126 research outputs found

    Unraveling the Complexity of Splitting Sequential Data: Tackling Challenges in Video and Time Series Analysis

    Full text link
    Splitting of sequential data, such as videos and time series, is an essential step in various data analysis tasks, including object tracking and anomaly detection. However, splitting sequential data presents a variety of challenges that can impact the accuracy and reliability of subsequent analyses. This concept article examines the challenges associated with splitting sequential data, including data acquisition, data representation, split ratio selection, setting up quality criteria, and choosing suitable selection strategies. We explore these challenges through two real-world examples: motor test benches and particle tracking in liquids

    Evaluation of Machine Learning Techniques for Inflow Prediction in Lake Como, Italy

    Get PDF
    Abstract Accurate streamflow prediction is a fundamental task for integrated water resources management and flood risk mitigation. The purpose of this study is to forecast the water inflow to lake Como, (Italy) using different machine learning algorithms. The forecast is done for different days ranging from one day to three days. These models are evaluated by three statistical measures including Mean Absolute Error, Root Mean Squared Error, and the Nash-Sutcliffe Efficiency Coefficient. The experimental results show that Neural Network performs better for streamflow estimation with MAE and RMSE followed by Support Vector Regression and Random Forest

    Towards the prediction of renewable energy unbalance in smart grids

    Get PDF
    The production of renewable energy is increasing worldwide. To integrate renewable sources in electrical smart grids able to adapt to changes in power usage in heterogeneous local zones, it is necessary to accurately predict the power production that can be achieved from renewable energy sources. By using such predictions, it is possible to plan the power production from non-renewable energy plants to properly allocate the produced power and compensate possible unbalances. In particular, it is important to predict the unbalance between the power produced and the actual power intake at a local level (zones). In this paper, we propose a novel method for predicting the sign of the unbalance between the power produced by renewable sources and the power intake at the local level, considering zones composed of multiple power plants and with heterogeneous characteristics. The method uses a set of historical features and is based on Computational Intelligence techniques able to learn the relationship between historical data and the power unbalance in heterogeneous geographical regions. As a case study, we evaluated the proposed method using data collected by a player in the energy market over a period of seven months. In this preliminary study, we evaluated different configurations of the proposed method, achieving results considered as satisfactory by a player in the energy market

    Multilingual Twitter Sentiment Classification: The Role of Human Annotators

    Get PDF
    What are the limits of automated Twitter sentiment classification? We analyze a large set of manually labeled tweets in different languages, use them as training data, and construct automated classification models. It turns out that the quality of classification models depends much more on the quality and size of training data than on the type of the model trained. Experimental results indicate that there is no statistically significant difference between the performance of the top classification models. We quantify the quality of training data by applying various annotator agreement measures, and identify the weakest points of different datasets. We show that the model performance approaches the inter-annotator agreement when the size of the training set is sufficiently large. However, it is crucial to regularly monitor the self- and inter-annotator agreements since this improves the training datasets and consequently the model performance. Finally, we show that there is strong evidence that humans perceive the sentiment classes (negative, neutral, and positive) as ordered
    • …
    corecore