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Representativeness: A New Criterion for Selecting Forecasts  
Fotios Petropoulos and Enno Siemsen 

 

PREVIEW  Statistical criteria for selecting a best forecasting method from a group of 

candidates have been proposed, studied, and implemented widely in forecasting 

software. Very well known are information criteria, such as the AIC, which balance 

performance and complexity, and validation techniques, which examine forecasting 

performance in a holdout sample. So it’s a breath of fresh air to have a distinctly new 

take on method selection, which is what Fotios and Enno are presenting here. They 

offer strong evidence that method selection can be improved by accounting for the 

representativeness of the forecasts. 

 

KEY POINTS 

 

• The forecasting community has not fully coalesced around the proper ways to select a 

forecasting method, and several approaches have been developed. None of the 

established model-selection rules make use of the forecasts that will eventually be used 

for decision making. Information criteria and validation/cross-validation approaches 

explicitly assume that whichever method produced the best forecasts previously will be 

the best model forward. 

• Our new approach for selecting among forecast models is based on examination of the 

forecasts made for real-time future periods, the actuals for which are not yet knowable. It 

is based on representativeness, the degree to which these forecasts are a natural 

continuation of the observed data. 

• We describe and illustrate a new criterion for method selection that considers the 

representative of the forecasts as well as the accuracy with which the methods fit the 

observed data. We call this the REP. 

• Finally, we compare REP with two main existing criteria for method selection, the AIC 

and cross-validation (CV) using a large number and wide variety of time series from 

previous M competitions. We believe the results are highly promising and point to 

deeper exploration into the psychology of human input into forecast-method selection. 

 

 

INTRODUCTION: THE CHALLENGE OF SELECTING A MODEL 
 

It’s the age-old dilemma: What is the best forecasting model for you? This has always been a 

challenging question for researchers and practitioners alike. Being able to identify the best 

model could lead to substantial performance benefits. Further, performance-ranking different 

forecasting models supports setting better weights for forecast combinations. 

 

A fundamental problem, however, is that the model that has performed comparatively well given 

the observed (historical) data will not necessarily be the model that performs best in the future. 

The underlying patterns in observed data are always subject to change. 



 

 

 

While forecast model selection is important, the forecasting community has not fully coalesced 

around the proper ways to accomplish this, and several approaches have been developed. One 

aspect these approaches have in common is that they focus wholly on the observed data – not 

considering their forecasts of the future in the selection decision.  

 

We believe this is a significant oversight. In this paper, after discussion of existing approaches 

to model selection, we propose an enhancement that incorporates the representativeness of a 

model’s forecasts as a new component in the model-selection decision. It does so by providing 

a reality check on the reasonableness of the generated forecasts. Testing on numerous actual 

time series shows this enhancement to improve forecast performance. 

 

 

JUDGMENT IN MODEL SELECTION 
 

Recent studies have shown that individuals are able to select models such that the average 

forecasting performance is as good as selection based on some statistical criteria. An 

examination of judgment in model selection was featured in the Summer 2019 issue of 

Foresight (Issue 54), beginning with Fotios’s article on the application of judgement for model 

selection (Petropoulos, 2019). Several Commentaries pointed out that the commendable 

performance of judgmental model selection offers an attractive alternative to the reliance on 

automatic selection in forecasting software as well as a way forward for those with algorithmic 

aversion. 

 

In addition, Fotios reported that combining forecasts, either by aggregating the forecasts of 

small groups (judgmental aggregation) or averaging the forecasts of models selected 

statistically with those selected judgmentally, could significantly outperform straight statistical 

approaches. Moreover, while he found that statistical approaches will select the best models 

more often (compared to humans), they will also select the worst model more frequently. In 

other words, humans are better able to avoid the worst outcomes. 

 

The way we apply judgment to the task of model selection is fundamentally different from the 

way statistical approaches such as information criteria work. The key difference seems to lie in 

what information is being used. Statistical approaches work “backwards” in the sense of 

examining observed data values and measuring forecasting performance over past periods 

(both in terms of performance in tracking the in-sample fit or the out-of-sample performance on 

data held out from model fit).  

 

We humans, in contrast, look “forward” and compare the pattern of forecasts produced by each 

forecasting model with our mental extrapolations of the data pattern. Brain imaging experiments 

by Weiwei Han and colleagues (2019) revealed that humans reject models for which the 

forecasts look unreasonable. In other words, we use a visualization of forecasts for which the 

actual data are not yet available to select models that produce a pattern that best matches past 

data: the forecasts that are representative.  



 

 

 

Motivated by this realization, we devised an algorithmic approach to forecast selection based on 

the concept of representativeness. A full description and analysis of the algorithm is in our new 

article in the journal Management Science (Petropoulos and Siemsen, 2022). Here we will 

describe and illustrate how model selection works based on this new criterion of 

representativeness. We begin with an overview of model-selection criteria. 

 

 

MODEL-SELECTION CRITERIA 
 

Most statistical criteria for model selection are based, directly or indirectly, on forecast-error 

metrics, with smaller errors over a designated period being preferable. 

 

Information Criteria 
 

Information criteria are based on how well the model fits the in-sample data but contains a 

penalty for the size/complexity of the model. The penalty is designed to avoid overfitting – 

introduction of additional model complexity that adds little new value.  

 

Information criteria, such as the Akaike’s Information Criterion (AIC) and Bayesian Information 

Criterion (BIC), are in wide use. Implementations for them are readily provided within open-

source forecasting packages, such as the forecast and smooth packages for R statistical 

software. They are also reported in many commercial packages and used in some of these for 

model selection. Some versions build in corrections for small sample size. For instance, the 

functions ets() and auto.arima() of R’s forecast package rely, by default, on the AIC values  

corrected for small sample sizes (AICc). 

 

The in-sample fit of each model is measured either by the mean squared error (MSE) or the 

likelihood function (which measures how likely we would see the observed data, given the 

model). The penalty is based on the number of model parameters to be estimated. The premise 

of an information criterion follows Occam’s Razor in that, among all solutions with the same 

performance, the simplest one should be selected. In comparing the values of an information 

criterion across models, lower values indicate superior performance. 

 

One caveat is that information criteria values are not always directly comparable across different 

models, especially if we are comparing models from different families, such as an exponential 

smoothing vs. an ARIMA model. The difficulty arises from how the likelihood function is 

computed and how initial values have been specified; for instance, differencing is often required 

for ARIMA models but not exponential smoothing. In general, then, information criteria should 

not be used when the data are transformed in different ways, or when different orders of 

integration have been applied.  

 

In addition, information criteria may erroneously select a simpler model when the sample size is 

small and the sample data are highly variable. That said, the selection of a misspecified model – 



 

 

either one that is simpler or one that is more complex – will not necessarily degrade forecast 

performance, a point we return to later in this article. 

 

Baki Billah and colleagues (2006) compared different statistical criteria for choosing among 

exponential-smoothing models and reported that information criteria, particularly the AIC, 

performed best in their simulations. Stephan Kolassa (2011) showed how the values of 

information criteria may be used to calculate weights for combining the forecasts of different 

models.  

 

Validation and Cross-Validation  

 

Validation and cross-validation approaches split the available data into training and validation 

sets, using the former to fit a model and the latter to measure the out-of-sample performance of 

the forecasts. The model with the best validation performance is then taken forward to produce 

forecasts for future periods.  

 

The principle of out-of-sample evaluation is that forecasting performance should be measured 

on data that have not been used in the training of the models.  

 

In the validation approach, only one set of forecasts is produced for a time series, and these are 

tested against the data in the validation set of that series. This approach is simple and relatively 

fast; however, it is still slower than selection based on information criteria, as the selected model 

needs to be fitted twice: once for the validation step and once to produce forecasts for future 

periods. In addition, the forecast-error metrics that are calculated blend multiple forecast 

horizons from a fixed origin, so no insights emerge as to how forecast accuracy changes as the 

horizon of the forecast lengthens. 

 

A better alternative to validation is cross-validation, in which model fitting and evaluation is 

repeated from multiple forecast origins. While there are several forms in use, for time-series 

data the rolling origin evaluation is most appropriate. Here, a model is fit with the training data 

and forecasts made for multiple horizons in the validation set. The window of the training data is 

expanded to include the first time period in the validation set. The model is reestimated and 

forecasts made from the new origin. The process continues until all data in the validation set 

have been incorporated into the training set. The procedure can be time-consuming and 

requires the availability of long time series to support evaluations over multiple origins. 

 

Additionally, for cross-validation in general, one needs to decide between expanding or rolling 

training windows, overlapping or nonoverlapping validation sets, and how often validation 

forecasts should be produced. For additional reading on time-series validation and cross-

validation, the reader is referred to Tashman (2000) and Bergmeir and Benítez (2012). 

 

Times-Series Features  
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Apart from information criteria and validation approaches, model selection has been based on 

time-series features, such as trend, seasonality, autocorrelation, cycle, randomness, series 

length and variability, and interdemand interval for intermittent data (Petropoulos and 

colleagues, 2014). Since there is no universal method that is best for every time series, the goal 

is to identify the best forecasting method for the particular features of “my data.” 

 

Given a pool of models and a set of reference series, the features are used to train meta-

learning algorithms. Here each series in the reference set is split into a training and a test set 

(Talagala and colleagues, 2021). The training set of each series is used to calculate values for 

the time-series features as well as to produce forecasts for the test set, and this is done for each 

of the models in the pool.  

 

A meta-learning model is trained to select between models by comparing how performance of 

the forecasts of the various models in the pool is related to the values of the features. The 

reference series can be publicly available data sets, such as the M4 competition data, or even 

synthetically generated series that possess the desired features (Kang and colleagues, 2020). 

The R packages tsfeatures and gratis can be used to calculate the values of time-series 

features and generate synthetic series based on them. 

 

A variation of this approach is the rule-based forecasting RBF system from Armstrong, Collopy, 

and Adya. These are sets of “if/then” rules distilled from experience of forecasting experts to 

select and combine among a set of simple time-series models (Adya and colleagues, 2001).  

 

 

SELECTION BY REPRESENTATIVENESS 

 
These various selection criteria all consider past data as well as the forecasts that correspond to 

observations up until the latest available time period. Information criteria use in-sample 

comparisons between actual and predicted – also called fitted – values. Validation approaches 

use out-of-sample forecasts; however, these forecasts still occur during past time periods (the 

validation sets correspond to appropriate holdouts).  

 

None of these approaches, however, make use of the forecasts for future periods--that is, 

forecasts for which the actual observations remain unknown. More explicitly, none of the 

established model-selection rules make use of the forecasts that will eventually be used for 

decision making. Information criteria and validation/cross-validation approaches explicitly 

assume that whichever method produced the best forecasts previously will be the best model 

forward.  

 

This principle strikes us as, at the very least, naive. Our new approach for selecting among 

forecast models is based on examination of the forecasts made for real-time future periods, the 

actuals for which are not yet knowable. The evaluation of such forecasts, given that the actual 

data are not yet available, is based on the degree to which these forecasts are a natural 

continuation of the past observed data. We call this representativeness. For example, a flat/level 
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forecast would not be representative of data with a strong trend, nor would a trend-only model 

be representative of data that exhibit strong seasonal behavior.  

 

REP Defined 
 

We define the representativeness gap as the lack of representativeness of a forecast compared 

to past actuals, and use this concept in conjunction with the performance of the in-sample 

forecasts (fitted values). This approach effectively replaces the complexity penalty applied by 

information criteria by the representativeness gap. In essence, we propose that selecting 

between forecasting models should be a balance between in-sample fit and representativeness. 

Conceptually, this new criterion, REP, can be expressed as: 

 

REP = performance gap + representativeness gap 

 

Similar to information criteria, model forecasts with lower REP values should be preferred to 

those with higher. If two sets of forecasts offer the same in-sample performance, the one with 

better representativeness – a lower representativeness gap – should be selected. This is not the 

same as selecting the least complex of two equally performing models. 

 

Representativeness (and its gap) can be measured in different ways, all of which are based on 

comparisons of the forecasts for the future with the available data up to the present. Such 

comparisons are asynchronous, in the sense that the forecasts and the data to be compared 

refer to different time periods. As such, some scaling and transformations may be required to 

place the “present” and the “future” on the same level. 

 

For series with multiplicative (trend or seasonal) patterns, logarithmic transformations can be 

needed. If the data are periodic – with patterns that repeat at regular intervals such as monthly 

seasonality – the comparisons must be aligned, so that the respective periods (e.g., the same 

month) of the past data and the forecasts are compared. 

 

Measurement of representativeness can not only be made for point forecasts but prediction 

intervals as well. Other choices include the error metrics used, the length of the forecast horizon 

(i.e., length of the data window for the comparisons), the use of a single window or multiple 

windows of past data, and the use of equal or unequal weights to average representativeness 

across multiple windows of data. 

 

Calculating the REP for Point Forecasts 
 

The calculation of REP follows a number of steps, each of which can be adapted to the specifics 

of the data at hand. Figure 1 provides an illustrative example. The historical data are plotted in 

black in the top panel. These represent monthly sales of a toy product over a period of six 

years. An upward trend and a seasonal pattern are evident.  

 



 

 

We produce forecasts with two methods: Holt’s linear trend exponential smoothing (that ignored 

the seasonal pattern) and the Holt-Winters exponential smoothing with multiplicative 

seasonality. The forecasts for the next year (next 12 months) are depicted by the red and blue 

lines in the first panel. 

 

1. The first step is to produce forecasts using all available historical data, without splitting a 

series into training and validation sets. 

 

2. Specify the window of forecasts over which representativeness is to be measured. It 

simplifies things to match the forecast horizon with the periodicity of the data, so for 

monthly data – a periodicity of 12 – we set the forecast horizon to be 12 months ahead. 

 

3. Split the sample data into buckets such that (i) each bucket is at least as long as the 

forecasts’ window, and (ii) the first period of each bucket corresponds to the respective 

first period of the forecasts. In the toy example, we split the in-sample data into five 

windows/buckets, each a length of 12 months to match the forecasting horizon and each 

bucket beginning with the same month of the year. This ensures that seasonal patterns 

will be aligned when comparisons are performed. 

 

4. The fourth step is to perform any needed scaling and transformations. For each bucket 

in our illustrative data, we aligned the scales and did a Box-Cox transformation to 

stabilize the variance and transform multiplicative patterns into additive ones. This is to 

be done for the forecasts as well. 

 

5. For each individual bucket, the representativeness gap is measured in terms of the 

closeness of the past data points to the point forecasts. Most simply, we sum the 

absolute distances between a (scaled and transformed) bucket of past data and the 

forecasts. For our toy example, the result of this step is five sums of absolute 

differences.    

 

6. The final step is to take an average of the resulting bucket sums from the prior step. This 

could be an unweighted average, but we recommend a weighted mean to give more 

emphasis to the more recent years. In particular, we recommend that the weight for each 

bucket is one half of its more recent adjacent bucket; that is, the weights are decreasing 

by 50% as we move back from the most recent bucket.   

 

In Figure 1, the middle frame highlights the representativeness gap for the trended-only forecast 

– the red line in the top frame. The large representativeness gap reflects mainly the seasonal 

departure of the data from the trend line. The bottom frame shows the forecasts from a 

trended/seasonal (Holt-Winters) model – the blue forecasts. It is clear that the 

representativeness gap is much lower now that we’ve also accounted for seasonality.  

 

Once the representativeness gap has been calculated, then the value of the REP criterion is 

calculated as the sum of the representativeness gap and the in-sample performance gap. For 



 

 

the toy data, the in-sample performance gap is the mean of absolute differences between the 

actual and fitted values over the five years.  

 

 
Figure 1. A toy example on measuring representativeness (and its gap); adapted from 

Petropoulos and Siemsen (2022). 

 

 

PERFORMANCE COMPARISON OF SELECTION APPROACHES 
 

To evaluate how our REP criterion fares against information criteria and cross-validation, we 

compared the three criteria on a large collection of real data from the M, M3, and M4 forecasting 

competitions. We used these three criteria to select and to combine models from the 

exponential-smoothing family. For the latter, we calculated weights based on how the individual 

models performed on the particular selection criterion. 

 



 

 

Table 1 offers a selective summary of the empirical results. (These were more fully reported in 

Petropoulos and Siemsen, 2022). For Table 1, we present forecast accuracy results for the 

yearly and monthly data frequencies. The metric reported is the mean absolute scaled error 

(MASE), originally proposed by Rob Hyndman (see Hyndman, 2006) as a scale-free metric 

suitable for measuring accuracy across multiple time series (including intermittent series). 

 

Table 1. Summary accuracy results; adapted from Petropoulos and Siemsen (2022). 

  Yearly data Monthly data 

Selection AICc 3.405 0.941 
CV 3.307 0.921 

REP 3.125 0.918 

Combination AICc 3.351 0.933 
CV 3.300 0.916 

REP 3.101 0.906 

 

For point forecasts, the REP selection rule outperforms both the information criterion and cross-

validation, and does so for both the yearly and monthly data. For the yearly frequency, REP was 

more accurate than AICc (Akaike’s Information Criterion corrected for small sample sizes) and 

cross-validation (CV) by 8.2% and 5.5% respectively. Differences in performance were 

statistically significant in most of the cases, especially for yearly, quarterly, and monthly data.  

 

In addition, we found that REP selects the best (among a class of exponential smoothing) 

models more often than information criteria, while more frequently avoiding the worst of these 

models. The good performance of REP was evident not only when it was used to 

select/combine models within the exponential-smoothing family, but also within the ARIMA 

family of models, or even between models of different families. 

 

We note too that combinations of models based on REP outperformed AICc and CV in terms of 

estimating uncertainty as well as accuracy in the point forecasts, using the mean scaled interval 

score and a 95% confidence level.  

 

We also performed sensitivity analyses to examine the performance of REP under different 

conditions. Two principal findings: 

 

• First, we considered the case of using only the representativeness gap in measuring 

REP, leaving out the in-sample performance. We observed that even excluding the 

performance gap leaves the REP approach superior to selection based on the AICc . 

This is very important for cases in which the available forecasts are not accompanied by 

in-sample fits, as it is usual for purely judgmental forecasts.  

• Second, we analyzed the performance of REP for different forecast horizons and found 

that REP performs strongly across all horizons (short, medium, and long) – and in fact, 

its advantage relative to the information and cross-validation criteria grows at longer 

horizons. 

 

 



 

 

CONCLUSION 
 

As a means of selecting between forecast models, representativeness – with the strong 

empirical performance of REP – has earned its way into the criteria for model selection. Similar 

to information criteria, REP consists of two parts: how well the model fits the historical data and 

a penalty. Contrary to information criteria, the penalty is not based on model complexity but 

rather on the representativeness of the forecasts, the degree to which the resulting forecasts 

are perceived as a natural extension of the historical data. 

 

Our study offers more evidence that the infusion of human judgment into algorithms, such as 

the manner in which we use visualizations of the forecasts, can improve the performance of 

both existing algorithms and judgment alone. That said, there is still much to distill from how 

humans approach forecasting and how we can translate such insights to further improve our 

forecasting algorithms. 
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