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Preface 

In this thesis we study solution methods for well-conditioned boundary value problems 
(BVP's) of the fonn 

(P.la) 

(P.lb) 

y(x) = h(x,y) 

g(y(a),y(b)) = 0 

, a<x<b, y: [a,b] ~Rn and h: [a,b]xRn~Rn, 

, g: RnxRn~an. 

Let y*(x) denote an isolated solution of (P.l). The BVP is considered to be well-conditio­
ned at y*(x), if smal! changes in the functions h and g induce a small change in the solu­
tion only. A more precise definition is given in chapter 1. An important property of a 
well-conditioned BVP's is that its linearization at y*(x) is dichotomie, i.e. the solution 
space of the linearization can be split into a subspace of non-decaying modes and one of 
non-growing modes and the angle between both subspaces is bounded away from zero. 
Moreover, weU-conditioning implies that both solution modes are well controlled by the 
boundary conditions (BC). In particular, if the boundary conditions are separated (see 
§ 1.1 ), the growing modes are controlled at the end point x = b and the decaying modes at 
the initia! point x a. 

A well-known solution method for BVP's is multiple shooting. For this method the inter­

val [a,b] is split into N subintervals [xk, xk+l], with 

(P.2) a x1 <x2 < ... <xN+l = b 

and on every subinterval, an initial value problem (IVP) is defined : 

(P.3a) 

(P.3b) 

y(x) = h(x,y) 

y(xk) = sk 

, xk<x<xk+l ' 

'ske.H.n . 

The shooting veetors sk have to be detennined such that the solutions of the local IVP's 

fonn a continuous function on [a,b] that satisfies the global BC (P.lb). The vector of these 

nN non-Iinear equations will be denoted by f(s) = 0, where sT = (s~ ,s; , ... ,s;) and 

f: anN ~ RnN. 

The local IVP's (P.3) will not be well-conditioned if the ODE (P.la) contains exponential­
ly growing modes (indeed, there are no end-point conditions to control them). This may 
cause some problems, like error amplification, non-existence of the local solutions and 
high sensitivity of f(s) for changes of s in some directions. Generally one tries to reduce 
these problems by choosing smal! subintervals, thus diminishing the effect of the exponen­
tially growing modes. In particular for non-linear BVP's the high sensitivity of j(s) is 
important, because most non-linear solvers, including Newton's method and its variants, 
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are not really equipped to handle this. 

These features of the multiple shooting metbod have been the starting point for the re­

search presented in this thesis. We will describe two solution methods, based on multiple 

shooting, that do more justice to both the growing and decaying solution modes of the 

BVP. The fust method, (preconditioned) time stepping, is an alternative solver for 
f(s) = 0; the second method, unbiased multiple shooting, tackles the problem at an earlier 

stage in defining BVP's locally insteadof IVP's. 

The first method is based on the time stepping idea, i.e. /(s) is embedded in an IVP 

(P.4a) 

(P.4b) 

ds = M(s)f(s) 
dt 

s(O) = s0 

, t>O, 

where the preconditioner M(s) : :e.nN ~ :e.nNxnN is such that the requested zero s* of f(s) is 

a stabie steady state of (P.4); i.e. it can be reached by integration of the IVP through time. 

An important point is to find a suitable preconditioner. Hereto we construct a transforma­

tion that fully decouples the growing and decaying modes of the discretization of the li­

nearized BVP. The preconditioner we construct applies these transformations and inverts 

the increment of the growing modes, thus reversing the integration direction for those 

modes. 

Another point of research conceming the time stepping method to solve f(s), is the inte­

gration metbod for (P.4). The metbod does not necessarily have to give a good approxima­

tion of the solution s(t) of (P.4); we only want to reach the limiting state as quickly as 

possible, i.e. take larger steps. Since for most explicit integration methods, stability impo­
ses a bound on the step size, we like to use an impHeit method. On the other hand the pre­

conditioner can be obtained, only after the Jacobian J(s) of f(s) is computed. Since compu­

tation of M(s) is (relatively) expensive, we would prefer to use a metbod that is not impli­

cit in M(s). We found a compromise between these two requirements in following method: 

(P.S) 'j~O' 

with hj the step size. This method, named mixed Euler, is explicit in M(s), thus reduci.ng 

the computational costs, and implicit in /(s), thus allowing for larger time steps once s 1 is 

close to the stationary point, as we will show in chapter 3. This integration metbod to find 

the solution of the non-linear equation f(s) = 0, requires at every step the solution of the 

non-linear equation (P.S). However, these equations can be solved by Newton's metbod 
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for sufficiently small hj, if s j is far from the stationary point s*, and for all hj• once s j is 
sufficiently close to s*, lf the preconditioner is chosen equal to -F1(s), then the IVP 
(P.4) can be considered as the ciosure of Newton's method. Indeed, integration with the 
explicit Euler method and step size 1, yields Newton's iteration. And integration of (P.4) 
with mixed Euler converges to Newton's metbod if the step size approaches infinity. 

The second method to improve the performance of multiple shooting on non-linear BVP's, 

allows for the character of growing modes before discretization. This leads us to consider 
the use of boundary conditions on the subintervals, i.e. try to solve on every subinterval a 
BVP: 

(P.6a) 

(P.6b) 

y(x) = h(x,y) 

A.c:YCx.c:) +B.c:y(xk+l) = S.t 

'Xk <X<Xk+l ' 

, S,tERn. 

If the local BC are such that (P.6) is well-conditioned for every ke ( 1, .. , N), the resulting 
set of non-linear equations for s, i.e. f(s), will not be overly sensitive for changes in s in 
any direction. In fact both the Jacobian of f(s) and the Lipschitz constant of the Jacobian 
can be bounded in terms of the conditioning constant of the local BVP's (P.6). Hence we 
expect Newton's method to perform satisfactorily. However, on every subinterval we have 
to solve again a non-linear boundary value problem (which is our original problem). 
Nevertheless, an implementation of this idea, using collocation or finite differences for the 
local BVP's, yields a stabie algorithm for non-linear BVP's, that can easily be implemen­
led on a parallel computer. Moreover, in a sequentia} setting the memory use of this algo­
rithm will be considerably less than for collocation or finite differences on the entire inter­
val [a,b]. 

The structure of the thesis is as follows. In chapter 1 we review the conditioning of both 
linear and non-linear BVP's and the relation between conditioning, dichotomy and boun­

dary conditions. In chapter 2 we briefly describe existing solution methods for BVP's and 
derive an estimate for the Lipschitz constant of the Jacobian of f(s). The two subsequent 
chapters deal with preconditioned time stepping. Convergence and implementation of the 
mixed Euler integration method are described in chapter 3. The formulation and properties 
of the preconditioner are the subject of chapter 4. Finally, chapter 5 considers the generali­
zation (P.6) of multiple shooting. 



1 Conditioning and dichotomy of boundary value problems 

This thesis deals with numerical salution methods for non-linear boundary value problems 
(BVP's). Since these methods always introduce errors (e.g. rounding, discretization), it is 
important to be able to assess the influence of small perturbations on the salution of the 
problem. Therefore we dedicate this first chapter to the description of the conditioning of 
BVP's. 

Over the past decade the conditioning of linear BVP's bas been studied by many authors, 
see e.g. [Ma82,dHMa85,dHMa87]. Especially the link between weU-conditioning, the 
boundary conditions (BC) and dichotomy, i.e. the splitting of the salution space into non­
increasing and non-decreasing modes, bas tumed out to be a very useful tooi in understan­
ding the nature of BVP's and in the development of salution methods. In the first three 
sections we will state the commonly used definitions of well conditioning of linear BVP's 
and of dichotomy. Additionally we give an account of some relevant relations between 
these concepts and the influence of slight perturbations of the BVP on conditioning and 
dichotomy. 

The conditioning of non-linear BVP's bas not received much attention in literature thus 
far. In §4 we will give a definition of weli-conditioning of non-linear BVP's that slightly 
differs from the one given in [Ma89] and investigate the link between conditioning of a 
non-linear BVP and its linearization. 



§ l.l Conditioning of linear BVP's 

Consider the linear boundary value problem 

(l.l.la) 
(l.l.lb) 

fly = q , yeC 1([a,b] --tlln) , 

'JJy = ~ ' 

with qe C([a,b] ---+ Jln) and ~e Jln, where the operators g: C1([a,b]--+Jln) ---+ C([a,b ]--+llln) and 

'B: C([a,b] ---+ Jln) ---+ Jln are defined by 

(l.l.lc) (fly)(x) : y(x) - A(x)y(x) 

and 

(l.l.ld) 

A well-known concept regarding linear ordinary differential equations (ODE's) with initia! 

conditions only, is the fundamental solution, i.e. a matrix function <Pe C1([a,b] ---+ lllnxn) that 

satisfies 

(1.1.2) IÎ>(x) = A(x) <P(x) , a<x<b 

and has n independent columns at every xe [a,b ]. The existence of such a matrix is based 

on the fact that if we start out at x = a in n independent directions and integrate the ODE 

(l.l.la) with q = 0, the solutions will remain independent (see e.g. [Be53]). The funda­

mental solution is not uniquely determined; the matrix function <PH is also a fundamental 
solution, for any non-singular HeJlnxn. 

Any solution of (1.1.1) can be expressed in termsof a fundamental solution <P by 

(1.1.3) 

where the vectorcis determined by the boundary conditions, viz. 

(1.1.4) 

Hence we see that ( 1.1.1) has a unique solution for every ~ and q iff 'JJ <P is non-singular. 

In this thesis we assume that (l.l.la) has a fundamental solution <P such that this is true 

(in which case this property holds for all fundamental solutions). Consequently this 

property holds for all fundamental solutions of (l.l.la) and we assume without loss of 

generality that <P is scaled such that 

(1.1.5) 

2 
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with In the nxn identity matrix. Consequently rank( (Ba I Bb)) = n and 

rank(Ba) + rank(Bb) ~ n. 

§1.1 

The relation (1.1.3) gives an expression of the solution of the linear BVP (1.1.1) in terms 
of the fundamental solution, the inhomogeneity q and the boundary value ~. However, this 
form is not suitable for analyzing the conditioning of the BVP, because, as we see from 

(1.1.4), the vector c depends on both ~ and q. If the formula (1.1.4) is substituted into 
(1.1.3) we obtain the Green'sfimction 

(1.1.6) G(x,t) { 
<l>(x)Ba<l>(a)<l>-1(t) 

- <l>(x)B b <l>(b) <1> - 1(t) 

and the solution of (1.1.1) now reads 

(1.1.7) y(x) <l>(x)~ + fabG(x,t)q(t)dt. 

, t~X, 

, t>x 

The form of the Green's function for BVP is in fact a generalization of the one for initial 
value problems, where Bb = 0 and Ba<l>(a) =In. 

The representation (1.1.7) for y(x) can now be used to estimate the influence of the 
boundary value and the inhomogeneity on y(x). But frrst we have to introduce some 
notational conventions concerning norms. 

1.1.8 Notation 
The single lines I . I P denote the p-Hölder norm of a vector or a matrix, i.e. 

p· r (1.1.8a) 'VxERn 
L lxjiP , 1~p<oo, 

lxlp:= j"l 

m~x lxj I p 00 

J 

and 

(1.1.8b) 'çiAERn 
IAxlp IA lp:= max--. 

.1'1"0 I x lp 

The double lines 11 • llr, P wil/ denote the r-Hölder tunetion norm with respect to the p­
vector norm, i.e. withf eLr([a,b] ~ Rn) or f eLr([a,b] ~ Rnxn) 
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, l:Sr<oo, 
(1.1.8c) 11/llr,p := 

, r "" . 

• 
The somewhat unusual choice of vector norm notation is due to the fact that we want to 
distinguish explicitly between function and vector norms. In this thesis we generally use 
the Euclidian vector norm; therefore the subscript p will be omitted if p = 2. 

1.1.9 Detinition 
The conditioning constant Klin of the BVP (1.1.1) is max(K1,K2), where 

(1.1.9a) 

(1.1.9b) 

• 
He nee 

(1.1.10) 

!Cl = 11 <P lloo • 
~ = max I G(x,t) I . 

a~x.t~b 

Often one refers to a condition number as a quantity that measures the maximum ratio of 
the relative error due to relative perturbations; hence it is invariant under sealing (cf. the 
condition number of a matrix). Here, we use the terminology conditioning constant on 

purpose (cf. [AsMaRu]) as it refers to absolute errors instead. So the conditioning constant 
is uniquely defined only, if the sealing of the problem is standardized. 
By default we will use the natural sealing of the ODE-part as given in (l.l.la), where all 
the derivatives have coefficient 1, unless stated differently; this might for instanee occur 
for singularly perturbed problems where a more desirabie sealing is instead 

(1.1.11) (~)(x) := E)'(x) - A(x)y(x) , a<x<b. 

The sealing of the BC requires somewhat more care. As was pointed out in [dHMa85, 
AsMaRu] the straightforward sealing 

(1.1.12) 

may lead to a rather unbalanced situation, like 

(1.1.13) B = B = [1 0 l [1 0 l 
a 0 w-6 ' b 0 w-5 . 
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A more satisfactory sealing is obtained if we consider both matrices together. Consider the 
QR -factorization 

BT 
(B :) = QR ' 

b 

(1.1.14) 

with QeR2nxn orthogonal and ReRnxn upper triangular. Then (l.l.lb) reads 

(1.1.15) RTQT(y(a)) = ~ 
y(b) 

and balanced BC emerge if the equation is premultiplied by (RT)-1. Note that R must be 
invertible if we require the BVP to have a solution for every vector ~ R11

• Hence we make 
the following assumption. 

1.1.16 Assumption 
The matrix (Ba I B b) has orthonormal rows . 

• 
Boundary conditions that satisfy this assumption can be written in a special form, see e.g. 
[dHMa85, AsMaRu]. 

1.1.17 Lemma 
There are orthogonal matrices Q1,Q2,Ve Rnxn and non-negative diagonal matrices 

::E1,:Eze Rnxn such that 

(1.1.17a) 

Moreover 

(Ll.17b) 

• 
Due to this decomposition of the matrices Ba and Bb, it is meaningful to review the notion 
of separated boundary conditions. Generally the BC are called separated if some, say r, 

conditions only involve y(a) and the remaining (n-r) only involve y(b). However, consider 
the BC 

[
cosa o] [-sina o] x 

Ba= . ; Bb= , aeR\{-klkeJ~Jou-J~Jo}. 
sma 0 cosa 0 2 

They appear to be non-separated, but the decomposition (l.L17a) reads 
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B = [~sa -sina]·[I 0]·[1 0] ; B = [cosa -sina]·[o o]·[o 1]. 
a sma cosa 0 0 0 1 b sina cosa 0 I 1 0 

Hence premultiplication of the equation Ba y(a) + Bb y(b) = ~ by VT yields separated BC 
and we give the following definition of separated and partially separated boundary condi­

tions. 

1.1.18 Definition 
The boundary conditions are called separated ifrank(Ba) + rank(Bb) = n. 

The boundary conditions are called partially separated if rank(B a) < n or rank(B b) < n . 

• 
1.1.19 Remark 
The decomposition (1.1.17a) has a special form for (partially) separated BC. For separated 

BC we have 

(1.1.19a) 

and without loss of generality we can assume that 

(1.1.19b) (0 0] [/n-r 0] 
I:l = 0 Ir and ~ = 0 0 , 

with r the rank of I:1. 

Partially separated BC satisfy the relation 

(1.1.19c) 3. 
J 

• 
From definition (1.1.9) it seems to follow that two quantities have to be evaluated to 

determine the conditioning constant. However, it was pointed out in [dHMa85,AsMaRu] 

that there is the following relation between the fundamental solution <1» and the Green's 
function G: 

<l»(x)<l»(x)T = G(x,a)G(x,a)T + G(x,b)G(x,b)T 

Since we use the Euclidian vector norm this yields the following lemma. 

1.1.20 Lemma 

(1.1.20a) 

• 
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Hence K2 gives sufficient qualitative insight in the conditioning constant of a boundary 
value problem. 

Generally one is mainly interested in an upper bound for the conditioning constant. 
However, it is also intriguing to ask for a lower bound. For instanee the (relative) 
condition number of a matrix can never be less than l. For BVP we prove that the lower 

bound is at least !...[i and for partially separated BC even 1. 
2 

1.1.21 Lemma 

(1.1.21a) K1 ~ !...[i . 2 

IJ the boundary conditions are (partially) separated, then 

(1.1.2lb) 

• 
Proof 
Let V,Q1,Q2,:E1,I:z be as in lemma 1.1.17 and let vj and ej denote the j th column of V and 
In resp .. Then 

Bacf.>(a) + Bbcf.>(b) =In 

~ :E 1 Q; cf.>(a) + :E 2Q{ cf.>(b) = VT 

~ ":/ .. 
IJ (:E 1)jje/Q!ct>(a)vi + (:E 2)iie/Q{ct>(b)vi = öi,j 

1:::; (:E 1)jjle/Q!ct>(a)vjl + (:E 2)jjle/Q{ct>(b)vjl 

:::; <I: 1 >ü I ct>(a) I + (:E2>jj I ct>(b) I 
2 2 I 2 2 

:::; (:El)jj+(:E2)jj Vlcf.>(a)l + lcf.>(b)l 

J I ct>(a) 1
2 + I ct>(b) 1

2 . 

Hence I cf.>(a) I ~ !...[i or I cf.>(b) I ~ !...[i. For (partially) separated BC a more precise 
2 2 

result can be obtained from (*), viz. 

• 

3j (:E1)jj = 0 ~ I cf.>(b) I ~ 1 , 

3j : (kz)jj = 0 ~ I cf.>(a) I ~ 1 . 



§1.2 Dichotomy and conditioning 

When consictering well conditioning of an initial value problem (often called stability in 

this context), it is important that there are no (rapidly) growing solutions. The situation for 

a BVP is quite different: there is no bias towards forward integration with respect to the 

independent variabie x ; indeed if the BVP is rewritten in terms of the variabie Ç = -x, we 

again obtain a BVP, but all decaying solutions of the original BVP are transformed into 

growing ones and vice versa. So it is natural to assume that the fundamental solution of a 

well conditioned BVP has both growing and decaying modes and that the conditioning 

depends on the ability of the boundary conditions to control them properly. 

The frrst descriptions of the solution space of linear ODE's in terms of growing and deca­
ying modes (i.e. dichotomy) were made in papers about the existence of solutions on [O,oo) 

or R of linear ODE's for certain classes of inhomogeneities, cf. [Pe,MaSc58,MaSc66, 

Co78]. Later on, it was noted by several authors, cf. [Ma85], that dichotomy is closely 

related to well conditioning of BVP's and the choice of its boundary conditions. 

1.2.1 Definition 
The ODE (l.l.l.a) is dichotomie if there is a fundamental solution Y(x), a projection 

Pe Rnxn and non-negative constants K,À and IJ., K of nwderate size, such that 

(1.2.la) 'v'a~t~x~b 

(1.2.lb) va ~x$ tSo IJ 

I Y(x)PY-1(t) I :s; K e -Mx-t) , 

IY(x)(/n-P)Y-1(t)l :s; Ke-~<t-x). 

The ODE is exponentially dichotomie i/À and Jl can both be chosen positive. We say that 

Y(x) is dichotomie with projection P and constants (K,À,Jl) . 

• 
On an infinite interval, an inappropriate choice of P,À or Jl would make it impossible to 

satisfy (1.2.la,b) for a finite value of K. However, on a finite interval the inequalities can 

be satisfied for any projection and any constant À,Jl at the expense of enlarging K. Hence 

on a finite interval the dichotomy concept can be meaningful only if K is of moderate 

size. Note that Kis always at least 1, because 

K ~ I Y(a)PY-1(a) I max I Y(a)Py I -... 1 
...;.,...;':":"""7...,.:...::: • 

}'>"0 I Y(a)y I 

Some authors, see e.g. [AsMaRu], require the projection P to be orthogonal. However, this 

is a superfluous requirement. Indeed, if Y(x) is a fundamental solution satisfying (1.2.la,b) 

with a nonorthogonal projection P of rank p, then there is an invertible matrix Ce Rnxn 

8 
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'uch that P = c{ ~ ~ }c-1
. Now let C = IJl:VT be the 'ingulruo value decomposition of C 

and define Z(x):::::: Y(x)UL. Then Z(x) is also a fundamental solution of the ODE, 

i' : = VT { ~ ~}V ;, an orthogonal projection and Y(x) PY -t(t) = Z(x)i' z-1 (t) . Hence the 

ODE has a fundamental solution which satisfies the dichotomy conditions with an ortho­
gorral projection. 

The definition of dichotomy states that no solution of the ODE can switch from strongly 
increasing to strongly decreasing or vice versa. For (1.2.1a) implies that 

(1.2.2) 

i.e. the set S1 := { Y(.)Pc I ceRn } consistsof the solutions of the homogeneous ODE that 
do not grow very strongly (for moderately sized K). And analogously does the set 
S2 := { Y(.)(ln·P)c I ceRn } consist of solutions that do not decrease rapidly. The dicho­
tomy of an ODE involves more than just this splitring into non-increasing and nondecrea­
sing solution modes. If the angle 1'} between the two subspaces S1 and S2 is defined by 

(1.2.3) 1'} := min{min{.t...(u(x),w(x))ixe[a,b]} I ueS1 , weS2 }, 

then cot 1'} ~ K (for a proof see e.g.[dHMa87]). This means that the angle is bounded away 
from zero and that solutions of a different type cannot get arbitrarily close to one another. 
The best result that can be obtained from this estimate is 'l'}e (O,l], because K;:: 1 ('l'}e (l,~] 

cannot be concluded). 

In [dHMa87] a proof was given that well-conditioned BVP's with separated BC are dicho­
tomie. We will give an account of their proof (adapted to our notation), because it gives 
some insight into the structure of the problem. 

1.2.4 Lemma ([dHMa87] Th.3.2) 
lf the BVP (1.1.1) has separated BC, then BaiP(a) is an orthogonal projection and iP(x) 

satisfies (1.2.1) with projection P = BaiP(a) and constants (~~:2,0,0). 
Proof 
From (1.1.5) and decomposition (1.1.17a) it follows that 

(*) 

Since the boundary conditions are separated, we may assume without loss of generality 
that 
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[0 0] [/n-r 0] 
1:1 = 0 Ir and ~ = 0 0 . 

Premultiplication of (*) with 1:1 VT yields 

I:1Q;<I>(a) = I:1VT' 

i.e. Ba <l>(a) = VI: 1 Q; <l>(a) = VI: 1 VT 

is an orthogonal projection and with P := Ba<l>(a) : 

"dx?.t I<I>(x)P<I>-1(t)l = I<I>(x)Ba<l>(a)<l>-1(t)l = IG(x,t)l ::;K2 , 

"dx<t I<I>(x)(/n-P)<I>-1(t) I = I<I>(x)Bb<l>(b)<l>-1(t) I = IG(x,t) I::;; K2 . 

• 
Similarly exponential dichotomy follows from an exponential bound on the Green's func­

tion. In [dHMa87] dichotomy for BVP's with not (fully) separated BC was proven as well. 

The proof is based on constructing separated BC for the same ODE. We will just state the 

re sult. 

1.2.5 Lemma 
The BVP (1.1.1) has a fundamental solution Y(x) for which the dichotomy relations hold 

with K = K2 + 4K/ and À.= IJ.= 0 . 

• 
The dichotomy lemma 1.2.4 for separated BC already sheds some light on the relationship 

between weli-conditioning and boundary conditions. In [AsMaRu] Ch.3 a somewhat more 

explicit relation is given. 

1.2.6 Lemma 

Suppose (1.1.1) is we/1-conditioned and has separated BC. lf Y(x) is a fundamental 

solution with dichotomy projection P, then 

(1.2.6a) 
(1.2.6b) 

• 

ker(Ba)nrange(Y(a)P) = {0}, 
ker(Bb) n range(Y(b)(/ n -P)) = ( 0} 

This lemma states that the homogeneous solutions that end in a non-decreasing direction 

are controlled by the end point conditions and that those that start in a non-increasing di­

rection are controlled by the initial point conditions. 
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Not only does weU-conditioning imply dichotomy, if anODE is dichotomie and the boun­

dary conditions are such that K1 is bounded, then the norm of the Green's funcrions has to 

be moderately sized as well. 

1.2.7 Lemma ([AsMaRu] Th.3.103) 

lf the ODE (l.Ll) is dichotomie, then !\! ;S; K(2K1 + 1) . 

• 
However, if the boundary conditions do not fit with the dichotomie behaviour of the ODE, 

K1 will be large and so will K2• It has been noted in several papers that for any dichotomie 

ODE appropriate BC can always be found. Therefore we mention a lemma which is only a 

slight modification of [dHMa85] Lemma 2.3. 

1.2.8. Lemma ([dHMa85]) 

Let EE R.nxn and Y(x) be a fundamental salution of (L l.la). For any c,d E [a,b] with c < d 

de fine 

(1.2.8a) 
, c;S;tsxsd, 

, CSX<tSd. 

Then there exist boundary conditions Be and Bd scaled as in assumption 1.1.16 such that 

G(x,t) is the Green' s function of 

(1.2.8b) { 
y = A(x)y(x) , 

Bey(c) + Bdy(d) = ~ . 

• 

1.2.9 Corollary 

(i) lf (l.Lla) is dichotomie, then there are boundary conditions such that the conditioning 

constants of the resulting BVP satisfy 

(1.2.9a) 

(ii) lf E is a projectîon, then the boundary conditions Be and Bd are separated. 

Proof of (ii), due to [Ve]. 

'ïlte(e,d) : BeG(c,t) +BdG(d,t) = 0 => BeY(c)(l71 -E) = BdY(d)E. 

Hence rank(Bc) + rank(Bd) = rank(Be <ll(c)) + rank(Bd<ll(d)) ;S; rank(E) + rank(ln-E) = n, 

if E is a projector . 

• 
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The fact that well-conditioned BVP's may contain growing modes, has given rise to stabi­

lity problems for some solution methods. If we want to tackle those problems, it would be 

very helpful if the growing modes can be isolated. Let Y be the fundamental solution of 

the BVP (1.1.1), that satisfies the dichotomy relations fo< P = [~ 
1
:), then with f(x) par· 

titioned as Y(x) = (Y1(x) I Y2(x)), 
H H 

(n-p) P 

we have S2 = range(Y 1(.)) and S 1 = range(Y 2(.)), i.e. the frrst columns of Y monitor the 

behaviour of the most dominant modes. However, these modes are uniquely defined· when 

considered on a (halt) infinite interval only. When integrated forward over a finite subin­

terval, as is done in some solution techniques for BVP's (see Ch.2), the subspace of in­

creasing modes is not uniquely determined. 

In practice any linear combination of increasing and decreasing solution modes will even­

tually show up as a growing solution and the influence of the decreasing modes will dimi­

nish rapidly. In order to isolate the growing solutions it would be most preferabie to know 

the starting matrix Y(a), but based on the foregoing one can also do with a fundamental 

solution whose frrst (n-p) columns contain at least components of the (n-p) growing 

modes. Therefore we define, analogously to [AsMaRu], the notion of consistency. 

1.2.10 Definition 
A fundamental solution Z of ( 1.1.1 a) is consistent with Y if 

(1.2.10a) range(Z 1(a)) rîrange(Y2(a)) = {0} 

• 

If the non-singular matrix H, such that Z = YH, is partitioned into 

H [H
11 

H
12

]' 
H21 H22 

with H 22e J!PXP, then we can give the following relations. 

1.2.11 Lemma ([AsMaRu] Lemma 6.12) 

(i) Z is consistent with Y iff H11 is non-singular. 

(ii) Z is consistent with Y iff \txe[a,b] : range(Z1(x)) nrange(Y2(x)) {0} . 

• 
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The criteria mentioned in this lemma of course uniquely determine consistency, however, 
numerically it is difficult to distinguish between a singular and a nearly singu1ar matrix. 
Since the basic thought bebind it, is that the influence if Y 2(x)H21 on an arbitrary solution 
should not exceed the influence of Y1(x)Hll, a better criterion for consistency would be 
that the consistency constant L, defined by 

(1.2.12) L := I y2(a)H2I I , 
glb(Y1(a)Hu) 

is of m~erate size. 

The considerations above give us a handle to split the solution m~s into a directiona1 

part and a part descrihing the growth behaviour. Suppose that Z is a consistent fundamen­
tal so1ution. Since Z(x) is a continuous function there exist two continuous matrix func­
tions Q(.x) and U(x) that together form the QU-decomposition Z(x) = Q(.x)U(x) for every 
xe [a,b], with Q(x) an orthogonal matrix and U(x) an upper triangular matrix with positive 

diagonal elements. Now we expect the left upper block of U(x) to contain information on 
the growth behaviour of the most dominant m~s. Henceforth we consider the following 
splitting of U(x) : 

(1.2.13) [
B(x) C(x)J U(x) -

- 0 E(x) ' 

with B(x)eR(n-p)x(n-p) and E(x)eRPxp. Then we can derive the following lemma, which is 

a slightly stronger result than the one derived in [AsMaRu] Ch.6. 

1.2.14 Lemma 

"~a:5,x:5,t'5,b 

"~a :5, t:5,x :5, b 

!B(x)B-1(t) I ~ Kexp(-jl(t-x)), 

IE(.x)E-1(t) I ~ Kexp(-À(x-t)) , 

1 +LK2 

with K = K '-;=========== 
Vsin2fJ + [max(cosf} -LK2 ,0)]2 

Proof see Appendix A. 

and fJ as defined in (1.2.3) . 

Note that if the consistency constant L = 0, then K = K. Fortunately, the structure of 

BVP's with separated boundary conditions is such that a consistent fundamental solution 

can easily be found. 
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1.2.15 Lemma ([AsMaRu] Th.6.33) 

Suppose that (l.l.la) is well-conditioned and that the BC (l.l.lb) are separated with 

Ba = ( B~ ) ~;-p. Let Z be a fundamental solution of (l.l.la) , then Z is consistent if it 

satisfies 

(1.2.15a) 

Proof 
Let Y be the fundamental solution of (l.l.la) with BY = In, then Y is dichotomie with 

projection [ ~ ~) , ruxonling to lemma 1.2.4. Now let H be the ;nvertible matrix 'uch 

that ZH = Y. Then 

i.e. H 21 = 0. Thus the H 11 is invertible, because H is invertible . 

• 
Finally we want to consicter the inverse of a fundamental solution. 

1.2.16 Lemma 
Let Y(x) be a fundamental solution of (l.l.la). Then y-T(x) is a fundamental solution of 

the ODE 

(1.2.16a) y = -A T(x)y ,a<x<b. 

Moreover, if Y(x) is dichotomie with projection P and constants (K,À,!l). then y-T(x) is 

dichotomie with projection In-PT and constants (K,!l,À). 

Proof 

V'xe[a,b] : Y(x)Y- 1(x) =In => Y(x)Y- 1(x) + Y(x)Y-\x) = 0 

And 

• 

<::::> y-1(x) = -Y-1(x)Y(x)Y- 1(x) -Y-\x)A(x) 

<::::> y-T(X) = -A T(x)Y-T(X). 

IY-T(x)(In-PT)(Y-T(t))-1 12 = IY(t)(In-P)Y- 1(x)l 2 :5 Ke-~(x-t). 

I y-T(x)PT (Y-T(t))-1 b = IY(t)PY-1(x) b :5 K e -'A.(t-x) . 



§1.3 The influence of perturbations on conditioning and dichotomy 

At several points in this thesis we will consider linear BVP's that are slight perturbations 
of each other. Therefore it is useful to summarize the relationship between their funda­
mental solutions, Green's functions, conditioning constants and dichotomy behaviour. The 
first three items follow straightforwardly from the definitions and the possibility to regard 
the difference in the homogeneaus term as an inhomogeneity of the original BVP. Since 
this has already been presented by various authors, e.g [dHMa85,AsMa], we omit proofs. 

Consider the boundaty value problems 

(1.3.1a) y = A(x)y , a<x<b , 
(1.3.1b) 'lJy = 13 

and 

(1.3.2a) i = Á(x)z , a<x<b, 

(1.3.2b) iJz = ~ . 

Define the matrices oA(x) : = Á(x) -A (x) , oB a :=Ba -Ba and oB b : = B b B b and 

the scalar quantities EB = I oB a I + I oB b I and E A = 11 oA 11 . 

Let <l>(x) and <f>(x) denote the fundamental solutions of (1.3.1), (1.3.2), respectively. Then 

(1.3.3) 

If OA(x) = 0 then the relation simplifies into, see e.g. [dHMa85], 

(1.3.4) <f>(x) = <l>(x) ('lJ<f>) 

or equivalently 

(1.3.5) 

Let G(x,t) and G(x,t) denote the Green's functions of (1.3.1), (1.3.2), respectively, then 

(1.3.6) G(x,t) = G(x,t) + <l>(x)('B G(. ,t)) - J: G(x,s) oA(s) G(s,t)ds . 

The previous relations yield the possibility to campare the conditioning constants of two 
neighbouring BVP's. 

15 
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1.3.7 Lemma 
Let JC1,1C2 denote the conditioning constants of (1.3.1) and let R\ and K'2 denote the condi­

tioningconstantsof (1.3.2). 

If JC1 Es + JC2 €A < 1, then 

(1.3.7a) iël :s: 
!Cl 

!C:z€A 

and 

(1.3.7b) ië2 :s: 
1C2 

1-1Cl€B-1C2€A 

• 
This lemma indicates that a well-conditioned BVP remains reasonably conditioned if A(x) 

and the boundary conditions are only slightly perturbed. A disadvantage, inherent to this 

type of error estimates, is that no upper bound is obtained for perturbations with €A,€B = 

0(1) and that the estimates for the conditioning constants grow quite rapidly if either €A 

or Es increase. Also, the upper bounds for ië1 and ië2 are not always sharp estimates, as 

the following example shows. 

1.3.8 Example 
Consider the BVP 

)'(x) = [ ~ ~).] y(x) , 0<x<1, 

[~ ~ l y(O) + [~ ~ l y(l) = ~' 
with À.,J.lE R. Then 

[

eJl(x-1) 

<l>(x) = 
0 

0 
] and G(x,t) 

e -/..x 

0 0 l 
0 e -A.{x-1) 

eJl(x-t) 0] 
0 0 

, x~t 

, x<t. 

lf we take positive À. and J.1 for the original (unperturbed) problem, then for all X.,p, ~ 0, 

we have ië1 = 1C1 = 1 and ië2 = JC2 = 1, even if JC2 EA > 1. On the other hand if we set out 

from À. = J.1 = 0 and take X. = € and i! €, then ië1 = ië2 = eE. And the estimate 
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R:1 s; K1 (1 - K2 E A) -l ( 1 - e) -l is a good approximation of eE for small e, but a poor 

one for e >i. 
• 
Next we look at the influence of perturbations on the dichotomy of ODE's (i.e. only the 
value of oA plays a role); in literature this is often referred to as roughness. In [MaSc66] 
dichotomy and roughness are described in a topological context fora much larger class of 
differential equations, viz. where y(x) may be a mapping into an infinite dimensional 
Banach-space. Here we state a result that was derived in [MaSc58] and [Co67], and has 
been reformulated into our notation. 

1.3.9 Theorem 
Suppose that the ODE (1.3.la) has an exponential dichotomy, with the fundamental solu­

tion <l>(x) satisfying (1.2.1) for the projection P and constants (K,A,jl). Then for all 

e < min(A,jl) there is a positive constant o, depending on P,K,A+jl and e such that 

11 OA 11 s; o => there is a fundamental solution <Ï> (x) of (1.3.2a) satisfying 

I <Ï>(x)P<Ï> -l(t) I s; K e -(À-E){x-t) for x:?: t 

and I <Ï>(x)(I-P)<Ï>-1(t) I SKe-(IJ.-E)(t-x) for x St , 

with K depending on K and P . 

• 
This theorem is not appropriate for practical use, as o, though existing, may be very small. 

A quantitatively more useful result can be found in [Co78]. Unfonunately the proof cannot 

deal with A. =~:- jl, hence it renders a weaker result than one could hope for. 

1.3.10 Theorem ([Co78] Ch.4) 
Dejine a. = min(A,jl), then, under the same assumptions as in Th.1.3.9, eA < !a.K-2 

implies that (1.3.2a) is exponentially dichotomie and moreover that there is a fundamental 

solution and a projection P such that (1.2.1a,b) holds for the constants 

(~K2 , a.-2KeA , a.-2KeA) . 

• 
The literature on roughness of ordinary dichotomy is not very extensive. However, the re­
sults stated in § 1.2 about the relations between conditioning and dichotomy give some 
more insight into the matter. 
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1.3.11 Lemma 
Jf (1.3.1a) has an ordinary dichotomy with constants (K,O,O) and KeA < 1, then there is a 

fundamental solution of(l.3.2a), which is dichotomie with constants (K(l-KeA)-1 ,0,0). 

Proof 
Application of lemma 1.2.8 and corolarry 1.2.9 with E = P yields that there are separated 
BC 

(1.3.11a) 

such that the nonn of the Green's function of (1.3.la)+(l.3.1la) is bounded by K. Let iè2 
denote the nonn of the Green's function of the perturbed BVP (1.3.2a)+(l.3.1la). Lemma 
1.3.7 implies that 

Application of lemma 1.2.4 yields that the ODE (1.3.2a) is dichotomie with constants 
( K(l-KeA)-1 , 0, 0 ) . 

• 
There is quite an analogy between the dichotomy of perturbed ODE's and the eigenvalues 
of perturbed matrices. If the dichotomy constants À. and Jl are far away from zero (i.e. 
there is a clear splitring in growing and decaying modes), then small perturbations do not 
seriously change the dichotomy of the system and similarly if eigenvalues of a matrix are 
sufficiently separated, the influence of small perturbanons will be moderate. On the other 
hand, even small perturbanons of an ordinarily dichotomie ODE may yield a non-dicho­
tomie ODE, as we will show in example 1.3.13, and eigenvalues of a matrix with multiple 
eigenvalues may change considerably under small perturbanons (see e.g. [GoLo]). 

The generic upper bounds derived in Lemmas 1.3.10 and 1.3.11 are of course not necessa­
rily sharp as will be demonstrated in exarnple 1.3.12. However, perturbanons of an ordina­
rily dichotomie ODE may cause behaviour of the solution modes that is far from dichoto­
mie, see example 1.3.13. 



1.3.12 Example 
Consicter the BVP 

(1.3.12a) y 0 , O<x< 1, 

19 

(l.3.12b) [~ ~Jy(O)+ [~ ~Jy(l)·~· 

§1.3 

It has an ordinary dichotomy with constants (1,0,0). Now consicter the perturbed BVP 

(1.3.12c) y = ("-
0 

] y(x) , 0 <x < 1 . 
0 -À 

This one has an exponential dichotomy with constants (1,À,À.). However, if À > 0, then the 

dichotomy does not properly fit the BC and the conditioning constant will grow, causing 

lemma 1.2.4 to render a rather pessimistic view . 

• 

1.3.13 Example 
Again consicter the BVP (L3.12a,b). Now we choose another perturbation of the ODE­

part, viz. 

_ (J(x) OJ 
A(x) = l 

0 0 
with f(x) 

E 

-E 

, Os;x<_: ö 
2 

_: ös;xs;_:+Ö 
2 2 

, _:+Ö <x$1, 
2 

with E > 0 and ÖE (0,0.5) define. The fundamental salution reads 

_ [g(x) OJ <l>(x) = 
0 1 

with g(x) = 

exp(Ex) 

exp(_:E(l-ö ö -l (_: -x)2)) 
2 2 

exp(E(l-x)) 

, Os;x<_:-B 
2 

, ~-Bs;xs;~+Ö 

, _:+Ö<x$1, 
2 

i.e. the salution function g(x) first increases exponentially and then decreases exponential­

ly. So for largerE-values the problem becomes non-dichotomie (and ill-conditioned), as is 

demonstrated by the plot of g(x) for E = 1 and ö = 0.005. 
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1.7·~-------------------------------------------, 

)( 

Figure 1.1 



§1.4 Conditioning of non-linear BVP's 

For linear boundary value problems the concept of weli-conditioning and topics related to 

it, like dichotomy and the influence of boundary conditions, have been studied extensively. 

There is not much literature available about the conditioning of non-linear BVP's. 

The main difference between the linear and the non-linear case is, that the size of the per­

turbations plays an essential role; multiplying a perturbation by some factor, may cause a 

considerably larger change in the solution than the original perturbation. Therefore we in­

clude the size of the perturbation in the definition of conditioning. 

Consicter the non-linear boundary value problem 

(IA. la) 

(1.4.1b) 

y h(x,y) a< x< b , 
g(y(a),y(b)) = 0, 

which is assumed to have an isolated solution y*(x), i.e. there is a tube 

{ ye C([a,b] --+ lltn) I 11 y - y* 11 < t. } around y* in which there is noother solution of the 

BVP. 

1.4.2 Assumption 
Let t. > 0 be a con.'>tant such that the convex neighbourhood 

Dy:= {yeC([a,b]--+111") I lly-y*II:S;t.} 

of y*(x) satisfies 

a. y* is the only solution of (1.4.1) in DY , 

b. the upper bound Cgh on the first and second derivatives of h(x,y) with respect to 
y and on the first and second (partial) derivatives of g(u,v) is of moderate size. 

Moreover, for all yeDY the conditioning constant of the linearization of (1.4.1) at y(x) is 

denoted by lClin(y) . 

• 

In order to determine the conditioning constant of the BVP, we have to consicter a slightly 

perturbed BVP 

(1.4.3a) 

(1.4.3b) 

y h(x,y) + öh(x,y) , a < x < b , 
g(y(a),y(b)) + ög(y(a)),y(b))= 0 . 

For the non-linear BVP, we now introduce the following conditioning concept. 

21 
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1.4.4 Definition 
Let y*(x) be an isolated solution of (1.4.1). For every e > 0 define 

(1.4.4a) D(e) := { (og ,oh)e C(Rn xllln ~Rn)x C([a,b] x Rn ~R11) 

(i) (1.4.3) has a solution y(x) e DY' which is unique in Dy, 

and (ii) log(Y(a),y(b)) I< e and lloh(.,Y(.)) 11 < e.}. 

Now define the conditioning constant K(e;y*) of (1.4.1) by 

(1.4.4b) 

K(e;y*) := inf{c>O IV'c38 ,ah)eD(~:) : II:Y-y*ll~c(log(Y(a),y(b))l +lloh(.,y(.))ll)}. 

The BVP is well conditioned at y*(x) if there is an e such that K(e;y*) is of moderate 

size . 

• 
Note that we do not consider solutions of all BVP's with I og I and 11 oh I bounded by 

€, but only those that have a unique salution in DY. The reason for this is that if the 

original BVP (1.4.1) has several solutions, K(e;y*) would have no finite value for any €. 

This definition of conditioning constant differs from the one proposed in [Ma89] in two 
ways. Firstly we consider a somewhat smaller class of perturbations in order to guarantee 

existence of K(e;y*). Secondly, definition 1.4.4 is a generalisation of the definition of con­
ditioning for linear BVP, unlike the definition in [Ma89], where in effect the conditioning 

constant is defined as the least upper bound on the quotientof I y*-y I and 

max( I og I ' 11 oh 11 ). Hence that definition is not a generalisation of the one for linear 

BVP's. Notice that K(e;y*) is a non-decreasing function of e and that for linear problems 

K(e;y*) is constant. 

Since the linearization of a BVP describes the frrst order effect of small perturbations on 

the non-linear BVP, we expect the conditioning constant of the linearized BVP not to be 

considerably larger than that of the original non-linear one. Define 

(1.4.5a) A(x;y) éJh(x,v) I , 
v=y(x) 

(1.4.5b) BaCy) := éJg(u,y(b)) I and Bb(y) := éJg(y(a),v) I 
au u=y(a) av v=y(b) 

and consider the linearized BVP with inhomogeneities q(x) and 13 

(1.4.6) { 
i(x) A(x;y)z(x) + q(x) 
Ba(y)z(a) + Bb(y)z(b) = 13 . 

, a<x<b, 
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1.4.7 Lemma 

lf the conditioning constant Klin(y*) of the linear BVP (1.4.6) is finite, it does not exceed 

(1.4.7a) 

Proof 

inf K(€ ;y *). 
E>O 

Let E > 0, q(x)e C([a,b] ~ Rn) and J)e Rn. And let z(x) be the solution of the linearized 

BVP (1.4.6) at y*(x). For any o: > 0, the function o:z is solution of (1.4.6) with inhomoge­

neity o:q and boundary value o:J). Define y(x;o:) := y*(x) - a:z(x). Then y(x;o:) satisfies the 

penurbed BVP (1.4.3) with 

Öh(x,y) :: h(x,y*) - h(x,y) A(x;y*)(y* -y) - o:q(x) , 

Ög(u,v) := g(y*(a),y*(b))- g(u,v) - Ba(y*)(u-y"(a))- Bb(y")(v-y*(b)) + o:J) 

And this perturbed BVP can be rewritten into the following form : 

{ 
y A(x;y ")y + (h(x,y *) -A(x;y *)y • o:q(x)] , a <x< b , 

Ba(y*)y(a) +Bb(y*)y(b) = o:J) + g(y*(a),y*(b)) , 

i.e. the linearization of (1.4.1) at y*(x). Hence its solution y(x;o:) is unique if Kun(y*) is 

finite. If o: is sufficiently small, the solution y(x;a:) will be in DY and the size of the per­
turbations that are bounded by 

(*) jögj~3Cgho:2 1izil2 + o:IPI and llöhi!~Cgho:2 1iz112 + o:Jiqll, 

will be smaller than €. Now application of definition 1.4.4 yields 

o:Jizll ~ K(E;y")(4Cghllzl!2 o:2 +a: IJ) I+ O:llqll) 

~ llzll ~ K(E;y*)(4o:Cghllzll2 
+ lP I + llqll) · 

Finally let o: approach zero . 

• 
From this lemma we see that, if a non-linear BVP is well conditioned, even on a small 

domain, then its linearization is well conditioned, too. This in turn implies that the lineari­

zed BVP is dichotomie, i.e. the solution space can be split into a subspace of non-decrea­

sing modes and a subspace of non-increasing modes, where the angle between the two 

spaces is bounded away from zero. 

Two remaining questions are whether weli-conditioning of the linearized BVP induces 

weli-conditioning of the non-linear one and whether weU-conditioning is maintained under 

small perturbations. Since the proof of the latter uses the conditioning of the linearized 

BVP, both questions can be answered by one lemma. 
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1.4.8 Lemma 

Let y(x),z(x)eDY be unique solutions of (1.4.3) in Dy for the functions Öhy, Ögy and Oh2 , 

Ög2 , respectively, and suppose that Kun(y) is bounded. Define 

(1.4.8a) Eg:= lögy(y(a),y(b))-Ögz(z(a),z(b))l and Eh:= 110hyC.,y(.))-Oh2(.,z(.))ll· 

Then 

(1.4.8b) Eg+ Eh < 
2 

~ IIY -z 11 ::;; 2 Kun(y)(Eg +Eh) . 
16CghKlin(y) 

Proof 

Define w(x) := y(x) - z(x). Then it satisfies the linearized BVP (1.4.6) at y(x) with 

{ 

q(x) = h(x,y(x)) - h(x,z(x))- A(x;y)w(x) + öhy<x,y(x)) - Öhz(x,z(x)) , 

P = g(y(a),y(b)) g(z(a),z(b)) +Ba(y)w(a) +Bb(y)w(b) 

+ Ögy(y(a),y(b)) Ögz(z(a),z(b)). 

Now the norm of w(x) can be estimated by 

llwll::;; Klin(y)(4Cghllwii
2

+Eg +Eh). 

And because of the continuity with respect to Eg and Eh we can easily derive that 

1 1 V1-16CghK~n(y)(Eg+Eh) 
Eg+ Eh< ~ 11 W 11 ::;; -~---=-~--::--:--.::.._ __ 

16CghK~n(y) 8CghKlin(y) 

• 

1.4.9 Corollary 

1 +Vt -16Cgh K~n(y)(Eg +Eh) 

::;; 2Kiin(y)(Eg+Eh) . 

(i) Application of the previous lemma for y = y*, i.e. öhy = 0 and ögy = 0, yields that 
weli-conditioning of the linearized problem implies weU-conditioning of the non-linear 

BVP for small perturbations. 

(ii) The previous lemma also yields continuity of well conditioning of non-linear BVP's. 

Indeed, if a non-linear BVP is well conditioned at a solution y*, then its linearization at y* 

is well conditioned, too. Hence, if yeDy is an isolated solution of a neighbouring BVP, 

lemma 1.3.7 shows that for 11 y*-y 11 sufficiently small Klin(y) can be bounded in terms of 

Klin(y*) : 
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(1.4.9a) 

Now the lemma 1.4.8 yields that the neighbouring BVP is well conditioned, too, though 
possibly on a small domain . 

• 
We see that weli-conditioning of the linearization implies weli-conditioning of the original 

BVP, but possibly, for very small perturbations only. Therefore we have chosen to define 

conditioning of non-linear BVP's not in terms of the linearized BVP, but in terms of the 

original BVP. As we saw in § 1.3, the situation can be significantly better than stated in 
the lemma, but it gives a realistic upper bound for the worst case (cf. example 1.3.8). 

Finally, we want to mention a pitfall. Basedon the definition of conditioning one may be 

tempted to make the 'inverse' statement, that any neighbouring function of y*(x) will 

satisfy a neighbouring BVP. However, conditioning is concemed with the influence of per­

turbations in the derivative on the primitive function, whereas here we perturb the primi­

tive function and ask for the influence on the derivative. And it is well-known that inte­

gration is a 'smoothing' operation, but differentiation may have the inverse effect as the 

following example shows. 

1.4.10 Lemma 
Let y*(x) be the solution of (1.4.1). Then 

(1.4.10a) \iE:O<E<A \iy>O 3yeCl([a,b]-tRn) : lly-y•ll<€ 
A y(x) satisfies (1.4.3) with IIÖhll;?; "(. 

Proof 

Take y(x) = y"'(x) + ~arctan(o:{x-~(a+b)) ·I; forsome unit vector ÇeJln and o:eJl. Then 
1t 2 

y(x) is continuously differentiable and 11 y-y* 11 < e. lts first derivative reads 

y(x) y*(x) +ftx) with f(x) = 2
€0:. 

1 ·I; . 
1t 1 +o:2 (x-~(a+b))2 

2 

Hence y(x) satisfies (1.4.3) with Öh(x,y) = h(x,y) h(x,y*) + ftx) and 

2eo: liöhll;?; __ cghe. 
1t 

Now take o: sufficiently large . 

• 
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2 Solution methods for boundary value problems 

In this chapter we give a brief description of some solution methods that are commonly 
used for solving BVP's. Roughly speak:ing these methods can be divided into two classes, 
viz. methods based on IVP techniques, like invariant embedding and multiple shooting, 
and 'global' methods, like collocation and finite differences. We will not mention all im­
portant variants, adaptations and features of both method classes, but only highlight items 
which are actually used in the remainder of this thesis. A more complete survey can be 
found in e.g. [AsMaRu,Ke76] and some references therein, 

In section 2.1 we describe the IVP-based solution methods of multiple shooting and inva­
riant embedding and pay special attention to a reorthogonalization process. The second 
section is devoted to global methods, viz. finite differences and collocation. The method 
descriptions in the frrst two sections are given for linear BVP's. In the third section we 
consider the adaptation of those methods for non-linear BVP's and pay special attention to 
the conditioning of the arising non-linear equations. 
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§2.1 Initia! value techniques 

The development of approximative solution methods for initial value problems (IVP's) has 

matured earlier than the development of such methods for BVP's. One of the obvious rea­

sons is that IVP's can more easily be treated locally: the starring point is known before­

hand and information about the local direction field can be used to approximate the solu­

tion at neighbouring points. However, BVP's are essentially non-local; there is no starring 

point available and information from both ends of the interval is needed everywhere. One 

way to circumvent this problem, is to guess the missing initial conditions and employ 

available IVP-software to approximate the solution. Of course this 'solution' is very likely 

not to satisfy the endpoint conditions. Nevenheless, the information from the integration 

step can be used to improve the initial point guess iteratively. In analogy to the familiar 

military technique of aiming a cannon correctly by trial and error, this process is called 

shooting. The mathematical description is as follows: consicter the linear BVP 

(2.1.1) { 
y = A(x)y + q(x) 

B aY(a) + B by(b) J3 . 
, a<x<b, 

A shooting attempt is equal to solving the IVP 

(2.1.2) { 
y = A(x)y + q(x) 
y(a) = s , 

, a<x<b, 

forsome vector selltn. The exact solution will be denoted by y(x;s). Solving (2.1.1) is now 

equivalent to solving the equation 

(2.1.3) 

Application of this metbod may encounter problems, due to the essenrial difference be­

tween IVP's and BVP's. Whereas a well-conditioned (stable) IVP will have no exponen­

tially growing solution modes, a well-conditioned BVP may very well have them, as we 

saw in Ch.l. However, all stability considerations and error bounds of numerical methods 

for IVP's are based on the absence of exponentially growing modes. Another problem is 

that computational errors may be magnified by a factor exp(j.l.(b-a)), if ll is the growth 

factor of the strongest growing solution mode. 

These drawbacks can be overcome to some extent by a more refined shooting process, ge­

nerally referred to as multiple slwoting. Here the interval is split into several subintervals 

[xk ,xk+d· 1 :S: k :S: N, forsome NeN, with 

(2.1.4) a= x1 <x2 < .... <XN+l = b 

and the shooting process is applied to every subinterval, i.e. the IVP's 
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(2.1.5) { 
y = A(x)y + q(x) 

y(xk) = sk 

29 

are solved for the shooting veetors ske Rn, 1 :::; k :::; N. The solutions are denoted by 

yk(x;sk ). We now have a two level discretization : a coarse level grid 

§2.1 

{x1 , x2 , . , . , xN+l } determining the shooting intervals and a fine level grid per subinter­
val used by the IVP-solver. 

Before considering the choice of the coarse grid we first review the process to obtain the 

correct shooting vector s briefly. Not only has the set of unknowns been enlarged as corn­
pared to single shooting, but also, as to be expected, there are more conditions to be satis­
fied. Besides satisfying the BC, the solution pieces yk together should forrn a continuous 
function on the entire interval eventually. For notational convenience we introduce an 

additional shooting vector sN+l• representing the value of the salution at x b. Now the 
veetors sk are deterrnined by 

(2.1.6) 
f(s) = 0 with sT:= (s;,s;,.,.,s~+l) 

and /(s) defined by 

(2.1.7) /(s) := 
Y~XN+l;sN)- SN+l 

Basl +BbsN+l -~ 

Since the BVP is linear its salution can be described as 

(2.1.8a) 

where ~k(x) is the fundamental salution on [xk ,xk+l] with 

(2.1.8b) 

and vk(x) is the particular solution with vk(xk ) = 0. Now (2.1.6) is equivalent to the linear 
equation 

~l(x2) -In sl -vl(x2) 

~2(x3) -In s2 -v2(x3) 

(2.1.9) .. ·· . 
~~XN+l) -In -vN(xN+l) 

Ba Bb SN+l ~ 
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This equation can be solved in several ways. A very simple idea, induced by the specifie 

form of the Jacobian, is compactification. Here the first N block rows are used to express 

sk, k ~ 2, in termsof s1 : 

(2.1.10) sk = <l>k_1(xk) ··<l> 1(x2)s1 + Çk. , 

k-2 
with Çk = vk-l(xk) + L [<l>k-l(xk) ··<l>j+1(xj+2)]vjCxj+1) 

i=l 

and obtain an equation for s 1 from the last block row: 

(2.1.11) [Ba + B b <l>N(xN +1). ·cl> 1 (x2)] sl = ~ B bÇN+l 

Notiee that this is equivalent to 

(2.1.12) 

A major disadvantage of compactification is that the influence of rounding errors may he 

considerable. The fundamental solutions <l>tCxk+l) and the partienlar solutions vk(xk+l) are 

likely to contain errors of the size eM (eM being the machine precision). It was shown in 

[AsMaRu] that, with &1 the solution of the error containing version of (2.1.1 1) 

I s1 - s1 I = 0( I <l>1(xN+l) I eM). For exponentially dichotomie BVP's the norm of the 
latter matrix will be considerable. 

Another, generally more stable, solution metbod for (2.1.9) could be LU-decomposition. 

Especially for BVP's with separated BC, several other efficient solution methods can be 

used, e.g. an LU-decomposition for almost block diagonal matrices [dBWe] and altemate 

row and column pivoting [Va]. Later in this section we will describe how a stabie com­

pactification algorithm can be performed in case of separated BC. 

The linear IVP's on the subintervals will generally have (exponentially) growing modes. 

This has two major consequences. Firstly, the norm of <l>k(x) will increase exponentially 

for larger x. Secondly, in every column of ct>t<x) there will be a component of the strongest 

growing direction, either right from the start or eventually due to computational errors, and 

for larger x the influence of this mode will become dominant. Hence <l>k(x) becomes 

(almost) singular and vital information about the non-dominant modes may be lost. Often 

multiple shooting codes use an adaptive choiee for shooting points based on these two 

considerations; i.e. a new point is inserted if either the 'size' of <l>~c(x) (e.g. the absolute 

largest element or the I . loo) becomes too large or if the condition number of <l>ix) 

becomes too large, see e.g. [HeBe,MaSt]. 

In the given setting we automatically restart at every shooting point with the identity 

matrix. Since multiple shooting is traditionally a metbod that progresses in the x-direction, 

a quite natura! step is to apply an orthogonalization process to <l>tCxk+l) before its columns 
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have become (almost) dependent This idea was frrst introduced for separated BC in 

[Go,Con]. If for instanee a QU-decomposition <l>k(xk+I) = Qk+luk is made, the orthogonal 

matrix: Qk+I can be used as a starting value for the fundamental solution on [xk+l• xk+2]. 

This process can be performed at the end of every subinterval, yielding fundamental solu­
tions that are transformations of the ones used in (2.1.9). Hence some additional matrix: 
vector multiplications have to be performed to solve for the vector s. Schematically the 
process can be described as 

- choose an orthogonal matrix: Q1 

- determine QU-decomposition of <l>k(xk+l)Qk = Qk+lUk, k = 1, .. , N, yielding Qk+l 

and the upper triangular matrix: uk 

Equation (2.1.9) now reads 

Q2 r ut -lfl 

Q3 

IB"Q' 

u2 -Jfl 

... ··. ·•. 

QN+l UN 

Jfl 

Q~ SI -vl(x2) 

Q; 
s2 -v2(x3) 

·· . 
-Jfl Q~ SN -vMxN+l) 

BbQN+l 
Q~+l I> SN+l 

This process is not just a way to maintain independenee of the columns of the fundamen­
tal solution. In [Os,Ma82] it was noted that this process can also be used to decouple the 

growing and decaying modes. Here we use the notion of consistency introduced in § 1.2. 
Suppose that the ODE (2.1.1) is dichotomie and that Y is a fundamental solution with 

dicholomy projection p " [ ~ ~ l· lf !he fundamenlal solution z,. wilh z,(a) Q,. is 

consistent with Y, then every fundamental solution Zk , scaled such that Zk(xk) = Qk , 

is consistent with Y. Indeed, 

(2.1.13) 

Zl(x) = <l>I(x)QI 

= <I>z(x)<l>l(x2)QI 

= <l>2(x) Q2 U1 

= <l>k(x)QkUk-1 Uk-2 · .. UI 
= Zk(x)Uk-1".u1 

and the product of upper triangular matrices is again upper triangular. Hence if the frrst 
(n-p) columns of Q1 span the subspace of growing modes at x = a, then the frrst (n-p) 

columns of Qk will span the same subspace integrated up to x = xk . In order to apply the 
consistency results from § 1.2 we partition the matrices Uk as 
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(2.1.14) 

2.1.15 Lemma 

(2.1.15a) 'Vk<m 

(2.1.15b) 'Vk>m 

I 
-1 -1 -

Bk .. . Bm_1 I s; K exp( -!l(Xm-xk)) , 

I Ek_1 ... Em I s; Kexp(-À(xk-xm)), 

with K as in lemma 1.2.14. 

Proof 
The result follows from lemma 1.2.14 applied to Z1 and the relation 

Z1(xk) = QkUk-1 .. Ul • 

• 
This decoupling feature can be used in several ways. In [AsMaRu] it was pointed out how 

it can be used to compute the veetors sk stably. Especially for separated BC the lower p 

elements can be obtained by forward substitution, after which the upper (n-p) elements 

can be computed stably by backward substitution. In chapter 4 we will use the decoupling 

principle in a solution process for the equations arising for non-linear BVP's. 

The discrete decoupling performed at the shooting points as described above, has a conti­

nuous analogue, named invariant embedding. Here we only give a brief outline of the 

idea, further details and theoretica! background can be found e.g. in [vLo,Me73]. Since we 

need to partition matrices and veetors we use the following notation : 

(2.1.16a) '<~ce11mm 

(2.1.16b) . -[z1 ]tn-p . z - 2 • 
Z lP 

Insteadof solving the BVP (2.1.1) in its original form, we now seek a continuous linear 

transformation T(x) such that the new variabie w := r 1y satisfies the ODE 

(2.1.17) w = U(x)w(x) + T-1(x)q(x) , a<x<b, 

with U(x) block upper triangular. Hence T has to satisfy the Lyapunov equation 
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(2.1.18) t =AT-TU. 

This transfonnation is beneficial to stability, if the differential equation 

, a<x<b and zeC 1([a,b]---?R.P), 

contains no rapidly growing solution modes and the differential equation 

contains no rapidly decreasing solution modes. In that case the function w(x) can be deter­

mined stably in a two-phase process, analogously to the discrete case, where first ~(x) is 

obtained by forward inlegration of 

(2.1.19a) 

and thereafter the remaining elements of w are obtained by backward integration of 

(2.1.19b) 

The requirements on U(x) will be fulfilled if the span of the first (n-p) columns of T(x) 

contains componentsof all growing solution modes of (2.1.1) (cf. the consistency of a fun­

damental solution § 1.2). 

A variant of invariant embedding is the Riccati method. Here the transfonnation T is re­

quired to have the special fonn 

(2.1.20) T(x) • ( ;;; :. ) , R(x)eJlP•(•-p) , xe[a,b] , 

Now U(x) is in block upper triangular fonn iff R(x) satisfies the Riccati differential 

equation 

(2.1.21) 



§2.2 Global methods 

An idea for solving BVP's, which is conceptually different from the ones described in 

§2.1, is used in 'global' methods. Here one employs only one grid, comparable to the fine 

level grid in shooting. On this grid a discrete difference operator, approximating the origi­

nal continuous one, is defined. 

In this section we briefly describe a few simple one-step finite difference schemes and 

give a sketch of a stability proof for this method, because it shows some similarity 

between the finite difference method and the shooting method; moreover, some of the 
intermediate results are used later in this thesis. Finally we briefly describe the collocation 

method. 

Let the set of points {xk} with 

(2.2.1) a x 1 <x2 < ... <xN+l b, 

define a grid on [a,b]. The finite difference method tries to generate a vector yellln(N+l), 

subdivided into N+ 1 veetors of length n : 

(2.2.2) 

such that yk is an approximation to y*(xk ), where y*(x) is the solution of the BVP (2.1.1). 
A well-known one-step scheme, for instance, is the trapezoidal rule 

(2.2.3) 

where hk := xk+l - xk. We define h:= max { hk I 1 :5: k :5: N }, a measure for the mesh 

si ze. 
All one-step schemes can be written into the following generic form: 

(2.2.4) ~y "'q' 

with qeRn(N+l) depending both on q(x) and IJ and the scheme used and ~a linear opera­
tor from an(N+l) to Rn(N+l) defined by 
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(2.2.5) ~y := 

Tbe blocks sk and Rk E anxn can be written as 

(2.2.6a) 

(2.2.6b) 

§2.2 

·•. · ... y. 

wbere '!'1 and '!'2 are metbod depending functions, wbicb we assume to be bounded on 
[a,b] x [O,ii], forsome ii > 0. 

Next we want to estimate the error in tbe approximation y of the solution y*(x). Since y 

and y*(x) are incomparable quantities, we introduce a projection 
6>E C(C([a,b] --+ Rn) --+ an(N+l)), defined by 

(2.2.7) 

Now we would like to estimate the global discretization error e(h), 

(2.2.8) e(h) := 6>y* y 

and establisb convergence of tbe metbod, i.e. 

(2.2.9) lim I e(h) I co = 0. 
h.l.O 

This can be done indirectly : assume tbat tbe metbod used is consistent, i.e. 

(2.2.10) 

wbere the local discretization error th[y*] is defined by 

(2.2.11) 

Tben convergence follows if ~ bas a bounded inverse, i.e. if the metbod is stable. In the 

literature several stability proofs can be found, see e.g. [Ke76,AsMaRu]. Essentially tbey 

are all based on tbe fact that tbe matrix of (2.2.5) is closely related the matrix occurring in 
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multiple shooting with, additionally, discretization errors. To be more precise, if Y(x) is a 

fundamental solution of (2.1.1), then -Rk -Isk is an approximation of Y(xk+1)Y-1(xk ). 

Since every column of Y(x) is a solution of the homogenous part of (2.1.1), consistency 

implies that 

(2.2.12) 

(i.e. solve (2.2.4) for n different inhomogeneities simultaneously). Therefore 

(2.2.13) 

and since I Rk -I I = O(h) this yields 

(2.2.14) 

This induces the following relation between ~ and the Jacobian occurring in the multiple 
shooting method : 

(2.2.15) 

with E a block diagonal matrix with I E I = O(h p+ 1) and 

YI(x2) -In 

Y2(x3) -In 

(2.2.16) J = .. ·. 

Y~xN+I) -In 

Ba Bb 

The matrix J is identical to the Jacobian of /(s) in the multiple shooting process. The 

norm of its inverse is NKun (see Appendix B). Now we can derive 

~1 

Another, though related, class of global solution methods is collocation. Here again a grid 

is chosen on the interval [a,b]. Now the solution of the BVP is approximated by a func-



37 §2.2 

tion y1te C([a,b] ~ R11
), which is a polynomial of degree m, for some fixed meN, on every 

subinterval [xk, xk+d· The continuity at grid points plus the boundary conditions give Nn 
relations for the N(m+ 1 )n unknown polynomial coefficients. In order to form the remain­

ing relations we choose canonical points { Pjl , 1 '5. j '5. m, with 

(2.2.17) 0 '5. p 1 < p 2 < ... < p m '5. 1 

and require that y1t satisfies the ODE (2.1.la) at the points 

(2.2.18) , je{l,.,m} , ie{1,.,N}, 

i.e. 

(2.2.19) {1,.,m} , ie{l,.,N}. 

It was first shown by Weiss [We] that an implicit Runge-Kutta scheme can be formed 

with canonical points Pj• such that y1t restricted to [xk , xk+l] is the inte1polant of the auxi­

liary RK points Yij (estimates of y(xi}). Hence the consistency and stability results of 
Runge-Kutta schemes (which are one-step finite difference schemes) apply and no additio­

nal analysis in this respect is necessary. The use of Gaussian points as canonical points is 

appealing since it gives a local truncation error of 0(h2m). 

Thus far we have not considered higher order differential equations, mainly because they 
can easily be transformed into first order ODE (cf.[AsRu]). However, especially for collo­

cation methods one can make an implementation without reducing it to a first order ODE. 

This has been considered in [AsChRu,BaAs] and implemented in the package COLNEW, 

which we have used for several numerical experimentsin Chapter 5. 

Consider the kth order BVP for ye c<k-l)([a,b] ~ R) 

k 1 

(2.2.20a) y(k) L cjCx)y(j) +q(x) a<x<b , m:?.1, 
j=O 

(2.2.20b) B [ y(~) l+Bb[ y(~) l =!) 
a y<k-I)(a) y<k-I)(b) · 

lts salution can be approximated by a function y1te dk-I)([a,b] ~ R), which is a poly­

nomial of degree k+m-1 on every subinterval. Now again the coefficients follow from the 

(N -l)k continuity relations, the k boundary conditions and the Nm requirements 

(2.2.21) 
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An important issue in the actual implementation of global methods is the grid choice. 
During the process decisions about the redistribution and refinement of the grid have to be 
made, in order to equidistribute the error and decrease it until the accuracy requirements 
are met. This item is investigated by several authors, see e.g [Ru]. 

Comparing global methods with NP-methods we see that the frrst type encounters less 
trouble from exponentially growing modes, partly because only relatively small subinter­
vals are used, partly because only global methods allow for discretization schemes that are 
capable to conserve the dichotomie character of the solution space. 
From a philosophical point of view one could say that IVP-methods use compactification 
on the fine grid, retaining information on the coarse grid only. Consequently using these 
methods requires less memory space and leads to the salution of smaller linear systems 
than using global methods, where information on every fine grid point is retained. 

Finally we mention that parallelization of these solution methods consists of two parts: 
parallelization of the assembly of the large matrix and parallel salution of the resulting 
linear system. For the latter several stabie methods have been developed, see e.g. [AsPC, 
PaGI,Wr]. For IVP-methods parallelization of the assembly is straightforward since every 
subinterval can be assigned to a different processor. However, for global methods one 
needs a proper splitting of the interval into subintervals, especially for non-linear BVP's. 
We address this issue in Chapter 5. 



§2.3 Solution methods for non-linear BVP's 

In the previous sections we described solution methods for linear BVP's. Of course the 
sarne ideas can be used to solve non-linear BVP's. However, the equation resulting from 
ctiscretization will generally be non-linear. In this section we will briefly describe the 
actaptect solution methods for non-linear BVP's and consicter in particular the use of 
Newton's method to solve the arising non-linear equations. More specifically we estimate 
the size of the convergence ctomain according to the Newton-Kantorovich theorem, see 
e.g. [OrRh],[DeHe]. 

Consicter the non-linear BVP 

(2.3.1) { 
y = h(x,y(x)) 
g(y(a),y(b)) = 0 . 

, a<x<b, 

The application of the multiple shooting method to it, starts out in the same way as the 
application toa linear BVP, i.e. we choose a grict 

(2.3.2) 

and ctefine locally non-linearIVP's : 

(2.3.3) { 
y = h(x,y(x)) 

y(xk) = sk 

, x k <x< xk+ 1 , 1 S. k S. N , 

, skeRn . 

The solutions of the local problems, if existing, are ctenotect by yt<x;sk) and y(x;s) is the 

function, ctefined on [a,b], that is equal to Yk(x;sk) on (xk, xk+d anct satisfies 
y(a;s) = y1(a;s1). The unknown veetors sk have to be determined such that the local solu­
tions together form a continuous function that satisfies the boundary conditions. Hence 
they have to be a solution of (2.1.6),(2.1.7). However, this time fis) is a non-linear func­

tion. lts solution will be ctenotect by s* and the corresponding solution of (2.3.1) will be 
ctenotect by y*(x) := y(x;s*). 

An often used solution metbod is Newton's metbod : let s0 be the initial guess for the 

shooting vectors. Then the next iterates are cteterminect by 

(2.3.4) sj+! = sj +I; , j';!O, 

with 1; the solution of 

(2.3.5) 

and J(s) the Jacobian of fis). The cterivatives iJyk can be determined in a special way, viz. 
iJsk 

39 
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(2.3.6a) 

with 

(2.3.6b) 

i.e. i; is a fundamental salution of the linearized ODE at yA;{x;sk). Since we will aften 

refer to tbis linearization, we introduce some simplifying notation. 

2.3.7 Delinition 
The derivative of h(x,y) at Yk(x;sk) is 

(2.3.7a) Lk(x;sk) :"' ~h(x,v)j , xk<x<xk+l , 
dV V"'Y t<x;s k) 

and the derivative of the boundary conditions are 

(2.3.7b) 

This leads to the /ocal linearized systems 

(2.3.7c) 

• 

{ 
z = Lk(x;sk)z 
Inz(xk) = ~ . 

and 

Tbe Jacobian of f(s) for non-linear BVP's bas the same structure as its counterpart for 
linear BVP's, only in the flrst case the non-zero blocks are fundamental solutions of the 
linearized ODE and not of tbe original one. 

Inherent to a BVP is that the underlying ODE may contain exponentially growing modes. 
For tbe weli-conditioning of the problem it is vital that tbose modes are controlled at the 
endpoint However, on the subintervals only initia! conditions are imposed. Due to this, a 
metbod based on shooting encounters several drawbacks. We have already seen for linear 
problems that computational errors may be increased considerably. Tbis may of course 
also occur for non-linear problems. For the latter class of BVP's two other problems may 
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be encountered as well. Firstly the solution of alocal lVP (203.3) may not exists over the 

entire subintervaL And secondly, since /(s) may be overly sensitive to changes in the vec­

tor s in certain directions, the convergence domain of Newton's metbod might be smal!. 

To demonstrate this we will estimate the convergence domain according to the Newton­

Kantorovich theorem, see eog [OrRh]o The theorem guarantees convergence of Newton's 

metbod with initia! guess s0, if the product 1YY 1 r1<s0)f<s~ 1 < o.s ; here y is the Lip­

schitz constant of J(s) near s* and ~ is an upper bound on I r\s0) I (see Appendix D 

for a precise forrnulation)o We are aware that generally the convergence domain may be 

larger, but the results of the theorem give an indication about the performance of the 

methodo 

2.3.8 Assurnption 

Let DY be a convex neighbourhood ofy*(x) such that 

y*(x) is the unique solution of (2o3.1) in Dy, 

the function g(u,v) is twice continuously differentiable in both variables and h(x,y) is 

twice differentiable with respect to y and all partial derivatives are bounded by a 

moderate constant, say cgho 
Let the set D

8 
be defined by D

8 
:= { seRn(N+l) I y(x;s)eDY )o Finally assume thatfor all 

1 S: k S: N there is a constant Kk such that 

VseD : the conditioning constant K(e;yk(x;sk)) o/(2.303) 
s 

is bounded by Kk, with €:max{ lsk-akl I s,aeD8 ) 

• 
2.3.9 Theorern 

(2.3o9a) 

Proof 
Let s,aeD

8
• Furtherrnore let Yk(x;sk) and Gk(x,t;sk) denote the fundamental solution and 

the Green's function of (2.3o7c) respectively, where the fundamental solution is scaled 

such that Yk(x;sk) =In 0 Now for each of the frrst (N-1) block rows of J(s) we estimate 

the difference in the fundamental solutions 

Yk(x;ak) "' Yk(x;sk) + (Xk+l G t<x,t;sk)(Lt<t;ak)-Lk(t;sk)) Yk(t;ak)dt o 

Jxk 

Since ILk(x;sk)-Lt<x;ak)i S:C8hiYk(x;sk)-yk(x;ak)l S:C8hKklsk-aki, 

this yields 
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2 
Yk(x;crk) I ~ Kk(xk+l -xk) max ILk(t;sk) Lk(t;crk) I 

t 
3 

~ cgh1Ck(xk+1-xk)lsk-crkl 

For the last block row we have the estimate 

IBa<s>-Ba<cr>l ~C8hlsN+l-crN+ll +C8hls1 cr1 1 ~2C8hls-crl. 
For the block containing the endpoint conditions an analogous upper bound can be found. 
Combining these estimates we get (2.3.9a) . 

• 
For an exponentially dichotomie BVP with the strongest growing mode growing like eJ.lX, 

one can easily prove that lCk = 0( exp(Jl(Xk+l-xk )) ). Hence taking smaller subintervals 
does diminish the Lipschitz constant of J(s). However, one has to solve a larger system. 

Furthennore we need to estimate I F 1(s0) I and I F 1(s0)f(s0) I· For linear BVP's the 
inverse of the Jacobian is essentially bounded by N times the conditioning constant of the 
global BVP (see Appendix B, Corr. B.6). Hence, I r 1(s*) I will be of the order of mag-

nitude of N·lim K(E;y(x;s*)) and by a continuity argument I F 1(s) I will be reasonably 
do 

bounded for s sufficiently close to s*. However, this bound may become large, because 
y(x;s) will generally be discontinuous, possibly causing a disroption of the dichotomy 
behaviour of the linearized BVP and thus have a negative effect on the conditioning. 

From the above considerations we see that the convergence of Newton's method to solve 
/(s) = 0 may be jeopardized by a large Lipschitz constant of the Jacobian, i.e. the influen­
ce of the second order term in the expression 

f(s*) =/(s) + J(s)(s*-s) + J
0

1 [J(s+t(s*-s)) J(s)](s* s)dt 

may not be negligible. 

An alternative for the mulitple shooting method, which we study in more detail in chap­

ter 5, is to use local boundary value problems instead of local initia! value problems. The 

function /(s) will again consist of continuity requirements and the global boundary condi­
tions, but now the Jacobian will consist of fundamental solutions that reflect the condition­
ing of the local BVP's. 

Unlike multiple shooting, the finite difference method for non-linear BVP's differs from 

the one for linear BVP's almost right from the start : let { xk I k = 1, .. , N+ 1 } be a grid 

on [a,b] with 
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(2.3.10) a=x1 <x2 < ... <xN+i =b 

and let yeRn(N+l) be the concatenation of N+l veetors ykeRn: 

(2.3.11) T (yT T T ) y = 1 ,y2 , ... ,yN+l 

Now fora one-step scheme the veetors yk have to satisfy 

(2.3.12) 

where Y describes the metbod used; i.e. we seek the solution of 91( 11Jy] = 0, with the non­
linear operator 91{1t: Rn(N+l) 4 Rn(N+l) defined by 

(2.3.13) 
, k:#=N+l , 

, k =N+l 

Analogously to the linear case we define consisteney, stability and convergence as follows, 

cf. [AsMaRu,Ke76]. 

2.3.14 Definition 

The local discretization error 'th[y*] is defined by 

(2.3.14a) 

The finite difference scheme is consistent of order p if 

(2.3.14b) 

The scheme is stable at y*(x) if there is a bal/ 

Sp,x(y*) := { ueRn(N+l) I lu-f?y*I.,.,~P} around ~* and a constantKof moderate 

size such that 

(2.3.14c) 

Finally the scheme is convergent if 

(2.3.14d) 

• 
lim lf?J*-YI.,., = 0. 
h!O 

As in the linear case convergence is implied by consistency and stability. Generally con­

sistency of a metbod can easily be established; stability is somcrimes more difficult to 

prove. The following lemma gives sufficient conditions (on the linearization of 9\{'lt) for 

stability. The derivative of 91lx with respect toy will be denoted by ~[y] (for a linear 
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BVP this is equal to the definition in §2.2). Hence with 

(2.3.15a) 

and 

(2.3.15b) 

(2.3.16) 

-I ëJT(u,yk+I ,xk,hk) I 
S k = - h k In - -----.:-,---

ou U=Yk 

-1 ëJT(yk,v,xk,hk) I 
Rk=hk/n- ' 

av v=yk+l 

SI RI 

s2 R2 

Sfx [y] ··. '•, 

SN RN 

Ba Bb 

2.3.17 Lemma (see e.g. [AsMaRu,Ke76]) 

Let Sp,7t(y*) be as in definition 2.3.14. Let ~[y] be consistentand stabie for all 
yeSp,7t(y*) and let the partial derivatives of 1 with respect to its first and second argu­

ment be bounded in the same tube. Furthermore, let there be a 'partial' Lipschitz constant 

KL such that 

(2.3.17a) V ~ (y*) : ISfx[u]-Sfx[f,)y*]I,.,<KLiu-f,)y*l,.,· 
UE''p ,1t 

Then 9{1t is stabie on Sp,1t(y*) and I Sfx -I[y] I is uniformly bounded on Sp,1t(y*) . 

• 
In §2.2 we have shown that I Sfx -I[6ly*] I.,. is bounded by the conditioning constant of 

the linearization of (2.3.1) at y*(x) for h sufficiently small. Now a continuity argument 

yields stability for the linearization at neighbouring veetors y. Hence the frrst conditions of 

the lemma can be met for well conditioned BVP's. 
For multiple shooting we found that the Lipschitz constant of the linearization (Sfx) could 
become large. However, reeall from §2.2 that -hk -Isk -I and hk -IRk -I approximate a fun­

damental solution of the linearized BVP at x = xk , x = xk+I• respectively. The matrices 
-hk Sk and hk Rk are, according to lemma 1.2.16, approximations of the fundamental 
solution <l>(x) of 

(2.3.18) i = -(ah(x,y)l )T.z 
ë1y y=y*(x) 
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with <I> satisfying the BC 

In ·<l>(xk) +In ·<l>(xhl) = 2l n + O(h;) . 

Hence the Lipschitz constant of ~ can be related to the conditioning constant of this 
BVP. Since these boundary conditions are non-separated, a poor condition of the BVP can 
be caused only by rotatîonal activity of the different solution modes. However, this pro­
blem can be overcome if we choose the grid sufficiently fine. 
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3 Davidenko-like difTerential equations and a special integration 
method 

We have seen in chapter 2 that the convergence domain of Newton's method when ap­
plied to the non-linear equation encountered in multiple shooting, may be small. And 
apparently this is not the only type of problems, where Newton's method does not perform 
flawlessly, for in literature several alternative solution methods can be found. One class of 
alternative solution methods is (parameter) continuation : a series of non-linear equations 

is solved as a (possibly artificial) parameter is varied, using the solution of the previous 
problem as initial guess for the next one, see e.g. [Me68,Was,OrRh,KuHl,RoSh,DePeRe]. 
An idea that is theoretically related, though different in implementation, is to embed the 

non-linear equation into a differential equation, see e.g. [Wa, OrRh,Da]. Indeed, Newton's 
method can be considered as the application of the explicit Euler integration method with 
step size 1 on the IVP 

(3.0.1) 
{ 

dx = -r1(x(t))/(x(t)) 
dt 

x(O) = x0 . 

, t>O, 

This differential equation is often called Davidenko's equation. In this chapter we look at 
a variant of this method, viz. solving the IVP 

{ 

dx M(x(t))f(x(t)) 
dt 

x(O) = x0 . 

, t>O, 
(3.0.2) 

in order to obtain a zero x* of f(x). We will derive sufficient conditions on M(x) to gua­

rantee that (3.0.2) is asymptotically stabie at x = x*. Moreover, we introduce an implicit 

inlegration method for the IVP, that is computationally cheaper than implicit Euler, but 

that does have its asymptotic stability properties. 
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§3.1 Davidenko-like equations 

In this chapter we introduce and investigate a path following metbod for solving non­
linear equations. The setting will be quite general and not specifically aimed at the equa­
tions arising in multiple shooting (this will be the subject of chapter 4). Therefore we con­

sider in this chapter a function Je C2(Rm --t Rm) with a zero x*. The Jacobian of f{x) is 
denoted by J(x). 

Newton's metbod for finding a zero of f(x) reads 

(3.1.1) 

The justification of tbe metbod lies in the relation 

(3.1.2) 

Here we see that tbe new update xj+l will be closer to x*, only if the second order term is 

small, i.e. the convergence area may be small either if the Jacobian is (nearly) singular or 

if tbe Jacobian bas a large Lipschitz constant. This is not only a theoretica! consideration; 
wben solving BVP's witb exponentially growing modes with tbe multiple sbooting 
metbod, we actually encountered problems with Newton's metbod (see cbapter 4). 

Hence we investigate otber solution metbods for non-linear equations. It bas been noted by 
many autbors, see e.g. [Da,KuHl,OrRb], tbat Newton's metbod can be considered as a dis­

cretization (witb tbe explicit Euler scbeme and step size 1) of tbe continuons initial value 
problem: 

(3.1.3) 
{

dx 
dt 

x(O) 

-J - 1(x)f(x) , t>O, 

i.e. an artificial time dependency of x is introduced. Tbe latter differential equation, often 

called Davidenko's equation, see [Da], is sometimes referred to as tbe ciosure of Newton's 
metbod. Notice tbat discretizing (3.1.3) witb tbe explicit Euler scbeme and a step size less 
tban 1, yields damped Newton. 

Tbis view upon Newton's metbod induces tbe idea to look at a larger class of initial value 

problems: 

(3.1.4) 
{

dx 
dt 

x(O) 

M(x)f(x) , t>O , 

witb M(x)e C(Rm --t Rmx~. Tbe matrix function M(x) is called tbe preconditioner. It is ob 
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vious that any zero x* of f(x) induces a constant solution x = x* of (3.1.4) and that vice 

versa any constant solution of the IVP corresponds to a zero of f(x), if M(x*) is non­
singular. 

Embedding techniques are also used for solving problems in physics and chemistry. In 

partienlar elliptic problems can be embedded into a dissipative time-dependent (hyper­
bolk) partial differential equation, without any preconditiooer (or M(x) = 1). These em­

bedding methods, which are often referred to as ja/se transient or time stepping, have 
proven to be very helpful in solving difficult problems in chemica! engineering and com­

bustion, see e.g. [KuHl,SmMiKe]. 

Solving the IVP (3.1.4) in order to obtain a zero of f(x), is appropriate, only if the ODE is 

asymptotical/y stable, i.e. 

(3.1.5a) 'v'O<E<E0 3s >0 \tx0 ,1x0 -x•l<o 

the solution x(t) of (3.1.4) with x(O) =x0 satisfies 

'v'r?.O : lx(t)-x•l <E A lim x(t) = x•. 
t->oo 

A stronger stability requirement is local contractivity, which is defined by 

(3.1.5b) lx(t) -x•l decreases monotonically to zero, 

with x(t) the solution of (3.1.4) with x(O) =x0 . 

The remainder of this section we will investigate under what conditions the preconditiooer 

satisfies this stability requirement. 

A useful concept in this case is the one-sided Lipschitz constant and related to it the 

/ogarithmic norm. Both will be formulated for the following general ODE : 

(3.1.6) x = h(t,x) ' t> 0 . 

Let < . , . > denote the Euclidian inner product and I . b the corresponding vector 
norm in lllm. 

3.1.7 Definition 
Let T > 0. Let the juncrions <pe C([O,T] --+ lllm) and 'JfE C([O,T] --+ (0,=)) de fine a jamily of 

balls, depending on t: 

(3.1.7a) D(t) : = { I; E Rm I 11; - <p (t) I ~ 'Jf(t) } , O~t~T. 

A piecewise continuous function V(t) : [O,T] --+ R, is a one-sided Lipschitz constant of 

(3.1.6) on D(t) ij 
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(3.1.7b) 'r;fte [O,T] 'r;fx,yeD(t) 
2 <h(t,x) -h(t,y),x-y> S: v(t) lx-y b. 

• 
The one-sided Lipschitz constant is not unique : if v satisfies the definition, then any pie­

cewise continuons function v with v(t) ~ v(t), is also a one-sided Lipschitz constant. 

Moreover, if the function h(t,x) is Lipschitz continuons with respect to x, say with constant 

L, then v = L is a one-sided Lipschitz constant. The one-sided Lipschitz constant is for 

instanee used in the following stability results, see [DeVe]. 

3.1.8 Theorem 
Let x(t) and i(t) be solutions of the ODE (3.1.6) and assume that 

(3.1.8a) 'r;/te[O,T] : x(t)eD(t) A i(t)eD(t) . 

Let v(t) be a one-sided Lipschitz constant of (3.1.6) on D(t). Then 

(3.1.8b) 

• 
The ODE (3.1.6) is locally contractive, if there is a negative one-sided Lipschitz constant 

and asymptotically stabie if 

lim (T V(t) d't = -oo . 
T-?oo Jo 

In the literature, special attention has been given to the autonomous linear ODE in connee­

tion with this concept. So consider 

(3.1.9) x Ax , t~O , 

with AeRmxm. In this case all solutions are of the form 

(3.1.10) x(t) = exp(At).Ç , forsome ÇeRm. 

Hence we can derive a relation, similar to (3.1.8b), for any two solutions x(t) and i(t) : 

(3.1.11) 

So instead of the one-sided Lipschitz constant, which is defined for inner product norms 

only, we can use a bound on I exp(At) I for all vector norms. According to e.g. [St], the 

llm +hA l-1 
minimum of { e I 'r;/1~0 : lexp(At) I S:e 91

} is equal to lim . And this 
h.J.-0 h 
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fonnula is generally used as definition of logarithmic nonn : 

3.1.12 Deflnition 
For any matrix Ae:e.mxm the logarithmic nonn j.I.[A] with respect to I . I is defined by 

llm+hA l-1 
j.I.[A] := lim ---:~-

h,).O h 
(3.1.12a) 

• 
The logarithmic nonn with respect to the Euclidian nonn, denoted by j.1.2[A], can be related 
to the one-sided Lipschitz constant; since 

(3.1.13) [A] - <At; • Ç > j.l.2 - max , 
Ç;tO <I; ,I;> 

see e.g. [Dah], J..i.2[A] is the smallest one-sided Lipschitz constant of (3.1.9). 

In Appendix C we have gathered a colleedon of properties of the Iogarithmic nonn that 
can be found in the literature. Here we mention only two properties that relate the loga­
rithmic nonn to the eigenvalues of a matrix. 

3.1.14 Property 
Let AeRmxm. 

(i) For all eigenvalues À of A : Re(À) 5; j.I.[A], in any vector norm. 

(ii) j.1.2[A] = max {À I À eigenvalue of ~(A+AT) } • 

• 
The logarithmic nonn can be used in a stability result, simHar to theorem 3.1.8. 

3.1.15 Theorem ([Dab]) 

Let I . I be a given norm. Let v : [O,T] ~ R be a piece wise continuous function satisfying 

(3.1.15a) ah I '<;tiE [0 T] 'v'ç e D(l) : j.l.[-(t,X) J 5; V (t) 
' dX x=l; 

Then for any two solutions x and i of (3.1.6) that /ie in D(t) for all te [O,T], 

(3.1.15b) 

• 
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Let us now return to the starting point of this section. We want to establish asymptotic 
stability of the IVP (3.1.4) around x =x*. From Theorems 3.1.8 and 3.1.15 we see that a 
suff'icient condition for this is that either 

(3.1.16a) <x-x* ,M(x)f(x)> 

ix-x* li 

or 

(3.1.16b) d 
Jl[-(M(x)f(x))] 

dx 

is bounded by a negative constant on a neighbourhood of x*. However, in chapter 4 we 
will fonn a preconditioner for the function arising in multiple shooting (see (2.1.7)), for 
which J.![M(x)J(x)] is negative on a neighbourhood of x*. 

Let B(x*;R) denote the set [ xeRm I Ix-x* I <;; R }. 

3.1.17 Assumption 
Suppose there is a hall B(x*;R) such that 

(i) 3a.>0 \;fxeB(x .. R) : fl2 [M(x)J(x) 1 <;; -a. · 

(il) The Juncrions f(x), J(x) and M(x) are bounded on B(x* ,R) by constants c1 ,C1 and 

CM, respectively. 

(iii) The Juncrions J(x) and M(x) are Lipschitz continuous on B(x* ,R) with Lipschitz 

constants L1 and LM, respectively. 

3.1.18 Definition 

The constant ê is defined by 

(3.1.18a) 

• 

ê := max 
XEB(x• ,R) 

<x -x* ,M(x) J
0

1 [J(x"' +t(x -x"')) -J(x)](x -x*)dt> 

lx-x*l3 

Based on the proof of lemma 3. 1.8, we can derive the following stability lemma. 

3.1.19 Lemma 
lf r < min(a.ê-1 ,R), then 

(3.1.19a) the salution x(t) of (3.1.4) with x(O) x0 remains 

in B(x*;r) and lx(t) -x* I <;; exp((-a. +êr)t) ix0 -x*l· 

• 
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Proof 
Let r < min(aê-1 ,R) and let x(t) be a salution of (3.1.4) with x(O)e B(x*;r). Then for t ~ 0 

..!!.._ lx(t)-x*l2 = 2<x(t)-x*,M(x(t))f(x(t))>. 
dt 

For notational convenience we drop the argument t of x(t). 

<x-x* ,M(x)f(x)> 

= <x-x*,M(x)J(x)(x-x*)> + <x-x*,M(x)(f(x)-J(x)(x-x*))> 

= <x-x*,M(x)J(x)(x-x*)> 

+ <x -x*, J
0

1 
M(x)[J(x* +s(x -x*)) -J(x) ](x -x *)ds>. 

He nee ~ I x(t)- x* 1
2 :s; 2( -a+ êr) I x(t) -x* 1

2 
, i.e. I x(t)-x* I is a deseending function 

dt 

and x(t) remains in the ball B(x*;r) for all t ~ 0 . 

• 
Next we campare the contraction domain of (3.1.4) according to lemma 3.1.19 to the con­
vergence domain of Newton's method. According to the affine invariant Newton-Kantoro­
vich theorem the latter domain exists of those points ~ that satisfy 

lrl(xo)f(xo) I :y :s; ~· 

with y an upper bound on 

Ir l<xoHI<x> -I<y> > I 
lx-y I 

where x,y are in a convex neighbourhood of x0 (for a more precise formulation see Appen­
dix D). Camparing this to lemma 3.1.19 for Davidenko's equation (3.1.3), i.e. 

M(x) = -r1(x), we see that y is of the sameorder of magnitude as ê and that 

lr1(x0)/(x0)1 =- lx0 -x*l 

can be identified with r. Since a= 1 (= -j.l[ -r1(x)J(x)] ), the lemma shows a contraction 
domain for Davidenko's equation of approximately the same size as the convergence 

domaio of Newton's metbod according to the Newton-Kantorovich theorem. 
Hence a non-Davidenko choice for the preconditiooer can be beneficia! if either the value 

of ê is reduced or the value of a is increased. 



§3.2 The integration metbod 

In this secdon we introduce a special integration metbod for the IVP 

(3.2.1a) 

(3.2.lb) 

.t(t) = M(x)/(x) 

x(O) "'x0 

, t>O , 

and investigate its properties. Remember that our aim is to obtain a zero x* of f(x); not to 
obtain an accumte estimate of the solution x(t) of (3.2.1). 

When using explicit integration methods, numerical stability considerations invariably lead 
to step size restrictions. For our purposes this can be a disadvantage, since the solution x(t) 

approximates the contmction point x* better if the solution is foliowed over a larger 
interval. 
However, not all impHeit methods necessarily have profitable stability properties for larger 
step sizes. The trapezoidal scheme as used in [Bo] does not yield ultimate fast conver­
genee for large step sizes since xi+1-x* = x*-xi. So we are interested in a metbod tbat 
allows large step sizes as x(t) approaches tbe contmction point and gives rapid final con­
vergence. As we do not require a very small discretization error, we look for a 'least 
work' , i.e. low order method. The simplest metbod that answers this description, is of 
course Euler backward, i.e. 

(3.2.2) ' )~.0. 

However using an itemtive scbeme to solve (3.2.2) involves seveml evaluations of M(x) at 
each step. This will not be necessary, if we use the following mixture of implicit and 
explicit Euler, to be referred to as mixed Eu/er 

(3.2.3) xi+ 1 "' x i + h .M(xi )f(xi+ 1) 
) ' j~O. 

Solving this equation requires essentially less work tban tbe equation encountered in tbe 
implicit Euler method, but, as we prove later on, tbe mixed Euler metbod bas stability 
properties similar to those of the implicit Euler metbod. 

Some autbors reject the use of implicit integration methods in this case, see e.g. [AbBr]. 
An often used argument is that implicit integmtion methods require the solution of a non­
linear equation, which was our original problem. However, equation (3.2.3) contains tbe 

step size hj . We show in §3.3 that tbis non-linear equation can always be solved with 
Newton's method, if hj is sufficiently small. And, moreover, once xi is close to x*, New­
ton's metbod converges for all step sizes hj > 0. 

First we show tbat the mixed Euler metbod is consistent of order one. 
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3.2.4 Lemma 
The discretization error Ö(~,x,h) of the mixed Eu/er method defined by 

~ -1 (3.2.4a) u(tj,x,hj) := hj . {x(tj+l) -x(tj) -hjM(x(tj))f(x(tj+l))) , 

is bounded, as follows : 

(3.2.4b) 

wîth v2 a convex combination of x(tj) and x(tj+l). 

Proof 
The estimate follows immediately from the relation 

• 
3.2.5 Remark 

§3.2 

For the choice M(x) = -F1(x) with F 1(x) bounded, the bound on the discretization error 
can be sharpened to 

(3.2.5a) 

• 
Since the mixed Euler method is a consistent one-step scheme, it is a convergent integra­

tion method if M(x)f{x) is locally Lipschitz continuous on an appropriate domain. For 
completeness the convergence proof is given in Appendix E. 

Thus far we looked at the properties of the mixed Euler method as an ODE-solver. Now 

we investigate its behaviour as a 'root-finder'. Let assumption 3.1.17 hold; this means in 

particular that 

(3.2.6) 3a>O 'VxeB(x*;R) : Jl[M(x)J(x)] :s; -a · 

We show that, if x i and xi+l are both in B(x*;r), with r < min(aê-1, R), and hj is suffi­

ciently small, then x i+l is in the small sphere shown in figure 3.1. The larger dotted 

sphere shows the bound that is usually derived in this kind of situation. 
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Figure 3.1 

3.2.7 Theorem (convergence of the iterative process to x*) 

Let r < min(aê-1, R) and let x i be in B(x*;r) and suppose that hj is sujficiently small to 

guarantee that xi+1 is in B(x*;r). If a-êr C1LMixi-xi+ll > 0, then the constant bi 

defined by 

(3.2.7a) 

is larger than 1 and lxi+ 1 -x'*'l s; lxi-x•l and, moreover, the vectorxi+l is in the 
bj 

sphere with 

(3.2.7b) centre [1--1-]x*+_1_xi and radius lxLx*l 
2~ 2~ 2~ 

Proof 
Define ej :=x i -x*. From (3.2.6) we get 

<ej+l ,ej+1 > "' <ej+l ,ep + hj<ej+l ,M(xi)J(xi+1)> 

"' <ej+l ,ep + hj<ej+l ,M(xi+1)J(xi+l)ej+l> 

+ hj<ej+l ,(M(xi) -M(xi+l)) (f(xi+1) -/(x*))> 

+ hj<ej+l ,M(xi+l) J
0

1 [I (x • +s(xi+l -x'*')) -J(xi+1)] ej+l ds>. 

He nee 

(*) lej+ti2 S:<ej+l'ep + lej+tl2h/-a+LMC1 1xi-xi+ll+êlej+ll). 

This means that if a êr -C 1LM I x i -xi+l I ~ 0, then lxj+l -x • I s; I x i -x• I 
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And (*)shows that bjlej+II2 ::;; <ej+1 ,ep, which in turn implies that 

• 
Once x i is in B(x*;r) this theorem can be applied, since a suitable choice of the variabie hj 

can guarantee that 
(i) xi+I is in B(x*;r), 

(ii) a.> êr + c,LM I xi -xj+l l-

As soon as I x i - x* I < (a. - êr)/2C 1 LM , the constant bj is larger than 1 independent 
of hj , i.e. the restrictions on hj are lifted. In that case it is favourable to choose hj large 
since that yields superlinear convergence, viz. 

In the next section we prove that if x0eB(x*;r), it is indeed possible to choose a step size 
sequence {hj} such that the corresponding sequence of mixed Euler elements {x i} conver­
ges to x* and reaches B(x*; (a. êr)/C f.-M ) in a finite amount of steps. 

Finally we mention that a result simHar to theorem 3.2.7 can be derived for the iterates of 
the implicit Euler's metbod showing the similarity between the convergence behaviour of 
mixed and implicit Euler's method. 

3.2.8 Remark 
Let the ODE (3.2.la) satisfy condition (3.2.6) and let x ieB(x*;R). Let hj be such that x i+l 

defined by 

xi+l : xi + hjM(xi+1)f(xi+I) 

exists and lies in B(x*;R). Then xi+l lies in the bal/ with 

centre ( 1 -
1 ]x • + 

1 
x i and 

2(1 +a.h) 2(1 +a.hj) 
radius lxi -x*l 

2(1 +a.h) • 



§3.3 lmplementation of the mixed Euler metbod 

In the previous sections we addressed convergence of the mixed Euler method. For imple­
mentation the following aspects are of interest 

(I) the choice of the preconditioner M(x) 
(ii) a metbod to obtain the next iterate xi+l 

(iii) step size control 

The choke of the preconditioner M(x) is strongly problem dependent. In some cases the 

Davidenko choke M(x) = -r1(x) is appropriate. In the next chapter we will derive a pre­

conditioner for the non-linear equations arising from the multiple shooting metbod applied 

toa class of non-linear boundary value problems. 

To obtain the next iterate xi+l in the mixed Euler process from formula (3.2.3), we have 

to solve the non-linear equation 

(3.3.1a) 
with 

(3.3.1b) 

We show that convergence of the Newton metbod with starting point x i can be influenced 

by the choke of the step size hj . Let the Newton iterates on g(y;x i,h) be denoted by 
{f ], i.e. 

(3.3.2) 

3.3.3 Lemma 
Let xieB(x*;R). Then uruler the assumptions 3.1.17 the following statements hold. 

1 

J2c1L1 if(xi) I 
2R 

then the Newton process (3.3.2) on g(y·,x.i,hj) converg es. 
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· a 2 
1 2 (ii) If lf(xl) I :::; min ( , ..:...R L 1 ), then the Newton process (3.3.2) converges for 

2C2 
L 2 

M J 

all step sizes hj > 0. 
Proof 
The first derivative of g(y;.x j,hj ) with respect to y reads 

. 1 . 
g'(y;.xl,hj) = hj- Im M(xl)J(y) . The logarithmic norm of M(x)J(x) can be used to 

estimate I g'(y;.xj,hj )-1 I : 

"tçeam : <!;,[hj-
1
Im-M(xj)J(xi)]/;> ~ (hj-

1
-Jlz[M(xi)J(xi)]) 11; 12 ~ (hj-I +a) I!; 12 

. . 1 1 h}. 
=> lg'(xl;.xl,hjf b = . . :::; ...,.----::-

glb2(g'(xl;.xl,h)) 1 +ahj 

The conditions of the Newton-Kantorovich theorem now read, that with v defined as 

v has to satisfy 

(1) v::;!.. 
2 

and 

(2) R> 1-~ 1-~ lf(xi) I 
h(l +ah)-1CMLJ IV LJ 

Some calculus shows that (2) is satisfied for all ve [O,Î), if lf(xj) I< 2.R 2L1 . Otherwise 
2 

(2) imposes the condition 

4R 2L1 lf(xj) I 
V S ---::-----:----:-

(R2LJ+21f(xi)l)2 

This proves (i) after the definition of v has been inserted in the conditions. And (ii) can be 

obtained from (i) with some simple calculus . 

• 
This lemma disproves an often used argument to reject impHeit integration methods for 

Davidenko's equation, viz. it requires at each step solving a non-linear equation, which is, 

wrongly, considered to be equal to the original problem. For in this case convergence is 
guaranteed for appropriate values of hj . 



§3.3 60 

Now we are able toproof a statement already stated in §3.2, viz. that it is indeed possible 

the form a sequence of step sizes {hj} such that the corresponding mixed Euler sequence 

does not stall, but converges to x*. 

3.3.4 Theorem 
Let r < min(a.ê-1, R) and x0eB(x*,r). There are e > 0 and h > 0 such that the mixed 

Euler sequence (xj} with step size h exists, lies in B(x*,r) and satisfies 

!xj+l_x*l 1 ...;._--,-_ __..:,. < 
lxj -x*l +E 

(3.3.4a) 

Proor 

De fine 

and E := h(a -êr-hC1LMCMCf) . 

Since c1 ~ I/(~) 1. the latter two terros of the definition of h imply that the requirements 
of theorem 3.3.3 are satisfied (with R replaced by r). Hence x 1 exists and lies in B(x*,r). 

This is one of the requirements of theorem 3.2.7; the other one is 

a êr-CJLMix 1 -x0
! > 0 {::) a-êr C1LMhiM(x0)f(x1)1 > 0 

<== a êr- hC1LMCMCf > 0 

a -êr 
{::) h < -=--=---=-----=-

c,LMCMCJ 

Hence we may conclude that I x1 -x* I < I x0 -x* I and, moreover, that 

lxl-x*l 1 
....;_::-----=-<-------..,.------
lx0-x*l 1 +h(a-êr-hC1LMCMCf) 

1 a-ér The parabola in the denominator takes it maximum value at . An induc-
2 C1LMCMCf 

tion argument condurles the proof . 

• 
3.3.5 Remark 

(i) If we do not use the estimate c1 > I f(x j ) I in the proof of 3.3.4, we are able to 

form an increasing sequence of step sizes {hj} such that the mixed Euler elements 
still remain in B(x*,r), with I xj -x* I decreasing more rapidly. 
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(ii) The sequence {x j} formed in theorem 3.3.4 reaches after a finite amount of steps 

the ball around x*, where neither the Newton-Kantorovich theorem nor theorem 
3.2.7 imposes any bound on the step .size h. Hence the super-linear convergence as 
predicted in §3.2 is reached eventually . 

• 
If we use -F1(x) as a preconditioner, the first Newton step on g(y;xi,hj) reads 

1 . hj 1 . . 
Y = xl __ r (xl)f(xl), 

1 +hj 
(3.3.6) 

i.e. a damped Newton step for the original problem /(x) = 0. 
There are two major duferences between damped Newton and our algorithm. First of all 
we generally perform several Newton steps on (3.3.1). So y1 is not the next iterate, but 
only an intermediate result. Secondly, and more importantly, we base our choice of the 
damping factor on cantrolling the discretization error and not on iteratively adapting the 
damping factor until the value of some object function decreases. However, once the itera­
tes x i approach x* the first Newton iterate on g(y;xi,hj) is accepted as xi+l. At the same 
time hj tends to infinity, so the implementation of the mixed Euler metbod tends asympto­
tically to the ordinary Newton method. This shows that in this case our method has second 
order convergence eventually. 

Since we want to limit the amount of work per time step, the actual implementation uses a 
modified Newton method, viz. 

(3.3.7) 

Now only one evaluation of the preconditiooer M(x) and the Jacobian J(x) per time step 
are necessary. As convergence criterion we used the size of I g'(xi·,x.i,hj )-1 g(y;xi,hj) I· 

The Newton process described above, is just an auxiliary tooi to follow the path x(t). 

Hence the step size is determined by a control mechanism on the discretization error. We 

compute the salution x(t) with given absolute and relative tolerances ATOL and RTOL 
respectively. Hereto the discretization error is estimated by 

(3.3.8) 1 211xi -xi-1 I EST:= _
2

hj 
h· 1 }-

lxi-1 -xi-21 I 2 

h· 2 . h· 1 +h· 2 }- }- }-
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In our algorithm we require EST to be approximately equal to ATOL + RTOL I x j I 
Small values of RTOL and ATOL increase the robustness of the method, but require many 
time steps work) to reach x*. In practice values like w-1 or w-2 work very well. 

Based on the above considerations the step size hj is determined at every step as follows : 

3.3.9 Algorithm (step size determination) 

- take hj equal to hj_1 • 

• 

- double the step size if it has not been changed in 3 consecutive steps, to prevent 
conservatism. 
- if the Newton process has not converged in 3 iterarions, halve the step sîze until 
convergence is reached. (lf hj has not been changed we do not expect non-conver­
gence, unless the path has entered a troublesome area, i.e. J(x) is nearly singular or 
J(x) has a large Lipschîtz constant.) 

-at every step compute the quantity TEST:= EST/(ATOL + I xj I·RTOL). 
If TEST e [0.25 , 4] the step is accepted. 

If TEST > 4 the discretizatîon error is too large and x j is recalculated for 

the step size 

(3.3.9a) 
hold 

hnew = -=== 
JTEST 

lf TEST < 0.25 the path is followed 'too accurately'. Now accept x j and 

increase hj according to (3.3.9a) . 

Remark 
We have used the algorithm outlined above to test the ideas presented in this chapter. But 
we are well-aware of the fact that various refinements and modifications can împrove its 
efficiency. However, the results obtained with this program, as presented in §3.4, already 
indicate a relatively good performance. 



§3.4 Numerical results 

In [AbBr] several explicit integration methods for Davidenko's equation are studied and 

tested on some problems. We have applied the mixed Euler implementation described 

above to those test problems, in order to illustrate the performance of the metbod and to 

campare it with the explicit integration methods presented in [AbBr] and with damped 

Newton. First we describe the (8) test problems briefly. 

1+2 A function, to be found in [Bo], 

(3.4.1) 

The sought salution is x* = (0,1) and the initial value is 

- (1,0) for the first test problem (1) 

- ( -1, -1) for the second test problem (2). 

There are several curves where the Jacobian of fis singular, viz. 

(3.4.2) 1t x 1 sin ( 2:.x2 ) = -1. 
2 

In Figure 3.2 we have plotted two of those singularity curves and the direction field of 
Davidenko's equation (the lenght of each vector has been divided by 6 to keep overview). 

One can see that coming from (-1,-1) the 'path' approaches a singularity curve rather 

closely and this is where the Newton update -r1(x)f(x) becomes large. 

3 

(3.4.3) 

with initial guess (0.6 , 3). the correct salution is (0.5 , 1t). 

63 
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~îl/11111/ 
(i~~l!'i!'//// 

k'k"yJ:!'// 

Figure 3.2 

4 The gradient of Rosenbrock's function : 

(3.4.4) f (x1 ) = [400x1 (x; -x2; + 2(x1 -1)), 
X2 -200(x1 -x2 ) 

with initial guess (-1.2, 1.0). The solution is (1,1). The Jacobian is singular on the para­

bola x1
2 = x2 - 0.005, but any zero-finding procedure has a strong tendency to follow the 

neighbouring parabola x1
2 = x2. In fact the latter parabola can be seen as a narrow gorge 

with very steep walls, (a 3-dimensional plot of the situation is given in [Br]). Indeed, the 

path from ( -1.2 , 1) towards the solution immediately heads for the curve x 1
2 x2 and 

then follows it up to (1,1). 

with initial guess (0,0,0). The correct solution is (1.5 , 1.809 .. , 1.0). 



6 

(3.4.6) 
6 

fi(x) .E cot(~ixj) 
j=l 
fFi 
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, ie {1 ,2, .. ,6} , 

where the coefficients ~~ are 2.249x1o-2 , 2.166x10-2 , 2.038x10-2 , 2.0x10-2 , 

1.918x10-2 , 1.835x10-2 , for i= 1,2, .. ,6, respectively. With initia! guess X;= 75 and cor­
rect solution approximately (121.9 , 114.2 , 93.6 , 62.3 , 41.3 , 30.5 ). 

7+8 A discretization of the BVP 

(3.4.7) 
3yy +:Y2 = 0 
y(O) = 0 , 
y(l) = 20 ' 

, O<t< 1 , 

gives rise to the equations 

(3.4.8) 

2 ! 1 = 3x1 (x2 2x1) +x214 , 

fi = 3xi(xi+1-2xi+xi-1)+(xi+l-xi-1)
214 • 

In 3xn(20-2xn+Xn_1) +(20-xn_1)
2/4. 

, i=2, .. ,n-1, 

The solution of the boundary value problem is y = 20t3' 4 • The initial guess is xi 10, 

i = 1, .. ,n. For problem 7 n = 10 and problem 8 n = 20. 

We test the mixed Euler algorithm described in §3.3 on the problems considered in [AbBr] 
with M(x) -F1(x). As a measure for the amount of work we use the number of function 

calls (#j) plus m (= dimension of the system) times the number of Jacobian evaluations 
(#J). Only at problem 7 and 8 we multiply #J by 3, since the Jacobian is tridiagonal. This 
is also done in [AbBr]. We set the tolerances ATOL = RTOL = 10-1, i.e. we require the 

approximation of the path x(t) to have approximately one correct number. Of course this 
large discretization error may jeopardize the convergence of the process if the iterates 
stray off the correct path. On the other hand larger tolerances for the discretization error 
allow larger step sizes and hence require less function evaluations. For the tolerances 
RTOL =ATOL= w-1, the mixed Euler method converges for all eight test problems. 
The amount of function evaluations to obtain an approximation xi with error 
I r 1(x j)f(x 1) I < w-6, is listed in Table 3.1. Note that #J is equal to the amount of 
steps. 
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Results of the mixed Euler metbod forthetest problems with RTOL=ATOL=l0-1 

and required accuracy 10-'. 

I!Oblem no. 2 3 4 5 6 7 8 

#/ 13 28 9 111 23 18 18 24 

#J 11 16 6 31 13 JO 13 14 

#f+m#J 35 60 21 173 62 78 57 66 

Table 3.1 

We describe the performance of the mixed Euler method on the problems 1,2 and 4 in 
more detail. In Figure 3.3 we plot the path of the mixed Euler method for test problem 4, 

together with the curve on which J(x) is singular. The path runs very close to the singula­
rity curve. Since the Lipschitz constant of the Jacobian is large, the step size h; is deter­
mined by the Newton process on g(x;x i,h) ); the estimated discretization error is at every 
step smaller than the bound w-1(1 + I xl i). Indeed, if we apply the mixed Euler method 

to problem 4 with ATOL = RTOL = w-2, the process requires 32 steps, i.e. just 1 more 
than for the previous case. 

o- -o = mixed Euler iterates 

..... = singularity curve of J(x) 

Figure 3.3 
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Problem 1 and 2 are concemed with solving the same function (3.4.1) from two different 
starting points. The path from the flrst starring point (1,0) to the solution x* = (0,1) leads 

through a region without singularities of J(x) and with moderate sizes of the direction vee­
tors -r1(x)f(x). The mixed Euler approximation of the path with ATOL = RTOL = w-1 

is plotted in Figure 3.4 by a solid line; the iterates are marked with an 'x'. The path from 

the starting point ( -1,-1) leads through the fourth quadrant and runs close to a singularity 
curve (cf. the direction field Fig. 3.2). The mixed Euler approximation of the path is 

plotted in Figure 3.4. by a dasbed line and the iterates are marked with an 'o'. 

&--e----

singularity curve of J(x) 

-· 
... ~_ ....... -"'-0' .. 

x-x = mixed Euler iterates of problem 1 

o· -o = mixed Euler iterates of problem 2 
Figure 3.4 

In Table 3.2 we list information about the mixed Euler iteration on the secoud test pro­

blem. The step size hj is reduced in the third and fourth step, because the 'intemal' 

Newton iteration on g(x;:x:Ï,h} does not converge in 3 steps. This is due to the fact that x2 
and ~ are close to a singularity curve. Based on the size of the discretization error the 
step size never reduces, but it increases in steps 2, 7, 12, 14, 15 and 16. 



j k c(J) h x[1] x[2] 

0 0 1.7 1.0000000E+OO -l.OOOOOOOE+OO 

1 0 1.7 l.OE-01 -8.7461150E-Ol -9.7804973E-Ol 

2 0 1.9 8.1E-Ol -2.4989789E-01 -8.3995892E-01 

3 1.5 4.1E-01 3.0763125E-01 -5.6831302E-OI 

4 2 1.3 l.OE-01 1.3540093E+OO 3.0039046E-Ol 

5 0 1.5 I.OE-01 1.282490 I E+OO 3.4063594E-01 

6 0 1.5 l.OE-01 1.2139238E+OO 3.7755508E-OI 
7 0 1.5 1.2E+OO 8.3025972E-01 5.7794945E-01 

8 0 1.8 1.2E+OO 5.4915147E-01 7.1131096E-01 

9 0 2.1 1.2E+OO 3.4919992E-01 8.1044260E-01 

10 0 2.4 2.5E+OO 1.6708166E-01 9.0522819E-01 
11 0 3.0 2.5E+OO 6.8875102E-02 9.5984007E-Ol 

12 0 3.5 5.4E+OO 1.6043028E-02 9.9040489E-Ol 

13 0 3.9 5.4E+00 2.8480671E-03 9.9828467E-Ol 

14 0 4.0 1.7E+01 1.7000806E-04 9.9989720E-01 
15 0 4.0 4.4E+Ol 3.8169407E-06 9.9999769E-01 

16 0 4.0 2.8E+02 1.3509525E-08 9.9999999E-Ol 

number of function eaUs : 28 

number of Jacobian evaluations : 16 

Stop criterion : I F 1(xi1f(xj) I < w-6, 

Discretization error control : ATOL= RTOL = w-1. 

Table 3.2 

EST I F 1(x)f{x) I I xj-x* I b-l 

1.4E+OO 2.236E+OO 

3.0E-03 1.3E+OO 2.163E+OO 9.672E-Ol 

1.2E-01 9.3E-Ol 1.857E+OO 8.585E-01 

8.2E-02 1.6E+OO 1.598E+OO 8.607E-Ol 

l.SE-01 l.lE+Ol 1.524E+OO 9.536E-Ol 

5.6E-01 7.0E-01 1.442E+OO 9.462E-Ol 

1.7E-03 6.8E-Ol 1.364E+OO 9.460E-Ol 

3.7E-Ol 3.8E-01 9.314E-Ol 6.827E-01 

5.1E-02 2.8E-01 6.204E-Ol 6.661E-Ol 

4.1E-02 1.9E-01 3.973E-01 6.404E-01 
1.6E-01 9.9E-02 1.921E-01 4.834E-01 
4.2E-02 5.0E-02 7.973E-02 4.151E-Ol 

l.IE-01 1.4E-02 1.869E-02 2.345E-Ol 

2.0E-02 2.7E-03 3.325E-03 1.779E-01 

3.0E-02 1.7E-04 1.987E-04 5.976E-02 

4.9E-03 3.8E-06 4.461E-06 2.246E-02 

9.2E-04 1.4E-08 1.579E-08 3.539E-03 

j : number of time steps, 

k : number of changes in the step size hj during step j, 

c(J) : condition number of J(xj), 

0.3389 

0.2024 

0.3976 

0.4780 

0.5589 

0.5609 
0.3959 

0.4270 

0.4783 

0.4309 
0.5684 

0.6092 

0.8625 

0.9246 
0.9879 

0.9983 

EST : approximation of the discretization error according to (3.3.8), 

b-l := lxj-x*l ,and 't ; ... (b-1). 
lxj-l_x* I h 

~ 
~ 

0\ 
00 
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The last two columns show the behaviour of 

b-1 := lx1 -x* I 
lxi-1_x* I 

(3.4.9) 

cf. §3.2. As predicted by theorem 3.2.7, b-1 tends to zero if x i approaches x*. Moreover, 
the factor 't satisfying 

b = l+h't 
(cf. (3.2.7b)) converges to 1 = -!l[ -r1(x)J(x)]. 

We also compare the results of the mixed Euler method with the results from other expli­
cit integration methods as presented in [AbBr]. Table 3.3 gives the amount of work mea­
sured by #f+m.#J . This shows that the mixed Euler method performs better on all eight 
test problems, than the two explicit integrators used here and the trapezoidal rule. 

#f+m#J for the test problems 

ME 

RK3 

AB3 

PECE 

35 

64 

71 
133 

ME = Mixed Euler 

60 
89 
95 

157 

RK3 = third order Runge Kutta 

21 

55 

43 

115 

173 

334 

299 

337 

AB3 = Adams-Bashfonh variabie step method order 3 

PECE = Trapezoidal rule as described in [Bol 

62 

113 

109 

185 

Table 3.3 

78 
169 

127 

309 

57 
280 

221 

347 

66 

280 

229 

355 

Time stepping methods are introduced, because in some cases the convergence domain of 

Newton's method is too small for practical use. Hence for comparison we applied a ver­
sion of damped Newton : 

(3.4.8c) 

to the test functions. The damping factor 'J..1 is first chosen to be 'J..1 = min(2·'J..1_1 , 1), but 
if some object function does not decrease, 'J..1 is halved until it does or 'J..1 < w-3. In the 
latter case the process is terminated, which is denoted by FAIT... in Table 3.4 (N.B. the 

mixed Euler process on the test problems converged with a step size h1 ~ 10-1). 
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Three different object functions were used : 

( 1) I f(xnew> I • 
(2) I r 1

(Xold)f(xnew> ' ' 
(3) I F 1<xnew>ftxnew> I , 

where x01d is the last accepted Newton iterate and xnew is the update obtained using À.j • If 

the object function decreases the update is accepted. 

Table 3.4 shows the number of iterations necessary to reach convergence : 
I r 1(x j)f(x j) I ~ 10-6, for the three different object functions. Damped Newton's 
method with either object function could not solve the second problem, whereas our im­
plementation of the mixed Euler method converged in 20 steps. For the most reliable (and 

expensive) choice I r 1(xnew)f(xnew) I damped Newton failed to convergein three cases. 

Nurnber of iterations with darnped Newton 

I Axne..J I I r t<xo!dJI(x""..J I I r 1<x"",.)ltx"",.>l 

1 8 6 6 
2 FAIT. FAIT. FAIT. 

3 4 4 4 

4 ~ 50 23 FAIT. 

5 2 6 FAIT. 

6 6 6 6 

7 7 7 7 
8 8 8 7 

Table 3.4 

Condusion 
We have seen that the mixed Euler method has stability properties similar to those of the 
implicit Euler method. The price for this is a restrietion on the step size if we are far from 
the steady state. On the other hand every time step requires only 1 computation of the pre­

conditiooer M(x), so with respect to computational effort the method is cornpetitive with 
explicit integration methods. On approaching the steady state the step sizes can increase 
without jeopardizing stability or existence of the next iterate, yielding a superlinear con­
vergence rate. lf the preconditioner M(x) equals -r1(x) our algorithm tends asymptoti­
cally to Newton's method . 

• 



4 Preconditioned time stepping in combination with multiple shooting 

In chapter 2 we haveirlvestigated the multiple shooting method for non-linear BVP's. We 
have found that the resulting set of non-linear equations, denoted by f(s) = 0, may be very 
sensitive to changes in the vector s in the presence of exponentially growing solution 
modes of the BVP. This sensitivity may have a negative effect on the performance of 
Newton's method to solve /(s) = 0. Hence now we try to construct a more robust solution 
method, that better controls the influence of the growing modes. 

In chapter 3 we considered preconditioned time stepping for solving non-linear equations, 
not for f(s) specifically, but in a more general setting. In this chapter we focus on applying 
the time stepping method to f(s) and deriving a suitable preconditioner, if the underlying 
BVP has separated BC and its linearization at the solution is exponentially dichotomie. 
The idea for the preconditioner is partly inspired by the fact that we would like to have an 
appropriate information flow if a BVP is embedded into a hyperbolk (time dependent) 
system and it is partly based on a sensitivity analysis of MJ for changes in s, with J the 
Jacobian of f(s). 

In section 4.1 we derive a preconditioner M for the non-linear equations arising in multi­
ple shooting and prove that the logarithmic norm of M(s)J(s) is negative, if s is suffi­

ciently close to the solution. In the second section we investigate the sensitivity of MJ for 
changes in the shooting vector s. In the last section some numerical results of time step­
ping with this preconditioner are presented and are being compared with the performance 
of the (damped) Newton method. 
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§4.1 Construction of the preconditiooer 

In this chapter we investigate the use of preconditioned time stepping (cf. chapter 3) to 
solve the non-linear equation occurring in multiple shooting. The outline of the section is 
as follows. We start with the multiple shooting forrnulation for separated BC and give a 
decomposition of the Jacobian, leading to a sort of 'basic' forrn for the Jacobian. 
Subsequently we derive a preconditioner for this 'basic' Jacobian based on considerations 
about properly embedding continuons BVP's into hyperbolk time dependent systems and 
considerations about the influence of small changes in the Jacobian. Finally we adapt this 
preconditiooer to make it suitable for use in combination with the original Jacobian. 

Consider the BVP with separated boundary conditions : 

(4.1.1) 
{ 

: = h(x,y(x)) , 

g1(y(b)) = 0 and 

with g1 

a<x<b and 

that satisfies the following assumption. 

4.1.2 Assumption 

The BVP (4.1.1) is wel/-conditioned at its solution y*(x), the linearization at y*(x) is 
exponentially dichotomie and the space of growing solution modes has dimension n -p . 

• 
Reeall from §2.3 that application of the multiple shooting metbod to the BVP, starts out 
by choosing a grid 

(4.1.3) 

and defining non-linearIVP's locally : 

(4.1.4) { 
y = h(x,y(x)) 

y(xk) = sk 

, xk<x<xk+1 , l~k~N. 

, skeRn. 

The solutions of the local problems, if existing, are denoted by yk(x;sk ) ; y(x;s) is the 

function, defined on [a,b], that is equal to yk(x;sk) on (xk ,xk+l] and satisfies 
y(a;s) = y 1(a;s1). The veetors sk are deterrnined by 

(4.1.5) 

and /(s) defined by 
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(4.1.6) f(s) := 

Yt(xz;sl) - Sz 
y2(x3;s2) - s3 

Y~XN+l;sN) SN+l 
gl(SN+l) 

gz(si) 

73 §4il 

The salution of (4.1.5) that corresponds to y*(x) is denoted by s*. The Jacobian J(s)róf 

f(s) can be related to the linearization of (4.1.1) at y(x;s). Therefore we repeat the notation 
introduced in §2.3 about this. 

4.1.7 Notation 
The derivative of h(x,y) at yk(x;sk) is 

(4.1.7a) Lk(x;sk) := ~h(x,v)l , xk<x<xk+1 , 
dV V=Yt(X;Sk) 

and the derivatives of the boundary condition functions are 

(4.l.7b) 

Ba(s) , Bb(s) eRnxt1. For ke {1, .. , N}, the matrix function Yt<x;sk) is the fundamental 

solution of 

(4.1.7c) 

that satisfies Yixk;sk) =In . 

• 
The Jacobian J(s) of the non-linear multiple shooring equarion (4. 1.6) is given by 

Yl(xz;sl) -In 

Y2(x3 ;s2) -In 

(4.1.8) J(s) = ··. ·•. 

YN(XN+l;sN) -In 

Ba(s) Bb(s) 
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The large Lipschitz constant of J(s) (as established in §2.3) is due to the fact that the 

exponentially growing solution modes of the BVP are not properly controlled by the local 

initia! conditions. A frrst step towards constructing a preconditioner that reduces this 

effect, is to separate the growing and decaying modes. To this end the concept of 

consistent fundamental solutions (see § 1.2) can be used. Since the BVP is well-condi­

tioned and the BC are separated, it follows from lemma 1.2.15 that a fundamental solution 

can be constructed, whose frrst (n-p) columns span a space of growing solution modes. In 

section 2.1 we have sketched an onhogonalization process for the linearized multiple 

shooting equation that retains this propeny. Hence we choose an onhonorroal matrix Q1, 

that satisfies 

BaQl "' (O ~2)], 
0 Ba 

(4.1.9a) 

forsome full rank matrix Ba<2> eR.f'XP ( Q1 may for instanee result from a QU-decomposi­

tion of BaT' rendering a lower triangular matrix B}2> or Q1 may be such that Ba<2> "'lp). 

Subsequently we deterroine onhogonal matrices Qk as the QU-decomposition of 

(4.1.9b) Yk(xk+1 ;sk)Qk = Qk+1 U1 , k = 1 , .. ,N+ I . 

Writing the Jacobian in terros of the fundamental matrices Uk , can be realized by 

differentiating f(s) with respect to a transforroed variable. Define 

(4.1.10a) 

(4.1.10b) 

then 

( 4.1.11) 

df(s) = 
dQTs 

Q2U1 

BaQl 

Q := diag (Ql ,Q2, · · · · ,QN+l) • 

Q := diag{Q2,Q3, · · ,QN+l,In) • 

-Q2 

Q3U2 -Q3 

· .. ·. = Q· 

QN+PN -QN+l 

BbQN+l 

ui -In 

u2 -In 

·•. ·•. 

UN -In 

BaQl BbQN+l 

So in fact at every subinterval-endpoint xk+l the fundamental solution is decomposed into 

an onhogonal matrix Qk+l that contains information on the evolution of the directions of 

the various modes and an upper triangular matrix Uk , that contains inforroation on the 

growth behaviour of those modes. This growth behaviour can be described in terros of the 

dichotomy of the problem and so we can relate the magnitude of the elements of Uk to the 
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dichotomy constants. Let the upper triangular matrix Uk be partitioned into four blocks as 
in 

(4.1.12) with 

Reeall from lemma 2.1.15 that 

(4.1.13) and 

Note that the constant K of lemma 2.1.15 equals K, because the consistency constant L is 

zero for the particular choice of fundamental solution, we use. 

This shows that, as expected, both I Ek I and I Bk -l I become small as we integrate over 

larger intervals. The part Ck would be zero if the increasing and decreasing modes were 

orthogonal to each other. This is highly desirable, from a mathematica! point of view, as it 

would give a complete decoupling between the two modes. However, by a non-orthogonal 

local coordinate system transformation such a decoupling can be obtained. To this end we 

employ discrete Riccati-transformations, cf. §2.1, recurring backward from x= b. 

From equation (4.1.11) one can see that, due to the zero structure of BaQ1 and BbQN+l' 

non-singularity of the Jacobian J(s) implies non-singularity of the left upper block Bb(l) of 

BbQN+l : 

[ 
(1) (2)] 

B Q - Bb Bb B (l)E n(n-p)x(n-p) 
b N+l- ' b a · 

0 0 

In other words the endpoint conditions control the space spanned by the first columns of 

QN+l• i.e. approximately the space of growing modes. The endpoint conditions can be 

'concentrated' in the upper (n-p)x(n-p) block by a Riccati-like transformation, viz. if 

RN+l is defined by 

(4.1.14a) 

then 

(4.1.15) 

This type of transformation can be used to decouple the growing and decaying modes 

fully. If the Riccati-matrices Rk e R(n-p)xp are determined by the backward recursion : 
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(4.1.14b) for k=N downto 1 , 

then 

(4.1.16) 

Again this transformation can be interpreted as a change of the variabie to which f(s) is 
differentiated. Define the matrices 

(4.1.17) 

and 

(4.1.18) 

Then 

(4.1.19) df(s) = Q .5-1. 

dSQTs 

Bl 0 

El 

0 0 

0 B(Z) 
a 

-/n-p 

0 -lp 

Bz 0 

Ez 

-/n-p 

0 -I p 

··. ·. 
··. ·•. 

BN 0 -ln-p 

EN 0 -I p 

B(l) 
b 0 

0 0 

These transformations have created a complete decoupling of the growing and decaying 
modes. Moreover, the right most matrix of (4.1.19) can be interpreted as a discretization 
of two ODE's, one of dirneusion p with initia! conditions and another of dirneusion n-p 

with end point conditions. The decoupling is more apparent after a permutation of the 
variables. Define 
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ln-p 0 0 • 0 0 0 • . 
0 0 lp 0 0 

ln-p 0 0 0 

p := 
0 lp 0 

(4.1.20) 
··. 

. ·· . . 
ln-p: 0 

0 lp 

Th en 

(4.1.21) df(s) = Q s-1 p 
dPTSQTs 

----c•-••••••------J~----•••••••-•-••• 

' E1 -lp 

The right most matrix in this expression will be denoted by ], i.e. 

(4.1.22) 

This matrix is called the basic form of the Jacobian. At this point it is important to note 
that the matrices Q and S used in the decoupling depend on the vector s (although we did 
not make this explicit in the notation). Indeed, if Q and S were constant, this would mean 
that with respect to a transformed basis, the original BVP exists of two fully independent 
ODE's, one with initial conditions and another with end point conditions, i.e. the essenrial 
character of a BVP is not present. 
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We set out to find a preconditiooer M(s) such that the NP 

(4.1.23a) 

(4.1.23b) 

ds - = M(s)f(s) 
dt 
s(O) = s0 • 

, t>O , 

is asymptotically stabie at s = s*. In chapter 3 we saw that a sufficient condition for this is 

(4.1.24a) ~[M(s)J(s)] :::;; -a . 

Moreover, if B(s*;r0) denotes the largest hall such that 

s0 => lim s(t) = s• , 
f-')oo 

then theorem 3.1.18 gives a larger lower bound for r0, if 

(4.1.24b) max 
s,a e B(s•;R) 

IM(s)(J(s) -J(a)) I 
Is a I 

is smaller. Based on these considerations we will construct an appropriate preconditiooer 
M for Ï. Thereafter M will be adapted tosuit the original Jacobian J(s). 

We frrst concentrate on the requirement (4.1.24a). Based on the form of i, we consider 

how a totally decoupled BVP can be embedded into a time dependent partial differential 
equation. To this end we employ a simp1e model problem with n = 2 and p = 1, i.e. a 2-
dimensional BVP with 1 growing and 1 decaying mode : 

(4.1.25a) (
û(x) ) [l..l 0 ] (u(x) ) 
v(x) = 0 -À. v(x) 

,a<x<b ,À.,l..l>O. 

A properly scaled analogue of the linearized BC is 

(4.1.25b) v(a) = a , u(b) = ~ . 

These boundary conditions fit the dichotomy of the problem well. If we embed the ODE 
for u in a time dependent PDE, we obtain a hyperbalie system : 

(4.1.26a) iJu = 'Y (iJu -l..lu) 
dt dX 

, a<x<b, t>O. 

The sign of "{ bas to be chosen in such a way that the streamlines (or characteristics) of 

(4.1.26a) spread the information of the end point condition u(b) = ~ over the interval, i.e. 

'Y > 0. 

Since the ODE for v(x) has an initia! condition, in this case the streamlines should go 

from a to b, i.e. a well-posed hyperbolic problem for v(x) is 



(4.1.26b) 

with ö < 0. 

!t 
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, a<x<b, t>O. 

.,~s 
y•l ' 

' \ ' \ ' \ ' \ 
y•Z~ ... ',' 

' \ ' \ ....... ' \ ...... ' ... ,, 
x- b 

§4.1 

The size of the eonstants y and ö is not important, sinee they ean be absorbed in t, just 

eausing a sealing of (the artificial) time; there is no reason to have a different time sealing 

for the two equations. Henee we shall use 

y 1andÖ=-1 

for the embedding of the test problem. 

Let u,v e RN+l be veetors that eontain approximations in the grid points of u(x) and v(x), 

respeetively, i.e. 

"" = u(xk. ), vk. = v(xk.) . 
Define hk. := xk.+l - xk.. The discretization of (4.1.26) ean be done in several ways. Some 

simple methods like Euler (forwl!Id or baekward) and trapezoidal rule, all yield a system 

with a negative logarithmie norm, if a uniform grid is 

diseretization of (4.1.26) yields 

used. For instanee a frrst order 

(4.1.27) 

-1-!lh 1 0 
··~ · .. 

-1-J.l.h 1 . 
( ) 

-1: 
:, : =h-l--------- --------··;--::.ï····-----------

: 1-Àh -1 

·•. ··~ 

1-Àh -1 0 
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Usually, the approximations at the boundary points u1 and vN+l are incorporated in the 

inhomogeneity. Here we have chosen to keep them as variables and use the time-deriva­

tives : 

duN+l - h-l( A) 
-- - - UN+l -.., 

dt 

The reason for this is that the BC of the BVP are inherently part of the Jacobian of the 
multiple shooting metbod and that we want to establish a similarity between that Jacobian 

and the matrix used in this time-dependent system. Note that uN+l(O) = ~ and v1(0) = a 
lead to the steady states uN+l (t) = ~ and v1 (t) = a. 

The logarithmic norm of the matrix in (4.1.27) is equal to the largest eigenvalue of its 

symmetrie part (cf. App.C) and with the use of Gershgorin's circle theorem, one can easily 
derive that this is negative if h'J..e (0,2). 

The differential equation (4.1.27) can be rewritten as 

(4.1.28a) 

with 

(4.1.28b) 

and 

(4.1.28c) 

1 +J.l.h -1 

··~ .... . . . 
l+J.l.h -I: . 

1 : 
.. - ................... - - -- ....... - ... ,..I ............ - - .... - - - ............... "" 

D : = diag ( -1 , ... , -1, 1, ... , 1) .........,._.. 
(N+2)x Nx 

:1-Àh -1 

·.. ··~ 

1 

1-Ah -I 

0 

, N.B. in this case p = 1 and n-p = 1 . 

0 

0 

The matrix in the right hand side of (4.1.28a) corresponds to an approximation of J (cf. 

(4.1.21)), because (l+J.l.h) and (1-Àh), approximations of ellh and e-'Ah, respectively, fulfil 
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the same role as B" and E" in ]. 

Let i be the basic farm of the Jacobian obtained by applying the multiple shooting metbod 

to (4.1.25) and assume without loss of generality that Bic= exp(~") and Elc = exp( -Ah"). 
We see from the above that a dissipative system 

(4.1.29) ds --
- = MJs, 
dl 

can be obtained if 

(4.1.30) 

Then Mi has the following farm 

-B1 1 

·.. . .... 

-BN 1 

-1: 
(4.1.31) Mi= _ ............ ~ ..................... :-----·--··· ........ .. 

: -1 

..... ~ .. 

This choice for M does satisfy the requirement (4.1.24a). Let us now consider the other 

requirement, viz. that (4.1.24b) is moderately bounded. Suppose that the BVP (4.1.25) 

depends on a parameter s, for instanee 

(4.1.32) (~ ) [Jl(s) 0 ](u) . 
V 0 À.(s) V 

For any two parameters s and cr 

I M(s)(i(s) -i( a) b 
= ldiag(B1(s) -B1(cr), .. ,BN(s) -BN<cr),O,O,E1(s) -E1(cr), .. ,EN<s) -EN<cr)) lz 
= max (max( IBis) -B"(cr) b)). 

" 
IJ.L(s) -J.L(cr) 12 l).(s) -À.(cr) lz 

Suppose that and are moderately bounded, say by "(. Now 
Is-cr !2 Is cr b 
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the differences in Ek and Bk can be estimated by 

and 

IE k(s)- Ek( a) b = Ie -A(s)h,~:- e -À(o)h.t 12 Ie -À(s)hk ( 1 e (l..(s) -À(o})h,~:) 12 

= e -A(s)h.t 1 (À(s) -À(a)) lzhk + O(ls -a lih;) 

Syhke-A(s)h*ls-al +O(Is al;h;). 

IBk(s) Bk(a)l2 = le~(s)h*-e~(o)h*lz le~(s)h.t(l-/JJ.(o)-JJ.(s))h*)l2 

= eJJ.(s)h,~; 1 (Jl(s) -Jl(a)) lzhk + O(!s -a l~hi) 

SyhkeJJ.(s)h*ls al +O(Is al~h;). 

Hence the local Lipschitz constant for the Ek-components is of the same order of magni­

tude as y, but a simHar constant for the Bk-components may be considerably larger than y 
if Jl(s) > 1 and hk is not very small. If we want the Lipschitz constant of Mj to be of the 

same order of magnitude as y, the Bk-components should be scaled by, for instance, 

Bk -I(s). This leads to the following preconditiooer M: 

(4.1.33) 

In this case 

(4.1.34) Mj(s) 

-1 B-I; N: 
' 

-1 ; -...... -- .................. ~ .... : .. -.--.... .. .. .. .. .. --- ' 
: -1 

has again a negative logarithmic norm, because the symmetrie part of Mj{s) is diagonally 

dominant with negative diagonal elements. Moreover 
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(4.1.35) 

IM(s)(j(s) -j(a)) lz 1Bi
1
(s)(Bt<s> -Bt<a)) lz I Eis) -Ek(a) h 

--.,..-----,--- = max (max( I , I I )) 
ls-alz k ls-a2 s a2 

The preceding relations were derived for the discretization of the 2-dimensional model 
problem (4.1.25). Let us now return to the starting point, where j was the basic form 

(4.1.22) of the original Jacobian. The same idea's as used for the preconditioneT for the 
model problem can be used. If either p or n-p is larger than 1, Gershgorin's circle 
theorem may not be suitable to estimate the logarithmic norm of M.j, because 

I Bk - 1 I < 1 and I Ek I < 1 for sufficiently large interval sizes (cf. (4.1.13)) does not 
imply that any sum of absolute values of row elements is less than 1 as well. Instead a 
theorem from [St] can be used (cf. Appendix C) which requires the logarithmic norm of 
the diagonal blocks of M.j and the norm of the off-diagonal blocks. 

The boundary conditions require special attention. If (4.1.33) is used to precondition j, 
then in (4.1.33) the (N+l)st and (N+2td diagonal block would be -Bb(l) and -Ba<2>, 
respectively. Both blocks are non-singular and well-conditioned (see Appendix F). 

However, the sealing requirements on boundary conditions as made in § 1.1 do not 

guarantee that ll2,[ -Ba <2>] and ll2,[ -Bb O>J are negative. Hence it is more convenient to 

incorporate them in M and use 

(4.1.36) 

with 

(4.1.37) 

yielding -lp and -ln-p at the (N+l)st and (N+2)nd diagonal blockof M.J 

Note that the sealing of M with the Bk - 1-components, which was induced by a sensitivity 

analysis of M.j, is also favourable in estimating J12[MÏJ in a higher dimensional case; an 

estimate of I Bk - 1 I is available, but ll2,[ -Bk] < 0 may not be concluded from the requi­

rements on Bk . 

This preconditioneT M for the basic form of the Jacobian yields the following form of the 
product M.j, this matrix will be denoted by }: 
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I B -1 
- n-p 1 

··. · .... 

-1 
-ln-p BN 

(4.1.38) J := M] = 
-ln-p: 

-----····--------------~-··---····~------
:-lp 

4.1.39 Lemma 

-1 p 

··. · .. 

Let 0 < E < 1 and suppose that the intervallength xk+I-xk is sufficiently large so that 

(4.1.39a) 

Then 

(4.1.39b) 

Proof 
Applying theorem C.4 (see Appendix C) with the sarne partitioning of blocks as has been 
used in this section in combination with Gershgorin's circle theorem and the relationship 

J..Lz[.IJ = max { t I t e a((}+.P)/2) } gives 

with bk : { 18j 1
1z 

and ek := { IE; lz 

From this we obtain J..Lz[.IJ < 1 +E • 

• 

e +ek 
-1+ k-~ )) • 

if 1 s,ks,N, 

if k = 0 or k = N + 1 , 

if 1 $.k$.N, 

if k=O or k=N+1. 
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We now finally arrive at the original goal of this section, viz. to obtain a preconditionee 
M(s) for the Jacobian J(s) of the multiple shooting metboeL Since 

J = a~-lp •} ·PTSQT ' 

a natural choice for M would be 

M = T·A-1 pT .pT~aT • 

where T is a matrix, which we will choose such that IJ.:z[MJ] < 0. This choice for M yieläs 

(4.1.40) 

Now lemma C.S states that ll:z[Îl < 0 implies, that for every non-singular matrix V : 

llz[VTÎV] ~ IJ.2[Î]IV-1 1~2 . 

(i.e. the sign of the logarithmic norm is invariant under a congruent transformation). 
Comparison with (4.1.40) induces the choice 

(4.1.41a) 

i.e. 

(4.1.4lb) 

The logarithmic norm of MJ is estimated by the following theorem. 

4.1.42 Theorem 
Let 0 < e < 1 and suppose that the intervallength xk+1 - xk is sufficiently large so that 

(4.1.42a) I Ek 12 < e and 
-1 I Bk l2 < e · 

Let Ktin be the conditioning constant of the linearized BVP at y(x). Then 

(4.1.42b) 

Proof 

From lemma 4.1.39 we obtain IJ.2[Î] < -1 +e. Now we apply Lemma C.S (see Appendix 
C) with V := PTSQT, yielding IJ.:z[MJ] ~ ll:z[Îl I v-1 lz -2• One can easily prove that 

I Rk b <Kun (see Appendix F) and thus I v-1 ll < (Kun2 + Kun + 1), hence 

• 
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Conciosion 
Based on the proper information flow for the embedding of BVP's in hyperbolk time 

dependent systems and the requirement to reduce the sensitivity of MJ for changes in s we 

formed the preconditioner 

(4.1.43a) 

He nee 

(4.1.43b) 

The preconditioner essentially does three things : 

• 

- decouple the growing and decaying solution modes, 

place the initial conditions before the integration of the decaying modes (which is 

a more natural ordering), 

- invert the integration of the growing modes on every subinterval . 



§4.2 Comparison of the preconditiooer with -r1 

In this seetion we will eompare the preconditioner M(s) of the previous seetion with the 
Davidenko preconditioner -J-1 ; in partienlar we eompare their formola's and the ratio of 

(4.2.1) !M(s)(J(s) -J(cr)) I 
I-F1(s)(J(s) -J(cr)) I ' 

for any two veetors s,cr near s*. Additionally we investigate the form of J(s)-J(cr) for a 

simple problem in more detaiL 

Reeall from the previous seetion that 

(4.2.2) 

and 

(4.2.3) 

First we assume that Qk = Sk =In, ke {1, .. , N+l}, to obtain the 'skeleton' versionsof M 
and -J-1. In the previous section we found that the permmation matrix P (4.1.28e) ean be 

used to transform J into a block form, with the left opper block representing the integra­
tion of the growing modes and the right lower block representing the integration of 'lhe 

deeaying modes : 

(4.2.4) 

with 

BI -ln-p B(2) 
a 

(4.2.5) jll 
·•. ··. 

El -I 
and i22 = p 

BN -In-p ·•. ··. 
B(l} 

b EN -lp 

The inverse of J ean also be expressed in terros of i 11 and i 22 : 

(4.2.6) 

87 
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-(B~2)r 

( (2)r -EI Ba lp 

(4.2.7a) (-J22t = -E2E1(B~2)r E2 lp 

·•. ·•. 

( (2)r -ENEN-1··E1 Ba ENEN-1 .. E2 EN lp 

and 
(4.2.7b) 

B-1 B -1 B-I -1 -1 -1 -B;1 B;~ .. B Nl (Bbl) r - 1 - 1 2 -B1 B2 .. BN 

0 
-1 -B2 -1 -1 -1 -B2 B3 .. BN -Bil B3-~ .. B NI (Bbl) r 

··. 
( _ptt1 

B-1 - N -BN1(Bbl)r 

0 0 -(Bbl)t 

The matrix M reads 

(4.2.8) 

These relations show that, after an appropriate permutation, M is only the diagonal part of 

-r1
. Apparently the required minus-signs, derived in the previous section from the cor­

rect information flow in hyperbolic problems (and hence from the condition that the loga­

rithmic norm of MJ is negative), are naturally present in -r1• 

Lets and cr be two veetors in Rn(N+l) in the neighbourhood of s*. Define ö.J := J(s)-J(cr). 

Since the transformations Q and S are not necessarily suitable for ö./, we give the explicit 
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form of M in order to estimate I Mó.J I· 

0 0 

0 o: 0 
I 

----.--.·:----~i--

0 0: -B2 0 
I 

0 I : 0 0 
P• 

---·-----·------·-
(4.2.9) M= ·•. ··. 

... -........... -................. , 
i t -1 t 

; 0 0 :-BN 0: 
: I J 

:0 I i 0 0: 
! ... - .. /!. .. • ........... __ --~- .. ·-- --·-·- ................ --. 

: o o l-(B~l)r o . 
0 I : 0 0 

P; 

One can see that M picks up every blockin óJ exactly once, yielding 
(4.2.10) 

IMöJb 

~ max( I (0 I (B~2)tl )(B a<s) -Ba( a)) b' I <(B~l) r I O)(Bb(s) -Bb(cr)) 12' 

§4.2 

• maxI (B t1 I 0) (Yixk+l;s k)- Y k(xk+l ;crk)) l2 • I (0 IIHYixk+l;s k)- Y k(xk+l;crk)) b) ) · 
k 

lf we assume that I B0 (s) - B0 (cr) I and I Bb(s) Bb(cr) I are negligible compared to t1te 
differences in Yk(xk+l) (the latter difference will be of the order of magnitude of the condi­
tioning constant of the local IVP), then 

(4.2.11) 

In F 1öJ there is a build-up of errors, which originates from the fact that J(s) represents 
the integration of the BVP over [a,b]. Hence the difference between the p lowest rows of 
Y1(x2;s1) - Y1(x2;cr1) is 'picked-up' during forward integration of the decaying modes amd 

contaminates (in a darnped form) all subsequent F 1óJ components. Similarly are the up­

per (n-p) rows of Y~xN+1 ;sN) - YN(xN+l;(JN) present in all components F 1ó.J due :to 

backward integration of the growing modes. A closed form for the error in -J- 1öJ canrrot 

easily be obtained. However, I -r1öJ I may be up toN times larger I Mó.J 1. 
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Since we have assumed that Qk = Sk =In, the left upper (n-p)x(n-p) blockof Yk(x;s) con­
tains the growing solution modes. If I s-cr I is sufficiently small, we expoct that the same 

blockof Yt<x;a) also contains a major part of the growing solution modes of the corres­
ponding :BVP: D~e to the sealing of the local fundamental solutions the changes in the 

growing modes may be unpleasantly large. Fortunately, both M and -J-1 premultiply 

these changes by a damping factor Bk - 1• This worked well for the model problem used in 

§4.1. However, Bk-1 is not always able to control differences in Yk sufficiently, in particu­
larly not if the directions of the solution modes change. We will illustrate this with an 
example. 

4.2.12 Example 
Soppose that, aftera change of coordinate system, J(s) is a discretization of the BVP 

(4.2.12a) i= Az with A 
[

1.1 0 0 l 
0 V 0 

0 0 -À 

, Jl,V ,À> 0 and 1.1 > v , 

with boundary conditions 

(4.2.12b) 
[

0 0 0] [1 0 0] 0 0 0 z(a) + 0 1 0 z(b) = ~ 
0 0 1 0 0 0 

To simplify matters we assume that À,Jl and v do not depend on x. The situation may 
occur that for some er, near s, the Jacobian J(cr) with respect to the same coordinate sys­

tem as J(s), can be viewed as the discretization of 

(4.2.12c) 
[

c -d 0 J 
with Q = d c 0 

0 0 1 

The left upper block of Q is a plane rotation (we use d, instead of s to denote the sinus­

value to prevent confusion with the shooting vector s). Generally the values of À,Jl and v 
will have changed as well, however, this type of changes has already been considered in 

§4.1, here we want to concentrate on the effect of changes of direction. The difference in 
the BVP' s can be estimated by 
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cd(v -J..L) 

v -c2v -d2J..L 

0 

§4.2 

In a multiple shooting context this difference is bounded by KI s-a 1. with 1C an upper 
bound on the conditioning constants of the IVP's on the subintervals. The difference in the 
fundamental solution Yk(x) can be described by 

Yk(xk+I ;s) Yk(xk+1 ;a) = eAhk QeAhkQT 

[
(1 c 2)ellhk-d2evhk -cd(eiJ.hk evhk) 0] 

= -cd(ell:k-evhk) (I-c2)ev;k+éellhk. ~ · 

The second row of this difference contains d· exp(J..Lhk. ). This term will be large for large 

[

eJ.lht 0 l 
J..L and since Bk = , we see that premultiplication of the difference in Yixk+l) 

0 evhk 

[
B-

1 
0 l by ~ 
0 

reduces the difference in the second row by a factor exp( -vhk) only. Hence 

if all subintervals have the same size 

e<v.-v)h 
!Möllz = cde<v.-v)h = 1C Is-al 

J..L-V 

and 

N-I (Jl-V)h 1 _e-v(b-a) 
1-riöJ lz = cde<v.-v)h L e-vjh = JC_e__ Is -a I 

j-"'0 J..L-V 1-e-vh 

I-e-v(b-a) e<v.-v)h 
=N ·IC !s-a!. 

v(b-a) J..L-V 

• 
This example illustrates that small changes in the directions of the growing modes may 
cause an error in Bk(s) Bk( a) which is not controlled by Bk -I(s). The adverse effects on 
I M&l I of changes in the directions of the solution modes may be overcome by multi­
plying the preconditiooer M by a factor exp( -J..Lh). However, 

J..Lz[ e -v.h M J] = e -v.h llz[ M JJ ' 
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i.e. the logarithrnic norm will be closer to zero. Consequently the premultiplication does 
not result in an enlargement (or reduction) of the size of the convergence area of 

ds 
- = M(s)f(s) , 
dt 

as described in lemma 3.1.18. Although this example assumed a simple structure of the 
solution space, similar effects may well occur for more complex BVP's. 

The structure of Mand -r1 as depicted in (4.2.8) and (4.2.6),(4.2.7) is valid if 

Qk = Sk = In . Otherwise the situation is more complex. Let -J-1 and M be partitioned 
into (N+1)2 square blocks of size nxn: (-r\j and (M);j respectively. And let the ortho­
gonal matrices Qk be partitioned according to 

(4.2.13) Qk = (Qk,l1Qk,2). 
H H 

n-p P 

Some calculus shows that 
(4.2.14) 

and 

(4.2.15) 

T -1 T T 
(Q·l+Q· 2R. )B. (Q. ll+R· IQ. 1 2) I, t, l l I+ , l+ t+ , 

Q. 2Q'T2 l, l, 

(M);,j = < o I -Q (s<2))-1) 1,2 a 

( (1))-1 
(QN+l,l +QN+1,2R~+l) Bb I 0) 

0 

' i =j ' 

' i= j+1 

,j=N+1,i 1, 

, i=j=N+1 

, otherwise 

The preconditioner M is sparse, in particular for larger values of N, while -J-1 cannot be 
expected to have a special zero-structure. The block diagonal and the first lower subdiago­
nal of M and -J-1 are not identical unless Rk = 0, i.e. the subspaces of growing and 
decaying modes are orthogonal. The difference between the two matrices can be inter­
preted as follows. Let Z(x) be the fundamental solution on [a,b] of the linearized BVP of 
(4.1.1) at y(x;s), such that 
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Z(a) = Q1 • 

According to the consistency theory in §1.2, the fliSt n-p columns of Z(Ç) span the space 

of growing modes integrated up to x = Ç. From the relationships between Qk and Rk one 
can derive that 

(4.2.16a) 

(4.2.16b) 

range (Z(xk)(I -P)) = range(Qk,l), 

range(Z(xk)P) = ker(Qk~l +RkQ;2) = range(Qk.l +Qk,2R;)l_ 

= range(Qk,2 -Qk,IRk), 

with P = [ ~ ~). (see Appendix F). Hence the diagonal blocks of M project into the O>b­

space orthogonal to the subspace of decaying modes, while the diagonal blocks of -r1 

project into the space of growing modes (both subspaces are equal iff Rk = 0). 

Condusion 
On comparing the preconditioner M with -r1, we have seen that Mis a part of -J-1, if 
the subspaces of growing and decaying modes are orthogonal. The matrix M treats the dif­
ferences in the fundamental solutions (as present in öJ) locally, whereas -J-1 transpons 
them either to the begin or end point of the interval. Due to the 'local' nature of M, we 
may expect that for s,cr near s*, the value of 

IM(s)(J(s) -J(cr)) I 

Is-cr I 
may be up to a factor N smaller than 

• 

I-F1(s)(J(s) -J(cr)) I 
is-crI 



§4.3 Numerical results 

The idea of preconditioned time stepping with the preconditioner presented in the previous 

sections is implemented in a code called TS. We compare this code with two other mul­

tiple shooting codes, viz. MUSN and RWPM (see [AsMaRu,MaSt], [HeBe] resp.); both 

use variants of Newton's method to solve the non-linear equations. The results, presented 

below, indicate that the time stepping algorithm can increase the convergence domain, 

somelimes even on problems that, though well-conditioned, do not satisfy the conditions 

of Th.4.1.42. 

In the TS-program the required toleranee for the solution is denoted by TOL. The conver­

genee criterion used is I M(s i)J(s i) lz < TOL or I M(s i)J(s j+l) lz < TOL, where J(s) 

must be evaluated with an accuracy smaller than TOL. The program employs the precon­

ditioneT M(s) defined in the previous section and uses the mixed Euler method 

(4.3.1) 

for time integration. The discretization error hereof is bounded by the user prescribed tole­

rances ATOL and RTOL for the absolute and relative error, respectively. Basedon these 

tolerances the TS-program de termines the step size h1. The iterate s i+ 1 is obtained by a 

modified Newton's method using the Jacobian at s 1 only and not at any intermediate 

point. We want to approximate s j+l with a toleranee NTOL. If this is not obtained within 

three iterations the step size hi is halved. This process continues until a sufficiently accu­

rate approximation of ~+I is obtained or hi drops below a (user set) minimum value. Since 

the path s(t) is foliowed with an error ATOL + RTOL I si I it would be overdone to ap­

proximate si+I with an essentially smaller error. Hence we set 

NTOL = min( ATOL + RTOL I s i I, w-2); the latter term is used to guarantee at least 

two correct numbers in si+l. 

The local IVP's on the subintervals are integrated using RKF45 as implemented in MUSN. 

This process is controlled by a parameter ER. During the RKF45 integration we require 

the discretization error to be less than ER (1 + I si i); i.e. ER is a combined absolute 

and relative tolerance. Of course this toleranee has to be less than the required toleranee 

TOL for the solution of the BVP at the end of the time stepping process. However, if the 

vector si is still far from the solution a small value of ER will require more work without 

increasing the convergence speed considerably. Most components of J(s) contain the diffe­

rence between two solutions of local IVP's, hence cancelation will reduce the amount of 

accurate numbers in f(s i), once si is close to the solution s*. Since at every step j(s iJ 
should have at least 1 or 2 significant numbers, the toleranee ER should be at most the 

error in si divided by a safety factor, which we chose to be 100. Hence the user has to 

give an initial value for ER and during the process ER is taken as the minimum of its pre 

94 
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A good indication for the computational costs of BVP-solving algorithms is the number óf 

evaluations of the function defining the field of directions of the BVP (h(x,y) in (4.1.1)). 
In the tables in this section this quantity is denoted by ttri0 n-calls (N.B. this is not equal \l:o 

the number of timesf(s) is computed). 

4.3.2 Example 1 

Consicter the problem attributed to Troesch [Tr] 

(4.3.2a) 
ï(x) "" À.sinh(Àz) 
z(O) 0 , 
z(1) = 1 . 

,O<x<1, 

This bas been used as a test problem by many authors (e.g. [DePeRe,ScWa]). The lineati­

zation of this problem at its exact solution is exponentially dichotomie with growth factors 
are of the order of magnitude of Àef.. and Àe -\ respectively. Due to this, forward integra­

tion becomes inaccurate over longer subintervals and the non-linear function f(s) is very 

sensitive to small changes of the starting vector s j in the direction of the growing mode; 

in fact the localNP's are ill-posed, in particular at the end of the intervaL 

We look at the effect of choosing too large initial values sj and uniform (i.e. non-optimal) 

subintervals for rather small values of À (À s; 5). For the parameters we choose ATOLc= 
RTOL = 10-1, ER = w-3 and set the required toleranee TOL = 10-6. The initial guess to 

the solution is 

(4.3.2b) z(x) = x , i(x) = 1 . 

The results (see table 4.1) clearly show that if the Newton's metbod works it requires less 

iterations and function calls than time stepping, as bas to be expected. However, the time 

stepping algorithm can solve the problem on coarser grids, i.e. for more difficult cases. 

For all choices of À the upper triangular matrices Uk (see (4.1.12)) satisfy the condition 

that I Bk -l I < 1 and I Ek I < l, and coarser grids gave smaller values, i.e. the IVP 

ds 
- = M(s)f(s) 
dt 

, t > 0. 

is stronger attractive. This does not appear from the number of required iterations, because 

for coarser grids the initial value of I M(s)f(s) I is larger and the step size hj increases 

slower, since the Newton process to solve (4.3.1) requires a somewhat more carefb.l 

treatment 

However, it should be clear that once the time stepping method has reached a reasonably 

small residual, one should switch to full Newton in practice; this would make the compie-
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xity for the combined metbod lower (on top of its, more important, better convergence 

behaviour). 

Troesch problem; TOL = to·' 

MUSN TS 

À subint i ter result m'011-calls steps result #t""-calls 

2 1 3 fail 3, 350 21 conv 3, 228 
2 5 3 conv 2, 923 18 conv 5,027 
3 5 6 fail 16, 955 23 conv 10, 314 
3 10 4 conv 6, 710 22 conv 13, 684 
4 10 11 fait 38,625 32 conv 35,482 
4 15 6 conv 12, 978 30 conv 36, 831 
5 15{17)* exp.overflow 52 conv 73,002 
5 20(22)* 11 fait 80,787 50 conv 83,000 
5 25 11 conv 55, 875 51 conv 93,050 

+ The code added two shooting points near x= 1, since the increase over the subintervals exceeded 1o2 

Table 4.1 

4.3.3 Exarnple 2 

The following problem bas been proposed in [Ho] and describes the flow between two ro­

tating discs 

(4.3.3a) 

:h Y2 • 

Y2 "" Y3 • 
. (3-n) 2 2 

Y3 = --
2
-Y1Y3 -nh + 1-y4 +SY2 

Y4 = Y5 , 

, O<x<oo, 

Y5 = -<3
;n)Y1Y5-(n-1)Y2Y4+s(y4-1) • 

with boundary conditions 

(4.3.3b) 

In practice a (large) value L is taken as endpoint of the interval. Both in [RoSh] and 

[DePeRe] (4.3.3) is used as a test problem with the parameter set n = -0.1, s = 0.2. 

In [RoSh] L = 11.3 is the largest endpoint for which convergence is reached using conti­

nuation inL. The algorithm proposed in [DePeRe] can solve the BVP by continuation in L 

for L ~ 15 with forward shooting and L ~ 132 with backward shooting. This different 
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behaviour of forward and backward shooting is due to the fact that the growth factor of 
the strongest growing mode is essentially larger than the absolute value of the decay factor 
of the strongest decaying mode. Hence local end point value problems are less ill-conditio­
ned than initial value problems. Using as initial guess 

(4.3.3c) Y2 = Y1 ; Y3 = Y2 

Y5 = Y4 • 

the codes tested bere do not encounter this problem. 

As the solution mainly shows activity near its initial point, we choose a grid which is 
basically uniform, but for its first subinterval which is halved. We use three different 
codes to solve this problem, viz. MUSN, the TS-code and RWPM and look for the coars­
est grid on which a solution was obtained with accuracy 10--6. For the TS-code the para­
metervalues were ATOL= RTOL = 10-1, ho= 10-1, ER 10-1. Although the linearized 
problem has three eigenvalues with negative real part, the rapid rotation of two decaying 

modes caused I Ek I to exceed 1 on more than half the subintervals. Nevenheless conver­
genee was reached quite easily (in about 20 to 30 steps) even on coarser grids, than either 
of the two other codes could handle. 

L Least number of subintervals required 

MUSN RWPM TS 

12 13 7 6 

15 20 9 8 
20 27 12 10 
30 39 18 14 

132 169 73 58 

Table 4.2 

An even more interesting picture occurs if we plot the amount of BVP-evaluations versus 
the number of gridpoints for a fixed value of L (L = 15 in Figure 4.1). Even though the 
TS-code used is not optima! (it does not switch to the Newton metbod near the conver­
genee point) it performed cheaper than RWPM for coarse grids. This is due to the fact 
that for those grids over 90% of the iterations in RWPM are damped Newton steps with 
damping factor between 10-4 and 10-3. For finer grids the Newton algorithm in RWPM 
speeds up considerably, whereas the TS-code does not require essentially less steps. This 
illustrates that the time stepping algorithm does not only serve its purpose of enlarging the 
convergence domain, but can occasionally even reduce the computational costs. 
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• 

Next we want to see the effect of using different values of ER, i.e. the accuracy with 
which the local IVP's are solved. To this end we solve the BVP's (4.3.3a,b) with 

L 11.3, n = -0.1, s = 0.2 and (4.3.2a) with À.= 4 with the time stepping algorithm for 
various values of ER with 10 equidistant shooting points, required toleranee TOL = 10-6, 

initial step size h0 = O.l, initial guess (4.3.3c), (4.3.2b) resp. and ATOL= RTOL = w-1 • 

The results are shown in Table 4.3 and 4.4 respectively. 

For both test problems the number of time steps did not vary significantly for different 
values of ER. For larger ER the norm of the residual M(s j)f(s j) reduces ju st a little more 

slowly. The value of ER bas considerable influence on the amount of f ion_calls, since a 

smaller initial value of ER stands for a more accurate computation of Yk(x;sk ). 
In order to decrease the amount of work, one should try to minimize the number of f ion_ 

evaluations and hence choose a large ER. However, this does harbour the danger of diver­

gence of the process, especially for sensitive problems. 
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Time stepping algoritbm for (4.3.3a,b) wlth n = -0.1 ; s = 0.2 ; L = 11.3 

ER steps M'""-calls IR~:, ,_ max(diag(B_. -t)) max(diag(E_.)) 
w-t 19 26, 965 [1.9 ' 2.9] [0.6' 0.9] [1.7 ' 2.2] 
w-3 19 28, 784 [1.9' 2.9] [0.6' 0.9] [1.7' 2.2] 
w-s 19 36, 527 [1.9 ' 2.9] [0.6' 0.9] [1.7' 2.2] 

Table 4.3 

Time stepping algoritbm for (4.3.2a) with À 4 

ER steps #f'0 "-cal1s IR_. lmax max(diag(B~:, - 1)) max{diag(EJ:,}) 
w-1 30 28, 849 42' 15 0.92 0.92 
w-3 31 30,393 58' 15 0.92 0.92 
w-s 31 35,424 58' 15 0.92 0.92 

Table 4.4 

The fourth column shows lhe development of the maximum of I Rk. I during the process. 
This illustrates quite clearly lhat lhe decoupling of lhe growing modes is much better for 
Holt's problem than for the Troesch' problem. Additionally we tabulate the range of the 
maximum values of the diagonal elements of Ek. and Bk.-! at the various steps, these are 
indicative for I Ek. I and I Bk. -I I resp .. This shows that lhe conditions of Th.4.1.42 are 
satisfied for Troesch' problem, but not for problem (4.3.3a,b). 
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5 A generalised multiple shooting metbod 

In chapter 2 we described the multiple shooting metbod for non-linear BVP's and mentio­
ned that in the presence of exponenrially growing modes problems may occur, like non­
existence of local solutions, serious error amplification and/or a small convergence domain 
for Newton's method. The souree of tbis trouble lies in tbe use of initial value condinons 
for the local problems, which are not able to control growing modes properly. 

Some global methods do not encounter tbe unpleasant features mentioned for IVP 
methods; global metbods, however, may require a larger amount of memory space. There­
fore it is an attractive idea to combine the virtues of both classes. To tbis end the interval 
[a,b] is divided into subintervals, but now boundary conditions (rather than initia! condi­
tions) are defmed for a local solution. In particular, one should try and solve these local 
BVP by a 'global' metbod rather than an IVP method. This idea has the following advan­
tages. First it results in a more economical memory usage and it renders a potential paral­
lel feature as well. Second it allows for tbe better convergence and stability properties of 
global metbods and third, as a useful byproduct, it gives an opportunity to 'localize' un­
pleasant non-linearities, while at tbe same time tbe coarse level non-linear equation might 
become 'easier' to solve. 

The outline of this chapter is as follows. In the frrst section we describe the proposed 
metbod in more detail and address the choice of local boundary conditions. Local conver­
genee of the metbod is proven in §2 and a toleranee strategy based upon this proof is 
given. As we have two types of non-linear problems, viz. a sequence of local BVP and a 
global equation, it is also investigated how these two interfere. In section 3 we describe 
our implementation and give some numerical results. The chapter is concluded by some 
considerations about parallel implementation of the method. 
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§5.1 Unbiased multiple shooting 

In the section 2.3 we have seen that the convergence domain and behaviour of the 

Newton's method, as applied in multiple shooting processes, is influenced by the condi­
tioning constant of the local problems. This renders the idea that the convergence beha­

vioor may be improved by defining well conditioned boundary value problems on a set of 

subintervals insteadof IVP's as is done in ordinary multiple shooting. So in order to solve 

the BVP 

(5.l.la) 
(5.l.lb) 

y = h(x,y) , a<x<b, 

g(y(a),y(b)) = 0 , 

the interval [a,b] is divided into N subintervals [xk ,xk+1], 1 :s;; k :s;; N, with 

a = x1 < x2 < .. < xN+! = b . 

On each subinterval we seek to solve (with a global method) the BVP 

(5.1.2a) 
(5.1.2b) 

y = h(x,y) 

Ak lim y(x) + Bk lim y(x) = sk , 
x.!xk xixk+l 

with ske R11
• The local BC should be such that (Ak I Bk) is of full rank and has orthonor­

mal rows (cf. assumption 1.1.16). The solutions of the local problems, assuming they 

exist, are denoted by yt<x;sk ); y(x;s) is the function, defrned globally on [a,b], that is equal 

to yt<x;sk) on (xk ,xk+!] and satisfies y(a;s) = y1(a;s1). An approximation of yk(x;sk) will 

be denoted by zk(x;sk) and z(x;s) will he defined similar to y(x;s) as the concatenation of 

the local approximations. The unknown veetors have to he determined, such that y(x;s) is 

continuous and satisfies the boundary conditions. Hence they have to he the solution of a 

set of equations similar to the ones used in the 'original' shooting metbod (see (2.1.6), 

(2.1.7)), viz. 

(5.1.3) 

and j(s;z) defined by 

(5.1.4) f(s;z(x;s)) := 

z1(x2;s1)- z2(x2;s2) 

zix3;s2) z3(x3;s3) 

ZN-!(XN;sN-1) - zN(xN;sN) 

g(zl (xl ;sl) ,zN(xN+l;sN)) 

As in the ordinary multiple shooting method, the Jacobian of j(s;z) can be formulated in 

terms of a linearization of (5.1.2). The notation used will be similar to the one used in 

102 
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chapter 4. However, in the previous chapter the linearizations were fully detennined by the 
shooting vector s (which referred to a solution of the local IVP's). Here we use additional­
ly the linearization at functions that do not satisfy the ODE (5.l.la) or (5.1.2a), for instan­
ee splines approximating a solution of (5.1.1). therefore wedefine the notation anew. 

5.1.5 Detinition 
The derivative of h(x,y) on a subinterval [xk .. ~hd with respect to its second argument at a 

function wk(x), which is continuous on the subinterval, is denoted by 

(5.1.5a) 

The fundamental salution Yk(x;wk(x)) of the linearized system on [xk ,xk+l] is a salution of 

the ODE 

(5.1.5b) 

satisfying the boundary conditions 

(5.1.5c) 

And the derivatives of the boundary condinons are 

(5.1.5d) Ba(w(x)) := êJg(u,w(b)) I 
du u=w(a) 

and Bb(w(x)) :"' êJg(w(a),v) I . 
ê)v v"'w(b) 

N .B. We suppressed the functionul dependency of Yk with respect to Ak and Bk as this 

would be apparent from the context . 

• 
The Jacobian J(s;z) of f(s;z) can be fonnulated in tenns of Yk(x;z) : 

-Yz{xz;z) 

Yz(x3;z) -Y3(x3;z) 

(5.1.6) ·•. ·•. 
YN-l(xN;z) -YN(xN;z) 

Ba(z)Y1(x1 ;z) Bb(z)Y tv<,xN+l ;z) 

One can easily prove that Theorem 2.3.9, which gives an estimate for the Lipschitz con­
stant of the Jacobian in tenns of the conditioning constant of the local problems (5.1.2), 
also holds for this more general fonnulation of shooting. In particular for exponentially 
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dichotomie BVP a correct choice of the local BC will reduce the conditioning constant of 

(5.1.2) considerably, thus increasing the convergence area of Newton's metbod for f, ac­

cording to tbe Newton-Kantorovich theorem. In [dHMa85] and [AsMa] this formulation of 

the shooting metbod was used to analyze the convergence and stability of finite difference 

methods in a linear context. Here we investigate tbe actual implementation of this genera­

lisation of multiple shooting. First of all we see that if A1 -:~; 0 and B1 -:~; 0, a BVP with 

linear boundary conditions is defined on every subinterval. Now it may seem unwise to 

replace one problem by N problems of the same type with additional unknowns s1 , 

1 s; k s; N. However, there is some merit in this splitting, as we shall show now. 

We just pointed out tbat tbe use of ordinary multiple shooting may be disadvantageous. 

Hence for solving the 'local' problems we only consider tbe use of global methods, i.e. 

finite differences or collocation. A divide and conquer metbod is the following Unbiased 

Multiple Shooting (UMS) algorithm. 

5.1.7 UMS-Aigorithm 

• 

- given an initial estimate for y*(x;s*), compute tbe vector s0 from (5.1.2b). 

- while I f(s j;z j(x;s j)) I is not sufficiently small 

do begin 

(Al) on every subinterval compute by collocation or finite differences, a 

new approximation z j(x;s ~ to the solution of (5.1.2) for the new 

value s j, with zj-1(x;s j-1) as initia! guess and compute an approxi­

mation of the fundamental solution of tbe linearized BVP at zj(x;sj). 

(A2) compute the residual vector f(s j;z j(x;s j)) and perform a Newton 

iteration rendering s j+ 1 • 

The two steps (Al) and (A2) do not have an equal status. An important difference is that 

everyupdate of s requires a new approximation to the solution of (5.1.1), i.e. at every ite­

ration only one update on s is made. On the otber hand in step (Al) the vector s is kept 

fixed and obtaining a new approximation z j(x;s j) may require several Newton iterations or 

even choosing a new local collocation grid. In fact (Al) may stand for a call toa colloca­

tion algoritbm and will generally contain what we henceforth shall eaU an 'inner' iteration 

loop (as opposed to the 'outer' iteration on s). 



105 §5.1 

Notice that at step (Al) every subinterval can be treated completely separately. Thus a 

major part of the memory needed for the collocation or finite difference process at one 

step can be used again at the next one, as we only store information about z(x;s) and not 

about the linearized system. In this way it may be possible to handle more difficult pro­

blems, that would otherwise require more memory storage. 

On the other hand step (Al) lends itself to implementation on a parallel computer in a 

more or less straightforward way. For every vector s j the local BVP's on the subintervals 

can be distributed over the available processors. This could be combined with a stabie 

parallel algorithm to solve the linear equation J~ = -f, for instanee the one described in 
[AsPC] or [Wr]. 

One may also encounter a situation where the problem at hand has a few regions where 

the problem is essentially more difficult than elsewhere. This may be due to a locally poor 
initia! guess or to local sensitivity of the BVP. When a collocation code is applied to the 
BVP on the entire interval, the internat Newton solver may require a considerable amount 

of iterations. If the interval is split into smooth regions and more difficult ones, application 

of the same code will generally require only a few iterations on the smooth regions; at the 

same time it is to be expected that solving the BVP on the difficult subintervals does not 

take more iterations than solving the BVP on the entire interval. However, these iterations 

for the former require less function eaUs and the solution of smaller linear systems. So the 

unbiased multiple shooting algorithm can reduce the computational costs of solving a 

BVP, provided that determining the 'shooting vectors' sk is not too expensive. A nice class 
of such BVP's is given by singularly penurbed problems, where a reduced solution (i.e. 

the -outer- solution of the reduced problem) is easy to find. We shall demonstrate this by 

the following example. 

5.1.8 Example 
Consider the singularly penurbed BVP, cf. [O'Ma], 

(5.1.8a) 
(5.1.8b) 

eji = y-y3 , O<x<l, 
y(O) = 0 , y( 1) = 0.5 . 

The stabie limiting solution for e .!. 0, 

(5.1.8c) 
, if 0 ~x ~0.5 , 
• if 0.5 ~ x ~ 1 , 

has a discontinuity in its frrst derivative at x = 0.5. We solve this BVP by the collocation 

code COLNBW cf. [BaAs] on the entire interval and by the UMS algorithm (for details on 

the implementation and funher comments see §3) up to a toleranee 10-6. The reduced so-
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lution (5.1.8c) is used as initial guess and the local boundary condinons were the analogue 
of (5.1.8b), i.e. 

[
I o] [o o] A = B = 

k oo'k to· 

The fmt order approximation of the solution is used to choose two grid points X2 and x3 
on either sides of the 'crack' x = 0.5 such that the estimated error in sk is less than the 
required toleranee w-6. In the UMS algorithm with Ee [10-2,10-4] no iterations on s are 
neededas the norm of the frrst update on s is already less than w-8. The results are listed 
in the Table 5.1 and 5.2 . The column 'memory use' states the number of double precision 
places (in standard IBM Fortran) required for the collocation algorithm; the additional 
memory used for integers is negligible. The UMS algorithm saves about 35% to 75% on 
both function evaluations and memory use. 

UMS on (S.l.8a,b) with tol = Io-6 

E memory use 

10-2 0.380 0.620 9728 
10-3 0.485 0.515 14592 

104 0.499 0.501 14592 

COLNEW on (S.l.Sa,b) wlth tol = 10-6 

• 

E 

w-2 
w-3 
w-4 

memory use 
14592 

58368 

58368 

#f-calls 

4578 

13140 
13500 

lst 
18 

18 

18 

Table 5.1 

Table 5.2 

#f-calls 

2nd 

2968 

3366 

3414 

3rd interval 

30 
22 

22 

An important issue in our algorithm is the choice of the local boundary conditions (BC's) 
in such a way that the local BVP's are well-conditioned. Occasionally local BC's are pro­
vided naturally by the problem (e.g. (5.1.8a,b)). If we do not have sufficient understanding 
of the srructure of the solution space of the BVP, then it advisable to choose non-separated 
BC, because separated BC increase the risk of controlling a mode on the wrong side of the 
interval. The choice 
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(5.1.9) Ak =Bk= In 
often proves to be an acceptable one. Indeed, if the solution modes show only small chan­

ges in direction, we do not expect any cancelation effects to occur in 

AkYk(xk) + BkYk(xk+l). However, the complexity of most algorithms for collocation and 

finite differences reduces considerably if the boundary conditions are separated. This can 

of course be done by adding as many auxiliary variables as there are coupled BC, see 

[AsRu]. An alternative is to compute separated boundary conditions, according to .a 

metbod formulated in [dHMa87], which we describe below. 

Suppose we have an initial guess z0(x;s0) of the solution of (5.1.2),(5.1.9) and we are able 

to compute the fundamental solution Yk(x) of the linearized problem at z0(x;s0) (i.e. the 

BVP is not too ill-posed). Now let u,.;:..kvk T be the singular value decomposition of 

Yk(xk+1)Yk - 1(xk ). Note that this operation is not excessively expensive, since Yk(xk+l) and 

Yt<xk) have to be computed anyway for the Newton iteration on s and a SVD requires 

only O(n3) operations; this is essentially smaller than O(Nk n3), with Nk the number of col­

location grid points, required for solving the linear equations to update z(x;s) in the collo­

cation process. 

Now let p, 1 ~ p ~ n, be such that the singular values ai~ 1, for 1 ~i~ p, and ai< 1, for 

p+1 ~i~ n. According to [dHMa87]§3 the boundary conditions 

(5.1.10) and 

induce a BVP (5.1.2) on [xk .xk+tl with conditioning constant a + 4a2
, where a is the con­

ditioning constant of (5.1.2),(5.1.9). This can be unsatisfactory if a is large. However, the 

conditioning constant of (5.1.2),(5.1.10) can be related to that of the global BVP (5.1.1) at 

z0(x;s~ as is shown by the following lemma. 

5.1.11 Lemma 
The conditioning constant of (5.1.2),(5.1.10) does nat exceed K + 4~, with K the condi­

tioning constant of the /inearization of (5.1.1) at z0(x;s0). 

Proof 

According to lemma 1.2.8 there exists BC on every subinterval of [a,b] such that the con­

ditioning constant of the linearized BVP does not exceed K. The proof now readily follows 

from the fact that the product Yk(xk+l)Yk - 1(xk) is independent of the 1ocal BC . 

• 
In practice one bas to be careful when implementing boundary conditions such as (5.1.10). 

From a computational point of view it is preferabie to compute the SVD from one of the 

frrst approximations zÛ(x;s0) or z1(x;s1
). However, if they differ greatly from the solution 
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y*(x), both the directions and the singular values may be so inaccurate that the condition­

ing of (5.1.1) is not very good. This is demonstrared by the next example. 

5.1.12 Example 
Consider the boundary value problem, proposed e.g. in [Ho], 

(5.1.12a) 

YI = Y2 

Y2 = Y3 

Y3 = - <3;n) Y1Y3 nyÎ + 1 -y; +Sh 

Y4 = Ys 

Ys =- <3;n}Y1Ys (n-l)Y2Y4+s(ycl), 

with boundary conditions 

(5.1.12b) 

,O<x<oo, 

We apply the UMS algorithm to this BVP for the parameters n = s = 0.2 and L 60, with 

subintervals [0,5], [5,10], [10,30] and [30,60]. First we choose the boundary conditions 

At=Bt=ls 
This requires 6 'outer' iterations on s to obtain a precision of w-6• In the first and fifth 

iteration the singular value decomposition of Yk(xk+I)Yk - 1(xk) is computed. In both cases 

we find that 3 singular values are larger than 1, implying that the problem has three non­

decreasing modes. This seems to be contradicted by the global BC's, that have 2 end point 

conditions, indicating 2 nondecreasing modes. However, only 2 singular values are consi­

derably larger than I, ranging from -to2 at [0,5] to -106 at the last subinterval, and the 

third singular value is only just larger than 1. 
This yields four different sets of separated BC for the local BVP' s ; using the SVD results 

from either the first or fifth iteration and with either 2 or 3 initial conditions. 

Let Bk(iJ) denote the endpoint conditions on the kth subinterval resulting from the funda­

mental solutions obtained in the ith iteration with j initial conditions. Using thr~e initial 

conditions, convergence is obtained with the local BC resulting from the first iteration, but 

the computational costs are, as expected, higher than for the local BC resulting from the 

fifth iteration. The faiture on the last interval [30,60] with local BC resulting from the first 

iteration with 2 initial conditions can be viewed as a standard example of ill-conditioning 

due to boundary conditions. Namely, the BC resulting from the 5th iteration seem to give 

rather well-conditioned local BVP's, but the angle between the 3-dimensional subspaces of 

range(Bil,2)) and range(B4(5,2)) is almost 90°, i.e. there is a solution mode which is con­

trolled by B4(5,2), but not by B4(1,2). 
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In a parallel implementation the computing time for the UMS algorithm would be less 

than for the globally used collocation algorithm, when using the coupled BC Ak = Bk = Is 
or the BC resulting from the fifth iteration. However, the reduction of computational time 
would have been considerably larger if less iterations on the shooting veetors had been 
necessary, as we saw for the singularly perturbed BVP in example 5.1.8. 

The memory requirement for the UMS-algorithm for separated local BC is almost 45% 
less than for collocation on the entire interval. When using the non-separated BC 

Ak = Bk = Is, the memory use is considerably larger than for the other, separated BC. This 
is due to the fact that the collocation solver used needs separated BC; hence we have to 
add 5 trivial differential equations to create the separation artificially (see [AsRu]). Appli­
cation of COLNEW to each of the subintervals does not require more grid points for the 
coupled BC than for the other local BC. 

UMS applied to (5.1.12a+b), tol = 10--' 
#f-calls 

iter [0.5] [5,10] [10,30] [30,60] 

Ak =Bk= I 7 2832 1192 2688 3072 

1 st iter., 3 init. cond. 8 2960 1408 3264 4256 

51b iter .• 3 init. cond. 6 1952 928 2224 2560 

1 st iter .• 2 init. cond. 4 fai1 of COLNBW on [30,60) 

51b iter., 2 init. cond. 7 2378 

COLNEW applied to (S.l.lla+b), tol = 10--' 

• 

1408 

#f~ls 

4080 

2336 2816 

Tab1e 5.3 

memory use 

88101 

25961 

25961 

25641 

memory use 

46336 



§5.2 Convergence 

In the Unbiased Multiple Shooting algorithm as sketched in the previous section two ite­
rative processes are interacting, viz. a process on s j and another to obtain z j(x;s j); 

however, the algorithm is not symmetrical with respect to both processes. 
One can implement the algorithm 5.1.7 in various ways. For the 'outer' iteration on sj we 
can use well known adaptations of Newton's metbod such as damping and keeping the 
Jacobian flxed (cf. time stepping algorithm Ch.3). Additionally there are several ways to 
perform the 'inner' step (Al). One can call a collocation or flnite difference routine to 
obtain y j and estimates Y j(x) for the fundamental solutions Yt<x;zj(x;sj)) (that are requi­
red for the Jacobian J(s j;z j(x;s j) ) with certain prescribed tolerances. These tolerances 
need not be kept constant during the entire process. At the flrst few steps, when s j is far 
away from the solution s*, it is not necessary to approximate yk(x;sj) very well. But, as 
we show, eventual quadratic convergence requires the toleranee for z j(x;s j) to decrease 
like I s j - s* 12 and the toleranee for Y j(x) like I s j - s* I at the last few steps of the 
algorithm. 

Another way to implement step (Al) hinges even stronger on the thought that it does not 
pay to compute z j(x;s j) very accurately if s j is still far from s*. We can choose a flxed 
collocation grid on every subinterval and at the j th 'outer' iteration step we perform only 
a few Newton iterations on the collocation scheme to obtain y j (i.e. without an accuracy 
requirement). This way the iteration on the vector s j plays a more dominant role than in 
the implementation suggested before. Once convergence of s and z j(x;s j) on a grid has 
been established, the discretization error is estimated and the grid adjusted and refined 
accordingly. 

A strategy for the error tolerances for z j(x;s j) and Y J<x) can be derived from a study on 
the effects of these errors on the convergence of the 'outer' loop, i.e. Newton's iteration. 
The Newton update on the vector sj will not be computed using the real Jacobian 
J(sj;y(x;sj)), but only through an approximation Jj. Deflne the errors 

(5.2.la) e;,k := max I zf(x;sf> - yk(x;sf> I 
XE [Xk.,Xk.+lj 

eh := max I Yf(x) Yf(x;zf(x;sb) I 
XE [xk,xk+1J 

(5.2.lb) 

110 

and 

e; : = m;x e;,k , 
e~ := maxe?.k. 

k. 
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5.2.2 Assumption 

There is a constant a > 0, such that the neighbourhood 

Dy:= {z: [a,b]~Rn I z continuous on (xk,xk+1) ,ke{l, .. ,N}, and Hz-y'"ll::;;a} 

of y*(x) satisfies the following conditions 

(i) y* is the only salution of (5.1.1) in Dy , 

(ii) the upper bound C
8
h on the first and second derivatives of h(x,y) with respect 

to z and on the first and second (partial) derivatives of g(u,v) is of moderate size, 

ze DY . 

• 

5.2.3 Definition 
(i) The constant Kk is an upper bound on the conditioning constant of the linearization 

of (5.1.2) at z(x) on [xk,xk+l] for all zeDy-

(ii) The set Ds is defined by Ds := { seRnN I y(x;s)eDY } . 

• 
To investigate the difference between the Jacobian J(s i;y(x;s i)) and its approximation J i, 
we estimate the difference between Yk(x;yt<x;sj)) and its computed approximation Y j():), 

neglecting rounding errors as they are negligible compared to the approximation errors. 

5.2.4 Lemma 

Let sieDs and zi(x;sÏ)eDy. Then 
. . 2 . . 

(5.2.4a) vl5.k5,N "~xE[Xk,xk+l] : I Yf(x)- Yk(x;yk(x;sf)) I ::;; cghKk(xk+l-xk)e~.k +eb. 
lf the local BVP' s (5.1.2) are wel/ conditioned there is a constant C (depending on Kk and 

C gh ) of moderate size such that 

(5.2.4b) I ](si ;y(x;si))- Jj loo ::;; C(e~ + e~) . 

Proof 

The matrix Y j(x) contains errors due to 
(l) the error in zi(x;sj) 

(ii) discretization errors in integrating the linearized problem 

The effect on the fundamental salution of the difference between y(x;s j) and z i(x;s j) can 

be estimated similarly as in the proof of theorem 2.3.9. Since Yt<x;z/(x;sj)) and 

Yk(x;yt<x;sj)) satisfy the same BC, their difference can be written as 
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Yk(x;z{(x;s{l)- Yix;yk(x;s{)) 

= (xk+l G(x ,t;yk(x;s{)) (L(t;z{(x;sf)) -L(t;yt<:x;sf)) Yk(t;zf(x;s{l )dt. 
Jxk 

Tagether with I L(x;zf(x;sb) -L(x;yt<x;sf)) I s cgh lzf(x;sb Yk(x;sb I this yields 

Now (5.2.4a) follows from the fact that the discretization error mentioned under (ii) is 

controlled by a parameter E j Y,k· 

The last block row of J(sj;y(x;sj)) contains, besides the fundamental solutions 

Yk(x;yk(x;s,/)), derivatives of the boundary conditions g(u,v) and one can derive that 
. . . . . 2 2 . . 

1Ba<z{<x.;s{))Y{(xl)-Ba(yl(xl;s{))Y1(xl;s{) Is cgh1Cl(x2-xl)E;,l + cghe'Y,I 

+ Cgh(E;,l +E;,N)ICl. 

Now (5.2.4b) follows immediately from this relation and (5.2.3a) . 

• 
A smaller value of ICk r~uces ~he influence of the discretization error e~.k on the error in 
the approximation of J(sl;y(x;sl)), as wellas it may enlarge the convergence area of New­
ton's methad applied tof. From estimate (5.2.4a) we see that the choice of e.{,,k per sub­
interval can be used to equidistribute the errors in the Jacobian. This can be useful if the 

bound cgh is known to vary over the subintervals. 

The iterates s j result from Newton's method; hence we have locally quadratic conver­
gence, if the Jacobian matrices are determined with sufticient accuracy. In our algorithm 

the accuracy depends on e.f,,k and ejY,k. 

5.2.5 Lemma 

Let sjeD
8 

and zj(x;sj)eDY. Asswne there is a moderate bound, say y, on I J(s) 1. 
I F 1(s) I and the Lipschitz constant of J(s) on D8 • Let C be the constant of Lemma 5.2.4, 
then the following estimate holds 

(5.2.5a) 

1~+1 -s* I Sy2 1sj_s*l2 + Cy3<e?+e;)lsj-s*l + 2Cgh'Ye; + 0(E;E?+<E?)2
). 
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Proof 
Application of Newton's algorithm with the approximate Jacobian J i gives 

si+l -s* = si-s* (Ji)- 1J(si;zi(x;si)) 

= si-s* -F1(y(x;si) )/(sÏ;y(x;si))+F1(y(x;si) )/(sÏ;y(x;si)) (Ji) - 1/(si;zi(x;s-Ï)). 

Hence 

lsi+l_s*l s;y21sj_s*l2 + IFl(si;y(x;si)-(Ji)-11.1/(si;y(x;si))l 

• 

+ I (Ji) -1 I· 1/(si;y(x;si))-/(si ;zi(x;si)) I 
s; 'Y21 si-s* 12 

+ I CJir1 (Ji -J(si;y(x;si)))F1(si;y(x;sÏ)) l·if(si;y(x;si))-f(s* ;y(x;s*))il 

+ (y +y2e{+0((e{)2)2C8he; 

s;y2 1si s*l2 + ('Y+Y 2E~+0((E~)2)[C(e{+e;)y 2 1si s*l + 2yC8he;] 

s; y 2 jsi-s• 12 +Cy3 (e'~+~) lsÏ-s* I + 2yC8h~ +0(~iy+(~y)2) . 

The previous lemmas prove that an implementation of the UMS algorithm where z i(x;s Ï) 

and f ,/(x) are computed within given accuracy at every step, is locally convergent. 
Moreover, this convergence is quadratic if eventually the tolerances are decreased suèh 
that 

The other implementation where the collocation grid is kept fixed and only a few Newton 

updates for z i(x;s i) are computed before computing a new si, can give at most a linear 
convergence rate. Since f ,/(x) is the solution of a linear BVP the error e) Yk is fully deter­
mined by the discretization error, i.e. by the grid choice; hence the factor' Ef I si - s* I 
is a linear term in the error estimate (5.2.5a). 



§5.3 Numerical results 

In the previous sections we looked at theoretica! aspects of the UMS algorithm. Next we 

want to investigate its performance in practice. A code has been written for frrst order 
ODE (a higher order can be reformulated into frrst order, see [AsRu]) and using the exis­

ting collocation code COLNEW, cf.[AsChRu,BaAs], to solve the local BVP's on the sub­

intervals. Since COLNEW can deal with separated BC only, the use of coupled BC increa­
ses the memory use substantially; for dummy variables have to be added to artificially 

separate the BC (see example 5.1.12). Although our numerical results show some effects 

to be attributed to peculiarities of COLNEW, rather than UMS, the overall results indicate 

a satisfactory agreement with the analysis. Yet, to understand the actual numbers more in 

detail we shall describe our implementation below. 

Our UMS implementation has two precision parameters EPSS and TOLF j_ Convergence 

of the algorithm is established if the norm of the update Bs on the shooting vector s is less 
than EPSS. The parameter TOLF j is the error toleranee for the salution of the local 

BVP's obtained by COLNEW, hence TOLF j is equivalent to e{, in §2. Accordingly, 
TOLF j is rather large at first (10-2, 10-3) and is decreased thereafter. We found that the 

requirement that TOLF j"" I Bsj 12 is not always sufficient. Sametimes it occurred that 

I f(s j) I :s; TOLF j. Since most components of f(s j) are a difference between two values 

of z j(x;s j), these components may have no significant number at all, due to cancelation. 

Hence the computed direction of Bs may be inaccurate. In order to prevent this, we want 

TOLFj to be less than or equal toatenthof the expected value of I /(sj+l) I 
(i.e. "" I f(sj) 12 ). This finally leads to the following algorithm todetermine TOLF 

. 2 . 2 
TOLFj+l = max( EPSS, min(TOLFj, 1/(s') / .~)) 

10 10 10 
(5.3.1) 

Singularly perturbed BVP's, where the position and (approximate) width of the layers can 

be obtained analytically, are very well suited to show how well the UMS algorithm per­

farms. Often one can use the reduced salution (i.e. for E = 0) to obtain a very good initial 

guess for the salution at small E values. It is advisable to choose the subintervals such that 

each one of them contains either an entire layer or a smooth region. Then the shooting 

vector s, obtained from the reduced solution, is quite accurate and none or very few 

'outer' iterations are necessary. 

When transforming a higher order singularly perturbed BVP into a frrst order BVP, we 

have to pay special attention to sealing. In some cases (e.g. example 5.3.3) the first deriva­

tive reaches values of the order of e-1• Hence we scale the derivative term as in 
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(5.3.2) { 
u(x) = y(x) , 
v(x) = ey(x) . 
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The results of applying COLNEW to singularly perturbed problems, as shown in the 

examples, indicate that the memory use at for e = w-k, ke {2,3,4,5}, is generally a multi­

ple of that for the previous e. This is due to the fact that we do not allow COLNEW to 

use its grid generator, but just let it halve the grid successively until the required toleran­

ces have been obtained. In [AsChRu] this strategy is suggested for this type of problems, 

because the grid generator fails to 'see' the layers at frrst and produces a grid on which no 

convergence can be obtained, teading to failure of the code. We tested several initial grids 

for the afore-mentioned e-values and tabulated some results. An unintentional advantage 

of the UMS algorithm is that the grid generator of COLNEW worked properly on subin­

tervals that contained a layer and a small part of a smooth region only. 

5.3.3 Example 

Consider the singularly perturbed BVP, cf.[AsMaRu] 

(5.5.3a) 
(5.5.3b) 
(5.5.3c) 

ey = y(l-y) 
y(O) = 0.5 , 
y(l) = 2 . 

, O<x<l, 

The stabie solution of the reduced problem is y(x) = x+ 1. Since it satisfies the end point 

condition, there will be a boundary layer at x = 0. Transformation (5.3.2) is used to con­

vert the problem into a first order system. As we anticipate the correctness of s, we set 

TOLFu, the required toleranee for the frrst variabie u, to 10-6. The toleranee for the 

second variabie needs special attention. Because v = e on a mayor part of the interval and 

COLNEW uses the mixed convergence criterion 

U absolute error in v ~ S: TOLFv ( 1 + I v M ) , 

the variabie v has only -log(e-1 TOLFv) correct digits. Indeed experiments with e = w-5 

and TOLFu = TOLFv = 10-6 yielded a highly oscillatory 'solution'. To ensure that v has 

at least 3 correct digits we imposed the toleranee TOLFV = w-3xe. 

The results tabulated in Table 5.4 show that the UMS algorithm saves both memory and 

function eaUs as compared to COLNEW. Note, however, that the typical doubling of grid 

points is a COLNEW feature and is open to improvement. The subinterval choice is clear­

ly not optimal in balancing the work load for different processors. However, splitting the 
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layer region into several subintervals does not pay; because then the correct value of all 
shooting veetors is not known in advance and several iterations on s are needed. 

UMS, epss = to-6 COLNEW, tol = to-li 

E ~ memoryuse #f-calls memory use #f-calls 

[XI.-Xi] [X:z..t3] 

le-2 15e-2 5624 1538 18 7296 1932 
le-3 15e-3 6080 1610 18 7296 2484 
1e-4 15e-4 12160 2890 18 29184 6204 
1e-5 I5e-5 24320 5510 18 58368 12540 

Table 5.4 



§5.4 Parallel computation 

The idea for unbiased multiple shooting was derived from the fact that any proper code 
for solving BVP's should treat growing and decaying modes correctly, unlike the original 
multiple shooting algorithm. The preconditioned time stepping algorithm described in 

chapters 3 and 4 can not be implemented an a parallel computer straightforwardly. But, as 
we indicated in the previous sections the UMS algorithm, like the original shooting, lends 
itself for parallel implementation. 

In this section we briefly consider some more parallelization aspects, in particular esti­
mates of the computational costs. A straightforward parallel implementation of step (Al) 
of the UMS algorithm (5.1.7) consists of assigning every local BVP to a different proces­

sor. We will assume that a sufficient number of processors is available. Hence the k-th 

processor has to apply COLNEW to the non-linear BVP on [xk .x.t+d· This is an iterative 

process, say with mk iterations and suppose the local grid consists of N k points. Then the 
costs for one iteration can be approximated by 

forming the linearized system : 
solving the linear system J'f:,=-f (by SOL VEBLOCK): 

computing the new solution z.~:(x;s/) : 

O(n2Nk) 

O(n3Nk) 

O(nN,t) 

Additionally choosing new grids and estimating the discretization error involve computa­
tions, but they require only O(nNk) operations, which is negligible compared to the costs 

of one iteration. If Nk. is taken as the size of the largest grid used on [X,t .X.t+d• then the 
total costs of step (Al) on N parallel processors is 

An optimal choice for the subintervals, would be one that equidistributes mk Nk. as much 
as possible. Hence the coarse grid should be finer in areas where the solution changes 
rapidly. 

Step (A2) of the UMS-algorithm essentially consists of solving a linear system. In the lire­

rature several methods are mentioned to perform this in parallel. In [PaGl] a parallel algo­
rithrn is presented especially for the systems arising in collocation and fmite differences. 
There the matrix is partitioned into smaller pieces of the same structure, thus performing 
implicitly an idea similar to unbiased shooting. (However, the choice of local boundary 
conditions is not addressed, nor is it clear that the algorithm renders well-conditioned local 
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BVP's.) Under the assumption that there are more processors than local subintervals, the 

computational costs of the algorithm are 0(n3N). 

In [AsPC] several parallel solution methods for the linear system are considered. As a 

stabie method, a least squares formulation is menrioned. A stabie odd/even reduction and 

elimination is used to solve FJ~ = -Ff in O(n3 log N) time, if O(N) processors are 

available. 

Finally, we mention the structured QR-decomposition described in [Wr]. This method, 

which is stabie for well-conditioned BVP's, partitions the system into blocks and performs 

a special QR-decomposition on every block (in parallel). If there are approximately ~N 
processors available (i.e. even less than we assumed for step (Al) ), the algorithm takes 

O(n3 log N) operations. 

Let cr denote the number of outer iterations on the vectorsin Algorithm 5.1.7. Then paral­

lel computation requires O(n3 cr ( log N + max mk Nk ) ) flops. Hence we see that the 

costs will be minimal if N is taken rather large, with only a few 'fine' grid points per sub­

interval. 

However, we found that this strategy is not an optima! choice for some singularly penur­

bed problems. Indeed, if the reduced solution and the position of the layers is known, it is 
favourable to choose the subintervals such that they either contain an entire layer or (a 

part of) a smooth region. In this case the initia! guess for the vector s0, basedon the redu­

eed solution, is already quite accurate, reducing the amount of outer iterations to 1 or 2. 
Of course the work load of (Al) is poorly distributed over the processors (since the layers 

require essentially more effon), but this is more than compensated for by the reduction of 

the outer iterations. Hence it is not useful to use more processors than the number of 

layers plus 1. 

Conciosion 

In chapter 2 we described the multiple shooting method for non-linear BVP's. We found 

that the set of equations f{s), and also the corresponding Jacobian, could be very sensitive 

for changes in the starring vector s in some directions. In fact the Lipschitz constant of the 

Jacobian is bounded in terms of the conditioning constant of the local problems. Due to 

this sensitivity it may be difficult to solve the non-linear equation f{s) with Newton's 

method. 

Based on these considerations we investigated the consequences of defining well-condi­

tioned BVP's on the subintervals. The resulting UMS-algorithm contains two types of ite-
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rations. First there is the iterative process on the 'shooting' vector s, analogously to the 
ordinary multiple shooting algorithm. And since every update on s requires the computa­
tion of new solutions for the local BVP's, there is a second iterative process, solving the 

local non-linear BVP's by collocation or finite differences. Note that in the UMS-algo­

rithm both the 'global' equation f(s) and the local BVP's are well-conditioned problems. 

The UMS-algorithm is not only a generalization of multiple shooting, but also of colloca­
tion and finite differences. This generalization gives the possibility to make a stabie paral­
lel algorithm for solving non-linear BVP's. 

In a sequentia! implementation the algorithm combines the potentially stabie features of 
global solution methods with the more modest memory use of multiple shooting. 
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Appendix A 

Consider the linear BVP 

(A.1) { 
y = A(x)y + q(x) 
B aY(a) + B by(b) = ~ 

a<x<b, 

Let Y(x) be the fundamental solution that satisfies the dichotomy relations (1.2.1) with 

P'Oiection P ( ~ ~] and oonstants (K,Ä,~). Let Z(x) be anothec fundamental solution 

and let HE R.nxn be the invertible matrix such that Z(x) = Y(x)H. If H is partitioned in the 

same way as the projection P, then the consistency constant L of Z is defined as 

(A.2) L ·-
IY2(a)H2ll 

glb(Y 1(a)Hll) 

Now L is zero if H 21 is zero. In [AsMaRu] a bound of the form 

, X<t, 

was derived from the dichotomy of Y(x). However, the limit of this upper bound for L 

approaching 0, is larger than one may expect from the dichotomy of Y(x). By carefully 

studying the proof a refinement of this bound can be derived. 

Lemma A.3 (Improvement of [AsMaRu] 6.14) 

Consider the dichotomie ODE 

(A.3a) y = A(x)y ,a<x<b, 

Let Y(x) and Z(x) be fundamental solutions; Y(x) with dichotomy projection P =[
0
° o:l 

lp,! 

and Z(x) = Y(X)H. Let 'I'} denote the minimum over XE [a,b] of the angle between 

range(Y 1(x)) and range(Y 2(x)) (note that sin( 'I'}) ~ 11VK2 + 1 ). Then 

(A.3b) max 
d#O 

IZl(x)dl ::;; K.exp(IJ.(x-t)) 

IZ 1(t)d I 
, x< t, 

1+LK2 

with K = Kr========== 
Vsin2t} +[max(O,cost} -LK2)]2 

Note that if L = 0 then K = K . 
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Proof 
If H 21 = 0, then L = 0 and the relation follows immediately from the dichotomy of Y(x) 

and Z1(x)d = Y1(x)H11d. So assume that H 21 *" 0. Since Z1(x)d = Y1(x)H11d + Y 2(x)H21d, 

jzl(x)dj :S jYl(x)Hlldj (I+ jY2(x)H2Idj). 
IYl(x)Hlld I 

The dichotomy of Y(x) now yields 

I y2(x)H21 dI 

jY 1(x)H 11 dj 

Hence an upper bound on the numerator is jZ1(x)d I :S (1 +LK2) I Y 1(x)H 11 d I . 

So far we have foliowed the proof given in [AsMaRu]. However, the denvation of a lower 

bound on the denominator is different. We can write 

yl(t)Hlld and b -- y2(t)H2ld . Let e(t) with the veetors a and b defined by a = --:----:-::-
1 yl(t)Hll dI I yl(t)Hll dI 

denote the angle between range(Y1(t)) and range (Y 2(t)). Then e(t)e [-ö,~] and 

ja+b 1
2 <?: ja 12 + jb 1

2 2la llb jcose(t) = 1 + jb 1
2 - 2jb jcose(t) 

<?: 1 + jb 1
2 2lb jcos-ö = sin2 -ö + (cos-ö-jb j)2 . 

The smallest value will be obtained if I b I = cose(t). However, the norm of b may not 

be that large, indeed 

we see that 

He nee 

IY2(t)H 21 dl :S Kexp(-À(t-a)) IY2(a)H21 dl 
and I Y1(t)H 11 d I <?: K-1exp(J.1(t-a)) I Y1(a)H 11 d I , 

I a + b 12 <?: min { sin2-ö + (cos 'Ö - I b 1)2 I 0 :S I b I :S KL 2 } 

sint'}+ [max(O,cos-ö-LK2)]2 . 

From which we can now derive that 

IZ1(x)d I :S 1 +LK2 I Y 1(x)c I 
max ...:.._..,.--......:.. -;:::========= · max ...;.__..,...-__,...;., 
d-FO jZ 1(t)dj I 2 2 2 c"'O jY1(t)cj y sin 'Ö+[max(O,cos-ö -LK )] 

• 
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Consider the BVP 

(B.l) { 
y = A(x)y + q(x) 

B 0 y(a) + B by(b) = 13 
, a<x<b, 

and assume that it has a unique solution for every l3eRn and qeC([a,b] ~ Rn). Let G(x,t) 

denote the Green's function of (B.l) and let <l>(x) beits fundamental solution with 

(B.2) B 0 <l>(a) +Bb<l>(b) =In. 

Both in multiple shooting and global solution methods we encounter two types of matrices 
of almost the same form, viz. 

<l>l(x2) -<l>2(x2) 

<l>2(x3) -<l>3(x3) 

··. ·•. 
(B.3a) L ·-.-

<l>N-l(xN) -<l>~xN) 

Ba<l>l(xl) Bb<l>~xN+l) 

and 

<l>l (x2) -<l>2(x2) 

<l>2(x3) -<l>3(x3) 

··. ··. 
(B.3b) L ·= + • 

<l>N-l(XN) -<l>N(xN) 

<l>~xN+l) -I 

Ba<l>l(xl) Bb 

where <l>k(x) are fundamental solutions of (B.l) satisfying the condition 

(B.4) Ak<l>k(xk) +Bk<l>k(xk+l) =In· 

Again we assume that Ak and Bk are such that <l>k(x) is uniquely determined. 
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B.5 Lemma 
The matrices L and L+ are invertible. If L -I is partitioned into N 2 blocks of size nxn, 

then 

(B.5a) 

Proof 

, j~N. 

'j=N, 

, iS.N,jS.N, 

, iS.N,j=N+l, 

, i=N+l,jS.N, 

, i=j=N+l. 

First we will consider the 'standard' multiple shooting choice Ak = 111 and Bk = 0. Several 

authors have looked at either the inverse of L+, e.g. [LeOsRu], or at the inverse of L, e.g. 

[dHMa85]. However, a combined proof can be given. 

Let the function vt<x) be the salution of 

{ 
v k (x) = A(x) v k (x) + q(x) 

vk(xk) = 0 . 

Then the solution y(x) of (B.l) can be expressed as 

y(x) = <l>k(x) sk + vt<x) for x e [xk ,xk+d , 

for some ske ll11
, with in the L+ case the additional re lation 

y(xN+l) = SN+I · 
Now the veetors sk have to be determined by the continuity of y(x) and the boundary 

conditions, i.e. either 

sl -vl(x2) 
sl - vl (x2) 

L or L+ SN-I -VN-l(XN) 
SN-l -VN-1 (XN) 

SN -vN(xN+l) 
SN ~ -BbvN(xN+l) 

SN+l ~ 

Here we see that L contains the same equations as L+ (only the variabie sN+l has already 

been solved). From 

y(x) = <l>(x)~ + Jab G(x,t)q(t)dt 

(see §1.1) we obtain the inverse of L+ immediately : 
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N 

sk = y(xk) = <P(xk)l3 + L (xi•l G(xk,t)q(t)dt 
j-.. 1 Jxi 

Appendix B 

N . 
= <P(xk)~ + L G(xk,xj+1) (x1•

1 <Pj(xj+l)<Pj-
1
(t)q(t)dt 

i'=l JxJ 
N 

= <P(xk)~ + L G(xk,xj+l)v/xi+l) . 
j=l 

For L -I the last term of the sum bas to be rewritten as : 

G(xk,xN+l)vN(xN+1) = -<P(xk)Bb<P(xN+l)<P-
1
(XN+l)vN(xN+l) -<P(xk)BbvN(xN+1) · 

Now consider any other set of local boundary conditions and denote the related fundamen­

tal solutions with <Ï>k(x) and the equivalent of (B.3) with L and L+ respectively. let 
Hke :e.nxn be such that 

<Ï>k(x) = <Pk(x)Hk , 

then Hk [Ak<Pk(xk) +Bk<Pixk+l)]-
1 = [Ak +Bk<Pk<xt.1>r1 

. 

Hence i= Ldiag(H1,H2 , .. ,HN) and L. = L.diag(H1,H2 , .. ,HN,ln). 

Since one can show that <Pk(xk+I)<P(xk) = <P(xk+1) for all k E {1, .. , N}, the relations 

for i :1: j follow straightforwardly. If j = i, then 

• 

-1 -1 
Hi G(xi,xj+l) = AiG(xi,xj+l) -Bi<Pi(xi+1)<P(x;)Bb<P(xN+l)<P (xj+l) 

= AiG(xi,xj+l) Bi<P(xi+l).(ln-Ba<P(x1))<P-I(xj+I) 

AiG(xi,xj+1) + B iG(xi+l ,xj+l) -Bi . 

B.6 Corollary 
If the local boundary conditions (B.4) satisfy the assumption (1.1.16), i.e. if for all k, ibe 

matrices ( Ak I Bk ) has ortlwnormal rows, then 

(B.6a) !L - 1 !oo ~ .[rï (2NKlin + 1) , 

(B.6b) 

with Kun the conditioning constant of the BVP (B.l). 

Proof 
Reeall that the conditioning constant was defined in chapter 1 with respect to the Euèli­

dian norm. Now the results of lemma B.5 yield 
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For L+ -l a similar estimate can be made . 

• 
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Appendix C : Logarithmic norm 

Let Ae Rmxm and let I . I denote any vector norm. The logarithmic norm is defined by 

(C.l) 
flm +hA [- 1 

~[A] := lim . 
h.tO h 

The logarithmic norm depends on the vector norm used. 
Define p(A) = max{ Re(À) I À eigenvalue of A }. 

The logarithmic norm bas the following properties, see e.g. [St,Dah,DeHa] 

C.2 Properties 

(a) [A I~ -~[-A]~ -p(-A) ~ p(A) ~~[A]~ [A I 

(b) ~[cA] = c~[A] , c ~ 0. 

(c) ~[A +Zl m] = ~[A] + Re(z) , ze C . 

(d) max(~[A]-~[-B],~[B]-~[-A]) ~ ~[A+B] ~ ~[A]+~[B]. 

(e) convexity: 'v'ce[O,l] : ~[cA +(1-c)B] ~ c~[A] + (1-c)~[B] . 

(j) continuity : I ~[A] -~[B] I ~ max( I ~[A-B] 1.1 ~[B-A] I) ~ [A-B I . 

(g) greatest lower bound : min~ ~ max(- ~[-A],- ~[A]); 
Ç,,.;O [Ç I 

hence if A is non-singular, then _
1
_ ~ max( -~[-A], -~[A]). 

IA -ll 

• 
For some Hölder nonns an explicit expression of the logarithmic norm can be derived. Let 

~P[ . ] denote the logarithmic norm with respect to the p-Höldemonn. 

C.3 Relations 

(a) ~1 [A] m~ (Ajj + L IAij [). 
J i,.;j 

<A J: J: > 1 
(b) J.lz[A]=max ..", ... =P(-(A+AT)). 

Ç,,.;O <Ç ,Ç > 2 

(c) ~""[A] m~ ( Aii + L [A ij I ) . 
l j;to i 

• 
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Of some special interest are matrices, whose diagonal blocks are -I m (i.e. their logarithmic 

norm can easily beseen to be -1) and have small off-diagonal blocks. In order to estimate 

their logarithmic norm a theorem from [St] can be used (cf. chapter 4). 

Let the space :am be written as the Cartesian product of lower dimensional spaces, i.e. 

Forthermore let I . I; denote a monotonic norm on Rm; and I . lo a norm on RN. Let l!i 

be the logarithmic norm basedon I . li· Partirion any matrix Aeltmxm into N2 blocks (Ay) 

m·xm· IA;jXj li 
with AueR ' 1 • Let IAu!u := sup

0 
. Finally let a norm on R.m be defined by 

Y" lxjlj 

and let j.l be the related logarithmic norm. 

C.4 Theorem [St] 
Let Ae Rmxm. Let Be RNxN be defined by 

l!l[Au] IA12b 

IA2II21 j.1.2[A22] IA23,23 

(C.4a) 

Then 

(C.4b) 

• 

"'·­.ti • -
··. 

max (l!i[Aii]) !S: j.i.[A] !S: l!o[B]. 
I 

·•. 

In practice we use either the Euclidian norm or I • 1 ... for all matrix blocks. 
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C.S Lemma 
Let V, Je Rmxm, with V non-singular and 1!2[1] < 0. Then 

(C.5a) J..L2[VT JV] S J..L2[J] I v-1 1;2 
. 

Proof 

lll[VTJV] = max <VTJV/;,1;> = max <JV/;,V/;>. <V/;,V/;> 
ç".o </;,/;> ç".o <VI;,VI;> </;,/;> 

= max f.!2 = ll-2 mm -...,-;:---~ ['] <VI;,V,I;>) [J] . <VI;,V/;> 
ç .. o <1;,1;> ç .. o <1;,1;> 

= f.!2L11 · I v-1 1;2 
· 

• 



Appendix D: Convergence domaio of Newton's metbod 

In this thesis we often refer to convergence results for Newton's method from the Newton­
Kantorovich theorem and from its affine invariant version. A precise formulation of these 
theorems is given below. 

Let Je C1(D -t Rm), with D c Rm, and let J(x) denote the frrst derivative of /(x). For any 
starring vector x!Je Rm the Newton iteration is defined by 

(D.l) xi+l := x i r1(xi)J(~.i) , j ~ 0. 

For any xeRm and r > 0, let B(x;r) denote the ball ( yeRm I I x-y I < r } and let B(x;r) 

denote its closure. A major convergence result is proven in [Ka] and a different proof is 
presented in [ûrRh]. 

D.2 Theorem (Newton-Kantorovich) 

Assume that there is a convex set D0 cD such that 

(D.2a) vx,yeDo : ll(x)-J(y) I ~ 'Y lx-y I 

Suppose there exists an :fleD0 such that 

(D.2b) 

Define 

(D.2c) t* := 1-~' 
~'Y 

and assume that B(x0;t*)c D0. Then the Newton iterates (x i) are well-defined, remain in 

B(x0;t*) and converge to a solution x* of f(x) 0, which is unique in 

(B(x0;t**) n D0) u B(x0;t*). Moreover, one has the error estimate 

2j 

I i- *I < (2a) . 0 x x --- ')~ . 
~y2j 

(D.2d) 

• 
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In [De He] an affine invariant version of this theorem is presented. 

D.3 Theorem (affine invariant convergence theorem) 

Assume that there is a convex set D0c D and a starring vector x0eD0 with J(x0) invertible 

and that there are constants 11,00 > 0 such that 

(D.3a) 

(0.3b) 

(D.3c) 
and 

(0.3d) 

lrl(xo)f(xo) I :::; 11 , 

'\lx,yEDo : lr1(x0)(J(y) -J(x)) I :::; oo ly-x I • 
a . 11 oo :::; 0.5 

t* := l- .(l7fh 
00 

Then J(x) is invertible for all xeB(x0;t*) and the Newton iterates remain in B(x0;t*) and 

converge to a salution x* of J(x) = 0. This salution is unique in 
B(x0;t*) u (D0 n B(x0;t**)), where 

t** := 1 + .f17fh. 
00 

Mareover, the fallawing error estimates hald for j ~ 1 : 

(D.3e) 

(D.3f) 

• 

~ 2j 

lxj -x•l :::; 2y 1 -.:,u. ~ lxl-xO I 
a I-e2i 

1 . a<-. 
2 

1 , a=-, 
2 

with e = ~ = 2a 
t** (1 +Jt -2a )2 

Since the conditions of theorem 0.2 imply those of 0.3 with oo = l)y, the error bounds 
(0.3e) and (0.3f) supplement those of theorem 0.2. 
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Appendix E : Convergence of the mixed Euler metbod 

Consider the ODE 

(E.l) { 
i(t) "' M(x(t))f(x(t)) 

x(O) = x 0 • 

The mixed Euler method for this ODE reads 

(E.2) 

Next we show that the mixed Euler method is a convergent integration method. 

E.3 Lemma 
Let D ç; 1('1 be such that Je C2(D -1 Rm) and Me C1(D -1 Rmxm). Let x0e D and assume that 

the solution x(t) of (E.l) lies in D. Let T > 0. The class of sequence pairs S(h) is for all 

h > 0 defined by 

(E.3a) S(h) := { sequence pairs ( {hj}, (xi)) satisfying (E.2) I 
k((hj}) 1 

I ~:(O<hj'S.hAxieD) A 3k((h·})eN:T= E hi}. 
1 i:O 

Then 

(E.3b) 

Proof 

lim max{ lx(T)-/((hi})l I ({h
1
-},{xi})eS(h)} "'0. 

hJ.o 

Let h > 0 and ({hj},{xi})eS(h). From (E.2) and the definition of discretization error we 

get 

{ 

h/>(tj,x,hi) = x(tj+l) -x(tj) -hiM(x(tj))f(x(tj+I)), 

0 xi+I -xi -hjM(x.i}f(xi+I). 

Hence, by subtraction, 

x(t)+l) -xi+l = x(tj) -xi + h/>(ti,x,hi) + hiM(x(tj))[f(x(tj+I)) -/(xj+I)] 

+ hi[M(x(t)) -M(xi)]f(xi+I). 

Define ei:= I x(tj) x i I , j 2: 0. Now let CpCM,CJ be upper bounds on D on the norms 
of f(x), M(x), /'(x), respectively, and let LM be a bound on the Lipschitz constant of M(x) 

on D. If h < (CMC1)-1
, then 
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1 2-hC 
For notational convenience wedefine C := max(L~1 ,C~1), ~ = 

1
-hC 1nh(: and 

l := k({hj})-1. Some simple calculus shows that 

1 +h;LMCf 1 +h;C < f3Ch; 
'r:JO<h <h : :::;; - e · 

i 1-h;CMCJ 1-h1C 

Now the error in the approximation of x(T) can be estimated by 

lx(T)-xk(!hj))l:::;; E IT 1+hpLMCf h;lö(xi,h;)l 

;~o p~i+l 1-hpCMCJ. 1-h;CMCJ 

• 

I . I ( 1 +h C) :::;; L h;l ö(x 1 ,h;) I (1 + h;C) TI P 
i=O p=i (1-hPC) 

I 
:::;; ~;" IB(xi,hi) I (1 +hC) L h;ef3C(xl+l-xi) 

'-1 i=O 

:::;; max I ö(x i ,h;) I (1 +hC) T ef3CT 
i!./ 

-? 0 , if h!O . 



Appendix F : Boundedness of the Riccati-matrices of the preconditioning process 

Consicter the well-conditioned BVP with separated BC 

(F.1a) y(x)-= A(x)y(x) , a< x< b, 

(F.1b) Bay(a) + Bby(b) -= P, 

. [ 0 ) (Bb1)t n-p wtth Ba -= Ba2 lp and Bb = 0 · 

Let Y(x) be the fundamental solution that satisfies 

(F.2) BaY(a) +BbY(b) =In. 

Then the Green 's function G(x,t) can be expressed in terms of Y(x) by 

, x2t, 

, X<t, 

Let Kun denote the conditioning constant of (F.1). 

We want to derive an upper bound on the Riccati matrices and the boundary conditions 

formed in the process to obtain a preconditiooer in chapter 4. For the precise formulation 

of the algorithm we refer to §4.1, here we only mention the relevant relations. 

The matrices Qk E rxn, ke ( 1 ,2, .. ' N+ 1} are orthogonal and the matrices Rk E JR.(n-p)xp. 

The following relations hold 

(F.4) B.Q1 " [: B~~ J, 

(F.S) BkeR(n-p)x(n-p) , EkeJR!'xP ' 

ke (1, .. ,N}, 

(F.6) 
[

B(l) sC
2

) J 
B Q - b b 

b N+l -
0 0 
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(F.7) R - (B(l))-1 
B(Z) 

N+l - b b • 

(F.9) ,ke{l, .. ,N}, 

(F.lO) , ke{l, .. ,N}. 

F.ll Lemma 

(i) , kE{ l, .. ,N+1}, 

(ii) and 

(iii) IB~2)1 2 ~ 1 and 1Bl1)1z ~ 1. 

Proof 
Define the nxn matrices Wk, ke {1, .. ,N+1}, by 

(F.lla) 
[ 

-1 -1 -1( (1))-1 
W, := B, Bt.J··:N Bb 

First we prove that Y(xk) = Qk Sk -twk. To this end we define thematrices 

Ak := Y(xk+1)Y-1(xk ); they induce the following difference equation 

Yk+ 1 = AkJt , k = l, .. ,N, 

BaYt +BbyN+l = 'Y • 
(*) 

Appendix F 

Now both {Y(xk ) } and { Qk Sk - 1wk } are fundamental solutions of (*) and they satisfy 

the same boundary condition, viz. 

B 0 Y(x1) +BbY(xN .. 1) =In, 
-1 -1 

BaQlSI Wl +BbQN+lSN+l WN+l =In· 
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Hence both fundamental solution have to be identical, i.e. 

'11 ke { l, .. ,N+l} 

Now the frrst two statements can easily be proven : 

(i) 

(ii) 

and 

Kun;.::; IY(xk)PY-l(xk)lz = ISi
1
WkPWi

1
Sklz 

ISk1 PS,I2 = {~ -~· }2, IR, b. 

Finally, (iii) can be derived from the assumption that (Ba I Bb) bas orthonormal rows : 

I B~2) lz = I BaQI lz = 1 • 

IBin b 1[B~1 
B!

21 

Ju.-Pl b = IB.QN•tU.-Pl b < 1 • 

• 
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Let the matrices Qk be partitioned according to 

Qk = CQk, 1 I Qk,2) · 
H H 

n-p p 

F.12 Lemma 

(i) range(Y(xk)(ln-P)) = range(Qk, 1). 

Appendix F 

(ii) range(Y(xk)P) = range(Qk, 2 - Qk,lRk) = range(Qk, 1 + Qk, 2R;)l_ . 

Proof 

In the proof of lemma F.ll it was derived that Y(xk) = Qk Sk - 1wk, with Wkasin (F.lla). 

(i) Since Wk is non-singular and has a zero left lower block : 

(ii) The matrix product Qk Sk - 1 can be written in the form : 

-1 
QkSk = (Qk,11Qk,2-Qk,1Rk) · 

Since the matrix Wk is non-singular and has a zero right upper block : 

The second part of the statement uses the orthonormality of the matrices Qk . The relation 

implies that range(Qk, 2 -Qk,lRk) is a subspace of kerCQI, 1 +RkQI,2 ) . Both spaces 

have to be equal, because they have the same dimension. Hence 

• 



References 

[AbBr] 

[AsChRu] 

[AsMa] 

[AsMaRu] 

[AsPC] 

[AsRu] 

[BaAs] 

[Be53] 

[Bo] 

[d.BWe] 

[Br] 

J.P. Abbott, R.P. Brent, Fast local convergence with single and multistep 
methods for nonlinear equations, J.Austral.Math.Soc.19 (series B) (1975), 
pp 173-199. 

U. Ascher, J. Christiansen, R.D. Russell, A collocation solver for mixed 
order systems of boundary value problems. Math. Comp. 33 (1979) pp 659-
679. 

U. Ascher, R.M.M. Mattheij, General framework, stability and error analysis 
for numerical stiff boundary value methods. Numer. Math. 54 (1988) pp 
355-372. 

U.M. Ascher, R.M.M. Mattheij, R.D. Russen, Numerical solution of 
boundary value problems for ordinary differential equations. Englewood 
Cliffs : Prentice-Hall, 1988. 

U. Ascher, S.Y. Pat Chan, On parallel methods for boundary value ODE's. 
Technical report 89-19, University of British Columbia. 

U. Ascher, R.D. Russen, Reformulation of boundary value problems into 
"standard" form. Siam Review 23 (1981) pp 238-254. 

G. Bader, U. Ascher, A new basis implementation for a mixed order 

boundary value ODE solver. SIAM J. Scient. Stat. Comput 8 (1987) :Ji'll3 

483-500. 

R. Bellman, Stability theory of differential equations. New York : McGntw­

Hill, 1953. 

P.T. Boggs, The solution of nonlinear systems of equations by A-stable 
integration techniques, SIAM J.Numer.Anal. 8 (1971), pp 767-785. 

C. de Boor, R.Weiss, SOL VEBLOCK : A package for solving almost block 

diagonallinear systems. ACM Trans. Math Software 6 (1980) pp 80-87. 

F.H. Branin jr., Widely convergent methods for fmding multiple solutions 

of simultaneous nonlinear equations, ffiM J.Res.Develop. 1972, pp 504-522. 

139 



References 140 

[Co67] W.A. Coppel, Dichotomies and reducibility. J. of Diff.Eq. 3 (1967) pp 500-
521. 

[Co78] 

[Con] 

[Da] 

[Dah] 

[DeHa] 

[DeHe] 

[DePeRe] 

[DeVe] 

[Go] 

[GoLo] 

W.A. Coppel, Dichotomies in stability theory. Berlin Springer Verlag, 
1978. 

S.D. Conte, The numerical solution of linear boundary value problems. 
SIAM Review 8 (1966), pp 309-321. 

D.F. Davidenko, On a new metbod of numerical solution of systems of 
nonlinear equations. Dokl.Akad. Nauk SSSR 88 (1953), pp 601-602. 

G. Dahlquist, Stability and error bounds in the numerical integration of 
ordinary differential equations. Thesis 1958, in: Trans. Royal Inst. of 
Technology, No.130, Stockholm. 

C. Desoer, H. Haneda, The measure of a matrix as a tool to analyze 
computer algorithms for circuit analysis. IEEE Trans. Circuit Th. 19, pp 
480-486. 

P. Deuflhard, G. Heindl, Affme invariant convergence tbeorems for New­
ton's metbod and extensions to related methods, SIAM J. Numer.Anal. 16 
(1979) pp 1-10. 

P. Deuflhard, H.-J. Pesch, P. Rentrop, A modified continuation metbod for 
the numerical solution of nonlinear two-point boundary value problems by 
shooting techniques. Numer.Math. 26 (1976) pp 327-343. 

K. Dekker, J.G. Verwer, Stability of Runge-Kutta methods for stiff nonlin­
ear differential equations. Amsterdam : CWI Monographs, 1984. 

S.K. Godunov, Numerical solution of boundary value problems for systems 
of linear ordinary'differential equations. Usp.Mat.Nauk 16 (1961), pp 171-
174. 

G.H. Golub, C.F. van Loan, Matrix computations. Baltimore Johns 
Hopkins Univ. Press, 1983, 2nd ed. 



[HeBe] 

[dHe] 

[Ho) 

[dHMa85] 

[dHMa87] 

[Ka] 

[Ke76] 

[KuHl) 

[vLo] 

[Ma82] 

[Ma85] 

[Ma89] 

141 Relerences 

M. Hermann, H. Berndt, RWPM, a multiple shooting code for nonlinear 
two-point boundary value problems: version 4, part I-lil Preprint 67,68,69 
FSU Jena. 

C. den Heyer, The numerical solution of nonlinear operator equations by 
imbedding methods. Amsterdam: Mathematica! Centre Tracts 107, 1979. 

J.F. Holt, Numerical solution of nonlinear two-point boundary problems by 
finite difference methods. Comm. of ACM 7 (1964), pp 366-373. 

F. de Hoog, R.M.M. Mattheij, The role of conditioning in shooting tech­
niques in : Numerical Boundary value ODE's, U.Ascher, R.Russell eds .. 
Birkhäuser Boston Inc. 1985. 

F. de Hoog, R.M.M. Mattheij, On dichotomy and well conditioning in BVP. 
SIAM J. Numer. Anal 24 (1987), pp 89-105. 

L. Kantorovich, On Newton's metbod for functional equations (Russian). 
Dokl. Akad. Nauk SSSR 59 (1948), pp 1237-1240. 

H.B. Keiler, Numerical solution of two point boundary value problems. 
CBMS Regionat Conference Series in Applied Mathematics, 24. Philadel­
phia: SIAM, 1976. 

M. Kubû:ek, V. Hlavátek, Numerical solution of nonlinear boundary vatue 
problems with applications. Engtewood Cliffs: Prentice-Hall, 1983. 

P.M. van Loon, Continuous decoupling transformations for Iinear boundary 
value problems. Amsterdam: CWI-tracts 52, 1988. 

R.M.M. Mattheij, The conditioning of linear boundary value problems. 
SIAM J. Num. Anal. 19 (1982), pp 963-978. 

R.M.M. Mattheij, Decoupling and stability of algorithms for bounadry value 
problems. SIAM Review 27 (1985), pp 1-44. 

R.M.M. Mattheij, Conditions and conditioning, stability and stabilization. 
Appl. Math. Comp. 31 (1989), pp 538-554. 



References 142 

[MaSt] R.M.M. Mattheij, G. Staarink, Implementing multiple shooting for nonlinear 
BVP. Report of Eindhoven University of Technology RANA report 87-14. 

[MaSc58] J.L. Massera, J.J. Schäffer, Linear differential equations and functional 
analysis I. Annals of Math. 67 (1958), pp 517-573. 

[MaSc66] J.L. Massera, J.J. Schäffer, Linear differential equations and function spaces. 
New York: Academie Press, 1966. 

[Me68] G.H. Meyer, On solving nonlinear equations with one-parameter operator 
imbedding. SIAM J. Numer. Anal. 5 (1968), pp 739-752. 

[Me73] G.H. Meyer, Initial value methods for boundary value problems. New York: 
Academie Press, 1973. 

[O'Ma] R. O'Malley Jr., Introduetion to singular perturbations. New York: Aca­
demie Press, 1974. 

[OrRh] 

[Os] 

[PaG1] 

[Pe] 

[RoSh] 

[Ru] 

J.M. Ortega, W.C. Rheinboldt, lterative solution of nonlinear equations in 
several varia bles. New Y ork : Academie Press, 1970. 

M.R. Osborne, The stabilized march is stable. SIAM J.Num. Anal. 16 
(1979), pp 923-933. 

M. Paprzycki, I. Gladwell, Solving almost block diagonal systems on 
parallel computers. SMU Math Rept 89-18. 

0. Perron, Die Stabilitätsfrage bei Differentialgleichungen. Math.Z. 32 
(1930), pp 703-728. 

S. Roberts, J. Shipman, Continuation in shooting methods for two-point 
boundary value problems. J. of Math. Anal. and Appl. 18 (1967), pp 45-58. 

R.D. Russen, Mesh Selection methods, in Codes for boundary value 
problems, Lecture Notes in Computer Science 74, Childs et al., eds .. Berlin: 
Springer, 1979, pp 228-242. 



[ScWa] 

[SmMiKe] 

143 References 

M.R. Scon, H.A. Watts, A systematized coneetion of codes for solving two­
point boundary-value problems. In : Numerical methods for differential 
systems by L. Lapidus, W.E. Schiesser. New York :Academie Press, 1976, 
pp 197-228. 

M.D. Smooke, J.A. Miller, R.J. Kee, Solution of premixed and counterflow 
diffusion flame problems by adaptive boundary value methods. In: Numeri­
cal boundary value ODE's, U.M.Ascher, R.D.Russell, ed .. Boston : Birkhäu­
ser, 1985, pp 303-317. 

[St] T. Ström, On logarithmic norms, SIAM J. Numer.Anal. 12 (1975), pp 741-
753. 

[Tr] B. Troesch, A simple approach to a sensitive two-point boundary value 
problem. J. of Comput. Physics 21 (1976) pp 279-290. 

[Va] J.M. Varah, Aftemate row and column elimination for solving linear 
systems, SIAM J.Numer.Anal. 13(1976), pp 71-75. 

[Ve] G.W. Veltkamp, private communication. 

[Wa] H. Wacker, A summary of the developments on imbedding methods, in 
Continuanon methods, ed. H.Wacker. New York: Academie Press, 1978, pp 
1-35. 

[Was] E. Wasserstrom, Numerical solution by the continuation method. SIAM 
Review 15 (1973) pp 209-224. 

[We] R. Weiss, The application of implicit Runge Kutta and collocation methods 
to boundary value problems. Math. Comp. 28 (1974) pp 449-464. 

[Wr] S.J. Wright, Stabie parallel algorithms for two-point boundary value prob­
lems. To appear in SISSC. 



Index 
§ p. 

asymptotic stability . . . . . . . . . . . . . . . 3.1 49 

boundary conditions 

separated . . . . . . . . . . . . . . . . . . . . 1.1 

partially separated . . . . . . . . . . . . . . 1.1 

collocation . . . . . . . . . . . . . . . . . . . . . 2.2 

COLNEW ...................... 2.2 

compactification . . . . . . . . . . . . . . . . . 2.1 

conditioning constant, 

linear BVP . . . . . . . . . . . . . . . . . . . 1.1 

non-linear BVP . . . . . . . . . . . . . . . . 1.4 

consistency . . . . . . . . . . . . . . . . . . . . . 1.2 

consistency constant . . . . . . . . . . . . . . 1.2 

dichotomy . . . . . . . . . . . . . . . . . . . . . . 1.2 

exponential dichotomy . . . . . . . . . . . . . 1.2 

finite difference method . . . . . . . . . . . . 2.2 

fundamental solution . . . . . . . . . . . . . . 1.1 

Green's function, linear BVP's . . . . . . . 1.1 

invariant embedding . . . . . . . . . . . . . . . 2.1 

Lipschitz constant, one-sided . . . . . . . . . 3.1 

locally contractive . . . . . . . . . . . . . . . . 3.1 

logarithmic norm . . . . . . . . . . . . . . . . . 3.1 

mixed Euler method . . . . . . . . . . . . . . . 3.2 

multiple shooting . . . . . . . . . . . . . . . . . 2.1 

preconditioner . . . . . . . . . . . . . . . . . . 3.1 

Ricatti differential equation . . . . . . . . . . 2.1 

roughness . . . . . . . . . . . . . . . . . . . . . . 1.3 

shooting . . . . . . . . . . . . . . . . . . . . . . 2.1 

singularity curve . . . . . . . . . . . . . . . . . 3.4 

unbiased multiple shooting . . . . . . . . . . 5.1 

I . lp . . . . . . . . . . . . . . . . . . . . . . . . 1.1 

11 · ~r. p • • • • • • • . . • . • • • • . . . • • . • • . 1.1 

B(x;R) . . . . . . . . . . . . . . . . . . . . . . . . 3.1 

In . . . . . . . . . . . . . . . . . . . . . . . . 1.1 

144 

6 
6 

36 

37 

30 

4 

21 

12 

13 

8 
8 

34 

2 

3 

32 

49 

49 

51 

54 

28 
48 
33 

17 

28 
63 

104 

3 

4 

52 
3 



Abbreviations 

BC = boundary conditions 
BVP = boundary value problem 
IVP = intial value problem 
ODE = ordinary differential equation 
PDE = partial differential equation 

145 



146 



Samenvatting 

In dit proefschrift wordt de meervoudige schietmethode voor niet-lineaire tweepunts rand­
waardeproblemen bestudeerd en worden twee varianten op deze methode beschreven ,en 
geanalyseerd. 

Het randwaardeprobleem (RWP) 

(S.la) 

(S.lb) 

y(x) h(x,y) 

g(y(a),y(b)) = 0 

, a <x< b , y : [a,b] -tR" en h : [a,b] xR" -til", 

, g : R"xR" -tR", 

heet goed geconditioneerd rond de geïsoleerde oplossing y*(x), als kleine veranderingen in 

de functies h en/of g, slechts een kleine verandering teweeg brengen in de oplossing (dit 
wordt nauwkeuriger omschreven in §1.4). Het karakter van dit probleem laat toe dat ~jn 
linearisatie rond y*(x) zowel sterk stijgende als sterk dalende oplossingscomponenten 
bevat. 

Voor de meervoudige schietmethode wordt het interval [a,b] opgedeeld in N deelinterval­

len [xk ,xk+l] , ke {1 , .. , N), waarbij 

a = x1 < x2 < .. <xN+l = b 

en wordt op ieder deelinterval een beginwaarde probleem geformuleerd 

(S.2a) 

(S.2b) 

y(x) = h(x,y) 

y(xk) = sk 

,xk<x<xk .. l• 

, skeR". 

De schietvectoren sk moeten worden opgelost uit de voorwaarde dat de lokale oplossingen 
tezamen een continue functie op [a,b] vormen die voldoet aan de globale randvoorwaarde 

(S.lb). Dit kan symbolisch worden weergegeven met de vergelijking 

(S.3) /(s) = 0 , 

mets:= (s1 T' •• , sNT)T eRnN. 

Indien de linearisatie van (S.l) sterk stijgende oplossingscomponenten bevat, is /(s) zeer 

gevoelig voor veranderingen van s in sommige richtingen. De oorzaak hiervan is gelegen 
in het feit dat de lokale beginvoorwaarden (S.2b) niet in staat zijn de sterk groeiende com­

ponenten te controleren, met andere woorden (S.2) is een slecht geconditioneerd probleem. 
Dit heeft onder meer tot gevolg dat de norm en de Lipschitz-constante van de Jacobiaan 

J(s) van f groot zijn, hetgeen de grootte van het convergentiegebied van Newton's metho­

de negatief kan beïnvloeden. 
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Een alternatieve oplossingsmethode voor (S.3) is het inbedden van j(s) in een geprecondi­

tioneerd beginwaardeprobleem. 

(S.4a) 

(S.4b) 

ds = M(s)f(s) 
dt 

s(O) = s0 

, t>O, 

Iedere oplossing van (S.3) is een 'steady state' van (S.4). In dit proefschrift wordt een 
goedkope impliciete integratie methode voor (S.4) beschreven en worden enkele eigen­

schappen van deze methode afgeleid. De preconditioneerder M(s) wordt zo gekozen dat 

deze de stijgende en dalende oplossingscomponenten van elkaar scheidt en bovendien de 
stijgende componenten per deelinterval effectief terugwaarts gebruikt. Dit geeft een stelsel 

(SA) dat asymptotisch stabiel is rond de oplossing van (S.3). 

Een andere oplosmethode voor (S.l) is een variant van meervoudig schieten die op ieder 
deelinterval, in plaats van een beginwaardeprobleem, een randwaardeprobleem definieert : 

(S.5a) 

(S.5b) 

y(x) = h(x,y) 

Aky(xk) +Bky(xk+l) = sk 

'xk<x<xk+l ' 

, SkERn. 

Dit biedt de mogelijkheid ook de stijgende componenten te beheersen en lokaal goed 
geconditioneerde problemen te definiëren. In dat geval zal (S.3) een goed geconditioneerd 

probleem zijn en mogen we verwachten dat deze oplosbaar is met behulp van Newton's 

methode. Lokaal hebben we nu echter wederom niet-lineaire tweepunts randwaardeproble­
men, zij het dat deze ieder van kleinere omvang zijn. Deze lokale problemen kunnen dan 

opgelost worden met bijvoorbeeld collocatie of eindige differenties. Bij een sequentiële 

implementatie leidt dit tot een geringer geheugen gebruik dan toepassing van collocatie of 

eindige differenties op het oorspronkelijke probleem (S.l). Daarnaast leent deze aanpak 
zich uitstekend voor parallellisatie. 
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Stellingen 
,., "-Y'. 1'r. 1'1.!::. )(t-~ 

(z '>- z. 't'Lr rtti) 
- I -

Oplosmethoden voor tweepunts randwaardeproblemen moeten bij voorkeur rekening 

houden met de dichotomie-structuur van het probleem. 

- 2 -

Zij j(s) = 0 de verzameling van vergelijkingen die resulteert bij toepassing van de meer­

voudige schietmethode op een niet-lineair randwaardeprobleem. Dan kan de Lipschilz­

constante van de Jacobiaan van f(s) van dezelfde orde van grootte zijn, als de conditie 

constanten Vlll1 de beginwaardeproblemen op de deelintervallen, die gebruikt worden in het 

schietproces. 

- 3 -

Zij[ËC1(]1." -.11") met nulpunt x* en zij (./) een rij iteranden verkregen door toepassing 

van impliciete Euler methode met stapgrootten (htl op de differentiaal vergelijking 

i ~[(x) . 

Indien er een bol B(x*;R) is zodat JJe B(x*;R) en 

f(x) heeft een negatieve eenzijdige Lipschitz-constante, 

of f '(x) heeft een negatieve logaritmische nonn, 

zeg -a, op B(x*;R), dan geldt dat 

. 4 . 

lxk-l_x• I) . 
2(1+h!X) 

Laat I . I een semi-norm zijn op de ruimte van nxn matrices. die voldoet aan 

'iB•Il""" 'ikEN: IBki,:;IBI·· 

Indien I 2B -·1.1,:; I, dan geldt 

'i«N lri.-BJB•I s; rt( k ]" J 2 . 
[2.k] 1t k 

2 



• 5 -

Het begrip numerieke range (voor definitie zie [IJ) is niet geschikt om bet begrip henniti­

sche operator uit te bn:iden naar Banadrruimten. 

[1) P.F. Bonsall, J. Duncan, Numerical ranges of operators on nonned spaces and ele­

mentsof nonned algebras. London: Cambridge university pn:ss, 1971. 

. 6. 

De door Kramer et.al. [2) op theoretische gronden voorspelde analogie in het karakter van 

structurele faseovergangen in silicas, kan met de metbode van Tezuki et.al. [3] experimen­

teel getest worden. 

[2] G.J. Kramer, B.W.H. van Beest & R.A. van Santen, Nature 351, 636 (1991) 
[3] Y. Tezuki, S. Shin & M. Jshigame, Phys.Rev.Lett. 66, 2356 (1991). 

- 7 . 

Het feit dat de programmeertaal FORTRAN veel vrijheid biedt, leidt er vaak toe dat 

fouten in de programmatuur niet of in een Iaat stadium worden ontdekt. 

- 8. 

De hedendaagse architectuur Jijlet vooral met zichzelf in discussie te treden en niet met de 

maarschappij. 

- 9. 

Het heeft er de schijn van dat het merendeel van de mannen de gevoelswaarde van tie 
term 'vrouwonvriendeJi.jk~ niet kent. 




