121 HalAn] [Ax s | Aoy lon
(C.4a) B =

[AnyIve w [AyanIn-an BalAgy] )
Then
(C.4b) max (W {4;,]) < RIA] < polB].

1

.

for all matrix blocks.

im

In practice we use either the Euclidian norm or | .



129 Appendix C

C.5 Lemma
Let V, JeR™, with V non-singular and p,[J] < 0. Then
(C.5a) WIVTIV] < w71 |V 52 .
Proof
VIV = <VTIVE.E> - <]V§,V%’;>‘<VE_,,V§>
ol ! rx;r;a(;c <§,&E> E;I:ea(;( <VE,VE> <EE>

_ <VE,V.E>) _ . <VE,VE>
g [“2” %5 } S

112
= w1 |V .




Appendix D : Convergence domain of Newton’s method

In this thesis we often refer to convergence results for Newton’s method from the Newton-
Kantorovich theorem and from its affine invariant version. A precise formulation of these
theorems is given below.

Let feCY{(D — R™), with D < R™, and let J(x) denote the first derivative of f(x). For any
starting vector 1P R™ the Newton iteration is defined by

(D.1) PIALIP xf-.f'l(xj)f(xj) ,i20.

For any xeR™ and r > 0, let B(x;r) denote the ball { yeR™ | | x~y | < r ) and let B(x;r)
denote its closure. A major convergence result is proven in [Ka] and a different proof is
presented in {OrRh].

D.2 Theorem (Newton-Kantorovich)
Assume that there is a convex set Dy < D such that

(D.22) Veyen, | O-JO)] €7 [x-y] .
Suppose there exists an e Dy such that
(D.2b) 7769 <B , O < and o= Byn <05
Define
(D.2c) t* = I‘W ,oprre Lvic2e "W
v Y

and assume that E(xogt*)c Dy. Then the Newton iterates {x Y are well-defined, remain in
B(GYr*) and converge to a solution x* of f(x) = 0, which is unique in

(B(xo;t**) N Dy) U B(xo;t*). Moreover, one has the error estimate

Qoy”’

(D.2d) |x/-x*| <
By2’/

, j20.
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In [DeHe] an affine invariant version of this theorem is presented.

D.3 Theorem (affine invariant convergence theorem)
Assume that there is a convex set DOc: D and a starting vector e Dy, with ﬂxﬂ) invertible
and that there are constants 1,0 > 0 such that

33 | FaY] <1 ,
D3b) Y, ,ep, : ITCHUO T S0 ly-x],

D3¢y a:=1mno <05

and

®3d) BaOt*)eD, with t* = 17V1-28
[1}]

Then Jtx) is invertible for all xeB(xO;z*) and the Newton iterates remain in B(xo;t*) and
converge to a solution x* of f(x) = 0. This solution is unique in
B(xo;t*) U Dy N B(xo;:**)), where

:¢¢ - 1+v1“2h
W

Moreover, the following error estimates hold for j 2 1 ;

. N g o2

(D.3¢) |x/-x*| = yl-20 _© xt-x% L a<lt,
“  1-.e” 2
(D.3) [xf-x*| <29 |x!-x0| , a:..lz_ ,
*
with © = L. _ll___ .
** (1+fT-2a)?
.

Since the conditions of theorem D.2 imply those of D.3 with @ = By, the error bounds
(D.3e) and (D.3f) supplement those of theorem D.2.
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Appendix E : Convergence of the mixed Euler method
Consider the ODE

E1) {;t(z) = M(x(5)fOD) , >0, xeCl([0,09 >R™),

x(0) = x0.

The mixed Euler method for this ODE reads

(E2) = e mMEDfEY >0,

Next we show that the mixed Euler method is a convergent integration method.

E.3 Lemma

Let D < R” be such that fe CH(D — R™) and Me C{(D — R™™). Let X% D and assume that

the solution x(t) of (E.1) lies in D. Let T > 0. The class of sequence pairs S(h) is for all
h > 0 defined by

(E.3a) S(h) 1= {sequence pairs ({hj},{xj }) satisfying (E.2) |

’ Kb -1
} o
Then
(E.3b) lim max ( |x(7) P () i pesm) = 0.
Proof

Let A >0 and ({hj},{x j})e S(h). From (E.2) and the definition of discretization error we
get

hi8(tjx, k) = x(t;,) -x(t)) - MO E)) fx(1,0)
0 = x/* —x/-h MG f*Y)
Hence, by subtraction,
x@,) -2 = 2@ -xl v RS (,x, k) + RMEE) Fx(, ) -F/* D]
+ BiIMG () - MDD F) .

Define ¢; := | x(tj) -x/ |,Jj20. Now let CpCapCy be upper bounds on D on the norms
of flx), M(x), f’(x), respectively, and let L), be a bound on the Lipschitz constant of M(x)
on D. If h < (CC,)7}, then
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= ej+l < _#_

ej+1
(A +hLyCpe;+ | 8GIR) ).

, . 1 2~hC
For notational convenience we define C = max(L ,C , = . InZ
EnCruCp B = 1"
| o= k({kj})—l. Some simple calculus shows that
1+hiLMCf < 1+h,C < eBCh‘

v, : < < !
O<hi<h * ThC,C,  1-hC

Now the error in the approximation of x(T) can be estimated by

f +h,C)
g(:} |8(): }z)[(1+hC)gm
BCG-x)

< max |8 k)l(1+hC)): hie
i=0

< ‘!‘g;‘ 18G4,k | (1+hC)T PCT

-0 ,if rlo.



Appendix F : Boundedness of the Riccati-matrices of the preconditioning process

Consider the well-conditioned BVP with separated BC

(F.1a) ¥ = A y(x) ,a<x<h,
(F.1b) B,y(@ + Byyb) = B,

In-
with B, = [B(;JIP and B, = [BglJ P

Let Y(x) be the fundamental solution that satisfies

(F.2) B,Y(a) +B,Y(b) = 1, .

Then the Green’s function G(x,f) can be expressed in terms of Y(x) by
[ YPY ) , X2t

3 ) = { YU ,-P)Y ', x<t,

S
wit! V= .
01,

Let x;, denote the conditioning constant of (F.1).

We want to derive an upper bound on the Riccati matrices and the boundary conditions
formed in the process to obtain a preconditioner in chapter 4. For the precise formulation
of the algorithm we refer to §4.1, here we only mention the relevant relations.

The matrices O, e R™", ke (1,2, . . , N+1} are orthogonal and the matrices R, e R(PI*p,
The following relations hold

0 0
F.4 B = ,
( ) an 0 BEIZ)
B, C
(F.5) ¥( Y-l = kT (n-p)x(n-p) p xp
. Xk+1) xk)Qk‘Qk,.] 0 Ek » BkeR ,Eke]R s

ke(l,..,N},

O L@
B," By
0

(F.6) ByOn,1 = i
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-1
(E.7) Ryu = (Bil)) B2,
(F.8) BRR,-Cp-Ri E, =0 ,k=NN-1,.,1,
I, R,
(F.9) S, =| 7 ke{1,..,N},
0o 1,
-1 -1 Bk 0 T
(F.lO) Y(xk+1)y (.xk) = Qk“’lsk*l 0 E Ska 3 kE{l,..,N}.
k
F.11 Lemma
(i) iRkazs Kll’l ,kG{l,..,N+1},

-1 -1
.- [v3) 1)
(i) I(Ba ) ’2 < Kiin and I(Bf(y ) 12 < L7

iy [BPl, <1 and BV s1.

Proof :
Define the nxn matrices W, , ke {1, . . N+1}, by

-1
-1 -1 (D
B;'B.l..By (Bb ) 0
(F.11a) W, = .
0 E, .E, ,..E (3{2})-
k=-1"k=2*1\"q

First we prove that Y(x; } = @, Sk‘IWk . To this end we define the matrices
A, =Y(x, H)Y‘l(xk ); they induce the following difference equation

* yk"'l =Akyk ,k=1,..,N,

* :
By1+BpYN.a =Y -

Now both (¥(x, )} and { @, Sk'IWk } are fundamental solutions of (¥) and they satisfy
the same boundary condition, viz.

B, Y(x,) + B, Yy,,) = 1, ,
-1 -1
B,0\S, Wy +B,OnaSyaWha =1,
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Hence both fundamental solution have to be identical, i.e.

-1
Yee(1,..Ne1) ¢ YOqp) = QS W,

Now the first two statements can easily be proven :

® Kin 2 |[YGOPY ') | = |S; WiPW,' S, |,
s -1
= |S;'PS,), = I 2[R, -
k k2 2 k12
0 !p
0 0
@ Kk 0Pl - 8o
a
-1
0 -Rl(Bf)) !
= | 0 |22[(Ba) l2 -
o (s2)

and Kiin

v

(s o
Yy, | 2 [YOpu, DU, -P)ly = | On Syl ¥ 2
0

l2

]
———
Ly
e
e
o
AR
]
[
f
———
o
o~
=
S’
———
L
[

Finally, (iii) can be derived from the assumption that (B, | B, ) has orthonormal rows :

2)
1B |, = |B,0 |, =1,
1 L
1 B,’ B
1B, = 1|77 TP |U,-P) |y = | ByQuaUa-P) [ S 1.
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Let the matrices O, be partitioned according to
O = (Q,11C9,2)-
x4 x4

n-p p

F.12 Lemma
)] Vv, @ range(Y(x,)(I,-P)) = range(Qk'l) .
(i) vV, ¢ range(Y(xp)P) = range(Qk,z— Qk,le) = range(Qk'1+ Qk,zR;)J“ .

Proof
In the proof of lemma F.11 it was derived that Y(x; ) = O, Sk‘IWk , with W, as in (F.11a).
(#) Since W, is non-singular and has a zero left lower block :

-1
Vk : range (Y(x,)(I,-P)) = range(QkSk (I,-P)) = range(Qkyl) .
(if) The matrix product @, S k'l can be written in the form :

0,55 = (O, 11Qk,2-Cx,1Rx) -

Since the matrix W, is non-singular and has a zero right upper block :

Vk : range(Y(xk)P) = range(QkSk'IP) = range(Qk’z—Qk’le).

The second part of the statement uses the orthonormality of the matrices O, . The relation
(O 1 +ReQ2) (D~ Qi1 Ry) = 0-Ry+Ry=0 = 0

implies that range(Qkyz—Qk,le) is a subspace of ker(Q,:-1 +RkQ,:2) . Both spaces
have to be equal, because they have the same dimension. Hence

Ve 1 orange(Q ,-Qp Ry = range(Qk,1+Qk'2R,:)J“ .
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Abbreviations

BC = boundary conditions

BVP = boundary value problem
IVP = intial value problem

ODE = ordinary differential equation
PDE = partial differential equation
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Samenvatting

In dit proefschrift wordt de meervoudige schietmethode voor niet-lineaire tweepunts rand-
waardeproblemen bestudeerd en worden twee varianten op deze methode beschreven-en
geanalyseerd.

Het randwaardeprobleem (RWP)

(S.1a) ) = h(xy) ,a<x<b,y:[ab] >R en h: [ab]xR"—R",
(S.1b) g(@yd) = 0 , 8 R*'xR"»R",

heet goed geconditioneerd rond de geisoleerde oplossing y*(x), als kleine veranderingen’ in
de functies 4 en/of g, slechts een kleine verandering teweeg brengen in de oplossing (dit
wordt nauwkeuriger omschreven in §1.4). Het karakter van dit probleem laat toe dat zijn
linearisatie rond y*(x) zowel sterk stijgende als sterk dalende oplossingscomponenten
bevat,

Voor de meervoudige schietmethode wordt het interval [a.b] opgedeeld in N deelinterval-
len [xg x; .11, ke {1, .., N}, waarbij

a=x <X)<.. <Xy, =b
en wordt op ieder deelinterval een beginwaarde probleem geformuleerd

(S.2a) Fx) = A(x.y) s Xp <X <X,
(S.2b) yxp) = 5 , SR,

De schietvectoren s, moeten worden opgelost uit de voorwaarde dat de lokale oplossingen
tezamen een continue functie op [a,b] vormen die voldoet aan de globale randvoorwaarde
(S.1b). Dit kan symbolisch worden weergegeven met de vergelijking

(8.3) f =0,

met s = (s;",..,5y)" eR™.

Indien de linearisatie van (8.1) sterk stijgende oplossingscomponenten bevat, is f{s) zeer
gevoelig voor veranderingen van s in sommige richtingen. De oorzaak hiervan is gelegen
in het feit dat de lokale beginvoorwaarden (5.2b) niet in staat zijn de sterk groeiende com-
ponenten te controleren, met andere woorden (8.2) is een slecht geconditioneerd probleem.
Dit heeft onder meer tot gevolg dat de norm en de Lipschitz-constante van de Jacobiaan
J(s) van f groot zijn, hetgeen de grootte van het convergentiegebied van Newton’s metho-
de negatief kan beinvloeden.
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Een alternatieve oplossingsmethode voor (S.3) is het inbedden van f{s) in een geprecondi-
tioneerd beginwaardeprobleem.

(S.4a) 9 _ MEfes) >0,
dt

(S.4b) s©) = s° , PeR™,

Iedere oplossing van (8.3) is een ’steady state’ van (S.4). In dit proefschrift wordt een
goedkope impliciete integratiec methode voor (S.4) beschreven en worden enkele eigen-
schappen van deze methode afgeleid. De preconditioneerder M(s) wordt zo gekozen dat
deze de stijgende en dalende oplossingscomponenten van elkaar scheidt en bovendien de
stijgende componenten per deelinterval effectief terugwaarts gebruikt. Dit geeft een stelsel
(S8.4) dat asymptotisch stabiel is rond de oplossing van (S.3).

Een andere opiosmethode voor (S.1) is een variant van meervoudig schieten die op ieder
deelinterval, in plaats van een beginwaardeprobleem, een randwaardeprobleem definieert :

(8.5a) y(x) = h(x.y) » Xp<X<Xp,:
(S.5b) Ay(xy) +By(x,) = 5, , SR,

Dit biedt de mogelijkheid ook de stijgende componenten te beheersen en lokaal goed
geconditioneerde problemen te defini€ren. In dat geval zal (S.3) een goed geconditioneerd
probleem zijn en mogen we verwachten dat deze oplosbaar is met behulp van Newton’s
methode. Lokaal hebben we nu echter wederom niet-lineaire tweepunts randwaardeproble-
men, zij het dat deze ieder van kleinere omvang zijn. Deze lokale problemen kunnen dan
opgelost worden met bijvoorbeeld collocatie of eindige differenties. Bij een sequenti€le
implementatie leidt dit tot een geringer geheugen gebruik dan toepassing van collocatie of
eindige differenties op het oorspronkelijke probleem (S.1). Daarnaast leent deze aanpak
zich uitstekend voor parallellisatie.
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Stellinge —
gen mevr, - ME. k{*’W _
(z5.2.92,724&)

-1-

Oplosmethoden  voor tweepunts randwaardeproblemen moeten bij voorkeur rekening
houden met de dichotomie-structuur van het probleem.

2.

Zij fis) = 0 de verzameling van vergelijkingen die resulieert bij toepassing van de meer-
voudige schietmethode op een niet-lineair randwaardeprobleem. Dan kan de Lipschitz-
constante van de Jacobiaan van fs) van dexelfde orde van grootte zijn, als de conditie
constanten van de hsginWamdepmhiemcn op de deelintervallen, die gebruikt worden in het
schietproces. )

- 3.

Zij feC'R" — R™ met nulpunt x* en zi} {x*) een rij iteranden verkregen door toepassing
van impliciete Euler methode met stapgrootien {4} op de differentiaal vergelijking

¥ = f{x) .
Indien er een bol B(x*:R) is zodat Le B(x*:R) en
Jix) heelt een negatieve ecnzijdige Lipschitz-constante,
of £ (x) heelt een negatieve logaritmische norm,
zeg -O, op B(x*,R}, dan geldt dat

- 1 2% .y, lxk-l'x"%
Y, Coxte Bt bl -ty 2 Y.
ke P XeBl 2(1“&::{){’7€ ) 201+ by )

4.

Laat | . | gen semi-norm zijn op de ruimte van axa mairices, die voldeet aan
E
Voem®*n YN ¢ 13*1 < |B|F.
Indien 1 28 ~'1 1 £ 1, dan geldt

View : |U,-B)BX[s27%| * g |2

1 nk
E-Efc}



-5-

Het begrip numerieke range {voor definitic zie [1]} is nist geschikt om het begrip hernmiti-
sche operator uit te breiden naar Banachruimten,

[ F.F. Bonsall, J, Duncan, Numerical ranges of operators on normed spaces and ele-
ments of normed algebras. London ; Cambndge university press, 1971,

- 6-
De door Kramer ef.al. [2] op theoretische gronden voorspelde analogie in her karakter van
structurele fascovergangen in silicas, kan met de methode van Tezuki et.al. [3] experimen-
teel getest wonden.
2] :.J. Kramer, B.W H. van Beest & R.A. van Santen, Nature 351, §36 (1991}
3 Y. Tezuki, $. Shin & M. Ishigame, Phys.Rev.Lett. 66, 2356 (1991).

.
Het feit dat de programmeertaal FORTRAN veel vrijheid biedt, leidt er vaak toe dat
fouten in de programmatusr niet of in een Taat stadium worden ontdekt.

8-
De hedendaagse architectuur Iijkt vooral met zichzelf in discussie te treden en niet met de
maatschappij.

-G

Het heeft er de schijn van dat het merendeel van de mannen de gevoelswaarde van de
term “vrouwonvriendelifk’ niet kent.






